1
|
Ku H, Chen JJY, Chen W, Tien PT, Lin HJ, Wan L, Xu G. The role of transforming growth factor beta in myopia development. Mol Immunol 2024; 167:34-42. [PMID: 38340674 DOI: 10.1016/j.molimm.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/28/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
Myopia is widely recognized as an epidemic. Studies have found a link between Transforming Growth Factor-beta (TGF-β) and myopia, but the specific molecular mechanisms are not fully understood. In this study, a monocular model in tree shrews (Tupaia belangeri) was established to verify the molecular mechanism of TGF-β in myopia. The results indicated that there were significant changes in TGF-βs during the treatment of myopia, which could enhance the refractive ability and axial length of the eye. Immunohistochemical staining, real-time fluorescent quantitative PCR, and immunoblotting results showed a significant upregulation of MMP2 and NF-κB levels, and a significant downregulation of COL-I expression in the TGF-β treated eyes, suggesting that NF-κB and MMP2 are involved in the signaling pathways of TGF-βs induced myopia and axial elongation. Moreover, the expression levels of IL-6, IL-8, MCP-1, IL-1β, TNF-α, TAK1, and NF-κB in the retina were all significantly elevated. This indicates that TGF-β stimulates the inflammatory response of retinal pigment epithelial cells through the TAK1-NF-κB signaling pathway. In conclusion, this study suggests that TGF-β promotes the progression of myopia by enhancing intraocular inflammation.
Collapse
Affiliation(s)
- Hsiangyu Ku
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031 China; Department of Pediatric Ophthalmology, Affiliated Hospital of Yunnan University, China
| | | | - Wei Chen
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031 China
| | - Peng-Tai Tien
- Eye Center, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Clinical Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Hui-Ju Lin
- Eye Center, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Lei Wan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan; Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan.
| | - Gezhi Xu
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031 China.
| |
Collapse
|
2
|
Meyer C, Brockmueller A, Buhrmann C, Shakibaei M. Prevention and Co-Management of Breast Cancer-Related Osteoporosis Using Resveratrol. Nutrients 2024; 16:708. [PMID: 38474838 DOI: 10.3390/nu16050708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Breast cancer (BC) is currently one of the most common cancers in women worldwide with a rising tendency. Epigenetics, generally inherited variations in gene expression that occur independently of changes in DNA sequence, and their disruption could be one of the main causes of BC due to inflammatory processes often associated with different lifestyle habits. In particular, hormone therapies are often indicated for hormone-positive BC, which accounts for more than 50-80% of all BC subtypes. Although the cure rate in the early stage is more than 70%, serious negative side effects such as secondary osteoporosis (OP) due to induced estrogen deficiency and chemotherapy are increasingly reported. Approaches to the management of secondary OP in BC patients comprise adjunctive therapy with bisphosphonates, non-steroidal anti-inflammatory drugs (NSAIDs), and cortisone, which partially reduce bone resorption and musculoskeletal pain but which are not capable of stimulating the necessary intrinsic bone regeneration. Therefore, there is a great therapeutic need for novel multitarget treatment strategies for BC which hold back the risk of secondary OP. In this review, resveratrol, a multitargeting polyphenol that has been discussed as a phytoestrogen with anti-inflammatory and anti-tumor effects at the epigenetic level, is presented as a potential adjunct to both support BC therapy and prevent osteoporotic risks by positively promoting intrinsic regeneration. In this context, resveratrol is also known for its unique role as an epigenetic modifier in the regulation of essential signaling processes-both due to its catabolic effect on BC and its anabolic effect on bone tissue.
Collapse
Affiliation(s)
- Christine Meyer
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Constanze Buhrmann
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Augsburg, 86159 Augsburg, Germany
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| |
Collapse
|
3
|
Chavez J, Khan A, Watson KR, Khan S, Si Y, Deng AY, Koher G, Anike MS, Yi X, Jia Z. Carbon Nanodots Inhibit Tumor Necrosis Factor-α-Induced Endothelial Inflammation through Scavenging Hydrogen Peroxide and Upregulating Antioxidant Gene Expression in EA.hy926 Endothelial Cells. Antioxidants (Basel) 2024; 13:224. [PMID: 38397822 PMCID: PMC10885878 DOI: 10.3390/antiox13020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Carbon nanodots (CNDs) are a new type of nanomaterial with a size of less than 10 nanometers and excellent biocompatibility, widely used in fields such as biological imaging, transmission, diagnosis, and drug delivery. However, its potential and mechanism to mediate endothelial inflammation have yet to be explored. Here, we report that the uptake of CNDs by EA.hy926 endothelial cells is both time and dose dependent. The concentration of CNDs used in this experiment was found to not affect cell viability. TNF-α is a known biomarker of vascular inflammation. Cells treated with CNDs for 24 h significantly inhibited TNF-α (0.5 ng/mL)-induced expression of intracellular adhesion molecule 1 (ICAM-1) and interleukin 8 (IL-8). ICAM-1 and IL-8 are two key molecules responsible for the activation and the firm adhesion of monocytes to activated endothelial cells for the initiation of atherosclerosis. ROS, such as hydrogen peroxide, play an important role in TNF-α-induced inflammation. Interestingly, we found that CNDs effectively scavenged H2O2 in a dose-dependent manner. CNDs treatment also increased the activity of the antioxidant enzyme NQO1 in EA.hy926 endothelial cells indicating the antioxidant properties of CNDs. These results suggest that the anti-inflammatory effects of CNDs may be due to the direct H2O2 scavenging properties of CNDs and the indirect upregulation of antioxidant enzyme NQO1 activity in endothelial cells. In conclusion, CND can inhibit TNF-α-induced endothelial inflammation, possibly due to its direct scavenging of H2O2 and the indirect upregulation of antioxidant enzyme NQO1 activity in endothelial cells.
Collapse
Affiliation(s)
- Jessica Chavez
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA (A.K.); (Y.S.); (G.K.)
| | - Ajmal Khan
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA (A.K.); (Y.S.); (G.K.)
| | - Kenna R. Watson
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA (A.K.); (Y.S.); (G.K.)
| | - Safeera Khan
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA (A.K.); (Y.S.); (G.K.)
| | - Yaru Si
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA (A.K.); (Y.S.); (G.K.)
| | | | - Grant Koher
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA (A.K.); (Y.S.); (G.K.)
| | - Mmesoma S. Anike
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA (A.K.); (Y.S.); (G.K.)
| | - Xianwen Yi
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA (A.K.); (Y.S.); (G.K.)
| |
Collapse
|
4
|
Ahmed TA, Ahmed SM, Elkhenany H, El-Desouky MA, Magdeldin S, Osama A, Anwar AM, Mohamed IK, Abdelgawad ME, Hanna DH, El-Badri N. The cross talk between type II diabetic microenvironment and the regenerative capacities of human adipose tissue-derived pericytes: a promising cell therapy. Stem Cell Res Ther 2024; 15:36. [PMID: 38331889 PMCID: PMC10854071 DOI: 10.1186/s13287-024-03643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/21/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Pericytes (PCs) are multipotent contractile cells that wrap around the endothelial cells (ECs) to maintain the blood vessel's functionality and integrity. The hyperglycemia associated with Type 2 diabetes mellitus (T2DM) was shown to impair the function of PCs and increase the risk of diabetes complications. In this study, we aimed to investigate the deleterious effect of the diabetic microenvironment on the regenerative capacities of human PCs. METHODS PCs isolated from human adipose tissue were cultured in the presence or absence of serum collected from diabetic patients. The functionality of PCs was analyzed after 6, 14, and 30 days. RESULTS Microscopic examination of PCs cultured in DS (DS-PCs) showed increased aggregate formation and altered surface topography with hyperbolic invaginations. Compared to PCs cultured in normal serum (NS-PCs), DS-PCs showed more fragmented mitochondria and thicker nuclear membrane. DS caused impaired angiogenic differentiation of PCs as confirmed by tube formation, decreased VEGF-A and IGF-1 gene expression, upregulated TSP1, PF4, actin-related protein 2/3 complex, and downregulated COL21A1 protein expression. These cells suffered more pronounced apoptosis and showed higher expression of Clic4, apoptosis facilitator BCl-2-like protein, serine/threonine protein phosphatase, and caspase-7 proteins. DS-PCs showed dysregulated DNA repair genes CDKN1A, SIRT1, XRCC5 TERF2, and upregulation of the pro-inflammatory genes ICAM1, IL-6, and TNF-α. Further, DS-treated cells also showed disruption in the expression of the focal adhesion and binding proteins TSP1, TGF-β, fibronectin, and PCDH7. Interestingly, DS-PCs showed resistance mechanisms upon exposure to diabetic microenvironment by maintaining the intracellular reactive oxygen species (ROS) level and upregulation of extracellular matrix (ECM) organizing proteins as vinculin, IQGAP1, and tubulin beta chain. CONCLUSION These data showed that the diabetic microenvironment exert a deleterious effect on the regenerative capacities of human adipose tissue-derived PCs, and may thus have possible implications on the vascular complications of T2DM. Nevertheless, PCs have shown remarkable protective mechanisms when initially exposed to DS and thus they could provide a promising cellular therapy for T2DM.
Collapse
Affiliation(s)
- Toka A Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Sara M Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Hoda Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Mohamed A El-Desouky
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo, 57357, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Aya Osama
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo, 57357, Egypt
| | - Ali Mostafa Anwar
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo, 57357, Egypt
| | - Ihab K Mohamed
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed Essameldin Abdelgawad
- Biochemistry and Molecular Biotechnology Division, Chemistry Department, Faculty of Science, Innovative Cellular Microenvironment Optimization Platform (ICMOP), Precision Therapy Unit, Helwan University, Cairo, Egypt
- The Egyptian Network of Bioinformatics "BioNetMasr", Cairo, Egypt
| | - Demiana H Hanna
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt.
| |
Collapse
|
5
|
Vinothkanna A, Prathiviraj R, Sivakumar TR, Ma Y, Sekar S. GC-MS and Network Pharmacology Analysis of the Ayurvedic Fermented Medicine, Chandanasava, Against Chronic Kidney and Cardiovascular Diseases. Appl Biochem Biotechnol 2023; 195:2803-2828. [PMID: 36418713 PMCID: PMC9684947 DOI: 10.1007/s12010-022-04242-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/25/2022]
Abstract
Chandanasava is an Ayurvedic polyherbal fermented traditional medicine (FTM) used by traditional practitioners for millennia. Nevertheless, the mode of action and functional targets are still unknown. The current study includes a pharmacological network analysis to identify the Chandanasava compounds interacting with target proteins involved in chronic kidney disease (CKD) and cardiovascular disease (CVD). Sixty-one Chandanasava phytochemicals were obtained by GC-MS and screened using the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP). The disease target genes were obtained from DisGeNET and GeneCards databases. Forty-five phytocompounds and 135 potential targets were screened for CKD and CVD target proteins and protein interaction networks were constructed. The pharmacological network was deciphered employing target proteins involved in the mechanical action of Chandanasava. The results indicated that 10 bioactive compounds exhibited higher binding affinity patterns with the screened 42 CKD and CVD target proteins. Gene Ontology and KEGG analysis revealed target pathways involved in CKD and CVD, which were further explored by detailed analysis and network-coupled drug profile screening. The molecular docking results showed piperine and melatonin as effective inhibitors/regulators of the hub genes of CKD and CVD. The current study establishing authentic bioactive compounds in FTM is based on deeper insights into recognized Ayurvedic medicines. Representing the workflow of the network pharmacological analysis.
