1
|
Wu M, Wu S, Chen W, Li YP. The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Res 2024; 34:101-123. [PMID: 38267638 PMCID: PMC10837209 DOI: 10.1038/s41422-023-00918-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Transforming growth factor-βs (TGF-βs) and bone morphometric proteins (BMPs) belong to the TGF-β superfamily and perform essential functions during osteoblast and chondrocyte lineage commitment and differentiation, skeletal development, and homeostasis. TGF-βs and BMPs transduce signals through SMAD-dependent and -independent pathways; specifically, they recruit different receptor heterotetramers and R-Smad complexes, resulting in unique biological readouts. BMPs promote osteogenesis, osteoclastogenesis, and chondrogenesis at all differentiation stages, while TGF-βs play different roles in a stage-dependent manner. BMPs and TGF-β have opposite functions in articular cartilage homeostasis. Moreover, TGF-β has a specific role in maintaining the osteocyte network. The precise activation of BMP and TGF-β signaling requires regulatory machinery at multiple levels, including latency control in the matrix, extracellular antagonists, ubiquitination and phosphorylation in the cytoplasm, nucleus-cytoplasm transportation, and transcriptional co-regulation in the nuclei. This review weaves the background information with the latest advances in the signaling facilitated by TGF-βs and BMPs, and the advanced understanding of their diverse physiological functions and regulations. This review also summarizes the human diseases and mouse models associated with disordered TGF-β and BMP signaling. A more precise understanding of the BMP and TGF-β signaling could facilitate the development of bona fide clinical applications in treating bone and cartilage disorders.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shali Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
2
|
Simonds MM, Freer ST, Brescia AMC. Methotrexate inhibits BMP4 and abrogates the hypertrophic chondrocyte phenotype of synovial fibroblasts in juvenile idiopathic arthritis. Pediatr Rheumatol Online J 2024; 22:6. [PMID: 38166938 PMCID: PMC10763212 DOI: 10.1186/s12969-023-00940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Juvenile Idiopathic Arthritis (JIA) induces growth disturbances in affected joints. Fibroblast-like synoviocytes (FLS) play a crucial role in JIA pathogenesis. FLS overexpress bone morphogenetic protein 4 (BMP4) and have a chondrocyte-like phenotype. FLS contribute directly to joint growth disturbances through endochondral bone formation. We investigated the ability of methotrexate to inhibit BMP4 expression and alter the hypertrophic chondrocyte-like phenotype of JIA FLS. METHODS We selected primary cells from three subjects with persistent oligoarticular JIA, three subjects who eventually extended to a polyarticular disease course, which we termed extended-to-be (ETB), and three subjects who had polyarticular arthritis at time of diagnosis. We treated cells with methotrexate and two BMP4 inhibitors: noggin and chordin. We measured protein concentration from three chondrocyte cell markers: collagen II, aggrecan, and collagen X as well as BMP4. RESULTS ColX, marker of chondrocyte hypertrophy, was significantly increased in polyarticular FLS when compared to both persistent FLS and ETB FLS, making polyarticular FLS the most like hypertrophic chondrocytes. Methotrexate caused significant decreases in BMP4 and ColX expression in persistent, ETB, and polyarticular FLS when compared to respective untreated cells. Ligand-binding BMP4 antagonists, noggin and chordin, caused significant decreases in ColX expression in FLS from all three disease courses and significant increases in collagen II protein, an early chondrocyte marker, when compared to respective untreated cells. CONCLUSIONS Methotrexate, the first-line therapy in the treatment of JIA, mimics BMP4 antagonists by effectively lowering BMP4 and ColX expression in FLS. Inhibiting FLS from undergoing hypertrophy could prevent these cells from contributing to joint growth disturbances via endochondral bone formation.
Collapse
Affiliation(s)
- Megan M Simonds
- Nemours Biomedical Research, 1600 Rockland Rd, Wilmington, DE, 19803, USA.
