1
|
Kanczler J, Tare RS, Tribe HC, Stumpf P, Rawlings A, Marshall K, Oreffo ROC. Isolation, Differentiation, and Characterization of Human Bone Marrow Stromal Stem Cells In Vitro and In Vivo. Methods Mol Biol 2025; 2885:67-85. [PMID: 40448756 DOI: 10.1007/978-1-0716-4306-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2025]
Abstract
In this chapter, we describe techniques for the isolation, enrichment, and characterization of skeletal stem cells from human bone marrow. The methods for enriching STRO-1 and STRO-4 positive cells using magnetic activated cell sorting are detailed, as are the techniques for establishing and characterising osteogenic, adipogenic, and chondrogenic cultures derived from these cells. Finally, we present methods for studying the ability of these enriched skeletal stem and progenitor populations to produce bone in vivo using diffusion chambers following subcutaneous implantation, over 4-6 weeks.
Collapse
Affiliation(s)
- Janos Kanczler
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development & Health, Institute of Developmental Sciences, University of Southampton Medical School, Southampton, UK.
| | - Rahul S Tare
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development & Health, Institute of Developmental Sciences, University of Southampton Medical School, Southampton, UK
| | - Howard C Tribe
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development & Health, Institute of Developmental Sciences, University of Southampton Medical School, Southampton, UK
| | - Patrick Stumpf
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development & Health, Institute of Developmental Sciences, University of Southampton Medical School, Southampton, UK
| | - Andrew Rawlings
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development & Health, Institute of Developmental Sciences, University of Southampton Medical School, Southampton, UK
| | - Karen Marshall
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development & Health, Institute of Developmental Sciences, University of Southampton Medical School, Southampton, UK
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development & Health, Institute of Developmental Sciences, University of Southampton Medical School, Southampton, UK.
| |
Collapse
|
2
|
Onoki T, Kanczler J, Rawlings A, Smith M, Kim YH, Hashimoto K, Aizawa T, Oreffo ROC. Modulation of osteoblastogenesis by NRF2: NRF2 activation suppresses osteogenic differentiation and enhances mineralization in human bone marrow-derived mesenchymal stromal cells. FASEB J 2024; 38:e23892. [PMID: 39230563 DOI: 10.1096/fj.202400602r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024]
Abstract
Mesenchymal stromal stem cells (MSCs) or skeletal stem cells (SSCs) play a major role in tissue repair due to their robust ability to differentiate into osteoblasts, chondrocytes, and adipocytes. Complex cell signaling cascades tightly regulate this differentiation. In osteogenic differentiation, Runt-related transcription factor 2 (RUNX2) and ALP activity are essential. Furthermore, during the latter stages of osteogenic differentiation, mineral formation mediated by the osteoblast occurs with the secretion of a collagenous extracellular matrix and calcium deposition. Activation of nuclear factor erythroid 2-related factor 2 (NRF2), an important transcription factor against oxidative stress, inhibits osteogenic differentiation and mineralization via modulation of RUNX2 function; however, the exact role of NRF2 in osteoblastogenesis remains unclear. Here, we demonstrate that NRF2 activation in human bone marrow-derived stromal cells (HBMSCs) suppressed osteogenic differentiation. NRF2 activation increased the expression of STRO-1 and KITLG (stem cell markers), indicating NRF2 protects HBMSCs stemness against osteogenic differentiation. In contrast, NRF2 activation enhanced mineralization, which is typically linked to osteogenic differentiation. We determined that these divergent results were due in part to the modulation of cellular calcium flux genes by NRF2 activation. The current findings demonstrate a dual role for NRF2 as a HBMSC maintenance factor as well as a central factor in mineralization, with implications therein for elucidation of bone formation and cellular Ca2+ kinetics, dystrophic calcification and, potentially, application in the modulation of bone formation.
Collapse
Affiliation(s)
- Takahiro Onoki
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Janos Kanczler
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Andrew Rawlings
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Melanie Smith
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Yang-Hee Kim
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Ko Hashimoto
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
3
|
Gallardo J, Berríos-Cárcamo P, Ezquer F. Mesenchymal stem cells as a promising therapy for alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:179-211. [PMID: 39523054 DOI: 10.1016/bs.irn.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alcohol Use Disorder (AUD) is a highly prevalent medical condition characterized by impaired control over alcohol consumption, despite negative consequences on the individual's daily life and health. There is increasing evidence suggesting that chronic alcohol intake, like other addictive drugs, induces neuroinflammation and oxidative stress, disrupting glutamate homeostasis in the main brain areas related to drug addiction. This review explores the potential application of mesenchymal stem cells (MSCs)-based therapy for the treatment of AUD. MSCs secrete a broad array of anti-inflammatory and antioxidant molecules, thus, the administration of MSCs, or their secretome, could reduce neuroinflammation and oxidative stress in the brain. These effects correlate with an increase in the expression of the main glutamate transporter, GLT1, which, through the normalization of the extracellular glutamate levels, could mediate the inhibitory effect of MSCs' secretome on chronic alcohol consumption, thus highlighting GLT1 as a central target to reduce chronic alcohol consumption.
Collapse
Affiliation(s)
- Javiera Gallardo
- Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Pablo Berríos-Cárcamo
- Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Fernando Ezquer
- Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile; Research Center for the Development of Novel Therapeutics Alternatives for Alcohol Use Disorders, Santiago, Chile.
| |
Collapse
|
4
|
Rajpurohit K, Dodwad V, Kharat A, Belludi S, Pharne P, Marium S. Influence of surface texture on osteogenic differentiation of dental pulp stem cells: An in vitro study. J Indian Soc Periodontol 2024; 28:478-483. [PMID: 40018713 PMCID: PMC11864341 DOI: 10.4103/jisp.jisp_307_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 03/01/2025] Open
Abstract
Background In comparison with perfectly machined surface implants, surface topographic modifications like roughness accelerate the osteogenesis of dental pulpal stem cells (DPSC). This greatly enhances bone-implant contact and osteogenic potential of the stem cells. Hence, the aim of the current study was to evaluate and compare the differentiation and proliferation potential of stem cells obtained from dental pulp on sand-blasted and acid etched implant discs surfaces. Materials and Methods Stem cells from dental pulp were extracted from the premolar region of oral cavity. Titanium discs that measured one centimeter in diameter and three millimetres in thickness were used as investigation surfaces. Titanium surface disc were acid etched and sandblasted. Investigation had three group: acid etched (Group A), sandblasted (Group B), and standard control group, i.e., cells treated with osteogenic induction media only (Group C). In Group C, mesenchymal stem cells (MSCs) were treated with osteogenic induction medium without any titanium disc and these cells were used as standard controls. To identify which modified implant surface had greater potential for proliferation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed using the explant culture. MTT assay assessed the viability of the cells as a function of its redox potential. This was followed by recognition of the stem cells for CD90, CD73, and CD 105 markers using flow cytometry with RUNX2 antibody on days 7 and 21 of incubation. The isolated cells were stained using 1% alizarin red stain to identify the number of stem cells per square centimeter area under the light microscope. Results The osteogenic differentiation of both the materials was compared with standard control (MSCs treated with osteogenic differentiation media only). The osteoblastic cells on the acid-etched and sand-blasted implant surface disc had an almost identical capacity for proliferation till the MTT assay but according to the results of the alizarin red staining there was a slightly higher proliferation potential on acid etched surfaces compared to the sand blasted surfaces. Therefore, acid etched surfaces showed higher potential of osteogenic differentiation of DPSCs compared with sand-blasted surfaces. Conclusion In comparison with perfectly machined surface implants, topographic surface modifications such as roughness can accelerate the osteogenesis of DPSC in vitro.
Collapse
Affiliation(s)
- Komal Rajpurohit
- Department of Periodontology, Bharati Vidyapeeth (Deemed to be University) Dental college and Hospital, Pimpri, Pune, Maharashtra, India
| | - Vidya Dodwad
- Department of Periodontology, Bharati Vidyapeeth (Deemed to be University) Dental college and Hospital, Pimpri, Pune, Maharashtra, India
| | - Avinash Kharat
- Regenerative Medicine Laboratory, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Spoorthi Belludi
- Department of Periodontology, K.L.E Society of Dental Sciences, Rajiv Gandhi University of Health Sciences, Bengaluru, Karnataka, India
| | - Pooja Pharne
- Department of Periodontology, Bharati Vidyapeeth (Deemed to be University) Dental college and Hospital, Pimpri, Pune, Maharashtra, India
| | - Sarah Marium
- Department of Periodontology, Bharati Vidyapeeth (Deemed to be University) Dental college and Hospital, Pimpri, Pune, Maharashtra, India
| |
Collapse
|
5
|
Li H, Wang Y, Zhu G, Ma Q, Huang S, Guo G, Zhu F. Application progress of single-cell sequencing technology in mesenchymal stem cells research. Front Cell Dev Biol 2024; 11:1336482. [PMID: 38264356 PMCID: PMC10803637 DOI: 10.3389/fcell.2023.1336482] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Single-Cell Sequencing (SCS) technology plays an important role in the field of Mesenchymal Stem Cells (MSCs) research. This paper comprehensively describes the application of SCS technology in the field of MSCs research, including (1) SCS enables more precise MSCs characterization and biomarker definition. (2) SCS reveals the prevalent gene expression heterogeneity among different subclusters within MSCs, which contributes to a more comprehensive understanding of MSCs function and diversity in developmental, regenerative, and pathological contexts. (3) SCS provides insights into the dynamic transcriptional changes experienced by MSCs during differentiation and the complex web of important signaling pathways and regulatory factors controlling key processes within MSCs, including proliferation, differentiation and regulation, and interactions mechanisms. (4) The analytical methods underpinning SCS data are rapidly evolving and converging with the field of histological research to systematically deconstruct the functions and mechanisms of MSCs. This review provides new perspectives for unraveling the biological properties, heterogeneity, differentiation potential, biological functions, and clinical potential of MSCs at the single-cell level.
Collapse
Affiliation(s)
- Hao Li
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yusong Wang
- Department of Burns, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Gehua Zhu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qimin Ma
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shengyu Huang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Feng Zhu
- Department of Burns, The First Affiliated Hospital, Naval Medical University, Shanghai, China
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Li X, Tian E, Wang Y, Wen Z, Lei Z, Zhong Y, Ge RS. Stem Leydig cells: Current research and future prospects of regenerative medicine of male reproductive health. Semin Cell Dev Biol 2021; 121:63-70. [PMID: 34001436 DOI: 10.1016/j.semcdb.2021.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
Stem cells are specialized cells that can renew themselves through cell division and can differentiate into multi-lineage cells. Mesenchymal stem cells are adult stem cells that exist in animal and human tissues. Mesenchymal stem cells have the ability to differentiate into mesodermal lineages, such as Leydig cells, adipocytes, osteocytes, and chondrocytes. Mesenchymal stem cells express cell surface markers, such as cluster of differentiation (CD) 29, CD44, CD73, CD90, CD105, and lack the expression of CD14, CD34, CD45 and HLA (human leukocyte antigen)-DR. Stem Leydig cells are one kind of mesenchymal stem cells, which are present in the interstitial compartment of testis. Stem Leydig cells are multipotent and can differentiate into Leydig cells, adipocytes, osteocytes, and chondrocytes. Stem Leydig cells have been isolated from rodent and human testes. Stem Leydig cells may have potential therapeutic values in several clinical applications, such as the treatment of male hypogonadism and infertility. In this review, we focus on the latest research on stem Leydig cells of both rodents and human, the expression of cell surface markers, culture, differentiation potential, and their applications.
