1
|
McGarry S, Kover K, Heruth DP, Dallas M, Jin X, Wu S, De Luca F. Intermittent mechanical loading on mouse tibia accelerates longitudinal bone growth by inducing PTHrP expression in the female tibial growth plate. Physiol Rep 2024; 12:e16168. [PMID: 39090666 PMCID: PMC11294027 DOI: 10.14814/phy2.16168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024] Open
Abstract
It is not clear as to whether weight bearing and ambulation may affect bone growth. Our goal was to study the role of mechanical loading (one of the components of ambulation) on endochondral ossification and longitudinal bone growth. Thus, we applied cyclical, biologically relevant strains for a prolonged time period (4 weeks) to one tibia of juvenile mice, while using the contralateral one as an internal control. By the end of the 4-week loading period, the mean tibial growth of the loaded tibiae was significantly greater than that of the unloaded tibiae. The mean height and the mean area of the loaded tibial growth plates were greater than those of the unloaded tibiae. In addition, in female mice we found a greater expression of PTHrP in the loaded tibial growth plates than in the unloaded ones. Lastly, microCT analysis revealed no difference between loaded and unloaded tibiae with respect to the fraction of bone volume relative to the total volume of the region of interest or the tibial trabecular bone volume. Thus, our findings suggest that intermittent compressive forces applied on tibiae at mild-moderate strain magnitude induce a significant and persistent longitudinal bone growth. PTHrP expressed in the growth plate appears to be one growth factor responsible for stimulating endochondral ossification and bone growth in female mice.
Collapse
Affiliation(s)
- Sarah McGarry
- Division of EndocrinologyChildren's Mercy HospitalsKansas CityMissouriUSA
- Department of PediatricsUniversity of Missouri‐Kansas City‐School of MedicineKansas CityMissouriUSA
| | - Karen Kover
- Division of EndocrinologyChildren's Mercy HospitalsKansas CityMissouriUSA
- Department of PediatricsUniversity of Missouri‐Kansas City‐School of MedicineKansas CityMissouriUSA
| | - Daniel P. Heruth
- Division of EndocrinologyChildren's Mercy HospitalsKansas CityMissouriUSA
- Department of PediatricsUniversity of Missouri‐Kansas City‐School of MedicineKansas CityMissouriUSA
| | - Mark Dallas
- University of Missouri‐Kansas City‐School of DentistryKansas CityMissouriUSA
| | - Xinxin Jin
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Shufang Wu
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Francesco De Luca
- Division of EndocrinologyChildren's Mercy HospitalsKansas CityMissouriUSA
- Department of PediatricsUniversity of Missouri‐Kansas City‐School of MedicineKansas CityMissouriUSA
| |
Collapse
|
2
|
Duncombe P, Izatt MT, Pivonka P, Claus A, Little JP, Tucker K. Quantifying Muscle Size Asymmetry in Adolescent Idiopathic Scoliosis Using Three-dimensional Magnetic Resonance Imaging. Spine (Phila Pa 1976) 2023; 48:1717-1725. [PMID: 37432908 DOI: 10.1097/brs.0000000000004715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/29/2023] [Indexed: 07/13/2023]
Abstract
STUDY DESIGN This is a case-control study of prospectively collected data. OBJECTIVE To quantify paraspinal muscle size asymmetry in adolescent idiopathic scoliosis (AIS) and determine if this asymmetry is (i) greater than observed in adolescent controls with symmetrical spines; and (ii) positively associated with skeletal maturity using Risser grade, scoliosis severity using the Cobb angle, and chronological age in years. SUMMARY OF BACKGROUND DATA AIS is a three-dimensional deformity of the spine which occurs in 2.5% to 3.7% of the Australian population. There is some evidence of asymmetry in paraspinal muscle activation and morphology in AIS. Asymmetric paraspinal muscle forces may facilitate asymmetric vertebral growth during adolescence. METHODS An asymmetry index [Ln(concave/convex volume)] of deep and superficial paraspinal muscle volumes, at the level of the major curve apex (Thoracic 8-9 th vertebral level) and lower-end vertebrae ( LEV , Thoracic 10-12 th vertebral level), was determined from three-dimensional Magnetic Resonance Imaging of 25 adolescents with AIS (all right thoracic curves), and 22 healthy controls (convex=left); all female, 10 to 16 years. RESULTS Asymmetry index of deep paraspinal muscle volumes was greater in AIS (0.16±0.20) than healthy spine controls (-0.06±0.13) at the level of the apex ( P <0.01, linear mixed-effects analysis) but not LEV ( P >0.05). Asymmetry index was positively correlated with Risser grade ( r =0.50, P <0.05) and scoliosis Cobb angle ( r =0.45, P <0.05), but not age ( r =0.34, P >0.05). There was no difference in the asymmetry index of superficial paraspinal muscle volumes between AIS and controls ( P >0.05). CONCLUSIONS The asymmetry of deep apical paraspinal muscle volume in AIS at the scoliosis apex is greater than that observed at equivalent vertebral levels in controls and may play a role in the pathogenesis of AIS.
Collapse
Affiliation(s)
- Phoebe Duncombe
- School of Biomedical Sciences, The University of Queensland, Australia
| | - Maree T Izatt
- Biomechanics and Spine Research Group, Centre for Children's Health Research, Queensland University of Technology, Australia
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Australia
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Australia
| | - Andrew Claus
- School of Health & Rehabilitation Sciences, The University of Queensland, Australia
- Royal Brisbane and Women's Hospital, Tess Cramond Pain and Research Centre, Australia
| | - J Paige Little
- Biomechanics and Spine Research Group, Centre for Children's Health Research, Queensland University of Technology, Australia
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Australia
| | - Kylie Tucker
- School of Biomedical Sciences, The University of Queensland, Australia
| |
Collapse
|
3
|
Ren N, Zhang Z, Li Y, Zheng P, Cheng H, Luo D, Zhang J, Zhang H. Effect of hip dysplasia on the development of the femoral head growth plate. Front Pediatr 2023; 11:1247455. [PMID: 37908967 PMCID: PMC10613681 DOI: 10.3389/fped.2023.1247455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Purpose The purpose of this study was to observe whether developmental dysplasia of the hip (DDH) affects the development of the femoral head growth plate and to analyze the risk factors. Methods We selected female patients aged between 11 and 20 years with unilateral DDH and unclosed femoral head growth plate (s). The selected patients underwent anteroposterior radiography of the hip joint to compare the degree of development of the femoral head growth plate on both sides and to identify risk factors that affect the development of the growth plate in the femoral head. Results We included 48 female patients with unilateral DDH, with an average age of 14 years (range: 11.1-18.5 years) and an average BMI of 20.4 kg/m² (range: 15.5 kg/m²-27.9 kg/m²). Among them, 23 patients had earlier development of the femoral head growth plate on the affected side than on the healthy side, while the degree of development of the femoral head growth plate in 25 patients was the same as that on the contralateral side. When the Tönnis angle was greater than 29.5°C and/or the Reimers migration index was greater than 48.5%, there was a statistically significant difference in the acceleration of femoral head growth plate development. Conclusion An abnormal relative position of the acetabulum-femoral head caused by DDH can accelerate closure of the femoral head growth plate in immature female patients. The risk factors are a Tönnis angle greater than 29.5°C and/or Reimers migration index greater than 48.5%.
Collapse
Affiliation(s)
- Ningtao Ren
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Zhendong Zhang
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yong Li
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Ping Zheng
- Department of Orthopedics, Fuzhou No.2 General Hospital (Fuzhou No.2 Hospital), Fuzhou, China
| | - Hui Cheng
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Dianzhong Luo
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Jianli Zhang
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Hong Zhang
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Ma N, Tang X, Li W, Xiong Z, Yan W, Wang J, Gu T, Tan M. Is coronal imbalance in degenerative lumbar scoliosis patients associated with the number of degenerated discs? A retrospective imaging cross-sectional study. BMC Musculoskelet Disord 2023; 24:414. [PMID: 37231434 DOI: 10.1186/s12891-023-06558-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/20/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Degenerative lumbar scoliosis (DLS) is a common degenerative disease of the spine, that predominates in the elderly, and causes spinal deformities along with severe pain and reduced quality of life. The relationship between DLS and degenerated discs is now a new direction of research. Our study aimed to the relationship between the imaging parameters of coronal imbalance and the number of degenerated discs in patients with degenerative lumbar scoliosis and analyzed the segmental distribution of the degenerated discs in patients with DLS. METHODS We performed a retrospective analysis of the imaging of 40 patients who met the inclusion criteria who attended our outpatient clinic between April 2021 and July 2021, measuring the intervertebral space height of the AV (high side and low side), Cobb angle, and AVT (Apical vertebral translation) from coronal X-ray. Degenerated discs were evaluated by the Pfirrmann score based on T2-weighted magnetic resonance images. We record the number of degenerated discs (Graded as Grade III, Grade IV or Grade V by the Pfirrmann score) and the segments in which they are located. Finally, we explore the relationship between the imaging parameters of coronal imbalance and the number of degenerated discs in patients with DLS. RESULT Among the 40 patients with DLS in our study, all patients had degenerated discs in the lumbar spine, 95% of patients had degenerated discs(Pfirrmann score Grade III, Grade IV or Grade V) in 2 or more segments, with the L4-L5 segment being the most involved segment with the most degenerated discs, followed by the L3-L4 segment and the L5-S1 segment. There was no statistically significant relationship between the number of degenerated discs and the coronal imbalance in patients with DLS. CONCLUSION Our results showed an association between DLS and degenerated discs, but there was no statistically significant relationship between imbalance in the coronal plane of the lumbar spine and the number of degenerated discs in patients with DLS. The distribution of degenerated disc segments in patients with DLS showed a higher likelihood of disc degeneration in 2 or more segments, and a higher frequency of disc degeneration in the inferior disc and in the adjacent segments of the AV.
Collapse
Affiliation(s)
- Nanshan Ma
- Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, 100029, Beijing, People's Republic of China
| | - Xiangsheng Tang
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, 100029, Beijing, People's Republic of China
| | - Wenhao Li
- Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
- Department of Orthopaedic Surgery, Dongzhimen Hospital, 100029, Beijing, People's Republic of China
| | - Zhencheng Xiong
- Department of Orthopaedic Surgery, West China Hospital, 610041, Chengdu, People's Republic of China
| | - Wenhai Yan
- Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, 100029, Beijing, People's Republic of China
| | - Jiaojiao Wang
- Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, 100029, Beijing, People's Republic of China
| | - Tianwen Gu
- Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, 100029, Beijing, People's Republic of China
| | - Mingsheng Tan
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, 100029, Beijing, People's Republic of China.
| |
Collapse
|
5
|
Ning B, Mustafy T, Londono I, Laporte C, Villemure I. Impact loading intensifies cortical bone (re)modeling and alters longitudinal bone growth of pubertal rats. Biomech Model Mechanobiol 2023:10.1007/s10237-023-01706-5. [PMID: 37000273 DOI: 10.1007/s10237-023-01706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/22/2023] [Indexed: 04/01/2023]
Abstract
Physical exercise is important for musculoskeletal development during puberty, which builds bone mass foundation for later in life. However, strenuous levels of training might bring adverse effects to bone health, reducing longitudinal bone growth. Animal models with various levels of physical exercise were largely used to provide knowledge to clinical settings. Experiments from our previous studies applied different levels of mechanical loading on rat tibia during puberty accompanied by weekly in vivo micro-CT scans. In the present article, we apply 3D image registration-based methods to retrospectively analyze part of the previously acquired micro-CT data. Longitudinal bone growth, growth plate thickness, and cortical bone (re)modeling were evaluated from rats' age of 28-77 days. Our results show that impact loading inhibited proximal bone growth throughout puberty. We hypothesize that impact loading might bring different growth alterations to the distal and proximal growth plates. High impact loading might lead to pathological consequence of osteochondrosis and catch-up growth due to growth inhibition. Impact loading also increased cortical bone (re)modeling before and after the peak proximal bone growth period of young rats, of which the latter case might be caused by the shift from modeling to remodeling as the dominant activity toward the end of rat puberty. We confirm that the tibial endosteum is more mechano-sensitive than the periosteum in response to mechanical loading. To our knowledge, this is the first study to follow up bone growth and bone (re)modeling of young rats throughout the entire puberty with a weekly time interval.