- Nemours Children's Health, Delaware, 1600 Rockland Rd, Wilmington, DE, 19803, USA.
| | - Samuel T Freer
- Nemours Biomedical Research, 1600 Rockland Rd, Wilmington, DE, 19803, USA
| | - Anne Marie C Brescia
- Nemours Children's Health, Delaware, 1600 Rockland Rd, Wilmington, DE, 19803, USA
| |
Collapse
|
3
|
BMP Signaling Pathway in Dentin Development and Diseases. Cells 2022; 11:cells11142216. [PMID: 35883659 PMCID: PMC9317121 DOI: 10.3390/cells11142216] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/27/2022] Open
Abstract
BMP signaling plays an important role in dentin development. BMPs and antagonists regulate odontoblast differentiation and downstream gene expression via canonical Smad and non-canonical Smad signaling pathways. The interaction of BMPs with their receptors leads to the formation of complexes and the transduction of signals to the canonical Smad signaling pathway (for example, BMP ligands, receptors, and Smads) and the non-canonical Smad signaling pathway (for example, MAPKs, p38, Erk, JNK, and PI3K/Akt) to regulate dental mesenchymal stem cell/progenitor proliferation and differentiation during dentin development and homeostasis. Both the canonical Smad and non-canonical Smad signaling pathways converge at transcription factors, such as Dlx3, Osx, Runx2, and others, to promote the differentiation of dental pulp mesenchymal cells into odontoblasts and downregulated gene expressions, such as those of DSPP and DMP1. Dysregulated BMP signaling causes a number of tooth disorders in humans. Mutation or knockout of BMP signaling-associated genes in mice results in dentin defects which enable a better understanding of the BMP signaling networks underlying odontoblast differentiation and dentin formation. This review summarizes the recent advances in our understanding of BMP signaling in odontoblast differentiation and dentin formation. It includes discussion of the expression of BMPs, their receptors, and the implicated downstream genes during dentinogenesis. In addition, the structures of BMPs, BMP receptors, antagonists, and dysregulation of BMP signaling pathways associated with dentin defects are described.
Collapse
|
4
|
Mollentze J, Durandt C, Pepper MS. An In Vitro and In Vivo Comparison of Osteogenic Differentiation of Human Mesenchymal Stromal/Stem Cells. Stem Cells Int 2021; 2021:9919361. [PMID: 34539793 PMCID: PMC8443361 DOI: 10.1155/2021/9919361] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/23/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
The use of stem cells in regenerative medicine, including tissue engineering and transplantation, has generated a great deal of enthusiasm. Mesenchymal stromal/stem cells (MSCs) can be isolated from various tissues, most commonly, bone marrow but more recently adipose tissue, dental pulp, and Wharton's jelly, to name a few. MSCs display varying phenotypic profiles and osteogenic differentiating capacity depending and their site of origin. MSCs have been successfully differentiated into osteoblasts both in vitro an in vivo but discrepancies exist when the two are compared: what happens in vitro does not necessarily happen in vivo, and it is therefore important to understand why these differences occur. The osteogenic process is a complex network of transcription factors, stimulators, inhibitors, proteins, etc., and in vivo experiments are helpful in evaluating the various aspects of this osteogenic process without distractions and confounding variables. With that in mind, the results of in vitro experiments need to be carefully considered and interpreted with caution as they do not perfectly replicate the conditions found within living organisms. This is where in vivo experiments help us better understand interactions that might occur in the osteogenic process that cannot be replicated in vitro. Potentially, these differences could also be exploited to develop an optimal MSC cell therapeutic product that can be used for bone disorders. There are many bone disorders, most of which cause a great deal of discomfort. Clinically acceptable protocols could be developed in which MSCs are used to aid in bone regeneration providing relief for patients with chronic pain. The aim of this review is to examine the differences between studies conducted in vitro and in vivo with regard to the osteogenic process to better define the gaps in current osteogenic research. By better understanding osteogenic differentiation, we can better define treatment strategies for various bone disorders.