Collapse
Affiliation(s)
- Xiaoheng Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Erpo Tian
- Xi'nan Gynecological Hospital, Chengdu, Sichuan, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Zina Wen
- Xi'nan Gynecological Hospital, Chengdu, Sichuan, China
| | - Zhen Lei
- Xi'nan Gynecological Hospital, Chengdu, Sichuan, China
| | - Ying Zhong
- Xi'nan Gynecological Hospital, Chengdu, Sichuan, China.
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China; Xi'nan Gynecological Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Zha K, Li X, Yang Z, Tian G, Sun Z, Sui X, Dai Y, Liu S, Guo Q. Heterogeneity of mesenchymal stem cells in cartilage regeneration: from characterization to application. NPJ Regen Med 2021; 6:14. [PMID: 33741999 PMCID: PMC7979687 DOI: 10.1038/s41536-021-00122-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Articular cartilage is susceptible to damage but hard to self-repair due to its avascular nature. Traditional treatment methods are not able to produce satisfactory effects. Mesenchymal stem cells (MSCs) have shown great promise in cartilage repair. However, the therapeutic effect of MSCs is often unstable partly due to their heterogeneity. Understanding the heterogeneity of MSCs and the potential of different types of MSCs for cartilage regeneration will facilitate the selection of superior MSCs for treating cartilage damage. This review provides an overview of the heterogeneity of MSCs at the donor, tissue source and cell immunophenotype levels, including their cytological properties, such as their ability for proliferation, chondrogenic differentiation and immunoregulation, as well as their current applications in cartilage regeneration. This information will improve the precision of MSC-based therapeutic strategies, thus maximizing the efficiency of articular cartilage repair.
Collapse
Affiliation(s)
- Kangkang Zha
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhen Yang
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Guangzhao Tian
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Zhiqiang Sun
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xiang Sui
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
| | - Yongjing Dai
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
| | - Shuyun Liu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.
| |
Collapse
|
8
|
Ryu JS, Jeong EJ, Kim JY, Park SJ, Ju WS, Kim CH, Kim JS, Choo YK. Application of Mesenchymal Stem Cells in Inflammatory and Fibrotic Diseases. Int J Mol Sci 2020; 21:ijms21218366. [PMID: 33171878 PMCID: PMC7664655 DOI: 10.3390/ijms21218366] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells that can be isolated from various tissues in the adult body. MSCs should be characterized by three criteria for regenerative medicine. MSCs must (1) adhere to plastic surfaces, (2) express specific surface antigens, and (3) differentiate into mesodermal lineages, including chondrocytes, osteoblasts, and adipocytes, in vitro. Interestingly, MSCs have immunomodulatory features and secrete trophic factors and immune receptors that regulate the microenvironment in host tissue. These specific and unique therapeutic properties make MSCs ideal as therapeutic agents in vivo. Specifically, pre-clinical and clinical investigators generated inflammatory and fibrotic diseases models, and then transplantation of MSCs into diseases models for therapeutic effects investigation. In this review, we characterize MSCs from various tissues and describe their applications for treating various inflammation and fibrotic diseases.
Collapse
Affiliation(s)
- Jae-Sung Ryu
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon 35365, Korea; (J.-S.R.); (J.-Y.K.)
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Eun-Jeong Jeong
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Korea; (E.-J.J.); (S.J.P.); (W.S.J.)
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Jong-Yeup Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon 35365, Korea; (J.-S.R.); (J.-Y.K.)
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Soon Ju Park
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Korea; (E.-J.J.); (S.J.P.); (W.S.J.)
- Institute for Glycoscience, Wonkwang University, Iksan 54538, Korea
| | - Won Seok Ju
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Korea; (E.-J.J.); (S.J.P.); (W.S.J.)
- Institute for Glycoscience, Wonkwang University, Iksan 54538, Korea
| | - Chang-Hyun Kim
- College of Medicine, Dongguk University, Goyang 10326, Korea;
| | - Jang-Seong Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea
| | - Young-Kug Choo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Korea; (E.-J.J.); (S.J.P.); (W.S.J.)
- Institute for Glycoscience, Wonkwang University, Iksan 54538, Korea
- Correspondence:
| |
Collapse
|
9
|
Black C, Kanczler JM, de Andrés MC, White LJ, Savi FM, Bas O, Saifzadeh S, Henkel J, Zannettino A, Gronthos S, Woodruff MA, Hutmacher DW, Oreffo ROC. Characterisation and evaluation of the regenerative capacity of Stro-4+ enriched bone marrow mesenchymal stromal cells using bovine extracellular matrix hydrogel and a novel biocompatible melt electro-written medical-grade polycaprolactone scaffold. Biomaterials 2020; 247:119998. [PMID: 32251928 PMCID: PMC7184676 DOI: 10.1016/j.biomaterials.2020.119998] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/15/2022]
Abstract
Many skeletal tissue regenerative strategies centre around the multifunctional properties of bone marrow derived stromal cells (BMSC) or mesenchymal stem/stromal cells (MSC)/bone marrow derived skeletal stem cells (SSC). Specific identification of these particular stem cells has been inconclusive. However, enriching these heterogeneous bone marrow cell populations with characterised skeletal progenitor markers has been a contributing factor in successful skeletal bone regeneration and repair strategies. In the current studies we have isolated, characterised and enriched ovine bone marrow mesenchymal stromal cells (oBMSCs) using a specific antibody, Stro-4, examined their multipotential differentiation capacity and, in translational studies combined Stro-4+ oBMSCs with a bovine extracellular matrix (bECM) hydrogel and a biocompatible melt electro-written medical-grade polycaprolactone scaffold, and tested their bone regenerative capacity in a small in vivo, highly vascularised, chick chorioallantoic membrane (CAM) model and a preclinical, critical-sized ovine segmental tibial defect model. Proliferation rates and CFU-F formation were similar between unselected and Stro-4+ oBMSCs. Col1A1, Col2A1, mSOX-9, PPARG gene expression were upregulated in respective osteogenic, chondrogenic and adipogenic culture conditions compared to basal conditions with no significant difference between Stro-4+ and unselected oBMSCs. In contrast, proteoglycan expression, alkaline phosphatase activity and adipogenesis were significantly upregulated in the Stro-4+ cells. Furthermore, with extended cultures, the oBMSCs had a predisposition to maintain a strong chondrogenic phenotype. In the CAM model Stro-4+ oBMSCs/bECM hydrogel was able to induce bone formation at a femur fracture site compared to bECM hydrogel and control blank defect alone. Translational studies in a critical-sized ovine tibial defect showed autograft samples contained significantly more bone, (4250.63 mm3, SD = 1485.57) than blank (1045.29 mm3, SD = 219.68) ECM-hydrogel (1152.58 mm3, SD = 191.95) and Stro-4+/ECM-hydrogel (1127.95 mm3, SD = 166.44) groups. Stro-4+ oBMSCs demonstrated a potential to aid bone repair in vitro and in a small in vivo bone defect model using select scaffolds. However, critically, translation to a large related preclinical model demonstrated the complexities of bringing small scale reported stem-cell material therapies to a clinically relevant model and thus facilitate progression to the clinic.
Collapse
Affiliation(s)
- C Black
- Bone & Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development & Health, Institute of Developmental Sciences, University of Southampton, SO16 6YD, UK
| | - J M Kanczler
- Bone & Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development & Health, Institute of Developmental Sciences, University of Southampton, SO16 6YD, UK
| | - M C de Andrés
- Bone & Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development & Health, Institute of Developmental Sciences, University of Southampton, SO16 6YD, UK; Cartilage Epigenetics Group, Rheumatology Division, Biomedical Research Institute of A Coruña (INIBIC), Hospital Universitario de A Coruña-CHUAC, 15006 A Coruña ,Spain
| | - L J White
- School of Pharmacy, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - F M Savi
- ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - O Bas
- ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - S Saifzadeh
- ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
| | - J Henkel
- ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
| | - A Zannettino
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia and Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia and Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - S Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia and Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - M A Woodruff
- ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
| | - D W Hutmacher
- ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - R O C Oreffo
- Bone & Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development & Health, Institute of Developmental Sciences, University of Southampton, SO16 6YD, UK; College of Biomedical Engineering, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
10
|
Girija K, Kavitha M. Comparative evaluation of platelet-rich fibrin, platelet-rich fibrin + 50 wt% nanohydroxyapatite, platelet-rich fibrin + 50 wt% dentin chips on odontoblastic differentiation - An in vitro study-part 2. J Conserv Dent 2020; 23:354-358. [PMID: 33623235 PMCID: PMC7883785 DOI: 10.4103/jcd.jcd_3_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/27/2020] [Accepted: 07/16/2020] [Indexed: 12/01/2022] Open
Abstract
AIM The purpose of this study was to investigate the effects of platelet-rich fibrin (PRF) modified with bioactive radiopacifiers-nanohydroxyapatite (nHA) and dentin chips (DC) on odontoblastic differentiation in human dental pulp cells (HDPCs). SUBJECTS AND METHODS PRF was modified with 50wt% of nHA (G bone-SHAG31, Surgiwear Company) and 50 wt% of DC. HDPSCs differentiation and mineralization by the groups ([Group A - Control (Dimethyl sulfoxide), Group B - PRF, Group C - PRF + nHA, Group D - PRF + DC]) were assessed. ELISA was done to quantify the interleukin (IL)-6 and IL-8 cytokine expression. The odontoblastic differentiation was determined by the expression of odontogenesis-related genes and the extent of mineralization using alizarin red S staining. STATISTICAL ANALYSIS USED One-way ANOVA with post hoc Tukey-honestly significant difference tests were applied to assess the significance among various groups. RESULTS The level of inflammatory cytokines (IL-6 and IL-8) expression by Group D (PRF + 50 wt% DC) was higher compared to Group B (PRF) and Group C (PRF + 50 wt% DC). Group C (PRF + 50 wt% nHA) induced more mineralization nodules compared to other groups. The integrated density value for the DSPP and DMP-1 protein expression by Group C (PRF + 50 wt% nHA) and Group D (PRF + 50 wt% DC) was higher compared to Group B (PRF). CONCLUSIONS The results suggest that the addition of bioactive radiopacifiers into PRF has a synergistic effect on the stimulation of odontoblastic differentiation of HDPCs, hence inducing mineralization.