Collapse
Affiliation(s)
- Annadurai Vinothkanna
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| | | | - Thasma Raman Sivakumar
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yongkun Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Soundarapandian Sekar
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| |
Collapse
|
6
|
Enteric-Coated Cologrit Tablet Exhibit Robust Anti-Inflammatory Response in Ulcerative Colitis-like In-Vitro Models by Attuning NFκB-Centric Signaling Axis. Pharmaceuticals (Basel) 2022; 16:ph16010063. [PMID: 36678560 PMCID: PMC9862254 DOI: 10.3390/ph16010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease that affects the patients' colorectal area culminating in an inflamed 'leaky gut.' The majority of UC treatments only provide temporary respite leading to its relapse. Therefore, this study investigated the efficacy of the enteric-coated 'Cologrit' (EC) tablet in alleviating UC-like inflammation. Cologrit is formulated using polyherbal extracts that have anti-inflammatory qualities according to ancient Ayurveda scriptures. Phytochemical profiling revealed the presence of gallic acid, rutin, ellagic acid, and imperatorin in Cologrit formulation. Cologrit treatment decreased inflammation in LPS-induced transformed THP-1 macrophages, and TNF-α-stimulated human colorectal (HT-29) cells through the modulation of NFκB activity, IL-6 production, and NFκB, IL-1β, IL-8, and CXCL5 mRNA expression levels. Cologrit also lessened human monocytic (U937) cell adhesion to HT29 cells. Methacrylic acid-ethylacrylate copolymer-coating of the enteric Cologrit tablets (EC) supported their dissolution, and the release of phytochemicals in the small intestine pH 7.0 environment in a simulated gastrointestinal digestion model. Small intestine EC digestae effectively abridged dextran sodium sulfate (2.5% w/v)-induced cell viability loss and oxidative stress in human colon epithelial Caco-2 cells. In conclusion, the enteric-coated Cologrit tablets demonstrated good small intestine-specific phytochemical delivery capability, and decreased UC-like inflammation, and oxidative stress through the regulation of TNF-α/NFκB/IL6 signaling axis.
Collapse
|
7
|
Alshurafa A, Elhissi M, Yassin MA. Complete resolution of stage II avascular necrosis affecting three joints by hyperbaric oxygen in a patient with sickle cell disease: A case report. Front Med (Lausanne) 2022; 9:1063255. [DOI: 10.3389/fmed.2022.1063255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
Avascular necrosis (AVN) or joint osteonecrosis is a debilitating complication of sickle cell disease, increasing the disease burden on both patients and healthcare systems. AVN can be radiologically categorized into early and late stages depending on the extent of the disease. Management of AVN is challenging and controversial. Generally, it includes conservative measures for early disease to preserve the joint for as long as possible and surgical management for more advanced diseases. Hyperbaric oxygen (HBO) therapy can be used as primary or adjunctive therapy for different medical disorders. Currently, the main rule of HBO in AVN is an adjunctive therapy to control symptoms and improve the quality of life of a patient; however, the concept of using HBO as a primary treatment choice for AVN in patients with sickle cell disease is not well evaluated yet. In this case study, we reported a 15-year-old boy with sickle cell disease who was suffering from stage II AVN in bilateral femoral and right shoulder joints. A total of 57 sessions of HBO resulted in the complete resolution of AVN in post-treatment MRI.
Collapse
|
8
|
TNF overexpression and dexamethasone treatment impair chondrogenesis and bone growth in an additive manner. Sci Rep 2022; 12:18189. [PMID: 36307458 PMCID: PMC9616891 DOI: 10.1038/s41598-022-22734-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/19/2022] [Indexed: 12/31/2022] Open
Abstract
Children with chronic inflammation are often treated with glucocorticoids (GCs) and many of them experience growth retardation. It is poorly understood how GCs interact with inflammatory cytokines causing growth failure as earlier experimental studies have been performed in healthy animals. To address this gap of knowledge, we used a transgenic mouse model where human TNF is overexpressed (huTNFTg) leading to chronic polyarthritis starting from the first week of age. Our results showed that femur bone length and growth plate height were significantly decreased in huTNFTg mice compared to wild type animals. In the growth plates of huTNFTg mice, increased apoptosis, suppressed Indian hedgehog, decreased hypertrophy, and disorganized chondrocyte columns were observed. Interestingly, the GC dexamethasone further impaired bone growth, accelerated chondrocyte apoptosis and reduced the number of chondrocyte columns in huTNFTg mice. We conclude that TNF and dexamethasone separately suppress chondrogenesis and bone growth when studied in an animal model of chronic inflammation. Our data give a possible mechanistic explanation to the commonly observed growth retardation in children with chronic inflammatory diseases treated with GCs.
Collapse
|
9
|
Chen CS, Hsu YA, Lin CH, Wang YC, Lin ES, Chang CY, Chen JJY, Wu MY, Lin HJ, Wan L. Fallopia Japonica and Prunella vulgaris inhibit myopia progression by suppressing AKT and NFκB mediated inflammatory reactions. BMC Complement Med Ther 2022; 22:271. [PMID: 36242032 PMCID: PMC9563826 DOI: 10.1186/s12906-022-03747-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 09/29/2022] [Indexed: 12/12/2022] Open
Abstract
Background The increased global incidence of myopia requires the establishment of therapeutic approaches. This study aimed to investigate the effect of Fallopia Japonica (FJ) and Prunella vulgaris (PV) extract on myopia caused by monocular form deprivation (MFD). Methods We used human retinal pigment epithelial cell to study the molecular mechanisms on how FJ extract (FJE) and PV extract (PVE) lowering the inflammation of the eye. The effect of FJE and PVE in MFD induced hamster model and explore the role of inflammation cytokines in myopia. Results FJE + PVE reduced IL-6, IL-8, and TNF-α expression in RPE cells. Furthermore, FJE and PVE inhibited inflammation by attenuating the phosphorylation of protein kinase B (AKT), and nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) pathway. In addition, we report two resveratrol + ursolic acid compounds from FJ and PV and their inhibitory activities against IL-6, IL-8, and TNF-α expression levels in RPE cells treated with IL-6 and TNF-α. FJE, PVE, and FJE + PVE were applied to MFD hamsters and their axial length was measured after 21 days. The axial length showed statistically significant differences between phosphate-buffered saline- and FJE-, PVE-, and FJE + PVE-treated MFD eyes. FJE + PVE suppressed expressions of IL-6, IL-8, and TNF-α. They also inhibited myopia-related transforming growth factor-beta (TGF)-β1, matrix metalloproteinase (MMP)-2, and NF-κB expression while increasing type I collagen expression. Conclusions Overall, these results suggest that FJE + PVE may have a therapeutic effect on myopia and be used as a potential treatment option. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03747-2.
Collapse
Affiliation(s)
- Chih-Sheng Chen
- grid.252470.60000 0000 9263 9645Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan ,grid.252470.60000 0000 9263 9645Division of Chinese Medicine, Asia University Hospital, Taichung, Taiwan
| | - Yu-An Hsu
- grid.254145.30000 0001 0083 6092School of Chinese Medicine, China Medical University, 91, Hsueh-Shih Road, Taichung, 40402 Taiwan
| | - Chia-Hung Lin
- grid.254145.30000 0001 0083 6092School of Chinese Medicine, China Medical University, 91, Hsueh-Shih Road, Taichung, 40402 Taiwan
| | - Yao-Chien Wang
- grid.414692.c0000 0004 0572 899XDepartment of Emergency Medicine, Taichung Tzu Chi Hospital, Taichung, Taiwan
| | - En-Shyh Lin
- grid.419772.e0000 0001 0576 506XDepartment of Beauty Science, National Taichung University of Science and Technology, Taichung, Taiwan
| | - Ching-Yao Chang
- grid.252470.60000 0000 9263 9645Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Jamie Jiin-Yi Chen
- grid.411508.90000 0004 0572 9415Eye Center, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Yen Wu
- grid.411508.90000 0004 0572 9415Eye Center, China Medical University Hospital, Taichung, Taiwan
| | - Hui-Ju Lin
- grid.254145.30000 0001 0083 6092School of Chinese Medicine, China Medical University, 91, Hsueh-Shih Road, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Eye Center, China Medical University Hospital, Taichung, Taiwan
| | - Lei Wan
- grid.254145.30000 0001 0083 6092School of Chinese Medicine, China Medical University, 91, Hsueh-Shih Road, Taichung, 40402 Taiwan ,grid.252470.60000 0000 9263 9645Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan ,grid.411508.90000 0004 0572 9415Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
10
|
Kitaura H, Marahleh A, Ohori F, Noguchi T, Nara Y, Pramusita A, Kinjo R, Ma J, Kanou K, Mizoguchi I. Role of the Interaction of Tumor Necrosis Factor-α and Tumor Necrosis Factor Receptors 1 and 2 in Bone-Related Cells. Int J Mol Sci 2022; 23:ijms23031481. [PMID: 35163403 PMCID: PMC8835906 DOI: 10.3390/ijms23031481] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine expressed by macrophages, monocytes, and T cells, and its expression is triggered by the immune system in response to pathogens and their products, such as endotoxins. TNF-α plays an important role in host defense by inducing inflammatory reactions such as phagocytes and cytocidal systems activation. TNF-α also plays an important role in bone metabolism and is associated with inflammatory bone diseases. TNF-α binds to two cell surface receptors, the 55kDa TNF receptor-1 (TNFR1) and the 75kDa TNF receptor-2 (TNFR2). Bone is in a constant state of turnover; it is continuously degraded and built via the process of bone remodeling, which results from the regulated balance between bone-resorbing osteoclasts, bone-forming osteoblasts, and the mechanosensory cell type osteocytes. Precise interactions between these cells maintain skeletal homeostasis. Studies have shown that TNF-α affects bone-related cells via TNFRs. Signaling through either receptor results in different outcomes in different cell types as well as in the same cell type. This review summarizes and discusses current research on the TNF-α and TNFR interaction and its role in bone-related cells.
Collapse
|
11
|
Sahraei SS, Davoodi Asl F, Kalhor N, Sheykhhasan M, Fazaeli H, Moud SS, Sheikholeslami A. A Comparative Study of Gene Expression in Menstrual Blood-Derived Stromal Cells between Endometriosis and Healthy Women. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7053521. [PMID: 35059465 PMCID: PMC8766185 DOI: 10.1155/2022/7053521] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/18/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Research into the pathogenesis of endometriosis would substantially promote its effective treatment and early diagnosis. Currently, accumulating evidence has shed light on the importance of endometrial stem cells within the menstrual blood which are involved in the establishment and progression of endometriotic lesions in a retrograde manner. OBJECTIVES We aimed to identify the differences in some genes' expression between menstrual blood-derived mesenchymal stem cells (MenSCs) isolated from endometriosis patients (E-MenSCs) and MenSCs from healthy women (NE-MenSCs). METHODS Menstrual blood samples (2-3 mL) from healthy and endometriosis women in the age range of 22-35 years were collected. Isolated MenSCs by the Ficoll-Paque density-gradient centrifugation method were characterized by flow cytometry. MenSCs were evaluated for key related endometriosis genes by real-time-PCR. RESULTS E-MenSCs were morphologically different from NE-MenSCs and showed, respectively, higher and lower expression of CD10 and CD9. Furthermore, E-MenSCs had higher expression of Cyclin D1 (a cell cycle-related gene) and MMP-2 and MMP-9 (migration- and invasion-related genes) genes compared with NE-MenSCs. Despite higher cell proliferation in E-MenSCs, the BAX/BCL-2 ratio was significantly lower in E-MenSCs compared to NE-MenSCs. Also, the level of inflammatory genes such as IL1β, IL6, IL8, and NF-κB and stemness genes including SOX2 and SALL4 was increased in E-MenSCs compared with NE-MenSCs. Further, VEGF, as a potent angiogenic factor, showed a significant increase in E-MenSCs rather than NE-MenSCs. However, NE-MenSCs showed increased ER-α and β-catenin when compared with E-MenSCs. CONCLUSION Here, we showed that there are gene expression differences between E-MenSCs and NE-MenSCs. These findings propose that MenSCs could play key role in the pathogenesis of endometriosis and further support the menstrual blood retrograde theory of endometriosis formation. This could be of great importance in exploiting promising therapeutic targets and new biomarkers for endometriosis treatment and prognosis.