Collapse
Affiliation(s)
- Bohao Ning
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, QC, H3C 3A7, Canada
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada
| | - Tanvir Mustafy
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, QC, H3C 3A7, Canada
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada
- Department of Civil Engineering, Military Institute of Science and Technology, Dhaka, 1216, Bangladesh
| | - Irène Londono
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada
| | - Catherine Laporte
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada
- Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montréal, QC, H3C 1K3, Canada
| | - Isabelle Villemure
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, QC, H3C 3A7, Canada.
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada.
| |
Collapse
|
6
|
Radiological Investigation of Guinea Pig ( Cavia porcellus) Lumbar Vertebral Morphology ‒ A Biomechanical Aspect. ACTA VET-BEOGRAD 2023. [DOI: 10.2478/acve-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Abstract
Numerous studies are based on the use of animal models; however, in bipedal and tetrapedal organisms there are significant differences in the biomechanics of the spinal column, which can significantly impair the quality and applicability of the results obtained. The aim of this study is to obtain basic data on the morphometric parameters of guinea pig lumbar vertebrae, the analysis of which will indicate the location of the biggest mechanical load. The lumbar vertebra morphometry test was performed by means of X-ray imageing obtained from 12 guinea pigs, with equal numbers of males and females. The results of investigations show that guinea pig lumbar vertebrae have an irregular trapezoid geometry and that the measured body lengths of L4 and L5 are the largest. The height parameters determined in the medial level showed that L4 had the most concave body. Moreover, L4 had the greatest depth of the spinal canal at the same measurement level. Consequently, in guinea pigs, the greatest load is in the L4 region, unlike in humans, where, due to the axial load of the spinal column, the highest pressure is exerted on the last lumbar vertebrae.
Collapse
|
7
|
Yu Y, Fischenich KM, Schoonraad SA, Weatherford S, Uzcategui AC, Eckstein K, Muralidharan A, Crespo-Cuevas V, Rodriguez-Fontan F, Killgore JP, Li G, McLeod RR, Miller NH, Ferguson VL, Bryant SJ, Payne KA. A 3D printed mimetic composite for the treatment of growth plate injuries in a rabbit model. NPJ Regen Med 2022; 7:60. [PMID: 36261516 PMCID: PMC9581903 DOI: 10.1038/s41536-022-00256-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/05/2022] [Indexed: 11/08/2022] Open
Abstract
Growth plate injuries affecting the pediatric population may cause unwanted bony repair tissue that leads to abnormal bone elongation. Clinical treatment involves bony bar resection and implantation of an interpositional material, but success is limited and the bony bar often reforms. No treatment attempts to regenerate the growth plate cartilage. Herein we develop a 3D printed growth plate mimetic composite as a potential regenerative medicine approach with the goal of preventing limb length discrepancies and inducing cartilage regeneration. A poly(ethylene glycol)-based resin was used with digital light processing to 3D print a mechanical support structure infilled with a soft cartilage-mimetic hydrogel containing chondrogenic cues. Our biomimetic composite has similar mechanical properties to native rabbit growth plate and induced chondrogenic differentiation of rabbit mesenchymal stromal cells in vitro. We evaluated its efficacy as a regenerative interpositional material applied after bony bar resection in a rabbit model of growth plate injury. Radiographic imaging was used to monitor limb length and tibial plateau angle, microcomputed tomography assessed bone morphology, and histology characterized the repair tissue that formed. Our 3D printed growth plate mimetic composite resulted in improved tibial lengthening compared to an untreated control, cartilage-mimetic hydrogel only condition, and a fat graft. However, in vivo the 3D printed growth plate mimetic composite did not show cartilage regeneration within the construct histologically. Nevertheless, this study demonstrates the feasibility of a 3D printed biomimetic composite to improve limb lengthening, a key functional outcome, supporting its further investigation as a treatment for growth plate injuries.
Collapse
Affiliation(s)
- Yangyi Yu
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Department of Bone and Joint Surgery, Shenzhen People's Hospital (The Second Clinical Medical College Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Kristine M Fischenich
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Sarah A Schoonraad
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, USA
| | - Shane Weatherford
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Asais Camila Uzcategui
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, USA
| | - Kevin Eckstein
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Archish Muralidharan
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, USA
| | - Victor Crespo-Cuevas
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Francisco Rodriguez-Fontan
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jason P Killgore
- Applied Chemicals and Materials Division (647), National Institute of Standards and Technology (NIST), Boulder, CO, USA
| | - Guangheng Li
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Department of Bone and Joint Surgery, Shenzhen People's Hospital (The Second Clinical Medical College Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Robert R McLeod
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, USA
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Nancy Hadley Miller
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Musculoskeletal Research Center, Children's Hospital Colorado, Aurora, CO, USA
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Stephanie J Bryant
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Karin A Payne
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
8
|
Reactivation of Vertebral Growth Plate Function in Vertebral Body Tethering in an Animal Model. Int J Mol Sci 2022; 23:ijms231911596. [PMID: 36232897 PMCID: PMC9570152 DOI: 10.3390/ijms231911596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Flexible spine tethering is a relatively novel fusionless surgical technique that aims to correct scoliosis based on growth modulation due to the pressure exerted on the vertebral body epiphyseal growth plate. The correction occurs in two phases: immediate intraoperative and postoperative with growth. The aim of this study was to evaluate the reactivation of vertebral growth plate function after applying corrective forces. The rat tail model was used. Asymmetric compression and distraction of caudal growth plates were performed using a modified external fixation apparatus. Radiological and histopathological data were analysed. After three weeks of correction, the activity of the structures increased across the entire growth plate width, and the plate was thickened. The height of the hypertrophic layer and chondrocytes on the concave side doubled in height. The height of chondrocytes and the cartilage thickness on the concave and central sides after the correction did not differ statistically significantly from the control group. Initiation of the correction of scoliosis in the growing spine, with relief of the pressure on the growth plate, allows the return of the physiological activity of the growth cartilage and restoration of the deformed vertebral body.
Collapse
|
9
|
Christopher S. Short term outcomes and complications of distal ulnar ostectomy in 23 juvenile dogs with carpal valgus secondary to discordant radial-ulnar physeal growth. Front Vet Sci 2022; 9:971527. [PMID: 36157189 PMCID: PMC9501678 DOI: 10.3389/fvets.2022.971527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The goal of this study was to report short term clinical and radiographic outcomes after distal ulnar ostectomy in dogs with carpal valgus due to discordant radial-ulnar growth. Study design Retrospective case study. Sample group Client owned dogs under 1 year of age with carpal valgus and open distal radial physes pre-operatively. Methods Medical records from four veterinary referral centers were searched from January 1, 2015 to January 1, 2022 for juvenile dogs that had been treated with distal ulnar ostectomy for carpal valgus due to premature closure of the distal ulnar physis. Patients were excluded if they were skeletally mature at the time of ostectomy; medical records were incomplete; radial physis was closed at surgery; or definitive corrective osteotomy was performed. Radiographs were evaluated pre-operatively and for short term follow up at ~8 weeks. Complications and short term clinical outcomes were evaluated also. Results 31 limbs from 23 dogs were evaluated. Patients ranged from 4 to 10.8 months of age. All dogs presented for visible carpal valgus and varying degrees of thoracic limb lameness. Sixty-four percent of patients showed resolution of lameness while an additional 13% showed an improvement in clinical lameness without complete resolution. Complications were seen in 32% of patients with 70% percent of those being minor, bandage related complications. Radiographically, 38% of limbs showed bridging callus formation of the ostectomy at an average of 7.5 weeks post operatively and 75% percent of patients with elbow incongruity improved radiographically. There was no significant difference in radial joint angles pre-operatively and at the time of follow up. Conclusion Distal ulnar ostectomy ameliorates lameness in juvenile dogs with premature distal ulnar physeal closure and shows lack of progression of distal carpal valgus deformity, but does not improve joint angulation. Clinical significance Distal ulnar ostectomy is associated with mild bandage-related complications and halting of progressive limb deformity within the time frame evaluated, and should therefore be considered a treatment for premature closure of the distal ulnar physis. It does not lead to deformity correction at 8 weeks following surgery but is associated with improved elbow congruity.
Collapse
|
10
|
Caetano-Silva S, Simbi BH, Marr N, Hibbert A, Allen SP, Pitsillides AA. Restraint upon Embryonic Metatarsal Ex Vivo Growth by Hydrogel Reveals Interaction between Quasi-Static Load and the mTOR Pathway. Int J Mol Sci 2021; 22:ijms222413220. [PMID: 34948015 PMCID: PMC8706285 DOI: 10.3390/ijms222413220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
Mechanical cues play a vital role in limb skeletal development, yet their influence and underpinning mechanisms in the regulation of endochondral ossification (EO) processes are incompletely defined. Furthermore, interactions between endochondral growth and mechanics and the mTOR/NF-ĸB pathways are yet to be explored. An appreciation of how mechanical cues regulate EO would also clearly be beneficial in the context of fracture healing and bone diseases, where these processes are recapitulated. The study herein addresses the hypothesis that the mTOR/NF-ĸB pathways interact with mechanics to control endochondral growth. To test this, murine embryonic metatarsals were incubated ex vivo in a hydrogel, allowing for the effects of quasi-static loading on longitudinal growth to be assessed. The results showed significant restriction of metatarsal growth under quasi-static loading during a 14-day period and concentration-dependent sensitivity to hydrogel-related restriction. This study also showed that hydrogel-treated metatarsals retain their viability and do not present with increased apoptosis. Metatarsals exhibited reversal of the growth-restriction when co-incubated with mTOR compounds, whilst it was found that these compounds showed no effects under basal culture conditions. Transcriptional changes linked to endochondral growth were assessed and downregulation of Col2 and Acan was observed in hydrogel-treated metatarsi at day 7. Furthermore, cell cycle analyses confirmed the presence of chondrocytes exhibiting S-G2/M arrest. These data indicate that quasi-static load provokes chondrocyte cell cycle arrest, which is partly overcome by mTOR, with a less marked interaction for NF-ĸB regulators.
Collapse
|
11
|
Watanabe-Takano H, Ochi H, Chiba A, Matsuo A, Kanai Y, Fukuhara S, Ito N, Sako K, Miyazaki T, Tainaka K, Harada I, Sato S, Sawada Y, Minamino N, Takeda S, Ueda HR, Yasoda A, Mochizuki N. Mechanical load regulates bone growth via periosteal Osteocrin. Cell Rep 2021; 36:109380. [PMID: 34260913 DOI: 10.1016/j.celrep.2021.109380] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/15/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Mechanical stimuli including loading after birth promote bone growth. However, little is known about how mechanical force triggers biochemical signals to regulate bone growth. Here, we identified a periosteal-osteoblast-derived secretory peptide, Osteocrin (OSTN), as a mechanotransducer involved in load-induced long bone growth. OSTN produced by periosteal osteoblasts regulates growth plate growth by enhancing C-type natriuretic peptide (CNP)-dependent proliferation and maturation of chondrocytes, leading to elongation of long bones. Additionally, OSTN cooperates with CNP to regulate bone formation. CNP stimulates osteogenic differentiation of periosteal osteoprogenitors to induce bone formation. OSTN binds to natriuretic peptide receptor 3 (NPR3) in periosteal osteoprogenitors, thereby preventing NPR3-mediated clearance of CNP and consequently facilitating CNP-signal-mediated bone growth. Importantly, physiological loading induces Ostn expression in periosteal osteoblasts by suppressing Forkhead box protein O1 (FoxO1) transcription factor. Thus, this study reveals a crucial role of OSTN as a mechanotransducer converting mechanical loading to CNP-dependent bone formation.