Collapse
Affiliation(s)
- Kottuppallil Girija
- Department of Conservative Dentistry and Endodontics, Tamil Nadu Government Dental College and Hospital, Tamil Nadu Dr. M.G.R Medical University, Chennai, Tamil Nadu, India
| | - Mahendran Kavitha
- Department of Conservative Dentistry and Endodontics, Tamil Nadu Government Dental College and Hospital, Tamil Nadu Dr. M.G.R Medical University, Chennai, Tamil Nadu, India
| |
Collapse
|
11
|
Gilbert W, Bragg R, Elmansi AM, McGee-Lawrence ME, Isales CM, Hamrick MW, Hill WD, Fulzele S. Stromal cell-derived factor-1 (CXCL12) and its role in bone and muscle biology. Cytokine 2019; 123:154783. [PMID: 31336263 PMCID: PMC6948927 DOI: 10.1016/j.cyto.2019.154783] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
Musculoskeletal disorders are the leading cause of disability worldwide; two of the most prevalent of which are osteoporosis and sarcopenia. Each affect millions in the aging population across the world and the associated morbidity and mortality contributes to billions of dollars in annual healthcare cost. Thus, it is important to better understand the underlying pathologic mechanisms of the disease process. Regulatory chemokine, CXCL12, and its receptor, CXCR4, are recognized to be essential in the recruitment, localization, maintenance, development and differentiation of progenitor stem cells of the musculoskeletal system. CXCL12 signaling results in the development and functional ability of osteoblasts, osteoclasts, satellite cells and myoblasts critical to maintaining musculoskeletal homeostasis. Interestingly, one suggested pathologic mechanism of osteoporosis and sarcopenia is a decline in the regenerative capacity of musculoskeletal progenitor stem cells. Thus, because CXCL12 is critical to progenitor function, a disruption in the CXCL12 signaling axis might play a distinct role in these pathological processes. Therefore, in this article, we perform a review of CXCL12, its physiologic and pathologic function in bone and muscle, and potential targets for therapeutic development.
Collapse
Affiliation(s)
- William Gilbert
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States
| | - Robert Bragg
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States
| | - Ahmed M Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States
| | - Meghan E McGee-Lawrence
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - Carlos M Isales
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Department of Medicine, Augusta University, Augusta, GA 30912, United States
| | - Mark W Hamrick
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
12
|
Cheng S, Nethi SK, Rathi S, Layek B, Prabha S. Engineered Mesenchymal Stem Cells for Targeting Solid Tumors: Therapeutic Potential beyond Regenerative Therapy. J Pharmacol Exp Ther 2019; 370:231-241. [PMID: 31175219 PMCID: PMC6640188 DOI: 10.1124/jpet.119.259796] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have previously demonstrated considerable promise in regenerative medicine based on their ability to proliferate and differentiate into cells of different lineages. More recently, there has been a significant interest in using MSCs as cellular vehicles for targeted cancer therapy by exploiting their tumor homing properties. Initial studies focused on using genetically modified MSCs for targeted delivery of various proapoptotic, antiangiogenic, and therapeutic proteins to a wide variety of tumors. However, their use as drug delivery vehicles has been limited by poor drug load capacity. This review discusses various strategies for the nongenetic modification of MSCs that allows their use in tumor-targeted delivery of small molecule chemotherapeutic agents. SIGNIFICANCE STATEMENT: There has been considerable interest in exploiting the tumor homing potential of MSCs to develop them as a vehicle for the targeted delivery of cytotoxic agents to tumor tissue. The inherent tumor-tropic and drug-resistant properties make MSCs ideal carriers for toxic payload. While significant progress has been made in the area of the genetic modification of MSCs, studies focused on identification of molecular mechanisms that contribute to the tumor tropism along with optimization of the engineering conditions can further improve their effectiveness as drug delivery vehicles.
Collapse
Affiliation(s)
- Shen Cheng
- Departments of Experimental and Clinical Pharmacology (S.C., S.K.N., B.L., S.P.) and Pharmaceutics (S.R., S.P.), College of Pharmacy, University of Minnesota, Twin Cities, Minnesota
| | - Susheel Kumar Nethi
- Departments of Experimental and Clinical Pharmacology (S.C., S.K.N., B.L., S.P.) and Pharmaceutics (S.R., S.P.), College of Pharmacy, University of Minnesota, Twin Cities, Minnesota
| | - Sneha Rathi
- Departments of Experimental and Clinical Pharmacology (S.C., S.K.N., B.L., S.P.) and Pharmaceutics (S.R., S.P.), College of Pharmacy, University of Minnesota, Twin Cities, Minnesota
| | - Buddhadev Layek
- Departments of Experimental and Clinical Pharmacology (S.C., S.K.N., B.L., S.P.) and Pharmaceutics (S.R., S.P.), College of Pharmacy, University of Minnesota, Twin Cities, Minnesota
| | - Swayam Prabha
- Departments of Experimental and Clinical Pharmacology (S.C., S.K.N., B.L., S.P.) and Pharmaceutics (S.R., S.P.), College of Pharmacy, University of Minnesota, Twin Cities, Minnesota
| |
Collapse
|
13
|
Plava J, Cihova M, Burikova M, Matuskova M, Kucerova L, Miklikova S. Recent advances in understanding tumor stroma-mediated chemoresistance in breast cancer. Mol Cancer 2019; 18:67. [PMID: 30927930 PMCID: PMC6441200 DOI: 10.1186/s12943-019-0960-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/20/2019] [Indexed: 02/07/2023] Open
Abstract
Although solid tumors comprise malignant cells, they also contain many different non-malignant cell types in their micro-environment. The cellular components of the tumor stroma consist of immune and endothelial cells combined with a heterogeneous population of stromal cells which include cancer-associated fibroblasts. The bi-directional interactions between tumor and stromal cells therefore substantially affect tumor cell biology.Herein, we discuss current available information on these interactions in breast cancer chemo-resistance. It is acknowledged that stromal cells extrinsically alter tumor cell drug responses with profound consequences for therapy efficiency, and it is therefore essential to understand the molecular mechanisms which contribute to these substantial alterations because they provide potential targets for improved cancer therapy. Although breast cancer patient survival has improved over the last decades, chemo-resistance still remains a significant obstacle to successful treatment.Appreciating the important experimental evidence of mesenchymal stromal cells and cancer-associated fibroblast involvement in breast cancer clinical practice can therefore have important therapeutic implications.
Collapse
Affiliation(s)
- Jana Plava
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Marina Cihova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Monika Burikova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Miroslava Matuskova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Lucia Kucerova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Svetlana Miklikova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
14
|
Kanczler J, Tare RS, Stumpf P, Noble TJ, Black C, Oreffo ROC. Isolation, Differentiation, and Characterization of Human Bone Marrow Stem Cells In Vitro and In Vivo. Methods Mol Biol 2019; 1914:53-70. [PMID: 30729460 DOI: 10.1007/978-1-4939-8997-3_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter, we describe techniques for the isolation and characterisation of skeletal stem cells from human bone marrow. The methods for enrichment of STRO-1+ and STRO-4+ cells using magnetic activated cell sorting are described and we also detail techniques for establishing and characterizing osteogenic, adipogenic, and chondrogenic cultures from these cells. Finally, we present methods for studying the ability of these cells to produce bone in vivo using diffusion chambers which have been implanted subcutaneously into mice.
Collapse
Affiliation(s)
- Janos Kanczler
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, University of Southampton, Faculty of Medicine, Southampton, UK
| | - Rahul S Tare
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, University of Southampton, Faculty of Medicine, Southampton, UK
| | - Patrick Stumpf
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, University of Southampton, Faculty of Medicine, Southampton, UK
| | - Timothy J Noble
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, University of Southampton, Faculty of Medicine, Southampton, UK
| | - Cameron Black
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, University of Southampton, Faculty of Medicine, Southampton, UK
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, University of Southampton, Faculty of Medicine, Southampton, UK.
| |
Collapse
|
15
|
Xavier M, de Andrés MC, Spencer D, Oreffo ROC, Morgan H. Size and dielectric properties of skeletal stem cells change critically after enrichment and expansion from human bone marrow: consequences for microfluidic cell sorting. J R Soc Interface 2018; 14:rsif.2017.0233. [PMID: 28835540 PMCID: PMC5582119 DOI: 10.1098/rsif.2017.0233] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/27/2017] [Indexed: 12/14/2022] Open
Abstract
The capacity of bone and cartilage to regenerate can be attributed to skeletal stem cells (SSCs) that reside within the bone marrow (BM). Given SSCs are rare and lack specific surface markers, antibody-based sorting has failed to deliver the cell purity required for clinical translation. Microfluidics offers new methods of isolating cells based on biophysical features including, but not limited to, size, electrical properties and stiffness. Here we report the characterization of the dielectric properties of unexpanded SSCs using single-cell microfluidic impedance cytometry (MIC). Unexpanded SSCs had a mean size of 9.0 µm; larger than the majority of BM cells. During expansion, often used to purify and increase the number of SSCs, cell size and membrane capacitance increased significantly, highlighting the importance of characterizing unaltered SSCs. In addition, MIC was used to track the osteogenic differentiation of SSCs and showed an increased membrane capacitance with differentiation. The electrical properties of primary SSCs were indistinct from other BM cells precluding its use as an isolation method. However, the current studies indicate that cell size in combination with another biophysical parameter, such as stiffness, could be used to design label-free devices for sorting SSCs with significant clinical impact.
Collapse
Affiliation(s)
- Miguel Xavier
- Faculty of Physical Sciences and Engineering, and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.,Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Southampton General Hospital, Tremona Road, SO16 6YD Southampton, UK
| | - María C de Andrés
- Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Southampton General Hospital, Tremona Road, SO16 6YD Southampton, UK
| | - Daniel Spencer
- Faculty of Physical Sciences and Engineering, and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Southampton General Hospital, Tremona Road, SO16 6YD Southampton, UK
| | - Hywel Morgan
- Faculty of Physical Sciences and Engineering, and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
16
|
Cytotherapy using stromal cells: Current and advance multi-treatment approaches. Biomed Pharmacother 2017; 97:38-44. [PMID: 29080456 DOI: 10.1016/j.biopha.2017.10.127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/06/2017] [Accepted: 10/23/2017] [Indexed: 01/13/2023] Open
Abstract
The research in stem cells gives a proper information about basic mechanisms of human development and differentiation. The use of stem cells in new medicinal therapies includes treatment of different conditions such as spinal cord injury, diabetes mellitus, Parkinsonism, and cardiac disorders. These cells exhibit two unique properties: self-renewal and differentiation. The major stem cells been used for approximately about 10-14 years for cellular therapy are mesenchymal stem cells. Mesenchymal stem cells can individualize into many lineage, i.e. into both mesenchymal and non-mesenchymal lineage, such as into osteoblasts, chondrocytes, myocytes, adipocytes, neurons, etc. This review focuses on the history, types of stem cells and their targets and mechanisms of mesenchymal stem cells. Mesenchymal stem cells are the significant futuristic carrier for treating diseases associated not only with regeneration but also immunomodulation.