Collapse
Affiliation(s)
- Seyedeh Saeideh Sahraei
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom, Iran
| | - Faezeh Davoodi Asl
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom, Iran
| | - Naser Kalhor
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom, Iran
| | - Mohsen Sheykhhasan
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom, Iran
| | - Hoda Fazaeli
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom, Iran
| | - Sanaz Soleymani Moud
- Midwifery Ward, Infertility Treatment Center, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom, Iran
| | - Azar Sheikholeslami
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom, Iran
| |
Collapse
|
12
|
Yu J, Xia Y, Wang G, Xiong Z, Zhang H, Lai PFH, Song X, Ai L. Anti-osteoporotic potential of Lactobacillus plantarum AR237 and AR495 in ovariectomized mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
13
|
Jiang J, Wang J, Yao L, Lai S, Zhang X. What do we know about IL-6 in COVID-19 so far? BIOPHYSICS REPORTS 2021; 7:193-206. [PMID: 37287491 PMCID: PMC10244797 DOI: 10.52601/bpr.2021.200024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 04/01/2021] [Indexed: 11/05/2022] Open
Abstract
Interleukin 6 (IL-6) is a cytokine with dual functions of pro-inflammation and anti-inflammation. It is mainly produced by mononuclear macrophages, Th2 cells, vascular endothelial cells and fibroblasts. IL-6 binds to glycoprotein 130 and one of these two receptors, membrane-bound IL-6R or soluble IL-6R, forming hexamer (IL-6/IL-6R/gp130), which then activates different signaling pathways (classical pathway, trans-signaling pathway) to exert dual immune-modulatory effects of anti-inflammation or pro-inflammation. Abnormal levels of IL-6 can cause multiple pathological reactions, including cytokine storm. Related clinical studies have found that IL-6 levels in severe COVID-19 patients were much higher than in healthy population. A large number of studies have shown that IL-6 can trigger a downstream cytokine storm in patients with COVID-19, resulting in lung damages, aggravating clinical symptoms and developing excessive inflammation and acute respiratory distress syndrome (ARDS). Monoclonal antibodies against IL-6 or IL-6R, such as tocilizumab, sarilumab, siltuximab and olokizumab may serve as therapeutic options for COVID-19 infection.
Collapse
Affiliation(s)
- Jingrui Jiang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan 430068, China
| | - Jun Wang
- Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan 430068, China
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Wuhan 430068, China
| | - Lulu Yao
- Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan 430068, China
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Wuhan 430068, China
| | - Shenghan Lai
- Department of Pathology, Johns Hopkins University School of Medicine, MD 21287, USA
| | - Xueji Zhang
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), School of Biomedical Engineering, Shenzhen University, Shenzhen 518037, Guangdong, China
| |
Collapse
|
14
|
Singh SS, Akhtar MN, Sharma D, Mandal SM, Korpole S. Characterization of Iturin V, a Novel Antimicrobial Lipopeptide from a Potential Probiotic Strain Lactobacillus sp. M31. Probiotics Antimicrob Proteins 2021; 13:1766-1779. [PMID: 33987819 DOI: 10.1007/s12602-021-09796-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Members of lactic acid bacteria group are known to produce various antimicrobial substances. Cyclic lipopeptides are one such potent class of amphipathic natural biosurfactants that exhibit bactericidal and immunomodulatory properties. In this study, we aimed to investigate antimicrobial and immunomodulatory activities of a lipopeptide secreted by a LAB isolate strain M31 identified as a member of the genus Lactobacillus. The lipopeptide that was purified using a combination of chromatographic techniques and matrix-assisted laser desorption/ionization-time of flight of pure lipopeptide displayed a molecular weight of 1002 Da. MS/MS analysis confirmed the presence of 7 amino acids (Asp-Tyr-Asp-Val-Pro-Asp-Ser) and a C13 beta-hydroxy fatty acid. The amino acid composition assigned lipopeptide to iturin class. However, the replacement of Gln with Val revealed it to represent a novel iturin named as iturin V. Iturin V showed antibacterial activity and did not cause hemolysis or cytotoxicity upto 125 µg/mL. It induced secretion of pro-inflammatory cytokines TNF-alpha and IL-12 in murine dendritic cells. Probiotic features of strain M31 coupled with notable activity of iturin V against species of the genera Pseudomonas and Vibrio suggest that strain M31 has potential application for pathogen intervention treatments in processing of aquatic food products.
Collapse
Affiliation(s)
| | | | - Deepika Sharma
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | - Suresh Korpole
- CSIR-Institute of Microbial Technology, Chandigarh, India.
| |
Collapse
|
15
|
Földvári-Nagy L, Schnabel T, Dörnyei G, Korcsmáros T, Lenti K. On the role of bacterial metalloproteases in COVID-19 associated cytokine storm. Cell Commun Signal 2021; 19:7. [PMID: 33441142 PMCID: PMC7805260 DOI: 10.1186/s12964-020-00699-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
The cytokine release syndrome or cytokine storm, which is the hyper-induction of inflammatory responses has a central role in the mortality rate of COVID-19 and some other viral infections. Interleukin-6 (IL-6) is a key player in the development of cytokine storms. Shedding of interleukin-6 receptor (IL-6Rα) results in the accumulation of soluble interleukin-6 receptors (sIL-6R). Only relatively few cells express membrane-bound IL-6Rα. However, sIL-6R can act on potentially all cells and organs through the ubiquitously expressed gp130, the coreceptor of IL-6Rα. Through this, so-called trans-signaling, IL-6-sIL-6R is a powerful factor in the development of cytokine storms and multiorgan involvement. Some bacteria (e.g., Serratia marcescens, Staphylococcus aureus, Pseudomonas aeruginosa, Listeria monocytogenes), commonly considered to cause co-infections during viral pneumonia, can directly induce the shedding of membrane receptors, including IL-6Rα, or enhance endogenous shedding mechanisms causing the increase of sIL-6R level. Here we hypothesise that bacteria promoting shedding and increase the sIL-6R level can be an important contributing factor for the development of cytokine storms. Therefore, inhibition of IL-6Rα shedding by drastically reducing the number of relevant bacteria may be a critical element in reducing the chance of a cytokine storm. Validation of this hypothesis can support the consideration of the prophylactic use of antibiotics more widely and at an earlier stage of infection to decrease the mortality rate of COVID-19. Video abstract.
Collapse
Affiliation(s)
- László Földvári-Nagy
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17. Vas str., Budapest, 1088 Hungary
| | - Tamás Schnabel
- I. Department of Internal Medicine and Gastroenterology, Department of Orthopaedics - COVID Quarantine, ÉKC New Saint John’s Hospital, 1-3. Diós árok, Budapest, 1125 Hungary
| | - Gabriella Dörnyei
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17. Vas str., Budapest, 1088 Hungary
| | - Tamás Korcsmáros
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ UK
| | - Katalin Lenti
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17. Vas str., Budapest, 1088 Hungary
| |
Collapse
|
16
|
Strawbridge R, Marwood L, King S, Young AH, Pariante CM, Colasanti A, Cleare AJ. Inflammatory Proteins and Clinical Response to Psychological Therapy in Patients with Depression: An Exploratory Study. J Clin Med 2020; 9:jcm9123918. [PMID: 33276697 PMCID: PMC7761611 DOI: 10.3390/jcm9123918] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022] Open
Abstract
In people with depression, immune dysfunctions have been linked with treatment non-response, but examinations of psychological therapy outcomes, particularly longitudinal biomarker studies, are rare. This study investigated relationships between inflammation, depressive subtypes and clinical outcomes to psychological therapy. Adults with depression (n = 96) were assessed before and after a course of naturalistically-delivered psychological therapy. In total, 32 serum inflammatory proteins were examined alongside therapy outcomes and depressive subtypes (somatic/cognitive symptom subtype, and bipolar/unipolar depression). Overall, 49% of participants responded to treatment. High levels of tumour necrosis factor (TNFα), interleukin-6 (IL-6) and soluble intracellular adhesion molecule-1 (sICAM1), and low interferon-γ (IFNγ), preceded a poorer response to therapy. After therapy, non-responders had elevated c-reactive protein (CRP), thymus and activation-regulated chemokine (TARC) and macrophage chemoattractant protein-4 (MCP4), and attenuated IFNy. Non-somatic depressive symptoms were universally not associated with proteins, while somatic-depressive symptom severity was positively correlated with several pro-inflammatory markers. In the somatic subgroup only, IL-6 and serum amyloid alpha (SAA) decreased between pre- and post-therapy timepoints. Regardless of treatment response, IL-7, IL-8, IL-15 and IL-17 increased over time. These results suggest that inflammation is associated with somatic symptoms of depression and non-response to psychological therapy. Future work may enhance the prospective prediction of treatment-response by examining larger samples of individuals undertaking standardised treatment programmes.
Collapse
Affiliation(s)
- Rebecca Strawbridge
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, Denmark Hill, London SE5 8AZ, UK; (L.M.); (S.K.); (A.H.Y.); (C.M.P.); (A.J.C.)
- Correspondence:
| | - Lindsey Marwood
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, Denmark Hill, London SE5 8AZ, UK; (L.M.); (S.K.); (A.H.Y.); (C.M.P.); (A.J.C.)
| | - Sinead King
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, Denmark Hill, London SE5 8AZ, UK; (L.M.); (S.K.); (A.H.Y.); (C.M.P.); (A.J.C.)
| | - Allan H. Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, Denmark Hill, London SE5 8AZ, UK; (L.M.); (S.K.); (A.H.Y.); (C.M.P.); (A.J.C.)
- South London & Maudsley NHS Foundation Trust, Denmark Hill, London SE5 8AZ, UK
| | - Carmine M. Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, Denmark Hill, London SE5 8AZ, UK; (L.M.); (S.K.); (A.H.Y.); (C.M.P.); (A.J.C.)
- South London & Maudsley NHS Foundation Trust, Denmark Hill, London SE5 8AZ, UK
| | - Alessandro Colasanti
- Department of Neuroscience, Brighton and Sussex Medical School, Sussex University, Brighton BN1 9PX, UK;
| | - Anthony J. Cleare
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, Denmark Hill, London SE5 8AZ, UK; (L.M.); (S.K.); (A.H.Y.); (C.M.P.); (A.J.C.)
- South London & Maudsley NHS Foundation Trust, Denmark Hill, London SE5 8AZ, UK
| |
Collapse
|
17
|
Yoshihara T, Oikawa Y, Kato T, Kessoku T, Kobayashi T, Kato S, Misawa N, Ashikari K, Fuyuki A, Ohkubo H, Higurashi T, Tateishi Y, Tanaka Y, Nakajima S, Ohno H, Wada K, Nakajima A. The protective effect of Bifidobacterium bifidum G9-1 against mucus degradation by Akkermansia muciniphila following small intestine injury caused by a proton pump inhibitor and aspirin. Gut Microbes 2020; 11:1385-1404. [PMID: 32515658 PMCID: PMC7527075 DOI: 10.1080/19490976.2020.1758290] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Proton pump inhibitors (PPIs) can alleviate upper gastrointestinal injury but paradoxically exacerbate aspirin (ASA)-induced small intestine injury. In this study, our goal was to simulate this exacerbation by developing an appropriate animal model, which may help in establishing treatments. Methods: Male mice were fed a 60% fructose diet for 9 weeks, then administered 200 mg/kg ASA 3 h before sacrifice. The PPI omeprazole was administered intraperitoneally once daily for 9 weeks. Bifidobacterium bifidum G9-1 was administered orally for the last week. In addition, Akkermansia muciniphila was administered orally for 9 weeks instead of omeprazole. Results: ASA-induced small-intestine injury was observed in high-fructose fed mice. Omeprazole exacerbated ASA-induced intestinal damage, significantly decreased Bifidobacteria levels, and significantly increased A. muciniphila counts in the jejunum. The direct administration of A. muciniphila caused thinning of the jejunum mucus layer, which was also observed in mice that received ASA and omeprazole. On the other hand, the administration of Bifidobacterium bifidum G9-1 inhibited A. muciniphila growth and reduced thinning of the mucus layer. The number of goblet cells in the jejunum was reduced by the administration of ASA and omeprazole, while Bifidobacterium bifidum G9-1 prevented the reduction. Conclusions: These results suggest that omeprazole-induced gut dysbiosis promotes Akkermansia growth and inhibits Bifidobacterium growth, leading to a thinning of the mucus layer through a reduction in goblet cells in the small intestine. Probiotics are, therefore, a promising approach for the treatment of small intestine injury.