Collapse
Affiliation(s)
- Haruko Watanabe-Takano
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan.
| | - Hiroki Ochi
- Department of Clinical Research, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan
| | - Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan
| | - Ayaka Matsuo
- Omics Research Center, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| | - Yugo Kanai
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Naoki Ito
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 6-7-6 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Keisuke Sako
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan
| | - Takahiro Miyazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Center for Bioresources, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan
| | - Ichiro Harada
- Medical Products Technology, Development Center, R&D headquarters, Canon Inc., 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501, Japan
| | - Shingo Sato
- Center for Innovative Cancer Treatment, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yasuhiro Sawada
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan; Department of Clinical Research, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan; Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan
| | - Naoto Minamino
- Omics Research Center, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| | - Shu Takeda
- Division of Endocrinology, Toranomon Hospital Endocrine Center, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan
| | - Hiroki R Ueda
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akihiro Yasoda
- Clinical Research Center, National Hospital Organization Kyoto Medical Center, 1-1 Fukakusa-Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
12
|
Miyamoto S, Yoshikawa H, Nakata K. Axial mechanical loading to ex vivo mouse long bone regulates endochondral ossification and endosteal mineralization through activation of the BMP-Smad pathway during postnatal growth. Bone Rep 2021; 15:101088. [PMID: 34141832 PMCID: PMC8188257 DOI: 10.1016/j.bonr.2021.101088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/19/2021] [Accepted: 05/01/2021] [Indexed: 01/12/2023] Open
Abstract
Mechanical loading contributes to bone development, growth, and metabolism. However, the mechanisms underlying long bone mineralization via changes in loading during the growth period are unclear. The aim of the present study was to investigate the regulatory mechanisms underlying endochondral ossification and endosteal mineralization by developing an ex vivo organ culture model with cyclic axial mechanical loads. The metacarpal bones of 3-week-old C57BL/6 mice were exposed to mechanical loading (0, 7.8, and 78 mN) for 1 h/day for 4 days. Histomorphometry revealed that axial mechanical loading regulated the thickness of the calcified zone in the growth plate and endosteal mineralization in the diaphysis in a load-dependent manner. Mechanical loading also resulted in load-dependent upregulation of endochondral ossification and bone mineralization-related genes, including bone morphogenetic protein 2 (Bmp2). Recombinant human BMP-2 administration caused similar changes in tissue structures. Conversely, inhibition of the BMP-Smad pathway diminished the stimulatory effects of mechanical loading and BMP-2 administration, suggesting that the effects of mechanical loading may be exerted through activation of the BMP-Smad pathway with the results of gene ontology and pathway analyses. Mechanical loading increased alkaline phosphatase activity and decreased carbonic anhydrase IX (Car9) mRNA expression, resulting in a significant pH increase in the culture supernatant. We hypothesize that, through activation of the BMP-Smad pathway, mechanical loading downregulates Car9, which may alkalize the local milieu, thereby inducing bone formation and long bone mineralization. Our results showed that cyclic axial mechanical loading increased endochondral ossification and endosteal mineralization in developing mouse long bones, which may have resulted from changes in the pH, ALP activity, and Pi/PPi of the extracellular environment. These findings advance our understanding of the regulation of mineralization mechanisms by mechanical loading mediated through activation of the BMP-Smad pathway.
Collapse
Affiliation(s)
- Satoshi Miyamoto
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Ken Nakata
- Medicine for Sports and Performing Arts, Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
D'Andrea CR, Alfraihat A, Singh A, Anari JB, Cahill PJ, Schaer T, Snyder BD, Elliott D, Balasubramanian S. Part 2. Review and meta-analysis of studies on modulation of longitudinal bone growth and growth plate activity: A micro-scale perspective. J Orthop Res 2021; 39:919-928. [PMID: 33458882 DOI: 10.1002/jor.24992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/24/2020] [Accepted: 01/11/2021] [Indexed: 02/04/2023]
Abstract
Macro-scale changes in longitudinal bone growth resulting from mechanical loading were shown in Part 1 of this review to depend on load magnitude, anatomical location, and species. While no significant effect on longitudinal growth was observed by varying frequency and amplitude of cyclic loading, such variations, in addition to loading duration and species, were shown to affect the morphology, viability, and gene and protein expression within the growth plate. Intermittent compression regimens were shown to preserve or increase growth plate height while stimulating increased chondrocyte presence in the hypertrophic zone relative to persistent and static loading regimens. Gene and protein expressions related to matrix synthesis and degradation, as well as regulation of chondrocyte apoptosis were shown to exhibit magnitude-, frequency-, and duration-dependent responses to loading regimen. Chondrocyte viability was shown to be largely preserved within physiological bounds of magnitude, frequency, amplitude, and duration. Persistent static loading was shown to be associated with overall growth plate height in tension only, reducing it in compression, while affecting growth plate zone heights differently across species and encouraging mineralization relative to intermittent cyclic loading. Lateral loading of the growth plate, as well as microfluidic approaches are relatively understudied, and age, anatomical location, and species effects within these approaches are undefined. Understanding the micro-scale effects of varied loading regimes can assist in the development of growth modulation methods and device designs optimized for growth plate viability preservation or mineralization stimulation based on patient age and anatomical location.
Collapse
Affiliation(s)
- Christian R D'Andrea
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Ausilah Alfraihat
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Anita Singh
- Department of Biomedical Engineering, Widener University, Chester, Pennsylvania, USA
| | - Jason B Anari
- Division of Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Patrick J Cahill
- Division of Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Thomas Schaer
- Department of Clinical Studies New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Brian D Snyder
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Dawn Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Sriram Balasubramanian
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
D'Andrea CR, Alfraihat A, Singh A, Anari JB, Cahill PJ, Schaer T, Snyder BD, Elliott D, Balasubramanian S. Part 1. Review and meta-analysis of studies on modulation of longitudinal bone growth and growth plate activity: A macro-scale perspective. J Orthop Res 2021; 39:907-918. [PMID: 33377536 DOI: 10.1002/jor.24976] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 02/04/2023]
Abstract
Growth modulation is an emerging method for treatment of angular skeletal deformities such as adolescent idiopathic scoliosis (AIS). The Hueter-Volkmann law, by which growth is stimulated in tension and inhibited in compression, is widely understood, and applied in current growth-modulating interventions such as anterior vertebral body tethering (AVBT) for AIS. However, without quantification of the growth rate effects of tension or compression, the possibility of under- or over- correction exists. A definitive mechanical growth modulation relationship relating to treatment of such skeletal deformities is yet to exist, and the mechanisms by which growth rate is regulated and altered are not fully defined. Review of current literature demonstrates that longitudinal (i.e., lengthwise) growth rate in multiple animal models depend on load magnitude, anatomical location, and species. Additionally, alterations in growth plate morphology and viability vary by loading parameters such as magnitude, frequency, and whether the load was applied persistently or intermittently. The aggregate findings of the reviewed studies will assist in work towards increasingly precise and clinically successful growth modulation methods. Part 1 of this review focuses on the effects of mechanical loading, species, age, and anatomical location on the macro-scale alterations in longitudinal bone growth, as well as factors that affect growth plate material properties. Part 2 considers the effects on micro-scale alterations in growth plate morphology such as zone heights and proportions, chondrocyte viability, and related gene and protein expression.
Collapse
Affiliation(s)
- Christian R D'Andrea
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Ausilah Alfraihat
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Anita Singh
- Department of Biomedical Engineering, Widener University, Chester, Pennsylvania, USA
| | - Jason B Anari
- Division of Orthopaedics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Patrick J Cahill
- Division of Orthopaedics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Thomas Schaer
- Department of Clinical Studies New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Brian D Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Dawn Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Sriram Balasubramanian
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Xie M, Chagin AS. The epiphyseal secondary ossification center: Evolution, development and function. Bone 2021; 142:115701. [PMID: 33091640 DOI: 10.1016/j.bone.2020.115701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023]
Abstract
Bone age is used widely by pediatricians to assess the skeletal maturity of a child and predict growth potential. This entails measuring the size of secondary ossification centers (SOCs), which develop with age in the ends of long bones, which are initially cartilaginous. However, little is presently known about the developmental biology, evolution and functional role of these skeletal elements. Here, we summarize the knowledge currently available in this area and discuss potential primary functions of the SOC.
Collapse
Affiliation(s)
- Meng Xie
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Andrei S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Institute for Regenerative Medicine, Sechenov University, Russia.
| |
Collapse
|
16
|
Dutta B, Goswami R, Rahaman SO. TRPV4 Plays a Role in Matrix Stiffness-Induced Macrophage Polarization. Front Immunol 2020; 11:570195. [PMID: 33381111 PMCID: PMC7767862 DOI: 10.3389/fimmu.2020.570195] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
Phenotypic polarization of macrophages is deemed essential in innate immunity and various pathophysiological conditions. We have now determined key aspects of the molecular mechanism by which mechanical cues regulate macrophage polarization. We show that Transient Receptor Potential Vanilloid 4 (TRPV4), a mechanosensitive ion channel, mediates substrate stiffness-induced macrophage polarization. Using atomic force microscopy, we showed that genetic ablation of TRPV4 function abrogated fibrosis-induced matrix stiffness generation in skin tissues. We have determined that stiffer skin tissue promotes the M1 macrophage subtype in a TRPV4-dependent manner; soft tissue does not. These findings were further validated by our in vitro results which showed that stiff matrix (50 kPa) alone increased expression of macrophage M1 markers in a TRPV4-dependent manner, and this response was further augmented by the addition of soluble factors; neither of which occurred with soft matrix (1 kPa). A direct requirement for TRPV4 in M1 macrophage polarization spectrum in response to increased stiffness was evident from results of gain-of-function assays, where reintroduction of TRPV4 significantly upregulated the expression of M1 markers in TRPV4 KO macrophages. Together, these data provide new insights regarding the role of TRPV4 in matrix stiffness-induced macrophage polarization spectrum that may be explored in tissue engineering and regenerative medicine and targeted therapeutics.
Collapse
Affiliation(s)
- Bidisha Dutta
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, United States
| | - Rishov Goswami
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, United States
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, United States
| |
Collapse
|
17
|
Du TY, Standen EM. Terrestrial acclimation and exercise lead to bone functional response in Polypterus senegalus pectoral fins. J Exp Biol 2020; 223:jeb217554. [PMID: 32414872 DOI: 10.1242/jeb.217554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/25/2020] [Indexed: 11/20/2022]
Abstract
The ability of bones to sense and respond to mechanical loading is a central feature of vertebrate skeletons. However, the functional demands imposed on terrestrial and aquatic animals differ vastly. The pectoral girdle of the basal actinopterygian fish Polypterus senegalus was previously shown to exhibit plasticity following terrestrial acclimation, but the pectoral fin itself has yet to be examined. We investigated skeletal plasticity in the pectoral fins of P. senegalus after exposure to terrestrial loading. Juvenile fish were divided into three groups: a control group was kept under aquatic conditions without intervention, an exercised group was also kept in water but received daily exercise on land, and a terrestrial group was kept in a chronic semi-terrestrial condition. After 5 weeks, the pectoral fins were cleared and stained with Alcian Blue and Alizarin Red to visualize cartilage and bone, allowing measurements of bone length, bone width, ossification and curvature to be taken for the endochondral radial bones. Polypterus senegalus fin bones responded most strongly to chronic loading in the terrestrial condition. Fish that were reared in a terrestrial environment had significantly longer bones compared with those of aquatic controls, wider propterygia and metapterygia, and more ossified metapterygia and medial radials, and they showed changes in propterygial curvature. Exercised fish also had longer and more ossified medial radials compared with those of controls. Polypterus senegalus fin bones exhibit plasticity in response to novel terrestrial loading. Such plasticity could be relevant for transitions between water and land on evolutionary scales, but key differences between fish and tetrapod bone make direct comparisons challenging.