Collapse
Affiliation(s)
- Jamie Mollentze
- Institute for Cellular and Molecular Medicine, Department of Immunology; SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Chrisna Durandt
- Institute for Cellular and Molecular Medicine, Department of Immunology; SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Michael S. Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology; SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Simonds MM, Schlefman AR, McCahan SM, Sullivan KE, Rose CD, Brescia AMC. The culture microenvironment of juvenile idiopathic arthritis synovial fibroblasts is favorable for endochondral bone formation through BMP4 and repressed by chondrocytes. Pediatr Rheumatol Online J 2021; 19:72. [PMID: 33980237 PMCID: PMC8117630 DOI: 10.1186/s12969-021-00556-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/16/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND We examined influences of conditioned media from chondrocytes (Ch) on juvenile idiopathic arthritis synovial fibroblasts (JFLS) and potential for JFLS to undergo endochondral bone formation (EBF). METHODS Primary cells from three control fibroblast-like synoviocytes (CFLS) and three JFLS were cultured in Ch-conditioned media and compared with untreated fibroblast-like synoviocytes (FLS). RNA was analyzed by ClariomS microarray. FLS cells cultured in conditioned media were exposed to either TGFBR1 inhibitor LY3200882 or exogenous BMP4 and compared with FLS cultured in conditioned media from Ch (JFLS-Ch). Media supernatants were analyzed by ELISA. RESULTS In culture, JFLS downregulate BMP2 and its receptor BMPR1a while upregulating BMP antagonists (NOG and CHRD) and express genes (MMP9, PCNA, MMP12) and proteins (COL2, COLX, COMP) associated with chondrocytes. Important TGFβ superfamily member gene expression (TGFBI, MMP9, COL1A1, SOX6, and MMP2) is downregulated when JFLS are cultured in Ch-conditioned media. COL2, COLX and COMP protein expression decreases in JFLS-Ch. BMP antagonist protein (NOG, CHRD, GREM, and FST) secretion is significantly increased in JFLS-Ch. Protein phosphorylation increases in JFLS-Ch exposed to exogenous BMP4, and chondrocyte-like phenotype is restored in BMP4 presence, evidenced by increased secretion of COL2 and COLX. Inhibition of TGFBR1 in JFLS-Ch results in overexpression of COL2. CONCLUSIONS JFLS are chondrocyte-like, and Ch-conditioned media can abrogate this phenotype. The addition of exogenous BMP4 causes JFLS-Ch to restore this chondrocyte-like phenotype, suggesting that JFLS create a microenvironment favorable for endochondral bone formation, thereby contributing to joint growth disturbances in juvenile idiopathic arthritis.
Collapse
Affiliation(s)
- Megan M. Simonds
- grid.239281.30000 0004 0458 9676Nemours Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, 1701 Rockland Rd, Wilmington, DE 19803 USA
| | - Amanda R. Schlefman
- grid.413611.00000 0004 0467 2330Rheumatology, Johns Hopkins All Children’s Hospital, St. Petersburg, FL USA
| | - Suzanne M. McCahan
- grid.239281.30000 0004 0458 9676Nemours Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, 1701 Rockland Rd, Wilmington, DE 19803 USA
| | - Kathleen E. Sullivan
- grid.239552.a0000 0001 0680 8770Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Carlos D. Rose
- grid.239281.30000 0004 0458 9676Division of Rheumatology, Nemours/Alfred I. duPont Hospital for Children, 1701 Rockland Rd, Wilmington, DE 19803 USA
| | - Anne Marie C. Brescia
- grid.239281.30000 0004 0458 9676Division of Rheumatology, Nemours/Alfred I. duPont Hospital for Children, 1701 Rockland Rd, Wilmington, DE 19803 USA
| |
Collapse
|
6
|
Simonds MM, Schlefman AR, McCahan SM, Sullivan KE, Rose CD, Brescia AC. Juvenile idiopathic arthritis fibroblast-like synoviocytes influence chondrocytes to alter BMP antagonist expression demonstrating an interaction between the two prominent cell types involved in endochondral bone formation. Pediatr Rheumatol Online J 2020; 18:89. [PMID: 33198759 PMCID: PMC7670793 DOI: 10.1186/s12969-020-00483-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/01/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND To examine critical interactions between juvenile idiopathic arthritis synovial fibroblasts (JFLS) and chondrocytes (Ch), and their role in bony overgrowth seen in patients with