Collapse
Affiliation(s)
- Tsutomu Yoshihara
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Yosuke Oikawa
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe, Japan
| | - Takayuki Kato
- Department of Gastroenterology, International University of Health and Welfare Atami Hospital, Atami, Japan
| | - Takaomi Kessoku
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Shingo Kato
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Noboru Misawa
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Keiichi Ashikari
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Akiko Fuyuki
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Hidenori Ohkubo
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Takuma Higurashi
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Yoko Tateishi
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Yoshiki Tanaka
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe, Japan
| | | | - Hiroshi Ohno
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe, Japan
| | - Koichiro Wada
- Department of Pharmacology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan,CONTACT Atsushi Nakajima
| |
Collapse
|
18
|
Zickler D, Luecht C, Willy K, Chen L, Witowski J, Girndt M, Fiedler R, Storr M, Kamhieh-Milz J, Schoon J, Geissler S, Ringdén O, Schindler R, Moll G, Dragun D, Catar R. Tumour necrosis factor-alpha in uraemic serum promotes osteoblastic transition and calcification of vascular smooth muscle cells via extracellular signal-regulated kinases and activator protein 1/c-FOS-mediated induction of interleukin 6 expression. Nephrol Dial Transplant 2019; 33:574-585. [PMID: 29228352 DOI: 10.1093/ndt/gfx316] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/24/2017] [Indexed: 12/15/2022] Open
Abstract
Background Vascular calcification is enhanced in uraemic chronic haemodialysis patients, likely due to the accumulation of midsize uraemic toxins, such as interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α). Here we have assessed the impact of uraemia on vascular smooth muscle cell (VSMC) calcification and examined the role of IL-6 and TNF-α as possible mediators and, most importantly, its underlying signalling pathway in VSMCs. Methods VSMCs were incubated with samples of uraemic serum obtained from patients treated with haemodialysis for renal failure in the Permeability Enhancement to Reduce Chronic Inflammation-I clinical trial. The VSMCs were assessed for IL-6 gene regulation and promoter activation in response to uraemic serum and TNF-α with reporter assays and electrophoretic mobility shift assay and for osteoblastic transition, cellular calcification and cell viability upon osteogenic differentiation. Results Uraemic serum contained higher levels of TNF-α and IL-6 compared with serum from healthy individuals. Exposure of VSMCs to uraemic serum or recombinant TNF-α lead to a strong upregulation of IL-6 mRNA expression and protein secretion, which was mediated by activator protein 1 (AP-1)/c-FOS-pathway signalling. Uraemic serum induced osteoblastic transition and calcification of VSMCs could be strongly attenuated by blocking TNF-α, IL-6 or AP-1/c-FOS signalling, which was accompanied by improved cell viability. Conclusion These results demonstrate that uraemic serum contains higher levels of uraemic toxins TNF-α and IL-6 and that uraemia promotes vascular calcification through a signalling pathway involving TNF-α, IL-6 and the AP-1/c-FOS cytokine-signalling axis. Thus treatment modalities aiming to reduce systemic TNF-α and IL-6 levels in chronic haemodialysis patients should be evaluated in future clinical trials.
Collapse
Affiliation(s)
- Daniel Zickler
- Clinic for Nephrology and Critical Care Medicine, Charite-Universitatsmedizin Berlin, corporate member of Freie Universitat Berlin, Humboldt-Universitat zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Christian Luecht
- Clinic for Nephrology and Critical Care Medicine, Charite-Universitatsmedizin Berlin, corporate member of Freie Universitat Berlin, Humboldt-Universitat zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Kevin Willy
- Clinic for Nephrology and Critical Care Medicine, Charite-Universitatsmedizin Berlin, corporate member of Freie Universitat Berlin, Humboldt-Universitat zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Lei Chen
- Clinic for Nephrology and Critical Care Medicine, Charite-Universitatsmedizin Berlin, corporate member of Freie Universitat Berlin, Humboldt-Universitat zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Janusz Witowski
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Matthias Girndt
- Department of Internal Medicine II, Martin-Luther-University Halle, Germany
| | - Roman Fiedler
- Department of Internal Medicine II, Martin-Luther-University Halle, Germany
| | - Markus Storr
- Department of Research and Development, Gambro Dialysatoren GmbH, Hechingen, Germany
| | | | - Janosch Schoon
- Berlin-Brandenburg Center and School for Regenerative Therapies(BCRT/BSRT)
- Julius Wolff Institute for Biomechanics and Muskuloskeletal Regeneration (JWI), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Geissler
- Berlin-Brandenburg Center and School for Regenerative Therapies(BCRT/BSRT)
- Julius Wolff Institute for Biomechanics and Muskuloskeletal Regeneration (JWI), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Olle Ringdén
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Ralf Schindler
- Clinic for Nephrology and Critical Care Medicine, Charite-Universitatsmedizin Berlin, corporate member of Freie Universitat Berlin, Humboldt-Universitat zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Guido Moll
- Berlin-Brandenburg Center and School for Regenerative Therapies(BCRT/BSRT)
- Julius Wolff Institute for Biomechanics and Muskuloskeletal Regeneration (JWI), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Duska Dragun
- Clinic for Nephrology and Critical Care Medicine, Charite-Universitatsmedizin Berlin, corporate member of Freie Universitat Berlin, Humboldt-Universitat zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Rusan Catar
- Clinic for Nephrology and Critical Care Medicine, Charite-Universitatsmedizin Berlin, corporate member of Freie Universitat Berlin, Humboldt-Universitat zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
19
|
Gao S, Lu A, Amra S, Guo P, Huard J. TIPE2 gene transfer with adeno-associated virus 9 ameliorates dystrophic pathology in mdx mice. Hum Mol Genet 2019; 28:1608-1619. [DOI: 10.1093/hmg/ddz001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/12/2018] [Accepted: 12/31/2018] [Indexed: 12/23/2022] Open
Affiliation(s)
- Shanshan Gao
- Department of Orthopedic Surgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Aiping Lu
- Department of Orthopedic Surgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| | - Sarah Amra
- Department of Orthopedic Surgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Ping Guo
- Department of Orthopedic Surgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| | - Johnny Huard
- Department of Orthopedic Surgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| |
Collapse
|
20
|
Bosco G, Vezzani G, Mrakic Sposta S, Rizzato A, Enten G, Abou-Samra A, Malacrida S, Quartesan S, Vezzoli A, Camporesi E. Hyperbaric oxygen therapy ameliorates osteonecrosis in patients by modulating inflammation and oxidative stress. J Enzyme Inhib Med Chem 2018; 33:1501-1505. [PMID: 30274530 PMCID: PMC6171420 DOI: 10.1080/14756366.2018.1485149] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Early stages of avascular necrosis of the femoral head (AVNFH) can be conservatively treated with hyperbaric oxygen therapy (HBOT). This study investigated how HBOT modulates inflammatory markers and reactive oxygen species (ROS) in patients with AVNFH. Twenty-three male patients were treated with two cycles of HBOT, 30 sessions each with a 30 days break between cycles. Each session consisted of 90 minutes of 100% inspired oxygen at 2.5 absolute atmospheres of pressure. Plasma levels of tumor necrosis factor alfa (TNF-α), interleukin 6 (IL-6), interleukin 1 beta (IL-1β) and ROS production were measured before treatment (T0), after 15 and 30 HBOT sessions (T1 and T2), after the 30-day break (T3), and after 60 sessions (T4). Results showed a significant reduction in TNF-α and IL-6 plasma levels over time. This decrease in inflammatory markers mirrored observed reductions in bone marrow edema and reductions in patient self-reported pain.
Collapse
Affiliation(s)
- Gerardo Bosco
- a Environmental Physiology Lab , Department of Biomedical Sciences , University of Padova , Padua , Italy
| | - Giuliano Vezzani
- a Environmental Physiology Lab , Department of Biomedical Sciences , University of Padova , Padua , Italy
| | - Simona Mrakic Sposta
- b CNR Institute of Bioimaging and Molecular Physiology , Segrate (Milano) , Italy
| | - Alex Rizzato
- a Environmental Physiology Lab , Department of Biomedical Sciences , University of Padova , Padua , Italy
| | - Garrett Enten
- c Department of Anesthesiology , TEAMHealth Research Institute, TGH , Tampa , FL , USA
| | - Abdullah Abou-Samra
- d Morsani College of Medicine , University of South Florida , Tampa , FL , USA
| | - Sandro Malacrida
- a Environmental Physiology Lab , Department of Biomedical Sciences , University of Padova , Padua , Italy
| | - Silvia Quartesan
- a Environmental Physiology Lab , Department of Biomedical Sciences , University of Padova , Padua , Italy
| | - Alessandra Vezzoli
- b CNR Institute of Bioimaging and Molecular Physiology , Segrate (Milano) , Italy
| | - Enrico Camporesi
- c Department of Anesthesiology , TEAMHealth Research Institute, TGH , Tampa , FL , USA
| |
Collapse
|
21
|
Wang Y, Liu Y, Zhang M, Lv L, Zhang X, Zhang P, Zhou Y. LRRC15 promotes osteogenic differentiation of mesenchymal stem cells by modulating p65 cytoplasmic/nuclear translocation. Stem Cell Res Ther 2018. [PMID: 29523191 PMCID: PMC5845373 DOI: 10.1186/s13287-018-0809-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are a reliable resource for bone regeneration and tissue engineering, but the molecular mechanisms of differentiation remain unclear. The tumor antigen 15-leucine-rich repeat containing membrane protein (LRRC15) is a transmembrane protein demonstrated to play important roles in cancer. However, little is known about its role in osteogenesis. This study was to evaluate the functions of LRRC15 in osteogenic differentiation of MSCs. Methods Osteogenic-induction treatment and the ovariectomized (OVX) model were performed to investigate the potential relationship between LRRC15 and MSC osteogenesis. A loss-of-function study was used to explore the functions of LRRC15 in osteogenic differentiation of MSCs in vitro and in vivo. NF-κB pathway inhibitor BAY117082, siRNA, nucleocytoplasmic separation, and ChIP assays were performed to clarify the molecular mechanism of LRRC15 in bone regulation. Results Our results first demonstrated that LRRC15 expression was upregulated upon osteogenic induction, and the level of LRRC15 was significantly decreased in OVX mice. Both in-vitro and in-vivo experiments detected that LRRC15 was required for osteogenesis of MSCs. Mechanistically, LRRC15 inhibited transcription factor NF-κB signaling by affecting the subcellular localization of p65. Further studies indicated that LRRC15 regulated osteogenic differentiation in a p65-dependent manner. Conclusions Taken together, our findings reveal that LRRC15 is an essential regulator for osteogenesis of MSCs through modulating p65 cytoplasmic/nuclear translocation, and give a novel hint for MSC-mediated bone regeneration. Electronic supplementary material The online version of this article (10.1186/s13287-018-0809-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuejun Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Min Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
22
|
Malek M, Hassanshahi J, Fartootzadeh R, Azizi F, Shahidani S. Nephrogenic acute respiratory distress syndrome: A narrative review on pathophysiology and treatment. Chin J Traumatol 2018; 21:4-10. [PMID: 29398292 PMCID: PMC5835491 DOI: 10.1016/j.cjtee.2017.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/13/2017] [Accepted: 08/04/2017] [Indexed: 02/04/2023] Open
Abstract
The kidneys have a close functional relationship with other organs especially the lungs. This connection makes the kidney and the lungs as the most organs involved in the multi-organ failure syndrome. The combination of acute lung injury (ALI) and renal failure results a great clinical significance of 80% mortality rate. Acute kidney injury (AKI) leads to an increase in circulating cytokines, chemokines, activated innate immune cells and diffuse of these agents to other organs such as the lungs. These factors initiate pathological cascade that ultimately leads to ALI and acute respiratory distress syndrome (ARDS). We comprehensively searched the English medical literature focusing on AKI, ALI, organs cross talk, renal failure, multi organ failure and ARDS using the databases of PubMed, Embase, Scopus and directory of open access journals. In this narrative review, we summarized the pathophysiology and treatment of respiratory distress syndrome following AKI. This review promotes knowledge of the link between kidney and lung with mechanisms, diagnostic biomarkers, and treatment involved ARDS induced by AKI.