Collapse
|
17
|
Bearden RN, Huggins SS, Cummings KJ, Smith R, Gregory CA, Saunders WB. In-vitro characterization of canine multipotent stromal cells isolated from synovium, bone marrow, and adipose tissue: a donor-matched comparative study. Stem Cell Res Ther 2017; 8:218. [PMID: 28974260 PMCID: PMC5627404 DOI: 10.1186/s13287-017-0639-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 07/06/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
Abstract
Background The dog represents an excellent large animal model for translational cell-based studies. Importantly, the properties of canine multipotent stromal cells (cMSCs) and the ideal tissue source for specific translational studies have yet to be established. The aim of this study was to characterize cMSCs derived from synovium, bone marrow, and adipose tissue using a donor-matched study design and a comprehensive series of in-vitro characterization, differentiation, and immunomodulation assays. Methods Canine MSCs were isolated from five dogs with cranial cruciate ligament rupture. All 15 cMSC preparations were evaluated using colony forming unit (CFU) assays, flow cytometry analysis, RT-PCR for pluripotency-associated genes, proliferation assays, trilineage differentiation assays, and immunomodulation assays. Data were reported as mean ± standard deviation and compared using repeated-measures analysis of variance and Tukey post-hoc test. Significance was established at p < 0.05. Results All tissue samples produced plastic adherent, spindle-shaped preparations of cMSCs. Cells were negative for CD34, CD45, and STRO-1 and positive for CD9, CD44, and CD90, whereas the degree to which cells were positive for CD105 was variable depending on tissue of origin. Cells were positive for the pluripotency-associated genes NANOG, OCT4, and SOX2. Accounting for donor and tissue sources, there were significant differences in CFU potential, rate of proliferation, trilineage differentiation, and immunomodulatory response. Synovium and marrow cMSCs exhibited superior early osteogenic activity, but when assessing late-stage osteogenesis no significant differences were detected. Interestingly, bone morphogenic protein-2 (BMP-2) supplementation was necessary for early-stage and late-stage osteogenic differentiation, a finding consistent with other canine studies. Additionally, synovium and adipose cMSCs proliferated more rapidly, displayed higher CFU potential, and formed larger aggregates in chondrogenic assays, although proteoglycan and collagen type II staining were subjectively decreased in adipose pellets as compared to synovial and marrow pellets. Lastly, cMSCs derived from all three tissue sources modulated murine macrophage TNF-α and IL-6 levels in a lipopolysaccharide-stimulated coculture assay. Conclusions While cMSCs from synovium, marrow, and adipose tissue share a number of similarities, important differences in proliferation and trilineage differentiation exist and should be considered when selecting cMSCs for translational studies. These results and associated methods will prove useful for future translational studies involving the canine model. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0639-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert N Bearden
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Shannon S Huggins
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Kevin J Cummings
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Roger Smith
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, College of Medicine, Texas A&M University, College Station, TX, USA
| | - William B Saunders
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
18
|
Cortini M, Avnet S, Baldini N. Mesenchymal stroma: Role in osteosarcoma progression. Cancer Lett 2017; 405:90-99. [PMID: 28774797 DOI: 10.1016/j.canlet.2017.07.024] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/19/2017] [Accepted: 07/23/2017] [Indexed: 12/21/2022]
Abstract
The initiation and progression of malignant tumors are supported by their microenvironment: cancer cells per se cannot explain growth and formation of the primary or metastasis, and a combination of proliferating tumor cells, cancer stem cells, immune cells mesenchymal stromal cells and/or cancer-associated fibroblasts all contribute to the tumor bulk. The interaction between these multiple players, under different microenvironmental conditions of biochemical and physical stimuli (i.e. oxygen tension, pH, matrix mechanics), regulates the production and biological activity of several soluble factors, extracellular matrix components, and extracellular vesicles that are needed for growth, maintenance, chemoresistance and metastatization of cancer. In osteosarcoma, a very aggressive cancer of young adults characterized by the extensive need for more effective therapies, this aspect has been only recently explored. In this view, we will discuss the role of stroma, with a particular focus on the mesenchymal stroma, contributing to osteosarcoma progression through inherent features for homing, neovascularization, paracrine cross-feeding, microvesicle secretion, and immune modulation, and also by responding to the changes of the microenvironment that are induced by tumor cells. The most recent advances in the molecular cues triggered by cytokines, soluble factors, and metabolites that are partially beginning to unravel the axis between stromal elements of mesenchymal origin and osteosarcoma cells, will be reviewed providing insights likely to be used for novel therapeutic approaches against sarcomas.
Collapse
Affiliation(s)
- Margherita Cortini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
19
|
Lee LCY, Gadegaard N, de Andrés MC, Turner LA, Burgess KV, Yarwood SJ, Wells J, Salmeron-Sanchez M, Meek D, Oreffo ROC, Dalby MJ. Nanotopography controls cell cycle changes involved with skeletal stem cell self-renewal and multipotency. Biomaterials 2016; 116:10-20. [PMID: 27914982 PMCID: PMC5226065 DOI: 10.1016/j.biomaterials.2016.11.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 01/31/2023]
Abstract
In culture isolated bone marrow mesenchymal stem cells (more precisely termed skeletal stem cells, SSCs) spontaneously differentiate into fibroblasts, preventing the growth of large numbers of multipotent SSCs for use in regenerative medicine. However, the mechanisms that regulate the expansion of SSCs, while maintaining multipotency and preventing fibroblastic differentiation are poorly understood. Major hurdles to understanding how the maintenance of SSCs is regulated are (a) SSCs isolated from bone marrow are heterogeneous populations with different proliferative characteristics and (b) a lack of tools to investigate SSC number expansion and multipotency. Here, a nanotopographical surface is used as a tool that permits SSC proliferation while maintaining multipotency. It is demonstrated that retention of SSC phenotype in culture requires adjustments to the cell cycle that are linked to changes in the activation of the mitogen activated protein kinases. This demonstrates that biomaterials can offer cross-SSC culture tools and that the biological processes that determine whether SSCs retain multipotency or differentiate into fibroblasts are subtle, in terms of biochemical control, but are profound in terms of determining cell fate.
Collapse
Affiliation(s)
- Louisa C Y Lee
- Centre for Cell Engineering, Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Nikolaj Gadegaard
- Division of Biomedical Engineering, School of Engineering, Rankine Building, University of Glasgow, Glasgow, G12 8LT, UK
| | - María C de Andrés
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Lesley-Anne Turner
- Centre for Cell Engineering, Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Karl V Burgess
- Glasgow Polyomics Facility, College of Medical, Veterinary and Life Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garsube Campus, Bearsden, G61 1QH, UK
| | - Stephen J Yarwood
- Institute of Biological Chemistry, Biophysics and Bioengineering, William Perkin Building, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Julia Wells
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Manuel Salmeron-Sanchez
- Division of Biomedical Engineering, School of Engineering, Rankine Building, University of Glasgow, Glasgow, G12 8LT, UK
| | - Dominic Meek
- Department of Orthopaedics, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Matthew J Dalby
- Centre for Cell Engineering, Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
20
|
Characterization of Cellular and Molecular Heterogeneity of Bone Marrow Stromal Cells. Stem Cells Int 2016; 2016:9378081. [PMID: 27610142 PMCID: PMC5004045 DOI: 10.1155/2016/9378081] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/26/2016] [Indexed: 01/04/2023] Open
Abstract
Human bone marrow-derived stromal stem cells (hBMSC) exhibit multiple functions, including differentiation into skeletal cells (progenitor function), hematopoiesis support, and immune regulation (nonprogenitor function). We have previously demonstrated the presence of morphological and functional heterogeneity of hBMSC cultures. In the present study, we characterized in detail two hTERT-BMSC clonal cell populations termed here CL1 and CL2 that represent an opposing phenotype with respect to morphology, markers expression: alkaline phosphatase (ALP) and CD146, and ex vivo differentiation potential. CL1 differentiated readily to osteoblasts, adipocytes, and chondrocytes as shown by expression of lineage specific genes and proteins. Whole genome transcriptome profiling of CL1 versus CL2 revealed enrichment in CL1 of bone-, mineralization-, and skeletal muscle-related genes, for example, ALP, POSTN, IGFBP5 BMP4, and CXCL12. On the other hand, CL2 transcriptome was enriched in immune modulatory genes, for example, CD14, CD99, NOTCH3, CXCL6, CFB, and CFI. Furthermore, gene expression microarray analysis of osteoblast differentiated CL1 versus CL2 showed significant upregulation in CL1 of bone development and osteoblast differentiation genes which included several homeobox genes: TBX15, HOXA2 and HOXA10, and IGF1, FGFR3, BMP6, MCAM, ITGA10, IGFBP5, and ALP. siRNA-based downregulation of the ALP gene in CL1 impaired osteoblastic and adipocytic differentiation. Our studies demonstrate the existence of molecular and functional heterogeneity in cultured hBMSC. ALP can be employed to identify osteoblastic and adipocytic progenitor cells in the heterogeneous hBMSC cultures.
Collapse
|
21
|
Lowndes M, Rotherham M, Price JC, El Haj AJ, Habib SJ. Immobilized WNT Proteins Act as a Stem Cell Niche for Tissue Engineering. Stem Cell Reports 2016; 7:126-37. [PMID: 27411105 PMCID: PMC4944585 DOI: 10.1016/j.stemcr.2016.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 11/18/2022] Open
Abstract
The timing, location, and level of WNT signaling are highly regulated during embryonic development and for the maintenance of adult tissues. Consequently the ability to provide a defined and directed source of WNT proteins is crucial to fully understand its role in tissue development and to mimic its activity in vitro. Here we describe a one-step immobilization technique to covalently bind WNT3A proteins as a basal surface with easy storage and long-lasting activity. We show that this platform is able to maintain adult and embryonic stem cells while also being adaptable for 3D systems. Therefore, this platform could be used for recapitulating specific stem cell niches with the goal of improving tissue engineering.
Collapse
Affiliation(s)
- Molly Lowndes
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Michael Rotherham
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Stoke-on-Trent ST4 7QB, UK
| | - Joshua C Price
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, UK; Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Stoke-on-Trent ST4 7QB, UK
| | - Alicia J El Haj
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Stoke-on-Trent ST4 7QB, UK
| | - Shukry J Habib
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, UK.
| |
Collapse
|
22
|
|
23
|
Gothard D, Cheung K, Kanczler JM, Wilson DI, Oreffo ROC. Regionally-derived cell populations and skeletal stem cells from human foetal femora exhibit specific osteochondral and multi-lineage differentiation capacity in vitro and ex vivo. Stem Cell Res Ther 2015; 6:251. [PMID: 26684339 PMCID: PMC4683700 DOI: 10.1186/s13287-015-0247-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 11/25/2014] [Accepted: 11/25/2015] [Indexed: 01/08/2023] Open
Abstract
Background Adult skeletal stem cells (SSCs) often exhibit limited in vitro expansion with undesirable phenotypic changes and loss of differentiation capacity. Foetal tissues offer an alternative cell source, providing SSCs which exhibit desirable differentiation capacity over prolonged periods, ideal for extensive in vitro and ex vivo investigation of fundamental bone biology and skeletal development. Methods We have examined the derivation of distinct cell populations from human foetal femora. Regionally isolated populations including epiphyseal and diaphyseal cells were carefully dissected. Expression of the SSC marker Stro-1 was also found in human foetal femora over a range of developmental stages and subsequently utilised for immuno-selection. Results Regional populations exhibited chondrogenic (epiphyseal) and osteogenic (diaphyseal) phenotypes following in vitro and ex vivo characterisation and molecular analysis, indicative of native SSC maturation during skeletal development. However, each population exhibited potential for induced multi-lineage differentiation towards bone (bone nodule formation), cartilage (proteoglycan and mucopolysaccharide deposition) and fat (lipid deposition), suggesting the presence of a shared stem cell sub-population. This shared sub-population may be comprised of Stro-1+ cells, which were later identified and immuno-selected from whole foetal femora exhibiting multi-lineage differentiation capacity in vitro and ex vivo. Conclusions Distinct populations were isolated from human foetal femora expressing osteochondral differentiation capacity. Stro-1 immuno-selected SSCs were isolated from whole femora expressing desirable multi-lineage differentiation capacity over prolonged in vitro expansion, superior to their adult-derived counterparts, providing a valuable cell source with which to study bone biology and skeletal development. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0247-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Gothard
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, School of Medicine, Institute of DevelopmentalSciences, Mail Point 887, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK.
| | - Kelvin Cheung
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, School of Medicine, Institute of DevelopmentalSciences, Mail Point 887, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK.
| | - Janos M Kanczler
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, School of Medicine, Institute of DevelopmentalSciences, Mail Point 887, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK.
| | - David I Wilson
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, School of Medicine, Institute of Developmental Sciences, Mail Point 887, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK. .,University Hospital Southampton NHS Foundation Trust, Tremona Road, SO16 6YD, Southampton, UK.