juvenile idiopathic arthritis (JIA). METHODS Control (CFLS) and JFLS were cultured in synoviocyte media containing recombinant BMP4. Ch were cultured in either CFLS or JFLS conditioned-media without stimulation. Media supernatants were analyzed by ELISA. RNA from conditioned media experiment was analyzed by ClariomS microarray. RESULTS As expected, genes expressed in untreated JFLS and CFLS cultured in synoviocyte media were similar to each other and this expression differed from untreated Ch cultured in chondrocyte media. JFLS favor BMP ligand gene expression while downregulating TGFβ receptors' expression. Noggin and chordin, antagonists with high affinity for BMP4, are JFLS- but not Ch-preferred regulators of BMP signaling. Compared to Ch, JFLS overexpress collagen X (COLX), a marker of chondrocyte hypertrophy. Exogenous BMP4 causes JFLS to significantly decrease expression of noggin and collagen II (COL2), a marker of chondrocyte proliferation, and causes overexpression of COLX and alkaline-phosphatase (ALP). Chondrocytes cultured in JFLS-conditioned media (Ch-JFLS) express BMP genes and favor chordin protein expression over other antagonists. Ch-JFLS have significantly increased expression of COL2 and significantly decreased expression of COLX. CONCLUSIONS These data suggest JFLS, in the presence of BMP4, undergo hypertrophy and that JFLS-conditioned media influence chondrocytes to become highly proliferative. To the authors' knowledge, no prior study has shown that JFLS and chondrocytes play a direct role in the bony overgrowth in joints of patients with JIA and that BMPs or regulation of these growth factors influence the interaction between two prominent synovial cell types.
Collapse
Affiliation(s)
- Megan M. Simonds
- grid.239281.30000 0004 0458 9676Nemours Biomedical Research, Nemours A.I. duPont Hospital for Children, 1701 Rockland Rd, Wilmington, DE 19803 USA
| | - Amanda R. Schlefman
- grid.239281.30000 0004 0458 9676Rheumatology, Nemours A.I. duPont Hospital for Children, Wilmington, DE USA ,grid.413611.00000 0004 0467 2330Rheumatology, Johns Hopkins All Childrens, St. Petersburg, FL USA
| | - Suzanne M. McCahan
- grid.239281.30000 0004 0458 9676Rheumatology, Nemours A.I. duPont Hospital for Children, Wilmington, DE USA
| | - Kathleen E. Sullivan
- grid.239552.a0000 0001 0680 8770Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Carlos D. Rose
- grid.239281.30000 0004 0458 9676Rheumatology, Nemours A.I. duPont Hospital for Children, Wilmington, DE USA
| | - AnneMarie C. Brescia
- grid.239281.30000 0004 0458 9676Rheumatology, Nemours A.I. duPont Hospital for Children, Wilmington, DE USA
| |
Collapse
|
7
|
Halloran D, Durbano HW, Nohe A. Bone Morphogenetic Protein-2 in Development and Bone Homeostasis. J Dev Biol 2020; 8:E19. [PMID: 32933207 PMCID: PMC7557435 DOI: 10.3390/jdb8030019] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the Transforming Growth Factor-Beta (TGF-β) superfamily. These proteins are essential to many developmental processes, including cardiogenesis, neurogenesis, and osteogenesis. Specifically, within the BMP family, Bone Morphogenetic Protein-2 (BMP-2) was the first BMP to be characterized and has been well-studied. BMP-2 has important roles during embryonic development, as well as bone remodeling and homeostasis in adulthood. Some of its specific functions include digit formation and activating osteogenic genes, such as Runt-Related Transcription Factor 2 (RUNX2). Because of its diverse functions and osteogenic potential, the Food and Drug Administration (FDA) approved usage of recombinant human BMP-2 (rhBMP-2) during spinal fusion surgery, tibial shaft repair, and maxillary sinus reconstructive surgery. However, shortly after initial injections of rhBMP-2, several adverse complications were reported, and alternative therapeutics have been developed to limit these side-effects. As the clinical application of BMP-2 is largely implicated in bone, we focus primarily on its role in bone. However, we also describe briefly the role of BMP-2 in development. We then focus on the structure of BMP-2, its activation and regulation signaling pathways, BMP-2 clinical applications, and limitations of using BMP-2 as a therapeutic. Further, this review explores other potential treatments that may be useful in treating bone disorders.