Collapse
Affiliation(s)
- Maryam Malek
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Jalal Hassanshahi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Fartootzadeh
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Azizi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Somayeh Shahidani
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
23
|
Allergic Conjunctivitis-induced Retinal Inflammation Promotes Myopia Progression. EBioMedicine 2018; 28:274-286. [PMID: 29398596 PMCID: PMC5835569 DOI: 10.1016/j.ebiom.2018.01.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/20/2018] [Accepted: 01/20/2018] [Indexed: 11/21/2022] Open
Abstract
Myopia is a highly prevalent eye disease. There is limited information suggesting a relationship between myopia and inflammation. We found children with allergic conjunctivitis (AC) had the highest adjusted odds ratio (1.75, 95% confidence interval [CI], 1.72-1.77) for myopia among the four allergic diseases. A cohort study was conducted and confirmed that children with AC had a higher incidence and subsequent risk of myopia (hazard ratio 2.35, 95%CI 2.29-2.40) compared to those without AC. Lower refractive error and longer axial length were observed in an AC animal model. Myopia progression was enhanced by tumor necrosis factor (TNF)-α or interleukin (IL)-6 administration, two cytokines secreted by mast cell degranulation. The TNF-α or IL-6 weakened the tight junction formed by corneal epithelial (CEP) cells and inflammatory cytokines across the layer of CEP cells, which increased the levels of TNF-α, IL-6, and IL-8 secreted by retinal pigment epithelial cells. The expression levels of TNF-α, IL-6, IL-8, monocyte chemoattractant protein-1, and nuclear factor kappa B were up-regulated in eyes with AC, whereas IL-10 and the inhibitor of kappa B were down-regulated. In conclusion, the experimental findings in mice corroborate the epidemiological data showing that allergic inflammation influences the development of myopia.
Collapse
|
24
|
Hepatitis C Virus Exploits Death Receptor 6-mediated Signaling Pathway to Facilitate Viral Propagation. Sci Rep 2017; 7:6445. [PMID: 28743875 PMCID: PMC5527075 DOI: 10.1038/s41598-017-06740-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/16/2017] [Indexed: 02/06/2023] Open
Abstract
The life cycle of hepatitis C virus (HCV) is highly dependent on host proteins for virus propagation. By transcriptome sequencing analysis, we identified host genes that were highly differentially expressed in HCV-infected cells. Of these candidates, we selected Death receptor 6 (DR6) for further characterization. DR6 is an orphan member of the tumor necrosis factor receptor superfamily. In the present study, we demonstrated that both mRNA and protein levels of DR6 were increased in the context of HCV replication. We further showed that promoter activity of DR6 was increased by HCV infection. By employing promoter-linked reporter assay, we showed that HCV upregulated DR6 via ROS-mediated NF-κB pathway. Both mRNA and protein levels of DR6 were increased by NS4B or NS5A. However, NS5A but not NS4B specifically interacted with DR6. We showed that HCV modulated JNK, p38 MAPK, STAT3, and Akt signaling pathways in a DR6-dependent manner. Interestingly, Akt signaling cascade was regulated by protein interplay between DR6 and NS5A. Silencing of DR6 expression resulted in decrease of infectious HCV production without affecting viral entry, replication, and translation. Together, these data indicate that HCV modulates DR6 signaling pathway for viral propagation and may contribute to HCV-mediated pathogenesis.
Collapse
|
25
|
Rozas P, Lazcano P, Piña R, Cho A, Terse A, Pertusa M, Madrid R, Gonzalez-Billault C, Kulkarni AB, Utreras E. Targeted overexpression of tumor necrosis factor-α increases cyclin-dependent kinase 5 activity and TRPV1-dependent Ca2+ influx in trigeminal neurons. Pain 2016; 157:1346-1362. [PMID: 26894912 PMCID: PMC4868804 DOI: 10.1097/j.pain.0000000000000527] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We reported earlier that TNF-α, a proinflammatory cytokine implicated in many inflammatory disorders causing orofacial pain, increases the activity of Cdk5, a key kinase involved in brain development and function and recently found to be involved in pain signaling. To investigate a potential mechanism underlying inflammatory pain in trigeminal ganglia (TGs), we engineered a transgenic mouse model (TNF) that can conditionally overexpresses TNF-α upon genomic recombination by Cre recombinase. TNF mice were bred with Nav1.8-Cre mouse line that expresses the Cre recombinase in sensory neurons to obtain TNF-α:Nav1.8-Cre (TNF-α cTg) mice. Although TNF-α cTg mice appeared normal without any gross phenotype, they displayed a significant increase in TNF-α levels after activation of NFκB signaling in the TG. IL-6 and MCP-1 levels were also increased along with intense immunostaining for Iba1 and GFAP in TG, indicating the presence of infiltrating macrophages and the activation of satellite glial cells. TNF-α cTg mice displayed increased trigeminal Cdk5 activity, and this increase was associated with elevated levels of phospho-T407-TRPV1 and capsaicin-evocated Ca influx in cultured trigeminal neurons. Remarkably, this effect was prevented by roscovitine, an inhibitor of Cdk5, which suggests that TNF-α overexpression induced sensitization of the TRPV1 channel. Furthermore, TNF-α cTg mice displayed more aversive behavior to noxious thermal stimulation (45°C) of the face in an operant pain assessment device as compared with control mice. In summary, TNF-α overexpression in the sensory neurons of TNF-α cTg mice results in inflammatory sensitization and increased Cdk5 activity; therefore, this mouse model would be valuable for investigating the mechanism of TNF-α involved in orofacial pain.
Collapse
Affiliation(s)
- Pablo Rozas
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Pablo Lazcano
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Ricardo Piña
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Andrew Cho
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Anita Terse
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Maria Pertusa
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Rodolfo Madrid
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Christian Gonzalez-Billault
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Ashok B. Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Elias Utreras
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
26
|
Jang YS, Kang JH, Woo JK, Kim HM, Hwang JI, Lee SJ, Lee HY, Oh SH. Ninjurin1 suppresses metastatic property of lung cancer cells through inhibition of interleukin 6 signaling pathway. Int J Cancer 2016; 139:383-95. [DOI: 10.1002/ijc.30021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Yeong-Su Jang
- Gachon Institute of Pharmaceutical Sciences, Gachon University; Incheon Republic of Korea
| | - Ju-Hee Kang
- Gachon Institute of Pharmaceutical Sciences, Gachon University; Incheon Republic of Korea
- National Cancer Center; Goyang-Si Gyeonggi-Do Republic of Korea
| | - Jong Kyu Woo
- Gachon Institute of Pharmaceutical Sciences, Gachon University; Incheon Republic of Korea
| | - Hwan Mook Kim
- Gachon Institute of Pharmaceutical Sciences, Gachon University; Incheon Republic of Korea
| | - Jong-Ik Hwang
- Graduate School of Medicine, Korea University; Seoul Republic of Korea
| | - Sang-Jin Lee
- National Cancer Center; Goyang-Si Gyeonggi-Do Republic of Korea
| | - Ho-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University; Seoul Republic of Korea
| | - Seung Hyun Oh
- Gachon Institute of Pharmaceutical Sciences, Gachon University; Incheon Republic of Korea
| |
Collapse
|
27
|
Yu S, Geng Q, Pan Q, Liu Z, Ding S, Xiang Q, Sun F, Wang C, Huang Y, Hong A. MiR-690, a Runx2-targeted miRNA, regulates osteogenic differentiation of C2C12 myogenic progenitor cells by targeting NF-kappaB p65. Cell Biosci 2016; 6:10. [PMID: 26877865 PMCID: PMC4751671 DOI: 10.1186/s13578-016-0073-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/24/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The runt-related transcription factor 2 (Runx2) is a cell-fate-determining factor that controls osteoblast differentiation and bone formation. It has been previously demonstrated that microRNAs (miRNAs) play important roles in osteogenesis. However, the Runx2-regulated miRNAs that have been reported thus far are limited. In this study, we pursued to identify these miRNAs in Tet-on stable C2C12 cell line (C2C12/Runx2(Dox) subline). RESULTS Microarray analysis revealed that alterations in miRNA expression occur with 54 miRNAs. Among these miRNAs, miR-690 was identified as a positive regulator of Runx2-induced osteogenic differentiation of C2C12 cells through gain- and loss-of-function assays. Expression of miR-690 is induced by Runx2, which binds directly to the putative promoter of mir-690 (Mirn690). The miR-690 proceeds to inhibit translation of the messenger RNA encoding the nuclear factor kappa B (NF-κB) subunit p65 whose overexpression inhibits Runx2-induced osteogenic differentiation of C2C12 cells. Interleukin-6 (IL-6), a downstream target of NF-κB pathway, is upregulated by p65 overexpression but significantly downregulated during this differentiation process. Furthermore, overexpression of IL-6 impedes the expression of osteocalcin, a defined marker of late osteoblast differentiation. CONCLUSIONS Together, our results suggest that the miR-690 transactivated by Runx2 acts as a positive regulator of Runx2-induced osteogenic differentiation by inactivating the NF-κB pathway via the downregulation of the subunit p65.
Collapse
Affiliation(s)
- Shouhe Yu
- Institute of Biomedicine, Jinan University, National Engineering Research Center of Genetic Medicine, Key Lab for Bioengineering Medicine of Guangdong Province, Guangzhou, Guangdong People's Republic of China
| | - Qianqian Geng
- Institute of Biomedicine, Jinan University, National Engineering Research Center of Genetic Medicine, Key Lab for Bioengineering Medicine of Guangdong Province, Guangzhou, Guangdong People's Republic of China
| | - Qiuhui Pan
- Central Laboratory, People's 10th Hospital, Shanghai, People's Republic of China
| | - Zhongyu Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei People's Republic of China
| | - Shan Ding
- Department of Materials Science and Engineering, Jinan University, Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, Guangdong People's Republic of China
| | - Qi Xiang
- Institute of Biomedicine, Jinan University, National Engineering Research Center of Genetic Medicine, Key Lab for Bioengineering Medicine of Guangdong Province, Guangzhou, Guangdong People's Republic of China
| | - Fenyong Sun
- Department of Medical Laboratory, People's 10th Hospital, Shanghai, People's Republic of China
| | - Can Wang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong People's Republic of China
| | - Yadong Huang
- Institute of Biomedicine, Jinan University, National Engineering Research Center of Genetic Medicine, Key Lab for Bioengineering Medicine of Guangdong Province, Guangzhou, Guangdong People's Republic of China
| | - An Hong
- Institute of Biomedicine, Jinan University, National Engineering Research Center of Genetic Medicine, Key Lab for Bioengineering Medicine of Guangdong Province, Guangzhou, Guangdong People's Republic of China
| |
Collapse
|
28
|
Kim MY, Koh DI, Choi WI, Jeon BN, Jeong DY, Kim KS, Kim K, Kim SH, Hur MW. ZBTB2 increases PDK4 expression by transcriptional repression of RelA/p65. Nucleic Acids Res 2015; 43:1609-25. [PMID: 25609694 PMCID: PMC4330387 DOI: 10.1093/nar/gkv026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The NF-κB is found in almost all animal cell types and is involved in a myriad of cellular responses. Aberrant expression of NF-κB has been linked to cancer, inflammatory diseases and improper development. Little is known about transcriptional regulation of the NF-κB family member gene RelA/p65. Sp1 plays a key role in the expression of the RelA/p65 gene. ZBTB2 represses transcription of the gene by inhibiting Sp1 binding to a Sp1-binding GC-box in the RelA/p65 proximal promoter (bp, -31 to -21). Moreover, recent studies revealed that RelA/p65 directly binds to the peroxisome proliferator-activated receptor-γ coactivator1α (PGC1α) to decrease transcriptional activation of the PGC1α target gene PDK4, whose gene product inhibits pyruvate dehydrogenase (PDH), a key regulator of TCA cycle flux. Accordingly, we observed that RelA/p65 repression by ZBTB2 indirectly results in increased PDK4 expression, which inhibits PDH. Consequently, in cells with ectopic ZBTB2, the concentrations of pyruvate and lactate were higher than those in normal cells, indicating changes in glucose metabolism flux favoring glycolysis over the TCA cycle. Knockdown of ZBTB2 in mouse xenografts decreased tumor growth. ZBTB2 may increase cell proliferation by reprogramming glucose metabolic pathways to favor glycolysis by upregulating PDK4 expression via repression of RelA/p65 expression.