Collapse
Affiliation(s)
- Trina Y Du
- Department of Biology, University of Ottawa, Gendron Hall, 30 Marie Curie, Ottawa, ON, Canada K1N 6N5
| | - Emily M Standen
- Department of Biology, University of Ottawa, Gendron Hall, 30 Marie Curie, Ottawa, ON, Canada K1N 6N5
| |
Collapse
|
18
|
Effectiveness of low-intensity pulsed ultrasound on osteoarthritis of the temporomandibular joint: A review. Ann Biomed Eng 2020; 48:2158-2170. [PMID: 32514932 DOI: 10.1007/s10439-020-02540-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/26/2020] [Indexed: 01/15/2023]
Abstract
Loading is indispensable for the growth, development, and maintenance of joint tissues, including mandibular condylar cartilage, but excessive loading or reduced host adaptive capacity can considerably damage the temporomandibular joint (TMJ), leading to temporomandibular joint osteoarthritis (TMJ-OA). TMJ-OA, associated with other pathological conditions and aging processes, is a highly degenerative disease affecting the articular cartilage. Many treatment modalities for TMJ-OA have been developed. Traditional clinical treatment includes mainly nonsurgical options, such as occlusal splints. However, non-invasive therapy does not achieve joint tissue repair and regeneration. Growing evidence suggests that low-intensity pulsed ultrasound (LIPUS) accelerates bone fracture healing and regeneration, as well as having extraordinary effects in terms of soft tissue repair and regeneration. The latter have received much attention, and various studies have been performed to evaluate the potential role of LIPUS in tissue regeneration including that applied to articular cartilage. The present article provides an overview of the status of LIPUS stimulation used to prevent the onset and progression of TMJ-OA and enhance the tissue regeneration of mandibular condylar cartilage. The etiology and management of TMJ-OA are explained briefly, animal models of TMJ-OA are described, and the effectiveness of LIPUS on cell metabolism and tissue regeneration in the TMJ is discussed.
Collapse
|
19
|
Song H, Polk JD, Kersh ME. Rat bone properties and their relationship to gait during growth. ACTA ACUST UNITED AC 2019; 222:jeb.203554. [PMID: 31492819 DOI: 10.1242/jeb.203554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022]
Abstract
Allometric relationships have been studied over different Orders of mammals to understand how bone accommodates the mechanical demands associated with increasing mass. However, less attention has been given to the scaling of bone within a single lifetime. We aimed to determine how bone morphology and tissue density are related to (1) bending and compressive strength, and (2) gait dynamics. Longitudinal in vivo computed tomography of the hindlimbs and gait data were collected from female rats (n=5, age 8-20 weeks). Cross-sectional properties and tissue density were measured at the diaphysis, distal and proximal regions of the tibia and scaling exponents were calculated. Finite element models of the tibia were used to simulate loading during walking using joint forces from inverse dynamics calculation to determine the strain energy density and longitudinal strain at the midshaft. Second moment of area at the diaphysis followed strain similarity-based allometry, while bone area trended towards positive allometry. Strain energy in the diaphysis under transverse loading was lower than axial loading throughout growth. While both axial and transverse loading resulted in bending, tensile strains were mitigated by a change in the neutral axis and resulted in overall lower longitudinal tensile strains. The tissue density and cross-sectional properties initially increased and converged by 11 weeks of age and were correlated with changes in ground reaction forces. The scaling analyses imply that rodent tibia is (re)modeled in order to sustain bending at the midshaft during growth. The finite element results and relatively constant density after 10 weeks of age indicate that structural parameters may be the primary determinant of bone strength in the growing rodent tibia. The correlations between bone properties and joint angles imply that the changes in posture may affect bone growth in specific regions.
Collapse
Affiliation(s)
- Hyunggwi Song
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - John D Polk
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mariana E Kersh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA .,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
20
|
|
21
|
High Impact Exercise Improves Bone Microstructure and Strength in Growing Rats. Sci Rep 2019; 9:13128. [PMID: 31511559 PMCID: PMC6739374 DOI: 10.1038/s41598-019-49432-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/20/2019] [Indexed: 01/22/2023] Open
Abstract
Physical activity is beneficial for skeletal development. However, impact sports during adolescence, leading to bone growth retardation and/or bone quality improvement, remains unexplained. This study investigated the effects of in vivo low (LI), medium (MI), and high (HI) impact loadings applied during puberty on bone growth, morphometry and biomechanics using a rat model. 4-week old rats (n = 30) were divided into control, sham, LI, MI, and HI groups. The impact was applied on the right tibiae, 5 days/week for 8 weeks mimicking walking (450 µε), uphill running (850 µε) and jumping (1250 µε) conditions. Trabecular and cortical parameters were determined by micro-CT, bone growth rate by calcein labeling and toluidine blue staining followed by histomorphometry. Bio-mechanical properties were evaluated from bending tests. HI group reduced rat body weight and food consumption compared to shams. Bone growth rate also decreased in MI and HI groups despite developing thicker hypertrophic and proliferative zone heights. HI group showed significant increment in bone mineral density, trabecular thickness, cortical and total surface area. Ultimate load and stiffness were also increased in MI and HI groups. We conclude that impact loading during adolescence reduces bone growth moderately but improves bone quality and biomechanics at the end of the growing period.
Collapse
|
22
|
Long HQ, Tian PF, Guan YX, Liu LX, Wu XP, Li B. Expression of Ihh signaling pathway in condylar cartilage after bite-raising in adult rats. J Mol Histol 2019; 50:459-470. [PMID: 31302828 DOI: 10.1007/s10735-019-09840-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/09/2019] [Indexed: 01/09/2023]
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a complex inflammatory condition with multiple factors and degenerative processes co-occurring. However, its pathogenesis remains uncertain. The purpose of the study was to observe the expression of Indian hedgehog (Ihh) signal related molecules in TMJOA induced by bite-raising and to study the effect and mechanism of Ihh signaling. Our research indicated that Ihh signaling pathway can be activated in condylar cartilage induced by bite-raising. The histological analysis showed TMJOA-like structural changes of condylar cartilage in experiment groups. Ihh, Smoothened (Smo), and Gli zinc finger transcription factors-1 (Gli-1) were activated in the experimental groups, and the expression levels increased significantly over time, whereas the sham control groups showed no fluctuation. Additionally, the expression levels of matrix metalloproteinase-13 (MMP-13) and cysteinyl aspartate specific proteinase-3 (Caspase-3) in the experiment groups increased in a time-dependent manner compared with the matched sham control groups. In conclusion, our results indicated that the Ihh signaling pathway may activate the occurrence of TMJOA by mediating the hypertrophy of chondrocytes, which may be an important regulatory mechanism and potential therapeutic target in the repair of condylar cartilage.
Collapse
Affiliation(s)
- Hui-Qing Long
- Department of Orthodontics, School of Dentistry, Shanxi Medical University, Taiyuan, China
| | - Peng-Fei Tian
- Department of Orthodontics, School of Dentistry, Shanxi Medical University, Taiyuan, China
| | - Yu-Xin Guan
- Department of Orthodontics, School of Dentistry, Shanxi Medical University, Taiyuan, China
| | - Ling-Xia Liu
- Department of Orthodontics, School of Dentistry, Shanxi Medical University, Taiyuan, China
| | - Xiu-Ping Wu
- Department of Orthodontics, School of Dentistry, Shanxi Medical University, Taiyuan, China.
| | - Bing Li
- Department of Orthodontics, School of Dentistry, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
23
|
Effect of Long-Term Diving on the Morphology and Growth of the Distal Radial Epiphyseal Plate of Young Divers: A Magnetic Resonance Imaging Study. Clin J Sport Med 2019; 29:312-317. [PMID: 31241534 DOI: 10.1097/jsm.0000000000000523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the effects of long-term diving on the morphology and growth of the distal radial epiphyseal plate in young divers. STUDY DESIGN Cohort study. SETTING Guangzhou Sport University. PARTICIPANTS Thirty-eight professional divers, aged 10 to 17 years, and 25 age-matched volunteers. INTERVENTIONS Each subject received a physical examination at the beginning of the study and underwent bilateral magnetic resonance imaging of the wrist. The divers were divided into 2 groups depending on the status of the epiphyseal plate: group A (positive distal radial epiphyseal plate injury) and group B (no positive distal radial epiphyseal plate injury). A third group, group C, consisted of the 25 volunteers. MAIN OUTCOME MEASURES The frequency of distal radial epiphyseal plate injury and the thickness of the distal radial epiphyseal plate were analyzed across the 3 groups. RESULTS Twenty-nine cases (29/76, 38.15%) of distal radial epiphyseal plate injury were observed in 20 divers (20/38, 52.63%). The incidence of injury to the right hand was higher than that for the left (P = 0.009). There were statistically significant differences (P = 0.000) among the 3 groups in terms of epiphyseal plate thickness; group A > group B > group C. CONCLUSIONS Distal radial epiphyseal plate injury is common in divers, and more injuries are seen in the right hand. Moreover, growth of the radius was impaired in divers relative to controls. We consider that loading during diving may influence growth of the epiphyseal plate in either a transient or permanent manner.
Collapse
|
24
|
Vaca-González JJ, Guevara JM, Moncayo MA, Castro-Abril H, Hata Y, Garzón-Alvarado DA. Biophysical Stimuli: A Review of Electrical and Mechanical Stimulation in Hyaline Cartilage. Cartilage 2019; 10:157-172. [PMID: 28933195 PMCID: PMC6425540 DOI: 10.1177/1947603517730637] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Hyaline cartilage degenerative pathologies induce morphologic and biomechanical changes resulting in cartilage tissue damage. In pursuit of therapeutic options, electrical and mechanical stimulation have been proposed for improving tissue engineering approaches for cartilage repair. The purpose of this review was to highlight the effect of electrical stimulation and mechanical stimuli in chondrocyte behavior. DESIGN Different information sources and the MEDLINE database were systematically revised to summarize the different contributions for the past 40 years. RESULTS It has been shown that electric stimulation may increase cell proliferation and stimulate the synthesis of molecules associated with the extracellular matrix of the articular cartilage, such as collagen type II, aggrecan and glycosaminoglycans, while mechanical loads trigger anabolic and catabolic responses in chondrocytes. CONCLUSION The biophysical stimuli can increase cell proliferation and stimulate molecules associated with hyaline cartilage extracellular matrix maintenance.
Collapse
Affiliation(s)
- Juan J. Vaca-González
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogota, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogota, Colombia
| | - Johana M. Guevara
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Miguel A. Moncayo
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogota, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogota, Colombia
| | - Hector Castro-Abril
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogota, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogota, Colombia
| | - Yoshie Hata
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogota, Colombia
| | - Diego A. Garzón-Alvarado
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogota, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogota, Colombia
| |
Collapse
|
25
|
Vaca-González JJ, Escobar JF, Guevara JM, Hata YA, Gallego Ferrer G, Garzón-Alvarado DA. Capacitively coupled electrical stimulation of rat chondroepiphysis explants: A histomorphometric analysis. Bioelectrochemistry 2018; 126:1-11. [PMID: 30471483 DOI: 10.1016/j.bioelechem.2018.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/07/2023]
Abstract
The growth plate is a cartilaginous layer present from the gestation period until the end of puberty where it ossifies joining diaphysis and epiphysis. During this period several endocrine, autocrine, and paracrine processes within the growth plate are carried out by chondrocytes; therefore, a disruption in cellular functions may lead to pathologies affecting bone development. It is known that electric fields impact the growth plate; however, parameters such as stimulation time and electric field intensity are not well documented. Accordingly, this study presents a histomorphometrical framework to assess the effect of electric fields on chondroepiphysis explants. Bones were stimulated with 3.5 and 7 mV/cm, and for each electric field two exposure times were tested for 30 days (30 min and 1 h). Results evidenced that electric fields increased the hypertrophic zones compared with controls. In addition, a stimulation of 3.5 mV/cm applied for 1 h preserved the columnar cell density and its orientation. Moreover, a pre-hypertrophy differentiation in the center of the chondroepiphysis was observed when explants were stimulated during 1 h with both electric fields. These findings allow the understanding of the effect of electrical stimulation over growth plate organization and how the stimulation modifies chondrocytes morphophysiology.