Collapse
Affiliation(s)
| | | | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (D.H.); (H.W.D.)
| |
Collapse
|
8
|
Wang W, Rigueur D, Lyons KM. TGFβ as a gatekeeper of BMP action in the developing growth plate. Bone 2020; 137:115439. [PMID: 32442550 PMCID: PMC7891678 DOI: 10.1016/j.bone.2020.115439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023]
Abstract
The ligands that comprise the Transforming Growth Factor β superfamily highly govern the development of the embryonic growth plate. Members of this superfamily activate canonical TGFβ and/or BMP (Bone Morphogenetic Protein) signaling pathways. How these pathways interact with one another is an area of active investigation. These two signaling pathways have been described to negatively regulate one another through crosstalk involving Smad proteins, the primary intracellular effectors of canonical signaling. More recently, a mechanism for regulation of the BMP pathway through TGFβ and BMP receptor interactions has been described. Here in this review, we demonstrate examples of how TGFβ is a gatekeeper of BMP action in the developing growth plate at both the receptor and transcriptional levels.
Collapse
Affiliation(s)
- Weiguang Wang
- Department of Orthopaedic Surgery and Orthopaedic Institute for Children, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America
| | - Diana Rigueur
- Department of Molecular, Cell and Developmental Biology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America
| | - Karen M Lyons
- Department of Orthopaedic Surgery and Orthopaedic Institute for Children, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America; Department of Molecular, Cell and Developmental Biology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America.
| |
Collapse
|
9
|
May RD, Frauchiger DA, Albers CE, Tekari A, Benneker LM, Klenke FM, Hofstetter W, Gantenbein B. Application of Cytokines of the Bone Morphogenetic Protein (BMP) Family in Spinal Fusion - Effects on the Bone, Intervertebral Disc and Mesenchymal Stromal Cells. Curr Stem Cell Res Ther 2020; 14:618-643. [PMID: 31455201 PMCID: PMC7040507 DOI: 10.2174/1574888x14666190628103528] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022]
Abstract
Low back pain is a prevalent socio-economic burden and is often associated with damaged or degenerated intervertebral discs (IVDs). When conservative therapy fails, removal of the IVD (discectomy), followed by intersomatic spinal fusion, is currently the standard practice in clinics. The remaining space is filled with an intersomatic device (cage) and with bone substitutes to achieve disc height compensation and bone fusion. As a complication, in up to 30% of cases, spinal non-fusions result in a painful pseudoarthrosis. Bone morphogenetic proteins (BMPs) have been clinically applied with varied outcomes. Several members of the BMP family, such as BMP2, BMP4, BMP6, BMP7, and BMP9, are known to induce osteogenesis. Questions remain on why hyper-physiological doses of BMPs do not show beneficial effects in certain patients. In this respect, BMP antagonists secreted by mesenchymal cells, which might interfere with or block the action of BMPs, have drawn research attention as possible targets for the enhancement of spinal fusion or the prevention of non-unions. Examples of these antagonists are noggin, gremlin1 and 2, chordin, follistatin, BMP3, and twisted gastrulation. In this review, we discuss current evidence of the osteogenic effects of several members of the BMP family on osteoblasts, IVD cells, and mesenchymal stromal cells. We consider in vitro and in vivo studies performed in human, mouse, rat, and rabbit related to BMP and BMP antagonists in the last two decades. We give insights into the effects that BMP have on the ossification of the spine. Furthermore, the benefits, pitfalls, and possible safety concerns using these cytokines for the improvement of spinal fusion are discussed.