Collapse
Affiliation(s)
- Min-Young Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50-1 Yonsei-Ro, SeoDaeMun-Gu, Seoul 120-752, Korea
| | - Dong-In Koh
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50-1 Yonsei-Ro, SeoDaeMun-Gu, Seoul 120-752, Korea
| | - Won-Il Choi
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50-1 Yonsei-Ro, SeoDaeMun-Gu, Seoul 120-752, Korea
| | - Bu-Nam Jeon
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50-1 Yonsei-Ro, SeoDaeMun-Gu, Seoul 120-752, Korea
| | - Deok-yoon Jeong
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50-1 Yonsei-Ro, SeoDaeMun-Gu, Seoul 120-752, Korea
| | - Kyung-Sup Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50-1 Yonsei-Ro, SeoDaeMun-Gu, Seoul 120-752, Korea
| | - Kunhong Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50-1 Yonsei-Ro, SeoDaeMun-Gu, Seoul 120-752, Korea
| | - Se-Hoon Kim
- Department of Pathology, Yonsei University School of Medicine, 50-1 Yonsei-Ro, SeoDaeMun-Gu, Seoul 120-752, Korea
| | - Man-Wook Hur
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50-1 Yonsei-Ro, SeoDaeMun-Gu, Seoul 120-752, Korea
| |
Collapse
|
29
|
Yu Y, Yang D, Qiu L, Okamura H, Guo J, Haneji T. Tumor necrosis factor-α induces interleukin-34 expression through nuclear factor‑κB activation in MC3T3-E1 osteoblastic cells. Mol Med Rep 2014; 10:1371-6. [PMID: 24970360 PMCID: PMC4121411 DOI: 10.3892/mmr.2014.2353] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 04/24/2014] [Indexed: 01/27/2023] Open
Abstract
Osteoblasts produce various types of cytokines under pathological conditions and control osteoclast differentiation. Tumor necrosis factor-α (TNF-α) has been demonstrated to exert complex effects in osteoblasts under local inflammatory conditions, including in periodontal and periapical diseases. Interleukin-34 (IL-34) has been recently identified as a novel regulatory factor for the differentiation and function of osteoclasts. The present study provides the first evidence, to the best of our knowledge, that the expression of IL-34 is induced by TNF-α through nuclear factor-κB (NF-κB) activation in MC3T3-E1 osteoblastic cells. TNF-α induced IL-34 expression in a dose- and time-dependent manner. Immunocytochemistry with an NF-κB antibody demonstrated that NF-κB was mainly localized in the cytoplasm of the untreated MC3T3-E1 cells. Rapid translocation of NF-κB from the cytoplasm to the nucleus was observed in the cells treated with TNF-α for 15 min. Translocation and transcriptional activity of NF-κB were also determined by western blotting and a luciferase reporter assay, respectively. Pretreatment with 100 μM CAPE, an inhibitor of NF-κB, significantly inhibited TNF-α-induced IL-34 expression. These results indicate that TNF-α induces IL-34 expression via NF-κB in osteoblasts.
Collapse
Affiliation(s)
- Yaqiong Yu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Di Yang
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Lihong Qiu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Hirohiko Okamura
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Jiajie Guo
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Tatsuji Haneji
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima 770-8504, Japan
| |
Collapse
|
30
|
Hou CH, Lin FL, Tong KB, Hou SM, Liu JF. Transforming growth factor alpha promotes osteosarcoma metastasis by ICAM-1 and PI3K/Akt signaling pathway. Biochem Pharmacol 2014; 89:453-63. [PMID: 24685520 DOI: 10.1016/j.bcp.2014.03.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/20/2014] [Accepted: 03/20/2014] [Indexed: 12/21/2022]
Abstract
Osteosarcoma is the most common primary malignancy of bone and is characterized by a high malignant and metastatic potential. Transforming growth factor alpha (TGF-α) is classified as the EGF (epidermal growth factor)-like family, which is involved in cancer cellular activities such as proliferation, motility, migration, adhesion and invasion abilities. However, the effect of TGF-α on human osteosarcoma is largely unknown. We found that TGF-α increased the cell migration and expression of intercellular adhesion molecule-1 (ICAM-1) in human osteosarcoma cells. Transfection of cells with ICAM-1 siRNA reduced TGF-α-mediated cell migration. We also found that the phosphatidylinositol 3'-kinase (PI3K)/Akt/NF-κB pathway was activated after TGF-α treatment, and TGF-α-induced expression of ICAM-1 and cell migration was inhibited by the specific inhibitors and siRNAs of PI3K, Akt, and NF-κB cascades. In addition, knockdown of TGF-α expression markedly decreased cell metastasis in vitro and in vivo. Our results indicate that TGF-α/EGFR interaction elicits PI3K and Akt activation, which in turn activates NF-κB, resulting in the expression of ICAM-1 and contributing the migration of human osteosarcoma cells.
Collapse
Affiliation(s)
- Chun-Han Hou
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Feng-Ling Lin
- Department of Dermatology, Sijhih Cathay General Hospital, Taipei, Taiwan
| | - Kai-Biao Tong
- Veterinarian Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Sheng-Mon Hou
- Department of Orthopedic Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.
| | - Ju-Fang Liu
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.
| |
Collapse
|
31
|
Hu X, Liu Y, Qin C, Pan Z, Luo J, Yu A, Cheng Z. Up-regulated isocitrate dehydrogenase 1 suppresses proliferation, migration and invasion in osteosarcoma: in vitro and in vivo. Cancer Lett 2013; 346:114-21. [PMID: 24368190 DOI: 10.1016/j.canlet.2013.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/27/2013] [Accepted: 12/13/2013] [Indexed: 11/28/2022]
Abstract
Very few studies have been reported the function of wild type IDH1 in tumor progress. Previously, we reported that IDH1 correlated with pathological grade and metastatic potential inversely in human osteosarcoma. Here, IDH1 was found lower expressed in osteosarcoma tissues than that of adjacent normal bone tissues. In addition, we observed in vitro anti-proliferation and pro-apoptosis effects of up-regulated IDH1 on osteosarcoma cell lines. The migration and invasion activity was also markedly reduced by IDH1 up-regulation. Unexpectedly, IDH1 up-regulation also suppressed tumor growth and metastasis in vivo. Therefore, IDH1 may represent a potential novel treatment and preventive strategy for osteosarcoma.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, Stanford University, Stanford, CA, USA
| | - Yang Liu
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, Stanford University, Stanford, CA, USA
| | - Chunxia Qin
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, Stanford University, Stanford, CA, USA
| | - Zhenyu Pan
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jun Luo
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Aixi Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Zhen Cheng
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, Stanford University, Stanford, CA, USA.
| |
Collapse
|
32
|
|
33
|
Guo H, Zhang J, Hao S, Jin Q. Adenovirus-mediated small interfering RNA targeting tumor necrosis factor-α inhibits titanium particle-induced osteoclastogenesis and bone resorption. Int J Mol Med 2013; 32:296-306. [PMID: 23760678 DOI: 10.3892/ijmm.2013.1416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/04/2013] [Indexed: 11/05/2022] Open
Abstract
Wear particles are phagocytosed by macrophages, resulting in cellular activation and the release of pro-inflammatory factors, which cause periprosthetic osteolysis and subsequent aseptic loosening, the most common causes of total joint arthroplasty (TJA) failure. During this pathological process, tumor necrosis factor (TNF)-α plays an important role in wear particle-induced osteolysis. Therefore, in this study, we used adenovirus-mediated small interfering RNA (siRNA) targeting TNF-α to suppress the TNF-α release from activated macrophages in response to titanium particles. Our results showed that recombinant adenovirus (Ad-TNF-α-siRNA) suppressed the TNF-α release from activated macrophages in response to titanium particles, and reduced titanium particle-induced osteoclastogenesis and bone resorption in the presence of receptor activator of nuclear factor-κB ligand (RANKL). In addition, the conditioned medium of macrophages challenged with titanium particles (Ti CM) stimulated osteoprogenitor RANKL expression. The conditioned medium of macrophages challenged with titanium particles and Ad-TNF-α-siRNA (Ti-Ad CM) reduced the mRNA expression in MC3T3-E1 cells compared to Ti CM. Based on these data, TNF-α strongly synergizes with RANKL to promote osteoclast differentiation. Furthermore, TNF-α promoted osteoclast differentiation by stimulating osteoprogenitor RANKL expression. Ad-TNF-α-siRNA effectively suppressed osteoclast differentiation and bone resorption following exposure to titanium particles in the presence of RANKL. In addition, recombinant adenovirus (Ad-TNF-α-siRNA) does not have a toxic effect on the murine macrophage cell line, RAW264.7. Consequently, it can be concluded that recombinant adenovirus-mediated siRNA targeting TNF-α (Ad-TNF-α-siRNA) may provide a novel therapeutic approach for the treatment of periprosthetic osteolysis.
Collapse
Affiliation(s)
- Haohui Guo
- Department of Orthopedic Surgery, Ningxia Medical University Affiliated Hospital, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | | | | | | |
Collapse
|
34
|
Qian G, Tang L, Guo X, Wang F, Massey ME, Su J, Guo TL, Williams JH, Phillips TD, Wang JS. Aflatoxin B1 modulates the expression of phenotypic markers and cytokines by splenic lymphocytes of male F344 rats. J Appl Toxicol 2013; 34:241-9. [PMID: 23508487 DOI: 10.1002/jat.2866] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/19/2013] [Accepted: 01/20/2013] [Indexed: 11/09/2022]
Abstract
Aflatoxin B1 (AFB1) is immunotoxic to animals and a suspected immunosuppressant in humans. In this study, we investigated the effects of AFB1 on splenic lymphocyte phenotypes and the inflammatory cytokine expression in male F344 rats. Exposure of animals to AFB1 [5-75 µg kg(-1) body weight (BW)] for 1 week showed dose-dependent decreases in the percentage of splenic CD8(+) T cells and CD3(-) CD8a(+) NK cells. A general inhibition of the expression of interleukin (IL)-4 and interferon (IFN)-γ by CD4(+) T cells, IL-4 and IFN-γ by CD8a(+) cells, and tumor necrosis factor (TNF)-α expression by natural killer (NK) cells was also found; however, no concurrent histological changes in spleen tissue were present, suggesting acute immunosuppression without overt toxicity. Five-week exposure with AFB1 significantly increased the percentages of CD3(+) and CD8(+) T cells, especially at low doses (≤ 25 µg kg(-1)). AFB1 treatment significantly decreased the anti-inflammatory cytokine IL-4 expression by CD4(+) T cells and significantly increased the pro-inflammatory cytokine IFN-γ expression by CD4(+) T cells and TNF-α expression by NK cells. These results indicated that repeated AFB1 exposure promotes inflammatory responses by regulating cytokine expression. Our data provides novel insights into the mechanisms by which AFB1 exposure differentially modulates the cell-mediated immune responses and suggests the involvement of an inflammatory response upon repeated exposure.