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, School of Medicine, Institute of DevelopmentalSciences, Mail Point 887, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK.
| |
Collapse
|
24
|
Alvarez R, Lee HL, Wang CY, Hong C. Characterization of the osteogenic potential of mesenchymal stem cells from human periodontal ligament based on cell surface markers. Int J Oral Sci 2015; 7:213-9. [PMID: 26674423 PMCID: PMC5153597 DOI: 10.1038/ijos.2015.42] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2015] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cell (MSC)-mediated therapy has been shown to be clinically effective in regenerating tissue defects. For improved regenerative therapy, it is critical to isolate homogenous populations of MSCs with high capacity to differentiate into appropriate tissues. The utilization of stem cell surface antigens provides a means to identify MSCs from various tissues. However, few surface markers that consistently isolate highly regenerative MSCs have been validated, making it challenging for routine clinical applications and making it all the more imperative to identify reliable surface markers. In this study, we used three surface marker combinations: CD51/CD140α, CD271, and STRO-1/CD146 for the isolation of homogenous populations of dental mesenchymal stem cells (DMSCs) from heterogeneous periodontal ligament cells (PDLCs). Fluorescence-activated cell sorting analysis revealed that 24% of PDLCs were CD51+/CD140α+, 0.8% were CD271+, and 2.4% were STRO-1+/CD146+. Sorted cell populations were further assessed for their multipotent properties by inducing osteogenic and chondrogenic differentiation. All three subsets of isolated DMSCs exhibited differentiation capacity into osteogenic and chondrogenic lineages but with varying degrees. CD271+ DMSCs demonstrated the greatest osteogenic potential with strong induction of osteogenic markers such as DLX5, RUNX2, and BGLAP. Our study provides evidence that surface marker combinations used in this study are sufficient markers for the isolation of DMSCs from PDLCs. These results provide important insight into using specific surface markers for identifying homogenous populations of DMSCs for their improved utilization in regenerative medicine.
Collapse
Affiliation(s)
- Ruth Alvarez
- Division of Oral Biology and Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, USA
| | - Hye-Lim Lee
- Division of Oral Biology and Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, USA
| | - Cun-Yu Wang
- Division of Oral Biology and Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, USA
| | - Christine Hong
- Division of Oral Biology and Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, USA.,Section of Orthodontics, School of Dentistry, University of California at Los Angeles, Los Angeles, USA
| |
Collapse
|
25
|
Zheng YL, Sun YP, Zhang H, Liu WJ, Jiang R, Li WY, Zheng YH, Zhang ZG. Mesenchymal Stem Cells Obtained from Synovial Fluid Mesenchymal Stem Cell-Derived Induced Pluripotent Stem Cells on a Matrigel Coating Exhibited Enhanced Proliferation and Differentiation Potential. PLoS One 2015; 10:e0144226. [PMID: 26649753 PMCID: PMC4674106 DOI: 10.1371/journal.pone.0144226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 11/16/2015] [Indexed: 01/27/2023] Open
Abstract
Induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) serve as a promising source for cell-based therapies in regenerative medicine. However, optimal methods for transforming iPSCs into MSCs and the characteristics of iPSC-MSCs obtained from different methods remain poorly understood. In this study, we developed a one-step method for obtaining iPSC-MSCs (CD146+STRO-1+ MSCs) from human synovial fluid MSC-derived induced iPSCs (SFMSC-iPSCs). CD146-STRO-1-SFMSCs were reprogrammed into iPSCs by transduction with lentivirus-mediated Sox2, Oct-3/4, klf4, and c-Myc. SFMSC-iPSCs were maintained with mTeSR1 medium in Matrigel-coated culture plates. Single dissociated cells were obtained by digesting the SFMSC-iPSCs with trypsin. The dissociated cells were then plated into Matrigel-coated culture plate with alpha minimum essential medium supplemented with 10% fetal bovine serum, 1× Glutamax, and the ROCK inhibitor Y-27632. Cells were then passaged in standard cell culture plates with alpha minimum essential medium supplemented with 10% fetal bovine serum and 1× Glutamax. After passaging in vitro, the cells showed a homogenous spindle-shape similar to their ancestor cells (SFMSCs), but with more robust proliferative activity. Flow cytometric analysis revealed typical MSC surface markers, including expression of CD73, CD90, CD105, and CD44 and lack of CD45, CD34, CD11b, CD19, and HLA-DR. However, these cells were positive for CD146 and stro-1, which the ancestor cells were not. Moreover, the cells could also be induced to differentiate in osteogenic, chondrogenic, and adipogenic lineages in vitro. The differentiation potential was improved compared with the ancestor cells in vitro. The cells were not found to exhibit oncogenicity in vivo. Therefore, the method presented herein facilitated the generation of STRO-1+CD146+ MSCs from SFMSC-iPSCs exhibiting enhanced proliferation and differentiation potential.
Collapse
Affiliation(s)
- Yu-Liang Zheng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, P.R. China
- Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong, P.R. China
| | - Yang-Peng Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, P.R. China
- * E-mail: (ZZ); (YS)
| | - Hong Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, P.R. China
| | - Wen-Jing Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, P.R. China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Rui Jiang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Wen-Yu Li
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - You-Hua Zheng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, P.R. China
| | - Zhi-Guang Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, P.R. China
- * E-mail: (ZZ); (YS)
| |
Collapse
|
26
|
Schimke MM, Marozin S, Lepperdinger G. Patient-Specific Age: The Other Side of the Coin in Advanced Mesenchymal Stem Cell Therapy. Front Physiol 2015; 6:362. [PMID: 26696897 PMCID: PMC4667069 DOI: 10.3389/fphys.2015.00362] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/16/2015] [Indexed: 12/12/2022] Open
Abstract
Multipotential mesenchymal stromal cells (MSC) are present as a rare subpopulation within any type of stroma in the body of higher animals. Prominently, MSC have been recognized to reside in perivascular locations, supposedly maintaining blood vessel integrity. During tissue damage and injury, MSC/pericytes become activated, evade from their perivascular niche and are thus assumed to support wound healing and tissue regeneration. In vitro MSC exhibit demonstrated capabilities to differentiate into a wide variety of tissue cell types. Hence, many MSC-based therapeutic approaches have been performed to address bone, cartilage, or heart regeneration. Furthermore, prominent studies showed efficacy of ex vivo expanded MSC to countervail graft-vs.-host-disease. Therefore, additional fields of application are presently conceived, in which MSC-based therapies potentially unfold beneficial effects, such as amelioration of non-healing conditions after tendon or spinal cord injury, as well as neuropathies. Working along these lines, MSC-based scientific research has been forged ahead to prominently occupy the clinical stage. Aging is to a great deal stochastic by nature bringing forth changes in an individual fashion. Yet, is aging of stem cells or/and their corresponding niche considered a determining factor for outcome and success of clinical therapies?
Collapse
Affiliation(s)
| | | | - Günter Lepperdinger
- Department of Cell Biology and Physiology, Stem Cell Research, Aging and Regeneration, University SalzburgSalzburg, Austria
| |
Collapse
|
27
|
Prel A, Caval V, Gayon R, Ravassard P, Duthoit C, Payen E, Maouche-Chretien L, Creneguy A, Nguyen TH, Martin N, Piver E, Sevrain R, Lamouroux L, Leboulch P, Deschaseaux F, Bouillé P, Sensébé L, Pagès JC. Highly efficient in vitro and in vivo delivery of functional RNAs using new versatile MS2-chimeric retrovirus-like particles. Mol Ther Methods Clin Dev 2015; 2:15039. [PMID: 26528487 PMCID: PMC4613645 DOI: 10.1038/mtm.2015.39] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 12/25/2022]
Abstract
RNA delivery is an attractive strategy to achieve transient gene expression in research projects and in cell- or gene-based therapies. Despite significant efforts investigating vector-directed RNA transfer, there is still a requirement for better efficiency of delivery to primary cells and in vivo. Retroviral platforms drive RNA delivery, yet retrovirus RNA-packaging constraints limit gene transfer to two genome-molecules per viral particle. To improve retroviral transfer, we designed a dimerization-independent MS2-driven RNA packaging system using MS2-Coat-retrovirus chimeras. The engineered chimeric particles promoted effective packaging of several types of RNAs and enabled efficient transfer of biologically active RNAs in various cell types, including human CD34(+) and iPS cells. Systemic injection of high-titer particles led to gene expression in mouse liver and transferring Cre-recombinase mRNA in muscle permitted widespread editing at the ROSA26 locus. We could further show that the VLPs were able to activate an osteoblast differentiation pathway by delivering RUNX2- or DLX5-mRNA into primary human bone-marrow mesenchymal-stem cells. Thus, the novel chimeric MS2-lentiviral particles are a versatile tool for a wide range of applications including cellular-programming or genome-editing.