Collapse
Affiliation(s)
- Rahel Deborah May
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | | | - Christoph Emmanuel Albers
- Department of Orthopaedic Surgery and Traumatology, Inselspital, University of Bern, Bern, Switzerland
| | - Adel Tekari
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Lorin Michael Benneker
- Department of Orthopaedic Surgery and Traumatology, Inselspital, University of Bern, Bern, Switzerland
| | - Frank Michael Klenke
- Department of Orthopaedic Surgery and Traumatology, Inselspital, University of Bern, Bern, Switzerland
| | - Willy Hofstetter
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Benjamin Gantenbein
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Abstract
The objective of this study was to test the association of the variation in a 360 bp region in exon 2 of the ovine bone morphogenetic protein 4 (BMP4) gene with growth performance (birth weight, pre-weaning average daily gain, weaning weight, post-weaning average daily gain and marketing weight) and body conformational traits (height at withers, height at hips, body length, heart girth, thigh circumference, body mass index, skeletal muscle index, body index and relative body index) in 242 Barki lambs using polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP). Two variants (A and B) and three genotypes (AA, AB and BB) were detected. The BMP4 genotype significantly affected (p < .05 or p < .01) post-weaning daily gain, marketing weight, height at hips, thigh circumference, body mass index and skeletal muscle index. The results provided valuable information indicating selection for the BMP4 genotype might increase growth and muscularity in Barki lambs.
Collapse
Affiliation(s)
- Adel H M Ibrahim
- Department of Animal Breeding, Desert Research Center, Cairo, Egypt
| |
Collapse
|
11
|
Zhang J, Xu S, Zhang Y, Zou S, Li X. Effects of equibiaxial mechanical stretch on extracellular matrix-related gene expression in human calvarial osteoblasts. Eur J Oral Sci 2018; 127:10-18. [PMID: 30474904 DOI: 10.1111/eos.12595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mechanical stretch commonly promotes craniofacial suture remodeling during interceptive orthodontics. The mechanical responses of osteoblasts in craniofacial sutures play a role in suture remodeling. Moreover, the extracellular matrix (ECM) produced by osteoblasts is crucial for the transduction of mechanical signals that promote cell differentiation. Therefore, we aimed to investigate the effect of mechanical stretch on cell viability and ECM-related gene-expression changes in human osteoblasts. Human calvarial osteoblasts (HCObs) were subjected to 2% deformation. Caspase activity, MTT, and cell viability assays were used to estimate osteoblast apoptosis, proliferation, and viability, respectively. Real-time RT-PCR (RT2 -PCR) arrays were used to assess expression of cytoskeletal-, apoptosis-, osteogenesis-, and ECM-related genes. We found that mechanical stretch significantly increased osteoblast viability and cell proliferation, and decreased the activities of caspases 3 and 7. Moreover, the expression of 18 genes related to osteoblast differentiation, apoptosis, and ECM remodeling changed by more than two-fold in a time-dependent manner. Therefore, mechanical stretch promotes HCOb viability and alters expression of genes that are closely related to suture remodeling under mechanical stretch.