Collapse
Affiliation(s)
- Guoqing Qian
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Treatment with hydrogen molecule alleviates TNFα-induced cell injury in osteoblast. Mol Cell Biochem 2012; 373:1-9. [DOI: 10.1007/s11010-012-1450-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 09/05/2012] [Indexed: 11/26/2022]
|
36
|
Sirt1 overexpression protects murine osteoblasts against TNF-α-induced injury in vitro by suppressing the NF-κB signaling pathway. Acta Pharmacol Sin 2012; 33:668-74. [PMID: 22447223 DOI: 10.1038/aps.2011.189] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIM Sirtuin 1 (Sirt1) is the class III histone/protein deacetylase that interferes with the NF-κB signaling pathway, thereby has anti-inflammatory function. This study was undertaken to investigate whether Sirt1 could protect osteoblasts against TNF-α-induced injury in vitro. METHODS Murine osteoblastic cell line, MC3T3-E1, was used. Overexpress of Sirt1 protein in MC3T3-E1 cells was made by transfection the cells with Sirt1-overexpressing adenovirus. The levels of mRNAs and proteins were determined with qRT-PCR and Western blotting, respectively. The activity of NF-κB was examined using NF-κB luciferase assay. The NO concentration was measured using the Griess method. RESULTS Treatment of MC3T3-E1 cells with TNF-α (2.5-10 ng/mL) suppressed Sirt1 protein expression in a concentration-dependent manner. TNF-α (5 ng/mL) resulted in an increase in apoptosis and a reduction in ALP activity in the cells. Overexpression of Sirt1 in the cells significantly attenuated TNF-α-induced injury through suppressing apoptosis, increasing ALP activity, and increasing the expression of Runx2 and osteocalcin mRNAs. Furthermore, overexpression of Sirt1 in the cells significantly suppressed TNF-α-induced NF-κB activation, followed by reducing the expression of iNOS and NO formation. Sirt1 activator resveratrol (10 μmol/L) mimicked the protection of the cells by Sirt1 overexpression against TNF-α-induced injury, which was reversed by the Sirt1 inhibitor EX-527 (5 μmol/L). CONCLUSION Overexpression of Sirt1 protects MC3T3-E1 osteoblasts aganst TNF-α-induced cell injury in vitro, at least in part, via suppressing NF-κB signaling. Sirt1 may be a novel therapeutic target for treating rheumatoid arthritis-related bone loss.
Collapse
|
37
|
Yun JH, Hwang ES, Kim GH. Effects of Chrysanthemum indicum L. Extract on the Function of Osteoblastic MC3T3-E1 Cells under Oxidative Stress Induced by Hydrogen PeroxideJee. ACTA ACUST UNITED AC 2012. [DOI: 10.9721/kjfst.2012.44.1.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Inhibitory effect of Mori Cortex Radicis, Farfarae Flos and Asteris Radix extracts on release of inflammatory mediators in LPS-induced HMC-1 cells. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s13596-011-0010-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
39
|
Natsume H, Tokuda H, Adachi S, Matsushima-Nishiwaki R, Kato K, Minamitani C, Otsuka T, Kozawa O. Wnt3a regulates tumor necrosis factor-α-stimulated interleukin-6 release in osteoblasts. Mol Cell Endocrinol 2011; 331:66-72. [PMID: 20732383 DOI: 10.1016/j.mce.2010.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/05/2010] [Accepted: 08/17/2010] [Indexed: 11/20/2022]
Abstract
It is recognized that Wnt pathways regulate bone metabolism. We have previously shown that tumor necrosis factor-α (TNF-α) stimulates synthesis of interleukin-6 (IL-6), a potent bone resorptive agent, via p44/p42 mitogen-activated protein (MAP) kinase and phosphatidylinositol 3-kinase (PI3-kinase)/Akt in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of Wnt3a on TNF-α-stimulated IL-6 synthesis in these cells. Wnt3a, which alone did not affect the IL-6 levels, significantly suppressed the TNF-α-stimulated IL-6 release. Lithium Chloride (LiCl), which is an inhibitor of GSK3β, markedly reduced the TNF-α-stimulated IL-6 release, similar to the results with Wnt3a. The suppression by Wnt3a or LiCl was also observed in the intracellular protein levels of IL-6 elicited by TNF-α. Wnt3a failed to affect the TNF-α-induced phosphorylation of p44/p42 MAP kinase, Akt, IκB or NFκB. Either Wnt3a or LiCl failed to reduce, rather increased the IL-6 mRNA expression stimulated by TNF-α. Lactacystin, a proteasome inhibitor, and bafilomycin A1, a lysosomal protease inhibitor, significantly restored the suppressive effect of Wnt3a on TNF-α-stimulated IL-6 release. Taken together, our results strongly suggest that Wnt3a regulates IL-6 release stimulated by TNF-α at post-transcriptional level in osteoblasts.
Collapse
Affiliation(s)
- Hideo Natsume
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Fellah BH, Delorme B, Sohier J, Magne D, Hardouin P, Layrolle P. Macrophage and osteoblast responses to biphasic calcium phosphate microparticles. J Biomed Mater Res A 2010; 93:1588-95. [PMID: 20014296 DOI: 10.1002/jbm.a.32663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of this work was to investigate in vitro the biological events leading to ectopic bone formation in contact with microporous biphasic calcium phosphate (BCP) ceramics. After implantation, microparticles may arise from their degradation and induce an inflammatory response involving macrophages. The secretion of pro-inflammatory cytokines may affect the differentiation of osteoblasts. Mouse macrophage-like (J774) and osteoblast-like (MC3T3-E1) cells were cultured in the presence of BCP microparticles of different sizes (<20, 40-80, or 80-200 microm). The smallest microparticles decreased the viability of both cell types as measured with LDH and methyl tetrazolium salt assays, and enhanced the secretion of pro-inflammatory cytokines (IL-6 and TNF-alpha) by macrophages after 24 h, as revealed by ELISA. Osteoblastic cells were then cultured for 96 h in the presence of these pro-inflammatory cytokines and their differentiation studied by RT-PCR. MC3T3-E1 cells cultured with TNF-alpha showed a decrease in osterix, PTH receptor (PTHR1), and osteocalcin gene expression. On the contrary, IL-6 enhanced the expression of osterix, Runx2, alkaline phosphatase, and osteocalcin compared with plastic. In conclusion, this study shows that the inflammatory response initiated by BCP microparticles may have both detrimental and beneficial effects on osteogenesis.
Collapse
Affiliation(s)
- Borhane Hakim Fellah
- Inserm, U791, Laboratory for Osteoarticular and Dental Tissue Engineering, Faculty of Dental Surgery, University of Nantes, 1 Place Alexis Ricordeau, 44042 Nantes, France.
| | | | | | | | | | | |
Collapse
|
41
|
Nakahama KI. Cellular communications in bone homeostasis and repair. Cell Mol Life Sci 2010; 67:4001-9. [PMID: 20694737 PMCID: PMC11115676 DOI: 10.1007/s00018-010-0479-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 06/02/2010] [Accepted: 07/26/2010] [Indexed: 12/21/2022]
Abstract
Cellular communication between the bone component cells osteoblasts, osteocytes and (pre-)osteoclasts is essential for bone remodeling which maintains bone integrity. As in the remodeling of other organs, cell death is a trigger for remodeling of bone. During the systematic process of bone remodeling, direct or indirect cell-cell communication is indispensable. Thus, osteoblasts induce migration and differentiation of preosteoclasts, which is followed by bone resorption (by mature multinuclear osteoclasts). After completion of bone resorption, apoptosis of mature osteoclasts and differentiation of osteoblasts are initiated. At this time, the osteoblasts do not support osteoclast differentiation but do support bone formation. Finally, osteoblasts differentiate to osteocytes in bone or to bone lining cells on bone surfaces. In this way, old bone areas are regenerated as new bone. In this review the role of cell-cell communication in bone remodeling is discussed.
Collapse
Affiliation(s)
- Ken-Ichi Nakahama
- Department of Cellular Physiological Chemistry, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| |
Collapse
|
42
|
Minamitani C, Tokuda H, Adachi S, Matsushima-Nishiwaki R, Yamauchi J, Kato K, Natsume H, Mizutani J, Kozawa O, Otsuka T. p70 S6 kinase limits tumor necrosis factor-alpha-induced interleukin-6 synthesis in osteoblast-like cells. Mol Cell Endocrinol 2010; 315:195-200. [PMID: 19879324 DOI: 10.1016/j.mce.2009.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 10/07/2009] [Accepted: 10/16/2009] [Indexed: 12/14/2022]
Abstract
Our previous study demonstrated that tumor necrosis factor-alpha (TNF-alpha) stimulates the synthesis of interleukin-6 (IL-6), a potent bone resorptive agent, via p44/p42 mitogen-activated protein (MAP) kinase and phosphatidylinositol 3-kinase/Akt in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether p70 S6 kinase is involved in TNF-alpha-stimulated IL-6 synthesis in MC3T3-E1 cells. TNF-alpha time dependently induced the phosphorylation of p70 S6 kinase. Rapamycin, an inhibitor of p70 S6 kinase, which attenuated the phosphorylation of p70 S6 kinase induced by TNF-alpha, significantly amplified the TNF-alpha-stimulated IL-6 synthesis. TNF-alpha-induced phosphorylations of both p44/p42 MAP kinase and Akt were markedly enhanced by rapamycin. The amplification by rapamycin of TNF-alpha-induced IL-6 synthesis was reduced by PD98059, a specific inhibitor of MEK1/2, or Akt inhibitor. Rapamycin enhanced the IL-6 synthesis and the phosphorylation of Akt induced by TNF-alpha also in human osteoblasts. Taken together, these results strongly suggest that p70 S6 kinase limits the TNF-alpha-stimulated IL-6 synthesis at a point upstream from p44/p42 MAP kinase and Akt in osteoblast-like cells.
Collapse
Affiliation(s)
- Chiho Minamitani
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Substance P signaling contributes to granuloma formation in Taenia crassiceps infection, a murine model of cysticercosis. J Biomed Biotechnol 2010; 2010:597086. [PMID: 20150970 PMCID: PMC2817809 DOI: 10.1155/2010/597086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 10/19/2009] [Accepted: 11/04/2009] [Indexed: 12/13/2022] Open
Abstract
Cysticercosis is an infection with larval cysts of the cestode Taenia solium. Through pathways that are incompletely understood, dying parasites initiate a granulomatous reaction that, in the brain, causes seizures. Substance P (SP), a neuropeptide involved in pain-transmission, contributes to inflammation and previously was detected in granulomas associated with dead T. crassiceps cysts. To determine if SP contributes to granuloma formation, we measured granuloma-size and levels of IL-1β, TNF-α, and IL-6 within granulomas in T. crassiceps-infected wild type (WT) mice and mice deficient in SP-precursor (SPP) or the SP-receptor (neurokinin 1, NK1). Granuloma volumes of infected SPP- and NK1-knockout mice were reduced by 31 and 36%, respectively, compared to WT mice (P < .05 for both) and produced up to 5-fold less IL-1β, TNF-α, and IL-6 protein. Thus, SP signaling contributes to granuloma development and proinflammatory cytokine production in T. crassiceps infection and suggests a potential role for this mediator in human cystercercosis.