Collapse
Affiliation(s)
- J J Vaca-González
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia; Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia; Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - J F Escobar
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia; Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
| | - J M Guevara
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Y A Hata
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia; Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
| | - G Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| | - D A Garzón-Alvarado
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia; Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
26
|
Proximal Femoral Growth Modification: Effect of Screw, Plate, and Drill on Asymmetric Growth of the Hip. J Pediatr Orthop 2018; 38:100-104. [PMID: 27203823 DOI: 10.1097/bpo.0000000000000771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Guided growth has long been used in the lower extremities but has not been applied to varus or valgus deformity in the hip, as may occur in children with cerebral palsy or developmental dysplasia of the hip. The purpose of this study was to determine if screw, plate, or drilling techniques decreased the femoral neck-shaft angle (NSA) and articular trochanteric disease (ATD), as well as describe growth plate structural changes with each method. METHODS Twelve 8-week-old lambs underwent proximal femoral hemiepiphysiodesis (IACUC approved) using either a screw (n=4), plate (n=4), or drilling procedure (n=4). Postoperative time was 6 months. Radiographs taken after limb harvest were used to measure NSA and ATD. Differences between treated and control sides were determined by 1-tailed paired t tests and Bonferroni (α=0.05/3). Histology was obtained for 1 limb pair per group. Proximal femurs were cut in midcoronal plane and the longitudinal growth plates were examined for structural changes. RESULTS The mean NSA measured 7 degrees less than controls in this model using the screw technique, and this difference was statistically significant. Differences between the control and the treated groups did not reach statistical significance for either the plate or the drill group. Differences in ATD were not statistically significant, although there was a trend for larger ATD measurements using the screw technique. Histologically, physeal changes were observed on the operative sides in screw and plate specimens, but not drill specimens, compared with contralateral sham control. The screw specimen exhibited the most severe changes, with growth plate closure over half the section. The plate specimen showed focal loss of the physis across the section, but with no evidence of closure. CONCLUSIONS This study builds on previous work that indicates screw hemiepiphysiodesis can effectively alter the shape of the proximal femur, and result in a lower neck-shaft ankle (or lesser valgus). This study suggests that implantation of a screw is likely to be more effective than a plate or drilling procedure in decreasing the NSA in skeletally immature hips. CLINICAL SIGNIFICANCE If further preclinical, and later clinical, studies demonstrate reproducible efficacy, guided growth of the proximal femur may eventually become a viable option for treatment or prevention of hip deformity in select patients.
Collapse
|
27
|
Holló G. Demystification of animal symmetry: symmetry is a response to mechanical forces. Biol Direct 2017; 12:11. [PMID: 28514948 PMCID: PMC5436448 DOI: 10.1186/s13062-017-0182-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
ᅟ Symmetry is an eye-catching feature of animal body plans, yet its causes are not well enough understood. The evolution of animal form is mainly due to changes in gene regulatory networks (GRNs). Based on theoretical considerations regarding fundamental GRN properties, it has recently been proposed that the animal genome, on large time scales, should be regarded as a system which can construct both the main symmetries – radial and bilateral – simultaneously; and that the expression of any of these depends on functional constraints. Current theories explain biological symmetry as a pattern mostly determined by phylogenetic constraints, and more by chance than by necessity. In contrast to this conception, I suggest that physical effects, which in many cases act as proximate, direct, tissue-shaping factors during ontogenesis, are also the ultimate causes – i.e. the indirect factors which provide a selective advantage – of animal symmetry, from organs to body plan level patterns. In this respect, animal symmetry is a necessary product of evolution. This proposition offers a parsimonious view of symmetry as a basic feature of the animal body plan, suggesting that molecules and physical forces act in a beautiful harmony to create symmetrical structures, but that the concert itself is directed by the latter. Reviewers This article was reviewed by Eugene Koonin, Zoltán Varga and Michaël Manuel.
Collapse
Affiliation(s)
- Gábor Holló
- Institute of Psychology, University of Debrecen, H-4002, Debrecen, P.O. Box 400, Hungary.
| |
Collapse
|
28
|
Ramasamy SK, Kusumbe AP, Schiller M, Zeuschner D, Bixel MG, Milia C, Gamrekelashvili J, Limbourg A, Medvinsky A, Santoro MM, Limbourg FP, Adams RH. Blood flow controls bone vascular function and osteogenesis. Nat Commun 2016; 7:13601. [PMID: 27922003 PMCID: PMC5150650 DOI: 10.1038/ncomms13601] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 10/19/2016] [Indexed: 12/17/2022] Open
Abstract
While blood vessels play important roles in bone homeostasis and repair, fundamental aspects of vascular function in the skeletal system remain poorly understood. Here we show that the long bone vasculature generates a peculiar flow pattern, which is important for proper angiogenesis. Intravital imaging reveals that vessel growth in murine long bone involves the extension and anastomotic fusion of endothelial buds. Impaired blood flow leads to defective angiogenesis and osteogenesis, and downregulation of Notch signalling in endothelial cells. In aged mice, skeletal blood flow and endothelial Notch activity are also reduced leading to decreased angiogenesis and osteogenesis, which is reverted by genetic reactivation of Notch. Blood flow and angiogenesis in aged mice are also enhanced on administration of bisphosphonate, a class of drugs frequently used for the treatment of osteoporosis. We propose that blood flow and endothelial Notch signalling are key factors controlling ageing processes in the skeletal system. Formation of new blood vessels and bone is coupled. Here the authors show that blood flow represents a key regulator of angiogenesis and endothelial Notch signalling in the bone, and that reactivation of Notch signalling in the endothelium of aged mice rejuvenates the bone.
Collapse
Affiliation(s)
- Saravana K Ramasamy
- Faculty of Medicine, Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine and University of Münster, D-48149 Münster, Germany.,Research group Integrative Skeletal Physiology, Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Anjali P Kusumbe
- Faculty of Medicine, Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine and University of Münster, D-48149 Münster, Germany.,Research group Tissue and Tumor Microenvironments, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7LY, UK
| | - Maria Schiller
- Faculty of Medicine, Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine and University of Münster, D-48149 Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Unit, Max-Planck-Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - M Gabriele Bixel
- Faculty of Medicine, Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine and University of Münster, D-48149 Münster, Germany
| | - Carlo Milia
- VIB Vesalius Research Center, KU Leuven, 3000 Leuven, Belgium
| | - Jaba Gamrekelashvili
- Department of Nephrology and Hypertension, Hannover Medical School, D-30625 Hannover, Germany
| | - Anne Limbourg
- Department of Plastic and Reconstructive Surgery, Hannover Medical School, D-30625 Hannover, Germany
| | - Alexander Medvinsky
- Research group Ontogeny of Haematopoietic Stem Cells, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, Scotland
| | - Massimo M Santoro
- VIB Vesalius Research Center, KU Leuven, 3000 Leuven, Belgium.,Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Florian P Limbourg
- Department of Nephrology and Hypertension, Hannover Medical School, D-30625 Hannover, Germany
| | - Ralf H Adams
- Faculty of Medicine, Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine and University of Münster, D-48149 Münster, Germany
| |
Collapse
|
29
|
Abstract
In paediatric orthopaedics, deformities and discrepancies in length of bones are key problems that commonly need to be addressed in daily practice. An understanding of the physiology behind developing bones is crucial for planning treatment. Modulation of the growing bone can be performed in a number of ways. Here, we discuss the principles and mechanisms behind the techniques. Historically, the first procedures were destructive in their mechanism but reversible techniques were later developed with stapling of the growth plate being the gold standard treatment for decades. It has historically been used for both angular deformities and control of overall bone length. Today, tension band plating has partially overtaken stapling but this technique also carries a risk of complications. The diverging screws in these implants are probably mainly useful for hemiepiphysiodesis. We also discuss new minimally invasive techniques that may become important in future clinical practice.
Collapse
|
30
|
GUEVARA JOHANAMARIA, GOMEZ MARIALUCIAGUTIERREZ, BARRERA LA LUISALEJANDRO, GARZÓN-ALVARADO DIEGOALEXANDER. DEVELOPMENTAL SCENARIOS OF THE EPIPHYSIS AND GROWTH PLATE UPON MECHANICAL LOADING: A COMPUTATIONAL MODEL. J MECH MED BIOL 2016. [DOI: 10.1142/s0219519416500986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Long bone growth relies on the continuous bone formation from cartilaginous tissue (endochondral ossification). This process starts in the central region (diaphysis) of the forming bone and short before birth, ossification starts in bone extremes (epiphysis). A cartilaginous region known as the growth plate is maintained until adolescence between epiphysis and diaphysis to further contribute to longitudinal growth. Even though there are several biochemical factors controlling this process, there is evidence revealing an important regulatory role of mechanical stimuli. Up to now approaches to understand mechanical effects on ossification have been limited to epiphysis. In this work, based on Carter's mathematical model for epiphyseal ossification, we explored human growth plate response to mechanical loads. We analyzed growth plate stress distribution using finite element method for a generic bone considering different stages of bone development in order to shed light on mechanical contribution to growth plate function. Results obtained revealed that mechanical environment within the growth plate change as epiphyseal ossification progresses. Furthermore, results were compared with physiological behavior, as reported in literature, to analyze the role of mechanical stimulus over development. Our results suggest that mechanical stimuli may play different regulation roles on growth plate behavior through normal long bone development. However, as this approach only took into account mechanical aspects, failed to accurately predict biological behavior in some stages. In order to derive biologically relevant information from computational models it is necessary to consider biological contribution and possible mechanical–biochemical interactions affecting human growth plate physiology. Along these lines, we propose the dilatatorial parameter k used by Carter et al. should assume different values corresponding to the developmental stage in question. Thus, reflecting biochemical contribution changes over time.
Collapse
Affiliation(s)
- JOHANA MARIA GUEVARA
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - LUIS ALEJANDRO BARRERA LA
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - DIEGO ALEXANDER GARZÓN-ALVARADO
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Biomimetics Laboratory, Institute of Biotechnology, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
31
|
Roles of hypoxia inducible factor-1α in the temporomandibular joint. Arch Oral Biol 2016; 73:274-281. [PMID: 27816790 DOI: 10.1016/j.archoralbio.2016.10.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/20/2016] [Accepted: 10/25/2016] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Temporomandibular joint osteoarthritis (TMJ-OA) is a degenerative disease characterized by permanent cartilage loss. Articular cartilage is maintained in a low-oxygen environment. The chondrocyte response to hypoxic conditions involves expression of hypoxia inducible factor 1α (HIF-1α), which induces chondrocytes to increase expression of vascular endothelial growth factor (VEGF). Here, we investigated the role of HIF-1α in mechanical load effects on condylar cartilage and subchondral bone in heterozygous HIF-1α-deficient mice (HIF-1α+/-). DESIGN Mechanical stress was applied to the TMJ of C57BL/6NCr wild-type (WT) and HIF-1α+/- mice with a sliding plate for 10 days. Histological analysis was performed by HE staining, Safranin-O/Fast green staining, and immunostaining specific for articular cartilage homeostasis. RESULTS HIF-1α+/- mice had thinner cartilage and smaller areas of proteoglycan than WT controls, without and with mechanical stress. Mechanical stress resulted in prominent degenerative changes with increased expression of HIF-1α, VEGF, and the apoptosis factor cleaved Caspase-3 in condylar cartilage. CONCLUSION Our results indicate that HIF-1α may be important for articular cartilage homeostasis and protective against articular cartilage degradation in the TMJ under mechanical stress condition, therefore HIF-1α could be an important new therapeutic target in TMJ-OA.