Collapse
Affiliation(s)
- Anne Prel
- Université François Rabelais de Tours, INSERM UMR 966, Tours, France
- UMR UPS/CNRS 5273, EFS-PM, INSERM U1031, Toulouse, France
| | - Vincent Caval
- Université François Rabelais de Tours, INSERM UMR 966, Tours, France
| | - Régis Gayon
- Vectalys, Bâtiment Canal Biotech 2, Parc Technologique du Canal 3, Toulouse, France
| | - Philippe Ravassard
- Institut du Cerveau et de la Moelle (ICM), Université Pierre et Marie Curie, CNRS UMR7225; INSERM U1127, Biotechnologies and Biothérapies Team, Paris, France
| | - Christine Duthoit
- Vectalys, Bâtiment Canal Biotech 2, Parc Technologique du Canal 3, Toulouse, France
| | - Emmanuel Payen
- CEA/Université Paris Sud (UMR-E 007), Institut of Emerging Diseases and Innovative Therapies (iMETI), CEA de Fontenay aux Roses, Fontenay aux Roses, France
| | - Leila Maouche-Chretien
- CEA/Université Paris Sud (UMR-E 007), Institut of Emerging Diseases and Innovative Therapies (iMETI), CEA de Fontenay aux Roses, Fontenay aux Roses, France
| | - Alison Creneguy
- INSERM UMRS 1064, Centre Hospitalier Universitaire (CHU) Hôtel Dieu, Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France
| | - Tuan Huy Nguyen
- INSERM UMRS 1064, Centre Hospitalier Universitaire (CHU) Hôtel Dieu, Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France
| | - Nicolas Martin
- Vectalys, Bâtiment Canal Biotech 2, Parc Technologique du Canal 3, Toulouse, France
| | - Eric Piver
- Université François Rabelais de Tours, INSERM UMR 966, Tours, France
- CHRU de Tours, Laboratoire de biochimie et biologie moléculaire, Tours, France
| | - Raphaël Sevrain
- Vectalys, Bâtiment Canal Biotech 2, Parc Technologique du Canal 3, Toulouse, France
| | - Lucille Lamouroux
- Vectalys, Bâtiment Canal Biotech 2, Parc Technologique du Canal 3, Toulouse, France
| | - Philippe Leboulch
- CEA/Université Paris Sud (UMR-E 007), Institut of Emerging Diseases and Innovative Therapies (iMETI), CEA de Fontenay aux Roses, Fontenay aux Roses, France
| | | | - Pascale Bouillé
- Vectalys, Bâtiment Canal Biotech 2, Parc Technologique du Canal 3, Toulouse, France
| | - Luc Sensébé
- UMR UPS/CNRS 5273, EFS-PM, INSERM U1031, Toulouse, France
| | - Jean-Christophe Pagès
- Université François Rabelais de Tours, INSERM UMR 966, Tours, France
- CHRU de Tours, Laboratoire de biochimie et biologie moléculaire, Tours, France
| |
Collapse
|
28
|
Wijenayaka AR, Yang D, Prideaux M, Ito N, Kogawa M, Anderson PH, Morris HA, Solomon LB, Loots GG, Findlay DM, Atkins GJ. 1α,25-dihydroxyvitamin D3 stimulates human SOST gene expression and sclerostin secretion. Mol Cell Endocrinol 2015; 413:157-67. [PMID: 26112182 DOI: 10.1016/j.mce.2015.06.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 01/04/2023]
Abstract
Sclerostin, the SOST gene product, is a negative regulator of bone formation and a positive regulator of bone resorption. In this study, treatment of human primary osteoblasts, including cells differentiated to an osteocyte-like stage, with 1α,25-dihydroxyvitaminD3 (1,25D) resulted in the dose-dependent increased expression of SOST mRNA. A similar effect was observed in human trabecular bone samples cultured ex vivo, and in osteocyte-like cultures of differentiated SAOS2 cells. Treatment of SAOS2 cells with 1,25D resulted in the production and secretion of sclerostin protein. In silico analysis of the human SOST gene revealed a single putative DR3-type vitamin D response element (VDRE) at position -6216 bp upstream of the transcription start site (TSS). This sequence was confirmed to have strong VDRE activity by luciferase reporter assays and electrophoretic mobility shift analysis (EMSA). Sequence substitution in the VDR/RXR half-sites abolished VDRE reporter activity and binding of nuclear proteins. A 6.3 kb fragment of the human proximal SOST promoter demonstrated responsiveness to 1,25D. The addition of the evolutionary conserved region 5 (ECR5), a known bone specific enhancer region, ahead of the 6.3 kb fragment increased basal promoter activity but did not increase 1,25D responsiveness. Site-specific mutagenesis abolished the responsiveness of the 6.3 kb promoter to 1,25D. We conclude that 1,25D is a direct regulator of human SOST gene and sclerostin protein expression, extending the pathways of control of sclerostin expression. At least some of this responsiveness is mediated by the identified classical VDRE however the nature of the transcriptional regulation by 1,25D warrants further investigation.
Collapse
Affiliation(s)
- Asiri R Wijenayaka
- Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Dongqing Yang
- Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Matthew Prideaux
- Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Nobuaki Ito
- Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Masakazu Kogawa
- Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Paul H Anderson
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Howard A Morris
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Lucian B Solomon
- Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Gabriela G Loots
- Lawrence Livermore National Laboratories, Physical and Life Sciences Directorate, Livermore, CA, USA; University of California at Merced, School of Natural Sciences, Merced, CA, USA
| | - David M Findlay
- Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Gerald J Atkins
- Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
29
|
Abstract
Stem cells are cells specialized cell, capable of renewing themselves through cell division and can differentiate into multi-lineage cells. These cells are categorized as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells. Mesenchymal stem cells (MSCs) are adult stem cells which can be isolated from human and animal sources. Human MSCs (hMSCs) are the non-haematopoietic, multipotent stem cells with the capacity to differentiate into mesodermal lineage such as osteocytes, adipocytes and chondrocytes as well ectodermal (neurocytes) and endodermal lineages (hepatocytes). MSCs express cell surface markers like cluster of differentiation (CD)29, CD44, CD73, CD90, CD105 and lack the expression of CD14, CD34, CD45 and HLA (human leucocyte antigen)-DR. hMSCs for the first time were reported in the bone marrow and till now they have been isolated from various tissues, including adipose tissue, amniotic fluid, endometrium, dental tissues, umbilical cord and Wharton's jelly which harbours potential MSCs. hMSCs have been cultured long-term in specific media without any severe abnormalities. Furthermore, MSCs have immunomodulatory features, secrete cytokines and immune-receptors which regulate the microenvironment in the host tissue. Multilineage potential, immunomodulation and secretion of anti-inflammatory molecules makes MSCs an effective tool in the treatment of chronic diseases. In the present review, we have highlighted recent research findings in the area of hMSCs sources, expression of cell surface markers, long-term in vitro culturing, in vitro differentiation potential, immunomodulatory features, its homing capacity, banking and cryopreservation, its application in the treatment of chronic diseases and its use in clinical trials.
Collapse
|
30
|
Amiri F, Halabian R, Salimian M, Shokrgozar MA, Soleimani M, Jahanian-Najafabadi A, Roudkenar MH. Induction of multipotency in umbilical cord-derived mesenchymal stem cells cultivated under suspension conditions. Cell Stress Chaperones 2014; 19:657-66. [PMID: 24464492 PMCID: PMC4147073 DOI: 10.1007/s12192-014-0491-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/19/2013] [Accepted: 01/01/2014] [Indexed: 12/18/2022] Open
Abstract
Due to the limitations in the clinical application of embryonic stem cells (ESC) and induced pluripotent stem cells, mesenchymal stem cells (MSCs) are now much more interesting for cell-based therapy. Although MSCs have several advantages, they are not capable of differentiating to all three embryonic layers (three germ layers) without cultivation under specific induction media. Hence, improvement of MSCs for cell therapy purposes is under intensive study now. In this study, we isolated MSCs from umbilical cord tissue at the single-cell level, by treatment with trypsin, followed by cultivation under suspension conditions to form a colony. These colonies were trypsin resistant, capable of self-renewal differentiation to the three germ layers without any induction, and they were somewhat similar to ESC colonies. The cells were able to grow in both adherent and suspension culture conditions, expressed both the MSCs markers, especially CD105, and the multipotency markers, i.e., SSEA-3, and had a limited lifespan. The cells were expanded under simple culture conditions at the single-cell level and were homogenous. Further and complementary studies are required to understand how trypsin-tolerant mesenchymal stem cells are established. However, our study suggested non-embryonic resources for future cell-based therapy.
Collapse
Affiliation(s)
- Fatemeh Amiri
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Raheleh Halabian
- />Applied Microbiology Research Center, Medical Science of Baqiyatallah University, Tehran, Iran
| | - Morteza Salimian
- />Department of Medical Laboratory, Kashan University of Medical Sciences and Health, Kashan, Iran
| | | | - Masoud Soleimani
- />Department of Hematology, School of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Ali Jahanian-Najafabadi
- />Department of Pharmaceutical Biotechnology and Bioinformatics Research Center, School of Pharmacy, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Mehryar Habibi Roudkenar
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
31
|
Faghihi F, Papadimitropoulos A, Martin I, Eslaminejad MB. Effect of Purmorphamine on Osteogenic Differentiation of Human Mesenchymal Stem Cells in a Three-Dimensional Dynamic Culture System. Cell Mol Bioeng 2014. [DOI: 10.1007/s12195-014-0343-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
32
|
Napimoga MH, Nametala C, da Silva FL, Miranda TS, Bossonaro JP, Demasi APD, Duarte PM. Involvement of the Wnt-β
-catenin signalling antagonists, sclerostin and dickkopf-related protein 1, in chronic periodontitis. J Clin Periodontol 2014; 41:550-7. [DOI: 10.1111/jcpe.12245] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Marcelo Henrique Napimoga
- Laboratory of Immunology and Molecular Biology; São Leopoldo Mandic Institute and Research Center; Campinas SP Brazil
| | - Cynthia Nametala
- Laboratory of Immunology and Molecular Biology; São Leopoldo Mandic Institute and Research Center; Campinas SP Brazil
| | - Fábio Luiz da Silva
- Laboratory of Immunology and Molecular Biology; São Leopoldo Mandic Institute and Research Center; Campinas SP Brazil
| | | | - Jeruza P. Bossonaro
- Laboratory of Pathology; São Leopoldo Mandic Institute and Research Center; Campinas SP Brazil
| | - Ana Paula Dias Demasi
- Laboratory of Pathology; São Leopoldo Mandic Institute and Research Center; Campinas SP Brazil
| | - Poliana Mendes Duarte
- Department of Periodontology; Dental Research Division; Guarulhos University; Guarulhos SP Brazil
| |
Collapse
|
33
|
Penfornis P, Cai DZ, Harris MR, Walker R, Licini D, Fernandes JDA, Orr G, Koganti T, Hicks C, Induru S, Meyer MS, Khokha R, Barr J, Pochampally RR. High CD49f expression is associated with osteosarcoma tumor progression: a study using patient-derived primary cell cultures. Cancer Med 2014; 3:796-811. [PMID: 24802970 PMCID: PMC4303148 DOI: 10.1002/cam4.249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/05/2014] [Accepted: 03/15/2014] [Indexed: 12/27/2022] Open
Abstract
Overall prognosis for osteosarcoma (OS) is poor despite aggressive treatment options. Limited access to primary tumors, technical challenges in processing OS tissues, and the lack of well-characterized primary cell cultures has hindered our ability to fully understand the properties of OS tumor initiation and progression. In this study, we have isolated and characterized cell cultures derived from four central high-grade human OS samples. Furthermore, we used the cell cultures to study the role of CD49f in OS progression. Recent studies have implicated CD49f in stemness and multipotency of both cancer stem cells and mesenchymal stem cells. Therefore, we investigated the role of CD49f in osteosarcomagenesis. First, single cell suspensions of tumor biopsies were subcultured and characterized for cell surface marker expression. Next, we characterized the growth and differentiation properties, sensitivity to chemotherapy drugs, and anchorage-independent growth. Xenograft assays showed that cell populations expressing CD49f(hi) /CD90(lo) cell phenotype produced an aggressive tumor. Multiple lines of evidence demonstrated that inhibiting CD49f decreased the tumor-forming ability. Furthermore, the CD49f(hi) /CD90(lo) cell population is generating more aggressive OS tumor growth and indicating this cell surface marker could be a potential candidate for the isolation of an aggressive cell type in OSs.
Collapse
Affiliation(s)
- Patrice Penfornis
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bolland BJRF, Tilley S, New AMR, Dunlop DG, Oreffo ROC. Adult mesenchymal stem cells and impaction grafting: a new clinical paradigm shift. Expert Rev Med Devices 2014; 4:393-404. [PMID: 17488232 DOI: 10.1586/17434440.4.3.393] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The demographic challenges of an increasingly aging population emphasize the need for innovative approaches to skeletal reconstruction to augment and repair skeletal tissue lost as a consequence of implant loosening, trauma, degeneration or in situations involving revision surgery requiring bone stock. These clinical imperatives to augment skeletal tissue loss have brought mesenchymal stem cells to the fore in combination with the emerging discipline of tissue engineering. To date, impaction bone grafting for revision hip surgery is a recognized technique to reconstitute bone utilizing morselized allograft to provide a good mechanical scaffold, although with little osteoinductive biological potential. This review details laboratory and clinical examples of a paradigm shift in the application of mesenchymal stem cells with allograft to produce a living composite using the principles of tissue engineering. This step change creates a composite that offers a biological and mechanical advantage over the current gold standard of allograft alone. This translation of tissue engineering concepts into clinical practice offers enormous input into the field of bone regeneration and has implications for translation and future change in skeletal orthopedic practice in an increasingly aging population.