Collapse
|
44
|
Bishop KA, Meyer MB, Pike JW. A novel distal enhancer mediates cytokine induction of mouse RANKl gene expression. Mol Endocrinol 2009; 23:2095-110. [PMID: 19880655 DOI: 10.1210/me.2009-0209] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic inflammatory states are associated with increased bone loss. This increase is often linked to an elevation in receptor activator of nuclear factor-kappaB ligand (RANKL), a TNFalpha-like factor essential to osteoclast formation. In this study, we document the ability of IL-6 in combination with IL-6 soluble receptor (IL-6/IL-6sR) and oncostatin M to induce Rankl expression in stromal cells via signal transducer and activator of transcription 3 (STAT3). We used chromatin immunoprecipitation-tiled DNA microarray analysis to determine sites of action of STAT3 at the Rankl locus and to assess the consequences of binding on histone H4 acetylation and RNA polymerase II recruitment. Both IL-6/IL-6 soluble receptor and oncostatin M stimulated STAT3 binding upstream of the Rankl transcriptional start site. Although previously identified enhancers bound STAT3, a more distal enhancer termed mRLD6 was a particular focus of STAT3 binding. When fused to a heterologous promoter, this enhancer was highly active, containing two functionally active STAT response elements. Importantly, small interfering RNA knockdown of Stat3 mRNA and protein, but not that of Stat1 or Stat5a, was effective in limiting Rankl mRNA up-regulation. Interestingly, although RNA polymerase II and histone H4 acetylation marked many of the enhancers under basal conditions, the levels of both were strongly increased after cytokine treatment, particularly at mRLD6. Finally, mRLD6 was also a target for forskolin-induced cellular response element-binding protein (CREB) recruitment, which potentiated cytokine activity. Our studies provide new insight into mechanisms by which glycoprotein 130 activating cytokines induce RANKL expression.
Collapse
Affiliation(s)
- Kathleen A Bishop
- Department of Biochemistry, University of Wisconsin-Madison, 53706, USA
| | | | | |
Collapse
|
45
|
Isozaki T, Kasama T, Takahashi R, Odai T, Wakabayashi K, Kanemitsu H, Nohtomi K, Takeuchi HT, Matsukura S, Tezuka M. Synergistic induction of CX3CL1 by TNF alpha and IFN gamma in osteoblasts from rheumatoid arthritis: involvement of NF-kappa B and STAT-1 signaling pathways. J Inflamm Res 2008; 1:19-28. [PMID: 22096344 PMCID: PMC3218717 DOI: 10.2147/jir.s4019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To explore the regulation of CX3CL1 in inflammatory bone diseases, CX3CL1 expression by osteoblasts (OB) was examined. Human OB isolated from rheumatoid arthritis (RA) patients, osteoarthritis patients, and normal individuals were incubated in the presence of cytokines. Soluble CX3CL1 levels were determined with an enzyme-linked immunosorbent assay. Expression of CX3CL1 mRNA was examined using quantitative real-time polymerase chain reaction. Although tumor necrosis factor (TNF)-α or interferon (IFN)-γ alone RA OB induced negligible CX3CL1 secretion, the combination of TNF-α and IFN-γ induced dramatic increases in both soluble CX3CL1 protein and mRNA transcripts. This synergistic effect was more pronounced in OB from RA than in OB from either osteoarthritis or normal individuals. The expression of CX3CL1 was markedly reduced by specific inhibitors of the nuclear factor-κB (NF-κB) or STAT-1 transcription factor. These findings suggest that osteoblasts are an important cellular source of CX3CL1 and may play roles in inflammatory bone/joint diseases.
Collapse
Affiliation(s)
- Takeo Isozaki
- Division of Rheumatology, Department of Internal Medicine, Showa University School of Medicine, Tokyo, Japan, and the Department of Orthopedics, Denencyofu Central Hospital, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Conditions of impaired wound healing in the elderly are associated with substantial morbidity and mortality and impose a significant financial burden upon the world's health services. The findings of a series of recent studies have served to highlight the contrasting contributions made by sex steroid hormones to the regulation of cutaneous repair processes. Although estrogens accelerate healing, the actions of the "male" sex hormones 5alpha-dihydrotestosterone and testosterone are primarily deleterious. The shift that occurs in the balance between serum estrogen and androgen levels as a normal feature of human aging may therefore have important consequences for fundamental tissue repair processes.
Collapse
Affiliation(s)
- Stephen C Gilliver
- Faculty of Life Sciences, Michael Smith Building, M13 9PT Manchester, United Kingdom
| | | | | |
Collapse
|
47
|
Kasama T, Isozaki T, Odai T, Matsunawa M, Wakabayashi K, Takeuchi HT, Matsukura S, Adachi M, Tezuka M, Kobayashi K. Expression of angiopoietin-1 in osteoblasts and its inhibition by tumor necrosis factor-alpha and interferon-gamma. Transl Res 2007; 149:265-73. [PMID: 17466926 DOI: 10.1016/j.trsl.2006.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 12/05/2006] [Accepted: 12/09/2006] [Indexed: 11/20/2022]
Abstract
Angiogenesis is a crucial component of bone remodeling under both normal and pathophysiological conditions. Among the various mediators that regulate the angiogenic process is the angiopoietin (Ang) family of growth factors. Ang-1 stabilizes new blood vessels by recruiting surrounding mesenchymal cells and promoting their differentiation into vascular smooth muscle cells, whereas Ang-2 is a natural antagonist of Ang-1 and can inhibit angiogenesis. The expression of Ang-1 and Ang-2 in human osteoblasts (hOBs) isolated from rheumatoid arthritis (RA) and osteoarthritis (OA) patients and from healthy individuals has been examined. After incubation in the presence or absence of tumor necrosis factor-alpha (TNF-alpha) and/or interferon-gamma (IFN-gamma), the culture supernatants were assayed for Ang using an enzyme-linked immunosorbent assay. In addition, expression of Ang protein and mRNA was examined using immunohistochemical techniques and quantitative real-time polymerase chain reaction, respectively. It was found that hOBs expressed Ang-1 but not Ang-2 protein, and cultured hOBs from RA and OA patients and from healthy individuals all spontaneously secreted significant amounts of Ang-1 in the absence of any stimulation. Although stimulation with TNF-alpha or IFN-gamma had little or no effect on Ang-1 secretion, costimulation with IFN-gamma plus TNF-alpha dose- and time-dependently diminished secretion of Ang-1 from hOBs. This inhibitory effect was mediated in part by nuclear factor-kappa B via upregulated expression of inducible nitric oxide synthase and enhanced synthesis of nitric oxide. Taken together, these findings suggest that OBs are an important cellular source of Ang-1 and may modulate bone remodeling through regulation of angiogenesis.
Collapse
Affiliation(s)
- Tsuyoshi Kasama
- Division of Rheumatology and Clinical Immunology, First Department of Internal Medicine, Showa University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Dias CB, Dos Reis LM, Caparbo VF, Graciolli FG, Moysés RMA, Barros RT, Jorgetti V, Woronik V. Decreased in vitro osteoblast proliferation and low turnover bone disease in nonuremic proteinuric patients. Kidney Int 2007; 71:562-8. [PMID: 17228363 DOI: 10.1038/sj.ki.5002084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Patients with proteinuria, even those with normal glomerular filtration rate, often present abnormal bone histology. We evaluated bone histology and the in vitro proliferation of osteoblasts in samples obtained from 17 proteinuric patients with primary glomerulopathies. Histomorphometric analysis of bone biopsies was performed, and bone fragments were obtained for osteoblast culture, in which we evaluated cell proliferation. In comparison to controls, patients presented lower trabecular bone volume (20.9+/-14.5% vs 26.8+/-5.9%; P=0.0008); lower trabecular number (1.7+/-0.2/mm vs 2.0+/-0.3/mm; P=0.004); and greater trabecular separation (475.5+/-96.4 microm vs 368.3+/-86.2 microm, P=0.0002). We also found alterations in bone formation and resorption: lower osteoid volume (0.9+/-0.7% vs 2.0+/-1.4%; P=0.0022); lower osteoid thickness (6.4+/-2.8 microm vs 11.5+/-3.2 microm; P<0.0001); less mineralizing surface (4.6+/-3.1% vs 13.5+/-6.0%; P<0.0001); lower bone formation rate (0.03+/-0.04 microm(3)/microm(2)/day vs 0.09+/-0.05 microm(3)/microm(2)/day; P<0.0001); and greater osteoclast surface (0.35+/-0.6 vs 0.05+/-0.1%, P=0.0016). Mean in vitro osteoblast proliferation was lower in patients than in controls (910.2+/-437.1 vs 2261.0+/-1121.0 d.p.m./well, P=0.0016). Serum concentrations of 25-hydroxyvitamin-D(3) correlated negatively with proteinuria and positively with in vitro osteoblast proliferation. Our results demonstrate that nonuremic proteinuric glomerulonephritic patients present bone structure disorder, low bone formation and high bone resorption, as well as low osteoblast proliferation.
Collapse
Affiliation(s)
- C B Dias
- Renal Division, Department of Internal Medicine, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Hughes FJ, Turner W, Belibasakis G, Martuscelli G. Effects of growth factors and cytokines on osteoblast differentiation. Periodontol 2000 2006; 41:48-72. [PMID: 16686926 DOI: 10.1111/j.1600-0757.2006.00161.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Francis J Hughes
- Centre for Adult Oral Health, Barts and The London, Queen Mary's School of Medicine and Dentistry, London, UK
| | | | | | | |
Collapse
|
50
|
Dai JC, He P, Chen X, Greenfield EM. TNFalpha and PTH utilize distinct mechanisms to induce IL-6 and RANKL expression with markedly different kinetics. Bone 2006; 38:509-20. [PMID: 16316790 DOI: 10.1016/j.bone.2005.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 09/22/2005] [Accepted: 10/03/2005] [Indexed: 01/22/2023]
Abstract
Parathyroid hormone (PTH) and tumor necrosis factoralpha (TNFalpha) are bone resorptive agents that upregulate interleukin-6 (IL-6) and RANKL production by osteoblasts. IL-6 mRNA expression induced by PTH is rapid and transient in osteoblasts both in vitro and in vivo. This study found that IL-6 secretion induced by PTH is also rapid and transient. The induction of RANKL mRNA by PTH is also rapid and transient although with an extended time course compared to that of IL-6 mRNA. In contrast, the effects of TNFalpha are biphasic. During the first 2 h of stimulation with TNFalpha, the responses are similar to those induced by PTH. This is followed by a period of relatively low IL-6 and RANKL mRNA levels and little IL-6 secretion. A late phase of increased IL-6 and RANKL mRNA expression occurs 12-24 h after stimulation with TNFalpha leading to a significant increase in IL-6 secretion. A similar biphasic pattern of activation of p38 MAP kinase is induced by TNFalpha. p38alpha/beta activation is required for the increased RANKL mRNA during the early phase of stimulation by TNFalpha but not in the late phase. In contrast, p38alpha/beta activation is not required for increased IL-6 mRNA or IL-6 protein secretion in either the early or late phases of stimulation by TNFalpha. Blocking the increases in IL-6 transcription completely eliminates IL-6 secretion induced during the early phases of stimulation by either PTH or TNFalpha. Consistent with the dependence on transcription, IL-6 mRNA is rapidly degraded with half-lives of 10-14 min following stimulation with either PTH or TNFalpha. In contrast to IL-6, RANKL mRNA is substantially more stable with half-lives of 40-60 min. Taken together, our results show that TNFalpha and PTH utilize distinct mechanisms to induce IL-6 and RANKL expression with markedly different kinetics. The more extensive effect of TNFalpha likely reflects that TNFalpha stimulates IL-6 production and bone resorption in pathological situations. In contrast, the less extensive effect of PTH likely reflects that it acts in physiological situations where it is important to minimize the potential adverse effects of high levels of IL-6 on bone and/or surrounding tissues.
Collapse
Affiliation(s)
- Jia C Dai
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH 44106-5000, USA
| | | | | | | |
Collapse
|