Collapse
Affiliation(s)
- Jiawei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuhao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanggen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaobing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Egawa S, Saito D, Abe G, Tamura K. Morphogenetic mechanism of the acquisition of the dinosaur-type acetabulum. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180604. [PMID: 30473817 PMCID: PMC6227947 DOI: 10.1098/rsos.180604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
Understanding morphological evolution in dinosaurs from a mechanistic viewpoint requires the elucidation of the morphogenesis that gave rise to derived dinosaurian traits, such as the perforated acetabulum. In the current study, we used embryos of extant animals with ancestral- and dinosaur-type acetabula, namely, geckos and turtles (with unperforated acetabulum), and birds (with perforated acetabulum). We performed comparative and experimental analyses, focusing on inter-tissue interaction during embryogenesis, and found that the avian perforated acetabulum develops via a secondary loss of cartilaginous tissue in the acetabular region. This cartilage loss might be mediated by inter-tissue interaction with the hip interzone, a mesenchymal tissue that exists in the embryonic joint structure. Furthermore, the data indicate that avian pelvic anlagen is more susceptible to paracrine molecules, e.g. Wnt ligand, secreted by the hip interzone than 'reptilian' anlagen. We hypothesize that during the emergence of dinosaurs, the pelvic anlagen became susceptible to the Wnt ligand, which led to the loss of the cartilaginous tissue and to the perforation in the acetabular region. Thus, the current evolutionary-developmental biology study deepens our understanding of morphological evolution in dinosaurs and provides it with a novel perspective.
Collapse
Affiliation(s)
- Shiro Egawa
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, 6-3, Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Daisuke Saito
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, 6-3, Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3, Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Gembu Abe
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, 6-3, Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Koji Tamura
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, 6-3, Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
13
|
Abstract
The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
14
|
Ota KG, Abe G. Goldfish morphology as a model for evolutionary developmental biology. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2016; 5:272-95. [PMID: 26952007 PMCID: PMC6680352 DOI: 10.1002/wdev.224] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 12/06/2015] [Accepted: 12/07/2015] [Indexed: 12/11/2022]
Abstract
Morphological variation of the goldfish is known to have been established by artificial selection for ornamental purposes during the domestication process. Chinese texts that date to the Song dynasty contain descriptions of goldfish breeding for ornamental purposes, indicating that the practice originated over one thousand years ago. Such a well-documented goldfish breeding process, combined with the phylogenetic and embryological proximities of this species with zebrafish, would appear to make the morphologically diverse goldfish strains suitable models for evolutionary developmental (evodevo) studies. However, few modern evodevo studies of goldfish have been conducted. In this review, we provide an overview of the historical background of goldfish breeding, and the differences between this teleost and zebrafish from an evolutionary perspective. We also summarize recent progress in the field of molecular developmental genetics, with a particular focus on the twin-tail goldfish morphology. Furthermore, we discuss unanswered questions relating to the evolution of the genome, developmental robustness, and morphologies in the goldfish lineage, with the goal of blazing a path toward an evodevo study paradigm using this teleost species as a new model species. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kinya G Ota
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Gembu Abe
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| |
Collapse
|
15
|
Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 2016; 4:16009. [PMID: 27563484 PMCID: PMC4985055 DOI: 10.1038/boneres.2016.9] [Citation(s) in RCA: 1143] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022] Open
Abstract