Collapse
Affiliation(s)
- Benjamin J R F Bolland
- Trauma & Orthopaedics, Bone and Joint Research Group, Developmental Origins of Health and Disease, University of Southampton, General Hospital, Southampton, SO16 6YD, UK.
| | | | | | | | | |
Collapse
|
35
|
Sun YP, Zheng YH, Liu WJ, Zheng YL, Zhang ZG. Synovium fragment-derived cells exhibit characteristics similar to those of dissociated multipotent cells in synovial fluid of the temporomandibular joint. PLoS One 2014; 9:e101896. [PMID: 25003199 PMCID: PMC4087006 DOI: 10.1371/journal.pone.0101896] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/12/2014] [Indexed: 01/22/2023] Open
Abstract
Multipotent mesenchymal stem cells (MSCs) found in the synovial fluid (SFMSCs) of the tempromandibular joint (TMJ) remain poorly understood. During TMJ arthrocentesis, we discovered that synovial fluid collected from some patients with TMJ disorders contained not only SFMSCs but also synovium fragments (SFs). In this study, we attempted to characterize both the SFMSCs and SF-derived cells (SFCs) in order to further understand the role of MSCs in the synovial fluid of the TMJ. The SFs were membranous and translucent and consisted of several cell layers, indicating that their origin was only from the intima. SFCs were obtained by digestion of the SFs and subsequently expanded in vitro. SFMSCs were enriched by centrifugation of the synovial fluid and expanded in vitro. SFCs and SFMSCs displayed a similar fibroblast-like, spindle-shaped morphology, and we observed that some SFMSCs grew out of small tissue masses in culture. Flow cytometric analysis showed that both groups of cells expressed similar surface markers, including CD90, CD44, CD105, and CD73. However, both were negative for Stro-1, CD146, CD45, CD34, CD11b, CD19, and HLA-DR. Immunofluorescent staining showed that both SFs and SFMSCs expressed vascular cell adhesion molecule 1. Both SFCs and SFMSCs could be induced to differentiate down osteogenic, chondrogenic, adipogenic, and neurogenic lineages in vitro. Together, our results indicate that the intima is the most likely tissue origin of SFMSCs in the TMJ. Moreover, the SFs are composed of only intima and thus offer an improved source of synovium-derived MSCs compared to synovium specimens obtained by surgery, which contain both intima and subintima.
Collapse
Affiliation(s)
- Yang-peng Sun
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, People's Republic of China
| | - You-hua Zheng
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, People's Republic of China
| | - Wen-jing Liu
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, People's Republic of China
| | - Yu-liang Zheng
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, People's Republic of China
| | - Zhi-guang Zhang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, People's Republic of China
- * E-mail:
| |
Collapse
|
36
|
Mamalis A, Silvestros S. Modified Titanium Surfaces Alter Osteogenic Differentiation: A Comparative Microarray-Based Analysis of Human Mesenchymal Cell Response to Commercial Titanium Surfaces. J ORAL IMPLANTOL 2013; 39:591-601. [DOI: 10.1563/aaid-joi-d-10-00209] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The differential effects of dual-acid etched (Osseotite), hydroxyapatite coated (HA) and sand-blasted/acid-etched (SLA) titanium surfaces on human bone marrow-derived mesenchymal cells (hMSCs) were investigated. Proliferation was significantly promoted on the SLA surfaces. 16 genes were significantly upregulated when hMSCs were cultured on the Osseotite and the HA surfaces and 15 genes on the SLA surfaces. Upregulated genes control cell differentiation, signal transduction, cell cycle regulation, angiogenesis, cell adhesion, and extracellular matrix and bone formation.
Collapse
Affiliation(s)
- Anastasios Mamalis
- University of Texas Health Science Center at San Antonio, San Antonio, Texas
- University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | | |
Collapse
|
37
|
Mikán J, Villamil M, Montes T, Carretero C, Bernal C, Torres ML, Zakaria FA. Porcine model for hybrid material of carbonated apatite and osteoprogenitor cells. ACTA ACUST UNITED AC 2013. [DOI: 10.1179/143307509x440659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- J. Mikán
- Laboratorio de Investigaciones Facultad de Medicina, Universidad Militar Nueva Granada, Transversal 3 No. 49 00 Bogotá, Colombia;,
| | - M. Villamil
- Laboratorio de Investigaciones, Facultad de Medicina, Universidad Militar Nueva Granada, Transversal 3 No. 49 00 Bogotá, Colombia
| | - T. Montes
- Laboratorio de Investigaciones, Facultad de Medicina, Universidad Militar Nueva Granada, Transversal 3 No. 49 00 Bogotá, Colombia
| | - C. Carretero
- Laboratorio de Investigaciones, Facultad de Medicina, Universidad Militar Nueva Granada, Transversal 3 No. 49 00 Bogotá, Colombia
| | - C. Bernal
- Laboratorio de Investigaciones, Facultad de Medicina, Universidad Militar Nueva Granada, Transversal 3 No. 49 00 Bogotá, Colombia
| | - M. L. Torres
- Laboratorio de Investigaciones, Facultad de Medicina, Universidad Militar Nueva Granada, Transversal 3 No. 49 00 Bogotá, Colombia
| | - F. A. Zakaria
- Advanced Materials Research Centre, SIRIM Berhad, Lot 34, Jalan Hi- Tech 2/3, Kulim Hi tech Park, 09000 Kulim Kedah, Malaysia
| |
Collapse
|
38
|
de Andrés MC, Kingham E, Imagawa K, Gonzalez A, Roach HI, Wilson DI, Oreffo ROC. Epigenetic regulation during fetal femur development: DNA methylation matters. PLoS One 2013; 8:e54957. [PMID: 23383012 PMCID: PMC3557259 DOI: 10.1371/journal.pone.0054957] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 12/18/2012] [Indexed: 01/09/2023] Open
Abstract
Epigenetic modifications are heritable changes in gene expression without changes in DNA sequence. DNA methylation has been implicated in the control of several cellular processes including differentiation, gene regulation, development, genomic imprinting and X-chromosome inactivation. Methylated cytosine residues at CpG dinucleotides are commonly associated with gene repression; conversely, strategic loss of methylation during development could lead to activation of lineage-specific genes. Evidence is emerging that bone development and growth are programmed; although, interestingly, bone is constantly remodelled throughout life. Using human embryonic stem cells, human fetal bone cells (HFBCs), adult chondrocytes and STRO-1+ marrow stromal cells from human bone marrow, we have examined a spectrum of developmental stages of femur development and the role of DNA methylation therein. Using pyrosequencing methodology we analysed the status of methylation of genes implicated in bone biology; furthermore, we correlated these methylation levels with gene expression levels using qRT-PCR and protein distribution during fetal development evaluated using immunohistochemistry. We found that during fetal femur development DNA methylation inversely correlates with expression of genes including iNOS (NOS2) and COL9A1, but not catabolic genes including MMP13 and IL1B. Furthermore, significant demethylation was evident in the osteocalcin promoter between the fetal and adult developmental stages. Increased TET1 expression and decreased expression of DNA (cytosine-5-)-methyltransferase 1 (DNMT1) in adult chondrocytes compared to HFBCs could contribute to the loss of methylation observed during fetal development. HFBC multipotency confirms these cells to be an ideal developmental system for investigation of DNA methylation regulation. In conclusion, these findings demonstrate the role of epigenetic regulation, specifically DNA methylation, in bone development, informing and opening new possibilities in development of strategies for bone repair/tissue engineering.
Collapse
Affiliation(s)
- María C. de Andrés
- Bone and Joint Research Group, University of Southampton, Southampton, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom
- Instituto de Investigación Sanitaria-Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Emmajayne Kingham
- Bone and Joint Research Group, University of Southampton, Southampton, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Kei Imagawa
- Bone and Joint Research Group, University of Southampton, Southampton, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom
- Tohoku University School of Medicine, Sendai, Japan
| | - Antonio Gonzalez
- Instituto de Investigación Sanitaria-Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Helmtrud I. Roach
- Bone and Joint Research Group, University of Southampton, Southampton, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom
| | - David I. Wilson
- Centre for Human Development, Stem Cells and Regeneration Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Richard O. C. Oreffo
- Bone and Joint Research Group, University of Southampton, Southampton, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
- * E-mail:
| |
Collapse
|
39
|
Oral and Maxillo-facial. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
40
|
Williams EL, White K, Oreffo ROC. Isolation and enrichment of Stro-1 immunoselected mesenchymal stem cells from adult human bone marrow. Methods Mol Biol 2013; 1035:67-73. [PMID: 23959983 DOI: 10.1007/978-1-62703-508-8_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The availability of mesenchymal stem cells (MSCs) or skeletal stem cells (SSCs) is vital to many of the tissue engineering strategies currently being developed for repairing bone and cartilage. One difficulty with using this cell population is that SSCs represent only a small fraction of the cells available from an individual patient's bone marrow sample, typically less than 1 in 10,000. Therefore, methods have been devised to enrich the proportion of MSCs obtained from a bone marrow sample using hybridoma cell lines to generate antibodies to cell surface antigens specific for MSCs. Stro-1 is the most widely targeted of these cell surface antigens. The protocol described overleaf is used to isolate and enrich the Stro-1 positive fraction of cells from a bone marrow aspirate to provide a sample enriched for MSCs for use in both in vitro and in vivo studies.