Collapse
|
32
|
Liu L, Chen L, Mai Z, Peng Z, Yu K, Liu G, Ai H. Cyclical compressive stress induces differentiation of rat primary mandibular condylar chondrocytes through phosphorylated myosin light chain II. Mol Med Rep 2016; 14:4293-4300. [PMID: 27748856 DOI: 10.3892/mmr.2016.5788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 09/05/2016] [Indexed: 11/05/2022] Open
Abstract
The role of myosin light chain II (MLC‑II) in cellular differentiation of rat mandibular condylar chondrocytes (MCCs) induced by cyclical uniaxial compressive stress (CUCS) remains unclear. In the current study, a four‑point bending system was used to apply CUCS to primary cultured MCCs from rats. It was identified that CUCS stimulated features of cellular differentiation including morphological alterations, cytoskeleton rearrangement and overproduction of proteoglycans. Furthermore, CUCS promoted runt‑related transcription factor‑2 (RUNX2) expression at mRNA (P<0.01) and protein levels (P<0.05) and elevated alkaline phosphatase (ALP) activity (P<0.01), which are both markers of osteogenic differentiation. Under conditions of stress, western blotting indicated that the ratio of phosphorylated MLC‑II to total MLC‑II was increased significantly (P<0.05). Silencing MLC‑II by RNA interference reduced ALP activity (P<0.01), and eliminated RUNX2 mRNA expression (P<0.01). Addition of the MLC kinase inhibitor, ML‑7, reduced the CUCS‑associated upregulation of RUNX2 expression (P<0.01) and ALP activity (P<0.01). The data indicated that CUCS promoted cellular differentiation of rat primary MCCs, and this was suggested to be via the phosphorylation of MLC‑II.
Collapse
Affiliation(s)
- Limin Liu
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Lin Chen
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhihui Mai
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhuli Peng
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Kafung Yu
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Guanqi Liu
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Hong Ai
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
33
|
Sun K, Liu F, Wang J, Guo Z, Ji Z, Yao M. The effect of mechanical stretch stress on the differentiation and apoptosis of human growth plate chondrocytes. In Vitro Cell Dev Biol Anim 2016; 53:141-148. [PMID: 27605110 DOI: 10.1007/s11626-016-0090-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/14/2016] [Indexed: 11/27/2022]
Abstract
The study is aimed to investigate the effect of stretch stress with different intensities on the differentiation and apoptosis of human plate chondrocytes. In the present study, the human epiphyseal plate chondrocytes were isolated and cultured in vitro. Toluidine blue staining and type II collagen immunohistochemical staining were used to identify the chondrocytes. Mechanical stretch stresses with different intensities were applied to intervene cells at 0-, 2000-, and 4000-μ strain for 6 h via a four-point bending system. The expression levels of COL2, COL10, Bax, Bcl-2, and PTHrp were detected by quantitative RT-PCR. Under the intervention of 2000-μ strain, the expression levels of COL2, COL10, and PTHrp increased significantly compared with the control group (P < 0.05), and the expression level of PCNA was also increased, but the difference was not statistically significant (P > 0.05). Under 4000-μ strain, however, the expression levels of PCNA, COL2, and PTHrp decreased significantly compared with the control group (P < 0.05), and the expression level of COL10 decreased slightly (P > 0.05). The ratio of Bcl-2/Bax gradually increased with the increase of stimulus intensity; both of the differences were detected to be statistically significant (P < 0.05). In conclusion, the apoptosis of growth plate chondrocytes is regulated by mechanical stretch stress. Appropriate stretch stress can effectively promote the cells' proliferation and differentiation, while excessive stretch stress inhibits the cells' proliferation and differentiation, even promotes their apoptosis. PTHrp may play an important role in this process.
Collapse
Affiliation(s)
- Keming Sun
- Department of Pediatric Orthopedics, Zhengzhou Children's Hospital, Gangdu Street 255, Zhengzhou, Henan, 450000, China
| | - Fangna Liu
- Department of Pediatric Orthopedics, Zhengzhou Children's Hospital, Gangdu Street 255, Zhengzhou, Henan, 450000, China
| | - Junjian Wang
- Department of Pediatric Orthopedics, Zhengzhou Children's Hospital, Gangdu Street 255, Zhengzhou, Henan, 450000, China
| | - Zhanhao Guo
- Department of Pediatric Orthopedics, Zhengzhou Children's Hospital, Gangdu Street 255, Zhengzhou, Henan, 450000, China
| | - Zejuan Ji
- Department of Pediatric Orthopedics, Zhengzhou Children's Hospital, Gangdu Street 255, Zhengzhou, Henan, 450000, China
| | - Manye Yao
- Department of Pediatric Orthopedics, Zhengzhou Children's Hospital, Gangdu Street 255, Zhengzhou, Henan, 450000, China.
| |
Collapse
|
34
|
Ménard AL, Grimard G, Londono I, Beaudry F, Vachon P, Moldovan F, Villemure I. Bone growth resumption following in vivo static and dynamic compression removals on rats. Bone 2015; 81:662-668. [PMID: 26416149 DOI: 10.1016/j.bone.2015.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 12/28/2022]
Abstract
Mechanical loadings influence bone growth and are used in pediatric treatments of musculoskeletal deformities. This in vivo study aimed at evaluating the effects of static and dynamic compression application and subsequent removal on bone growth, mineralization and neuropathic pain markers in growing rats. Forty-eight immature rats (28 days old) were assigned in two groups (2- and 4 weeks experiment duration) and four subgroups: control, sham, static, and dynamic. Controls had no surgery. A micro-loading device was implanted on the 6th and 8th caudal vertebrae of shams without loading, static loading at 0.2 MPa or dynamic loading at 0.2 MPa ± 30% and 0.1 Hz. In 2-week subgroups, compression was maintained for 15 days prior to euthanasia, while in 4- week subgroups, compression was removed for 10 additional days. Growth rates, histomorphometric parameters and mineralization intensity were quantified and compared. At 2 weeks, growth rates and growth plate heights of loaded groups (static/dynamic)were significantly lower than shams (p b 0.01).However, at 4 weeks, both growth rates and growth plate heights of loaded groups were similar to shams. At 4 weeks, alizarin red intensity was significantly higher in dynamics compared to shams (p b 0.05) and controls (p b 0.01). Both static and dynamic compressions enable growth resumption after loading removal, while preserving growth plate histomorphometric integrity. However, mineralization was enhanced after dynamic loading removal only. Dynamic loading showed promising results for fusionless treatment approaches for musculoskeletal deformities.
Collapse
Affiliation(s)
- Anne-Laure Ménard
- Dept. of Mechanical Engineering, École Polytechnique of Montreal, P.O. Box 6079, Station "Centre-Ville", Montréal, Québec H3C 3A7, Canada; Sainte-Justine University Hospital Research Center, 3175 Côte-Ste-Catherine Rd., Montréal, Québec H3T 1C5, Canada.
| | - Guy Grimard
- Sainte-Justine University Hospital Research Center, 3175 Côte-Ste-Catherine Rd., Montréal, Québec H3T 1C5, Canada; Sainte-Justine University Hospital Center, 3175 Côte-Ste-Catherine Rd., Montréal, Québec, H3T 1C5, Canada.
| | - Irène Londono
- Sainte-Justine University Hospital Research Center, 3175 Côte-Ste-Catherine Rd., Montréal, Québec H3T 1C5, Canada.
| | - Francis Beaudry
- Research Group in Animal Pharmacology of Québec, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Québec J2S 2M2, Canada; Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, University of Montreal, 320e0 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2, Canada.
| | - Pascal Vachon
- Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, University of Montreal, 320e0 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2, Canada.
| | - Florina Moldovan
- Sainte-Justine University Hospital Research Center, 3175 Côte-Ste-Catherine Rd., Montréal, Québec H3T 1C5, Canada; Faculty of Dentistry, University of Montreal, P.O. Box 6128, Station "centre-ville", Montréal, Québec H3C 3J7, Canada.
| | - Isabelle Villemure
- Dept. of Mechanical Engineering, École Polytechnique of Montreal, P.O. Box 6079, Station "Centre-Ville", Montréal, Québec H3C 3A7, Canada; Sainte-Justine University Hospital Research Center, 3175 Côte-Ste-Catherine Rd., Montréal, Québec H3T 1C5, Canada.
| |
Collapse
|
35
|
Abstract
The regulation of organ size is essential to human health and has fascinated biologists for centuries. Key to the growth process is the ability of most organs to integrate organ-extrinsic cues (eg, nutritional status, inflammatory processes) with organ-intrinsic information (eg, genetic programs, local signals) into a growth response that adapts to changing environmental conditions and ensures that the size of an organ is coordinated with the rest of the body. Paired organs such as the vertebrate limbs and the long bones within them are excellent models for studying this type of regulation because it is possible to manipulate one member of the pair and leave the other as an internal control. During development, growth plates at the end of each long bone produce a transient cartilage model that is progressively replaced by bone. Here, we review how proliferation and differentiation of cells within each growth plate are tightly controlled mainly by growth plate-intrinsic mechanisms that are additionally modulated by extrinsic signals. We also discuss the involvement of several signaling hubs in the integration and modulation of growth-related signals and how they could confer remarkable plasticity to the growth plate. Indeed, long bones have a significant ability for "catch-up growth" to attain normal size after a transient growth delay. We propose that the characterization of catch-up growth, in light of recent advances in physiology and cell biology, will provide long sought clues into the molecular mechanisms that underlie organ growth regulation. Importantly, catch-up growth early in life is commonly associated with metabolic disorders in adulthood, and this association is not completely understood. Further elucidation of the molecules and cellular interactions that influence organ size coordination should allow development of novel therapies for human growth disorders that are noninvasive and have minimal side effects.