Collapse
Affiliation(s)
- Emma L Williams
- Bone and Joint Research Group, University of Southampton Medical School, Southampton, UK
| | | | | |
Collapse
|
41
|
Sprio AE, Di Scipio F, Raimondo S, Salamone P, Pagliari F, Pagliari S, Folino A, Forte G, Geuna S, Di Nardo P, Berta GN. Self-Renewal and Multipotency Coexist in a Long-Term Cultured Adult Rat Dental Pulp Stem Cell Line: An Exception to the Rule? Stem Cells Dev 2012; 21:3278-88. [DOI: 10.1089/scd.2012.0141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Andrea E. Sprio
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Federica Di Scipio
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Paolina Salamone
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Francesca Pagliari
- Laboratory of Molecular and Cellular Cardiology, Department of Internal Medicine, University of Rome “Tor Vergata,” Rome, Italy
- BioLink Institute, Link Campus University, Rome, Italy
| | - Stefania Pagliari
- International Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Anna Folino
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giancarlo Forte
- International Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Paolo Di Nardo
- Laboratory of Molecular and Cellular Cardiology, Department of Internal Medicine, University of Rome “Tor Vergata,” Rome, Italy
- BioLink Institute, Link Campus University, Rome, Italy
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
| | - Giovanni N. Berta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
| |
Collapse
|
42
|
Qu G, von Schroeder HP. Preliminary Evidence for the Dedifferentiation of RAW 264.7 Cells into Mesenchymal Progenitor-Like Cells by a Purine Analog. Tissue Eng Part A 2012; 18:1890-901. [DOI: 10.1089/ten.tea.2010.0692] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Guowei Qu
- Bone Lab, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Herbert P. von Schroeder
- Bone Lab, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- University Hand Program, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Kim YH, Yoon DS, Kim HO, Lee JW. Characterization of different subpopulations from bone marrow-derived mesenchymal stromal cells by alkaline phosphatase expression. Stem Cells Dev 2012; 21:2958-68. [PMID: 22702738 DOI: 10.1089/scd.2011.0349] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Multiple surface markers have been utilized for the enrichment of bone marrow mesenchymal stromal cells (MSCs) and to define primitive stem cells. We classified human bone marrow-derived MSC populations according to tissue nonspecific alkaline phosphatase (TNAP) activity. TNAP expression varied among unexpanded primary MSCs, and its level was not related to colony-forming activity or putative surface markers, such as CD105 and CD29, donor age, or gender. TNAP levels were increased in larger cells, and a colony-forming unit-fibroblast assay revealed that the colony size was decreased during in vitro expansion. TNAP-positive (TNAP+) MSCs showed limited multipotential capacity, whereas TNAP-negative (TNAP-) MSCs retained the differentiation potential into 3 lineages (osteogenic-, adipogenic-, and chondrogenic differentiation). High degree of calcium mineralization and high level of osteogenic-related gene expression (osteopontin, dlx5, and cbfa1) were found in TNAP+ cells. In contrast, during chondrogenic differentiation, type II collagen was successfully induced in TNAP- cells, but not in TNAP+ cells. TNAP+ cells showed high levels of the hypertrophic markers, type X collagen and cbfa1. Mesenchymal stem cell antigen-1 (MSCA-1) is identical to TNAP. Therefore, TNAP+ cells were sorted by using antibody targeting MSCA-1. MSCA-1-positive cells sorted for TNAP+ cells exhibited low proliferation rates. Expression of cell cycle-related genes (cyclin A2, CDK2, and CDK4) and pluripotency marker genes (rex1 and nanog) were higher in TNAP- MSC than in TNAP+ MSC. Therefore, TNAP- cells can be described as more primitive bone marrow-derived cells and TNAP levels in MSCs can be used to predict chondrocyte hypertrophy or osteogenic capacity.
Collapse
Affiliation(s)
- Yun Hee Kim
- Brain Korea 21 Project for Medical Science, Departments of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
44
|
Bonzani I, Campbell J, Knight M, Williams A, Lee D, Bader D, Stevens M. Dynamic compressive strain influences chondrogenic gene expression in human periosteal cells: A case study. J Mech Behav Biomed Mater 2012; 11:72-81. [DOI: 10.1016/j.jmbbm.2011.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/13/2011] [Accepted: 06/23/2011] [Indexed: 01/18/2023]
|
45
|
Smith JO, Sengers BG, Aarvold A, Tayton ER, Dunlop DG, Oreffo ROC. Tantalum trabecular metal - addition of human skeletal cells to enhance bone implant interface strength and clinical application. J Tissue Eng Regen Med 2012; 8:304-13. [PMID: 22674820 DOI: 10.1002/term.1525] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 01/19/2012] [Accepted: 04/02/2012] [Indexed: 11/10/2022]
Abstract
The osteo-regenerative properties of allograft have recently been enhanced by addition of autogenous human bone marrow stromal cells (HBMSCs). Limitations in the use of allograft have prompted the investigation of tantalum trabecular metal (TTM) as a potential alternative. TTM is already in widespread orthopaedic use, although in applications where there is poor initial stability, or when TTM is used in conjunction with bone grafting, initial implant loading may need to be limited. The aim of this study was to evaluate the osteo-regenerative potential of TTM with HBMSCs, in direct comparison to human allograft and autograft. HBMSCs were cultured on blocks of TTM, allograft or autograft in basal and osteogenic media. Molecular profiling, confocal and scanning electron microscopy (SEM) and biochemical assays were used to characterize cell adherence, proliferation and phenotype. Mechanical testing was used to define the tensile characteristics of the constructs. HBMSCs displayed adherence and proliferation throughout TTM, evidenced by immunocytochemistry and SEM, with significant cellular ingrowth and matrix production through TTM. In contrast to cells cultured with allograft, cell proliferation assays showed significantly higher activity with TTM (p < 0.001), although molecular profiling confirmed no significant difference in expression of osteogenic genes. In contrast to acellular constructs, mechanical testing of cell-TTM constructs showed enhanced tensile characteristics, which compared favourably to cell-allograft constructs. These studies demonstrated the ability of TTM to support HBMSC growth and osteogenic differentiation comparable to allograft. Thus, TTM represents an alternative to allograft for osteo-regenerative strategies, extending its clinical applications as a substitute for allograft.
Collapse
Affiliation(s)
- J O Smith
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, University Hospital Southampton, UK
| | | | | | | | | | | |
Collapse
|
46
|
Markers for characterization of bone marrow multipotential stromal cells. Stem Cells Int 2012; 2012:975871. [PMID: 22666272 PMCID: PMC3361338 DOI: 10.1155/2012/975871] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 02/29/2012] [Indexed: 12/13/2022] Open
Abstract
Given the observed efficacy of culture-expanded multipotential stromal cells, also termed mesenchymal stem cells (MSCs), in the treatment of graft-versus host and cardiac disease, it remains surprising that purity and potency characterization of manufactured cell batches remains rather basic. In this paper, we will initially discuss surface and molecular markers that were proposed to serve as the indicators of the MSC potency, in terms of their proliferative potential or the ability to differentiate into desired lineages. The second part of this paper will be dedicated to a critical discussion of surface markers of uncultured (i.e., native) bone marrow (BM) MSCs. Although no formal consensus has yet been reached on which markers may be best suited for prospective BM MSC isolation, markers that cross-react with MSCs of animal models (such as CD271 and W8-B2/MSCA-1) may have the strongest translational value. Whereas small animal models are needed to discover the in vivo function on these markers, large animal models are required for safety and efficacy testing of isolated MSCs, particularly in the field of bone and cartilage tissue engineering.
Collapse
|
47
|
Forsey RW, Tare R, Oreffo ROC, Chaudhuri JB. Perfusion bioreactor studies of chondrocyte growth in alginate-chitosan capsules. Biotechnol Appl Biochem 2012; 59:142-52. [DOI: 10.1002/bab.1009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/03/2012] [Indexed: 11/08/2022]
|
48
|
Lee SS, Sharma AR, Choi BS, Jung JS, Chang JD, Park S, Salvati EA, Purdue EP, Song DK, Nam JS. The effect of TNFα secreted from macrophages activated by titanium particles on osteogenic activity regulated by WNT/BMP signaling in osteoprogenitor cells. Biomaterials 2012; 33:4251-63. [PMID: 22436801 DOI: 10.1016/j.biomaterials.2012.03.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/03/2012] [Indexed: 12/22/2022]
Abstract
Wear particles are the major cause of osteolysis associated with failure of implant following total joint replacement. During this pathologic process, activated macrophages mediate inflammatory responses to increase osteoclastogenesis, leading to enhanced bone resorption. In osteolysis caused by wear particles, osteoprogenitors present along with macrophages at the implant interface may play significant roles in bone regeneration and implant osteointegration. Although the direct effects of wear particles on osteoblasts have been addressed recently, the role of activated macrophages in regulation of osteogenic activity of osteoblasts has scarcely been studied. In the present study, we examined the molecular communication between macrophages and osteoprogenitor cells that may explain the effect of wear particles on impaired bone forming activity in inflammatory bone diseases. It has been demonstrated that conditioned medium of macrophages challenged with titanium particles (Ti CM) suppresses early and late differentiation markers of osteoprogenitors, including alkaline phosphatase (ALP) activity, collagen synthesis, matrix mineralization and expression of osteocalcin and Runx2. Moreover, bone forming signals such as WNT and BMP signaling pathways were inhibited by Ti CM. Interestingly, TNFα was identified as a predominant factor in Ti CM to suppress osteogenic activity as well as WNT and BMP signaling activity. Furthermore, Ti CM or TNFα induces the expression of sclerostin (SOST) which is able to inhibit WNT and BMP signaling pathways. It was determined that over-expression of SOST suppressed ALP activity, whereas the inhibition of SOST by siRNA partially restored the effect of Ti CM on ALP activity. This study highlights the role of activated macrophages in regulation of impaired osteogenic activity seen in inflammatory conditions and provides a potential mechanism for autocrine regulation of WNT and BMP signaling mediated by TNFα via induction of SOST in osteprogenitor cells.
Collapse
Affiliation(s)
- Sang-Soo Lee
- Infectious Disease Medical Research Center & Department of Pharmacology, College of Medicine, Hallym University, Chucheon, Gangwon-do 200-702, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tare RS, Mitchell PD, Kanczler J, Oreffo ROC. Isolation, differentiation, and characterisation of skeletal stem cells from human bone marrow in vitro and in vivo. Methods Mol Biol 2012; 816:83-99. [PMID: 22130924 DOI: 10.1007/978-1-61779-415-5_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter, we describe techniques for the isolation and characterization of skeletal stem cells from human bone marrow. The methods for enrichment of STRO-1 positive cells using magnetic activated cell sorting are described and we also cover techniques for establishing and characterising osteogenic, adipogenic, and chondrogenic cultures from these cells. Finally, we present methods for studying the ability of these cells to produce bone in vivo using diffusion chambers which have been implanted subcutaneously in mice.
Collapse
Affiliation(s)
- Rahul S Tare
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Developmental Origins of Health and Disease, Institute of Developmental Sciences, University of Southampton Medical School, Southampton, UK
| | | | | | | |
Collapse
|
50
|
Kužmová E, Kotrba R, Rolf HJ, Bartoš L, Wiese KG, Schulz J, Bubenik GA. Factors affecting the number of STRO-1+ stem cells derived from regenerating antler and pedicle cells of red and fallow deer. ANIMAL PRODUCTION SCIENCE 2012. [DOI: 10.1071/an12012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mesenchymal stem cells positive to surface antigen STRO-1 were isolated from regenerating antlers of red deer (Cervus elaphus) and fallow deer (Dama dama) using a magnetic-activated cell sorting (MACS) method. In this study we analysed factors potentially affecting the number of STRO-1+ cells in the cell cultures. With regard to the STRO-1 antigen, we evaluated data from 188 MACS separation procedures of cell cultures cultivated in Dulbecco’s Modified Eagle Medium and 10% fetal calf serum of four fallow deer males (130 procedures) and four red deer males (58 procedures). The analysed factors were the sampling site of the antler or the pedicle, cell passage and type of the cell culture (mixed or STRO-1 negative cell cultures). The percentage of obtained STRO-1+ cells varied greatly from 0.4 to 38.9% for fallow deer and from 1.8 to 16.5% for red deer. We have not found any significant influence of the sampling site. The passage and the type of culture were significant factors for both fallow and red deer cells. The highest numbers of STRO-1+ cells were obtained from the second passage from both fallow and red deer cell cultures (24.6 and 5.5%, respectively). Our experiment revealed that we can maximise the number of STRO-1+ cells in the cultures by manipulating the cultivation factors.
Collapse
|