Collapse
Affiliation(s)
- Alberto Roselló-Díez
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| |
Collapse
|
36
|
Tanne K, Okamoto Y, Su SC, Mitsuyoshi T, Asakawa-Tanne Y, Tanimoto K. Current status of temporomandibular joint disorders and the therapeutic system derived from a series of biomechanical, histological, and biochemical studies. APOS TRENDS IN ORTHODONTICS 2014. [DOI: 10.4103/2321-1407.148014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
This article was designed to report the current status of temporomandibular joint disorders (TMDs) and the therapeutic system on the basis of a series of clinical, biomechanical, histological and biochemical studies in our research groups. In particular, we have focused on the association of degenerative changes of articular cartilage in the mandibular condyle and the resultant progressive condylar resorption with mechanical stimuli acting on the condyle during the stomatognathic function. In a clinical aspect, the nature and prevalence of TMDs, association of malocclusion with TMDs, association of condylar position with TMDs, association of craniofacial morphology with TMDs, and influences of TMDs, TMJ-osteoarthritis (TMJ-OA) in particular, were examined. In a biomechanical aspect, the nature of stress distribution in the TMJ from maximum clenching was analyzed with finite element method. In addition, the pattern of stress distribution was examined in association with varying vertical discrepancies of the craniofacial skeleton and friction between the articular disk and condyle. The results demonstrated an induction of large compressive stresses in the anterior and lateral areas on the condyle by the maximum clenching and the subsequent prominent increases in the same areas of the mandibular condyle as the vertical skeletal discrepancy became more prominent. Increase of friction at the articular surface was also indicated as a cause of larger stresses and the relevant disk displacement, which further induced an increase in stresses in the tissues posterior to the disks, indicating an important role of TMJ disks as a stress absorber. In a histological or biological aspect, increase in TMJ loading simulated by vertical skeletal discrepancy, which has already been revealed by the preceding finite element analysis or represented by excessive mouth opening, produced a decrease in the thickness of cartilage layers, an increase in the numbers of chondroblasts and osteoclasts and the subsequent degenerative changes in the condylar cartilage associated with the expression of bone resorption-related factors. In a biochemical or molecular and cellular aspect, excessive mechanical stimuli, irrespective of compressive or tensile stress, induced HA fragmentation, expression of proinflammatory cytokines, an imbalance between matrix metalloproteinases and the tissue inhibitors, all of which are assumed to induce lower resistance to external stimuli and degenerative changes leading to bone and cartilage resorption. Excessive mechanical stimuli also reduced the synthesis of superficial zone protein in chondrocytes, which exerts an important role in the protection of cartilage and bone layers from the degenerative changes. It is also revealed that various cytoskeletal changes induced by mechanical stimuli are transmitted through a stretch-activated or Ca2+channel. Finally, on the basis of the results from a series of studies, it is demonstrated that optimal intra-articular environment can be achieved by splint therapy, if indicated, followed by occlusal reconstruction with orthodontic approach in patients with myalgia of the masticatory muscles, and TMJ internal derangement or anterior disk displacement with or without reduction. It is thus shown that orthodontic treatment is available for the treatment of TMDs and the long-term stability after treatment.
Collapse
Affiliation(s)
- Kazuo Tanne
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuki Okamoto
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shao-Ching Su
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tomomi Mitsuyoshi
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuki Asakawa-Tanne
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
37
|
Ménard AL, Grimard G, Valteau B, Londono I, Moldovan F, Villemure I. In vivo dynamic loading reduces bone growth without histomorphometric changes of the growth plate. J Orthop Res 2014; 32:1129-36. [PMID: 24902946 DOI: 10.1002/jor.22664] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 05/13/2014] [Indexed: 02/04/2023]
Abstract
This in vivo study aimed at investigating the effects of dynamic compression on the growth plate. Rats (28 days old) were divided into three dynamically loaded groups, compared with two groups (control, sham). A device was implanted on the 6th and 8th caudal vertebrae for 15 days. Controls (n = 4) did not undergo surgery. Shams (n = 4) were operated but not loaded. Dynamic groups had sinusoidal compression with a mean value of 0.2 MPa: 1.0 Hz and ± 0.06 MPa (group a, n = 4); 0.1 Hz and ± 0.2 MPa (group b, n = 4); 1.0 Hz and ± 0.14 MPa (group c, n = 3). Growth rates (µm/day) of dynamic groups (a) and (b) were lower than shams (p < 0.01). Growth plate heights, hypertrophic cell heights and proliferative cell counts per column did not change in dynamic (a) and (b) groups compared with shams (p > 0.01). Rats from dynamic group (c) had repeated inflammations damaging tissues; consequently, their analysis was unachievable. Increasing magnitude or frequency leads to growth reduction without histomorphometric changes. However, the combined augmentation of magnitude and frequency alter drastically growth plate integrity. Appropriate loading parameters could be leveraged for developing novel growth modulation implants to treat skeletal deformities.
Collapse
Affiliation(s)
- Anne-Laure Ménard
- Department of Mechanical Engineering, École Polytechnique of Montreal, P.O. Box 6079, Station "Centre-Ville,", Montréal, Québec, Canada, H3C 3A7; Sainte-Justine University Hospital Center, 3175 Côte-Ste-Catherine Rd., Montréal, Québec, Canada, H3T 1C5
| | | | | | | | | | | |
Collapse
|
38
|
Kennedy OD, Laudier DM, Majeska RJ, Sun HB, Schaffler MB. Osteocyte apoptosis is required for production of osteoclastogenic signals following bone fatigue in vivo. Bone 2014; 64:132-7. [PMID: 24709687 PMCID: PMC4070223 DOI: 10.1016/j.bone.2014.03.049] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/07/2014] [Accepted: 03/27/2014] [Indexed: 02/05/2023]
Abstract
Osteocyte apoptosis is spatially, temporally and functionally linked to the removal and replacement of microdamage in the bone. Recently we showed that microdamage elicits distinct responses in two populations of osteocytes near the injury site. Osteocytes directly adjacent to microdamage undergo apoptosis, whereas there is a second group of osteocytes located adjacent to the apoptotic population that upregulate expression of osteoclastogenic signaling molecules. In this study we used the pan-caspase inhibitor QVD to test the hypothesis that osteocyte apoptosis is an obligatory step in the production of key osteoclastogenic signals by in situ osteocytes in fatigue-damaged bone. We found, based on real-time PCR and immunohistochemistry assays, that expression of the apoptosis marker caspase-3 as well osteoclastogenic proteins RANKL and VEGF were increased following fatigue, while expression of the RANKL antagonist OPG decreased. However, when apoptosis was inhibited using QVD, these changes in gene expression were completely blocked. This dependence on apoptosis for neighboring non-apoptotic cells to produce signals that promote tissue remodeling also occurs in response to focal ischemic injury in the brain and heart, indicating that osteoclastic bone remodeling follows a common paradigm for localized tissue repair.
Collapse
Affiliation(s)
- Oran D Kennedy
- Department of Biomedical Engineering, The City College of New York of the City University of New York, New York, NY, USA.
| | - Damien M Laudier
- Department of Biomedical Engineering, The City College of New York of the City University of New York, New York, NY, USA
| | - Robert J Majeska
- Department of Biomedical Engineering, The City College of New York of the City University of New York, New York, NY, USA.
| | - Hui B Sun
- Department Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Mitchell B Schaffler
- Department of Biomedical Engineering, The City College of New York of the City University of New York, New York, NY, USA.
| |
Collapse
|
39
|
Kanbe K, Inoue K, Xiang C, Chen Q. Identification of clock as a mechanosensitive gene by large-scale DNA microarray analysis: downregulation in osteoarthritic cartilage. Mod Rheumatol 2014. [DOI: 10.3109/s10165-006-0469-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Meakin LB, Price JS, Lanyon LE. The Contribution of Experimental in vivo Models to Understanding the Mechanisms of Adaptation to Mechanical Loading in Bone. Front Endocrinol (Lausanne) 2014; 5:154. [PMID: 25324829 PMCID: PMC4181237 DOI: 10.3389/fendo.2014.00154] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/12/2014] [Indexed: 12/12/2022] Open
Abstract
Changing loading regimens by natural means such as exercise, with or without interference such as osteotomy, has provided useful information on the structure:function relationship in bone tissue. However, the greatest precision in defining those aspects of the overall strain environment that influence modeling and remodeling behavior has been achieved by relating quantified changes in bone architecture to quantified changes in bones' strain environment produced by direct, controlled artificial bone loading. Jiri Hert introduced the technique of artificial loading of bones in vivo with external devices in the 1960s using an electromechanical device to load rabbit tibiae through transfixing stainless steel pins. Quantifying natural bone strains during locomotion by attaching electrical resistance strain gages to bone surfaces was introduced by Lanyon, also in the 1960s. These studies in a variety of bones in a number of species demonstrated remarkable uniformity in the peak strains and maximum strain rates experienced. Experiments combining strain gage instrumentation with artificial loading in sheep, pigs, roosters, turkeys, rats, and mice has yielded significant insight into the control of strain-related adaptive (re)modeling. This diversity of approach has been largely superseded by non-invasive transcutaneous loading in rats and mice, which is now the model of choice for many studies. Together such studies have demonstrated that over the physiological strain range, bone's mechanically adaptive processes are responsive to dynamic but not static strains; the size and nature of the adaptive response controlling bone mass is linearly related to the peak loads encountered; the strain-related response is preferentially sensitive to high strain rates and unresponsive to static ones; is most responsive to unusual strain distributions; is maximized by remarkably few strain cycles, and that these are most effective when interrupted by short periods of rest between them.
Collapse
Affiliation(s)
- Lee B. Meakin
- School of Veterinary Sciences, University of Bristol, Bristol, UK
- *Correspondence: Lee B. Meakin, School of Veterinary Sciences, University of Bristol, Langford House, Langford, Bristol BS40 5DU, UK e-mail:
| | - Joanna S. Price
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Lance E. Lanyon
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
41
|
Physeal cartilage exhibits rapid consolidation and recovery in intact knees that are physiologically loaded. J Biomech 2013; 46:1516-23. [DOI: 10.1016/j.jbiomech.2013.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 03/23/2013] [Accepted: 03/30/2013] [Indexed: 11/20/2022]
|
42
|
Patil AS, Sable RB, Kothari RM, Nagarajan P. Genetic expression of Col-2A and Col-10A as a function of administration of IGF-1 & TGF-<i>β</i> with and without anterior mandibular repositioning appliance on the growth of mandibular condylar cartilage in young rabbit. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojst.2013.39a002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Impact of unilateral corrective tethering on the histology of the growth plate in an established porcine model for thoracic scoliosis. Spine (Phila Pa 1976) 2012; 37:E883-9. [PMID: 22333954 DOI: 10.1097/brs.0b013e31824d973c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Histological growth plate analysis. OBJECTIVE.: To evaluate the histological effects on vertebral growth plates following corrective mechanical tethering in the porcine scoliosis model. SUMMARY OF BACKGROUND DATA Theoretically, growth modulation allows progressive vertebral correction in the setting of scoliosis (Hueter-Volkmann principle). METHODS This IACUC-approved study divided 9 immature Yorkshire pigs into 2 groups: deforming tether release (TR, n = 4) group and anterior corrective (AC, n = 5) tether group. Once 50° coronal Cobb was demonstrated, TR had release of the deforming tether, whereas AC had release of the deforming tether and additional placement of a corrective tether. After 20 weeks of observation, pigs were killed, spines were removed, and apical samples were prepared for histological study. Growth plate analysis included the following histological parameters: proliferative zone height, hypertrophic zone height, and cell heights within the hypertrophic zone. Student t test was used to evaluate differences within and between groups. RESULTS No significant differences were found within the release group on the concave versus convex side in terms of proliferative zone height, hypertrophic zone height, and cell heights in the hypertrophic zone. In the anterior correction group, the proliferative zone height was significantly smaller on the concave side than on the convex side (P < 0.01); no significant differences were found in AC on the concave versus convex side in terms of hypertrophic zone height and cell heights in the hypertrophic zone. No significant differences were found in any parameters between TR and AC on either the concave or the convex side. CONCLUSION No significant decrease in any of the measured parameters was observed in the anterior correction group compared with the tether release group. These histological findings are consistent with preservation of growth potential.
Collapse
|
44
|
Kennedy OD, Herman BC, Laudier DM, Majeska RJ, Sun HB, Schaffler MB. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone 2012; 50:1115-22. [PMID: 22342796 PMCID: PMC3366436 DOI: 10.1016/j.bone.2012.01.025] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/17/2012] [Accepted: 01/30/2012] [Indexed: 01/19/2023]
Abstract
Osteocyte apoptosis is required to initiate osteoclastic bone resorption following fatigue-induced microdamage in vivo; however, it is unclear whether apoptotic osteocytes also produce the signals that induce osteoclast differentiation. We determined the spatial and temporal patterns of osteocyte apoptosis and expression of pro-osteoclastogenic signaling molecules in vivo. Ulnae from female Sprague-Dawley rats (16-18weeks old) were cyclically loaded to a single fatigue level, and tissues were analyzed 3 and 7days later (prior to the first appearance of osteoclasts). Expression of genes associated with osteoclastogenesis (RANKL, OPG, VEGF) and apoptosis (caspase-3) were assessed by qPCR using RNA isolated from 6mm segments of ulnar mid-diaphysis, with confirmation and spatial localization of gene expression performed by immunohistochemistry. A novel double staining immunohistochemistry method permitted simultaneous localization of apoptotic osteocytes and osteocytes expressing pro-osteoclastogenic signals relative to microdamage sites. Osteocyte staining for caspase-3 and osteoclast regulatory signals exhibited different spatial distributions, with apoptotic (caspase 3-positive) cells highest in the damage region and declining to control levels within several hundred microns of the microdamage focus. Cells expressing RANKL or VEGF peaked between 100 and 300μm from the damage site, then returned to control levels beyond this distance. Conversely, osteocytes in non-fatigued control bones expressed OPG. However, OPG staining was reduced markedly in osteocytes immediately surrounding microdamage. These results demonstrate that while osteocyte apoptosis triggers the bone remodeling response to microdamage, the neighboring non-apoptotic osteocytes are the major source of pro-osteoclastogenic signals. Moreover, both the apoptotic and osteoclast-signaling osteocyte populations are localized in a spatially and temporally restricted pattern consistent with the targeted nature of this remodeling response.
Collapse
Affiliation(s)
- Oran D. Kennedy
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, USA
| | - Brad C. Herman
- Department of Orthopaedics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Damien M. Laudier
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, USA
| | - Robert J. Majeska
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, USA
| | - Hui B. Sun
- Department of Orthopaedics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Mitchell B. Schaffler
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, USA
- Corresponding author at: Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, Steinman Hall, T-401, NY, NY, 10031, USA. Fax: +1 212 650 6727
| |
Collapse
|
45
|
LIN HSINSHIH, HUANG TSANGHAI, MAO SHIHWEI, TAI YUHSHIOU, CHIU HUNGTA, CHENG KUANGYOUB, YANG RONGSEN. A SHORT-TERM FREE-FALL LANDING ENHANCES BONE FORMATION AND BONE MATERIAL PROPERTIES. J MECH MED BIOL 2012. [DOI: 10.1142/s0219519411004356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To investigate the effects of a short-term free-fall landing course on local bone metabolism and biomaterial properties, 32 female Wistar rats (7 week old) were randomly assigned to three groups: L30 (n = 11), L10 (n = 11) and CON (n = 10). Animals in the L30 and L10 groups were subjected to 30 and 10 free-fall landings per day, respectively, from a height of 40 cm for five consecutive days. Animals' ulnae were studied using methods of dynamic histomorphometry, tissue geometry, biomaterial measurements and collagen fiber orientation (CFO) analysis. In dynamic histomorphometry analysis, periosteal as well as endosteal mineral apposition rates (MAR, μm/day) were significantly higher in L30 group than in the CON group (p < 0.05). In addition, the periosteal bone formation rate (BFR/BS, μm2/μm3/year) was significantly higher in the L10 and L30 groups (p < 0.05). The ulnae of the animals in the two landing groups were higher in post-yield energy without significant changes in CFO, tissue size or tissue weight measurements. In conclusion, a short-term free-fall landing training produced a slight, but significant, higher bone formation in the ulnae of young female rats. Enhanced tissue biomaterial properties did not accompany size-related changes, suggesting that bone adapting to mechanical loading begins with changes in tissue-level properties.
Collapse
Affiliation(s)
- HSIN-SHIH LIN
- Department of Physical Education, National Taiwan Normal University, Taipei 10610, Taiwan
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan, Taiwan
| | - TSANG-HAI HUANG
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan, Taiwan
| | - SHIH-WEI MAO
- Department of Mechanical Engineering, R.O.C. Military Academy, Kaohsiung, Taiwan
| | - YUH-SHIOU TAI
- Department of Civil Engineering, R.O.C. Military Academy, Kaohsiung, Taiwan
| | - HUNG-TA CHIU
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan, Taiwan
| | - KUANG-YOU B. CHENG
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan, Taiwan
| | - RONG-SEN YANG
- Department of Orthopaedics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
46
|
Macione J, Nesbitt S, Pandit V, Kotha S. Design and analysis of a novel mechanical loading machine for dynamic in vivo axial loading. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:025113. [PMID: 22380131 PMCID: PMC3298551 DOI: 10.1063/1.3687781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/04/2012] [Indexed: 05/31/2023]
Abstract
This paper describes the construction of a loading machine for performing in vivo, dynamic mechanical loading of the rodent forearm. The loading machine utilizes a unique type of electromagnetic actuator with no mechanically resistive components (servotube), allowing highly accurate loads to be created. A regression analysis of the force created by the actuator with respect to the input voltage demonstrates high linear correlation (R(2) = 1). When the linear correlation is used to create dynamic loading waveforms in the frequency (0.5-10 Hz) and load (1-50 N) range used for in vivo loading, less than 1% normalized root mean square error (NRMSE) is computed. Larger NRMSE is found at increased frequencies, with 5%-8% occurring at 40 Hz, and reasons are discussed. Amplifiers (strain gauge, linear voltage displacement transducer (LVDT), and load cell) are constructed, calibrated, and integrated, to allow well-resolved dynamic measurements to be recorded at each program cycle. Each of the amplifiers uses an active filter with cutoff frequency at the maximum in vivo loading frequencies (50 Hz) so that electronic noise generated by the servo drive and actuator are reduced. The LVDT and load cell amplifiers allow evaluation of stress-strain relationships to determine if in vivo bone damage is occurring. The strain gauge amplifier allows dynamic force to strain calibrations to occur for animals of different sex, age, and strain. Unique features are integrated into the loading system, including a weightless mode, which allows the limbs of anesthetized animals to be quickly positioned and removed. Although the device is constructed for in vivo axial bone loading, it can be used within constraints, as a general measurement instrument in a laboratory setting.
Collapse
Affiliation(s)
- James Macione
- Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.
| | | | | | | |
Collapse
|
47
|
Patil A, Sable R, Kothari R. Occurrence, biochemical profile of vascular endothelial growth factor (VEGF) isoforms and their functions in endochondral ossification. J Cell Physiol 2012; 227:1298-308. [DOI: 10.1002/jcp.22846] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
48
|
Zhang P, Yokota H. Elbow loading promotes longitudinal bone growth of the ulna and the humerus. J Bone Miner Metab 2012; 30:31-9. [PMID: 21748461 DOI: 10.1007/s00774-011-0292-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 06/05/2011] [Indexed: 10/18/2022]
Abstract
Mechanical stimulation plays a critical role in bone development and growth. In view of recently recognized anabolic responses promoted by a joint-loading modality, we examined the effects of elbow loading on longitudinal growth of the ulna and the humerus. Using a custom-made piezoelectric loader, the left elbow of growing C57/BL/6 female mice was given daily 5-min bouts of dynamic loading for 10 days. The right forelimbs of those mice served as contralateral controls, and the limbs of non-treated mice were used as age-matched controls. The effects of elbow loading were evaluated through measurement of bone length, weight, bone mineral density (BMD), and bone mineral content (BMC), as well as mRNA expression levels of load-sensitive transcription factors such as c-fos, egr1, and atf3. The results revealed that the humerus was elongated by 1.2% compared to the contralateral and age-matched controls (both p < 0.001), while the ulna had become longer than the contralateral control (1.7%; p < 0.05) and the age-match control (3.4%; p < 0.001). Bone lengthening was associated with increases in bone weight, BMD and BMC. Furthermore, the mRNA levels of the selected transcription factors were elevated in the loaded ulna and humerus. Interestingly, the increase was observed not only at the elbow but also at the wrist and shoulder in the loaded limb. The present study demonstrates that joint loading is potentially useful for stimulating bone lengthening and treating limb length discrepancy.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
49
|
Kesavan C, Wergedal JE, Lau KHW, Mohan S. Conditional disruption of IGF-I gene in type 1α collagen-expressing cells shows an essential role of IGF-I in skeletal anabolic response to loading. Am J Physiol Endocrinol Metab 2011; 301:E1191-7. [PMID: 21878662 PMCID: PMC3233773 DOI: 10.1152/ajpendo.00440.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To establish a causal role for locally produced IGF-I in the mechanical strain response in the bone, we have generated mice with conditional disruption of the insulin-like growth factor (IGF) I gene in type 1α(2) collagen-expressing cells using the Cre-loxP approach. At 10 wk of age, loads adjusted to account for bone size difference were applied via four-point bending or axial loading (AL) in mice. Two wk of bending and AL produced significant increases in bone mineral density and bone size at the middiaphysis of wild-type (WT), but not knockout (KO), mice. In addition, AL produced an 8-25% increase in trabecular parameters (bone volume-tissue volume ratio, trabecular thickness, and trabecular bone mineral density) at the secondary spongiosa of WT, but not KO, mice. Histomorphometric analysis at the trabecular site revealed that AL increased osteoid width by 60% and decreased tartrate-resistance acidic phosphatase-labeled surface by 50% in the WT, but not KO, mice. Consistent with the in vivo data, blockade of IGF-I action with inhibitory IGF-binding protein (IGFBP4) in vitro completely abolished the fluid flow stress-induced MC3T3-E1 cell proliferation. One-way ANOVA revealed that expression levels of EFNB1, EFNB2, EFNA2, EphB2, and NR4a3 were different in the loaded bones of WT vs. KO mice and may, in part, be responsible for the increase in bone response to loading in the WT mice. In conclusion, IGF-I expressed in type 1 collagen-producing bone cells is critical for converting mechanical signal to anabolic signal in bone, and other growth factors cannot compensate for the loss of local IGF-I.
Collapse
Affiliation(s)
- Chandrasekhar Kesavan
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California, USA
| | | | | | | |
Collapse
|
50
|
Valteau B, Grimard G, Londono I, Moldovan F, Villemure I. In vivo dynamic bone growth modulation is less detrimental but as effective as static growth modulation. Bone 2011; 49:996-1004. [PMID: 21784187 DOI: 10.1016/j.bone.2011.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/04/2011] [Accepted: 07/06/2011] [Indexed: 11/27/2022]
Abstract
Longitudinal bone growth, which occurs in growth plates, has important implications in pediatric orthopedics. Mechanical loads are essential to normal bone growth, but excessive loads can lead to progressive deformities. In order to compare the effects of in vivo static and dynamic loading on bone growth rate and growth plate histomorphometry, a finely controlled, normalized and equivalent compression was applied for a period of two weeks on the seventh caudal vertebra (Cd7) of rats during their pubertal growth spurt. The load was sustained (0.2MPa, 0.0Hz) in the static group and sinusoidally oscillating (0.2MPa±30%, 0.1Hz) in the dynamic group. Control and sham (operated but no load applied) groups were also studied. Cd7 growth rate was statistically reduced by 19% (p<0.001) for both static and dynamic groups when compared to the sham group. Loading effects on growth plate histomorphometry were greater in the static than dynamic groups with significant reductions (p<0.001) observed for growth plate thickness, proliferative chondrocyte number per column and hypertrophic chondrocyte height in the static group when compared to the sham group. Significant differences (p<0.01) were also found between static and dynamic groups for growth plate thickness and proliferative chondrocyte number per column while the difference nearly reached significance (p=0.014) for hypertrophic chondrocyte height. This in vivo study shows that static and dynamic loading are equally effective in modulating bone growth of rat caudal vertebrae. However, dynamic loading causes less detrimental effects on growth plate histomorphometry compared to static loading. This knowledge is greatly relevant for the improvement and/or development of new minimally invasive approaches, which are based on the local modulation of bone growth, to correct several progressive musculoskeletal deformities.
Collapse
Affiliation(s)
- Barthélémy Valteau
- École Polytechnique de Montréal, Department of Mechanical Engineering, P.O. Box 6079, Station centre-ville, Montréal, Québec, Canada.
| | | | | | | | | |
Collapse
|