Transforming growth factor-beta (TGF-β) and bone morphogenic protein (BMP) signaling has fundamental roles in both embryonic skeletal development and postnatal bone homeostasis. TGF-βs and BMPs, acting on a tetrameric receptor complex, transduce signals to both the canonical Smad-dependent signaling pathway (that is, TGF-β/BMP ligands, receptors, and Smads) and the non-canonical-Smad-independent signaling pathway (that is, p38 mitogen-activated protein kinase/p38 MAPK) to regulate mesenchymal stem cell differentiation during skeletal development, bone formation and bone homeostasis. Both the Smad and p38 MAPK signaling pathways converge at transcription factors, for example, Runx2 to promote osteoblast differentiation and chondrocyte differentiation from mesenchymal precursor cells. TGF-β and BMP signaling is controlled by multiple factors, including the ubiquitin–proteasome system, epigenetic factors, and microRNA. Dysregulated TGF-β and BMP signaling result in a number of bone disorders in humans. Knockout or mutation of TGF-β and BMP signaling-related genes in mice leads to bone abnormalities of varying severity, which enable a better understanding of TGF-β/BMP signaling in bone and the signaling networks underlying osteoblast differentiation and bone formation. There is also crosstalk between TGF-β/BMP signaling and several critical cytokines’ signaling pathways (for example, Wnt, Hedgehog, Notch, PTHrP, and FGF) to coordinate osteogenesis, skeletal development, and bone homeostasis. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in osteoblast differentiation, chondrocyte differentiation, skeletal development, cartilage formation, bone formation, bone homeostasis, and related human bone diseases caused by the disruption of TGF-β/BMP signaling.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Pathology, University of Alabama at Birmingham , Birmingham, USA
| | - Guiqian Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, USA; Department of neurology, Bruke Medical Research Institute, Weil Cornell Medicine of Cornell University, White Plains, USA
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham , Birmingham, USA
| |
Collapse
|
16
|
Taylor SEB, Lee J, Smeriglio P, Razzaque A, Smith RL, Dragoo JL, Maloney WJ, Bhutani N. Identification of Human Juvenile Chondrocyte-Specific Factors that Stimulate Stem Cell Growth. Tissue Eng Part A 2016; 22:645-53. [PMID: 26955889 DOI: 10.1089/ten.tea.2015.0366] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although regeneration of human cartilage is inherently inefficient, age is an important risk factor for osteoarthritis. Recent reports have provided compelling evidence that juvenile chondrocytes (from donors below 13 years of age) are more efficient at generating articular cartilage as compared to adult chondrocytes. However, the molecular basis for such a superior regenerative capability is not understood. To identify the cell-intrinsic differences between juvenile and adult cartilage, we have systematically profiled global gene expression changes between a small cohort of human neonatal/juvenile and adult chondrocytes. No such study is available for human chondrocytes although young and old bovine and equine cartilage have been recently profiled. Our studies have identified and validated new factors enriched in juvenile chondrocytes as compared to adult chondrocytes including secreted extracellular matrix factors chordin-like 1 (CHRDL1) and microfibrillar-associated protein 4 (MFAP4). Network analyses identified cartilage development pathways, epithelial-mesenchymal transition, and innate immunity pathways to be overrepresented in juvenile-enriched genes. Finally, CHRDL1 was observed to aid the proliferation and survival of bone marrow-derived human mesenchymal stem cells (hMSC) while maintaining their stem cell potential. These studies, therefore, provide a mechanism for how young cartilage factors can potentially enhance stem cell function in cartilage repair.
Collapse
Affiliation(s)
- Sarah E B Taylor
- Department of Orthopedic Surgery, Stanford University School of Medicine , Stanford, California
| | - Jieun Lee
- Department of Orthopedic Surgery, Stanford University School of Medicine , Stanford, California
| | - Piera Smeriglio
- Department of Orthopedic Surgery, Stanford University School of Medicine , Stanford, California
| | - Adnan Razzaque
- Department of Orthopedic Surgery, Stanford University School of Medicine , Stanford, California
| | - Robert L Smith
- Department of Orthopedic Surgery, Stanford University School of Medicine , Stanford, California
| | - Jason L Dragoo
- Department of Orthopedic Surgery, Stanford University School of Medicine , Stanford, California
| | - William J Maloney
- Department of Orthopedic Surgery, Stanford University School of Medicine , Stanford, California
| | - Nidhi Bhutani
- Department of Orthopedic Surgery, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
17
|
Itoh N, Ohta H. Secreted bone morphogenetic protein antagonists of the Chordin family. Biomol Concepts 2015; 1:297-304. [PMID: 25962004 DOI: 10.1515/bmc.2010.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chordin, Chordin-like 1, and Chordin-like 2 are secreted bone morphogenetic protein (BMP) antagonists with highly conserved Chordin-like cysteine-rich domains. Recently, Brorin and Brorin-like have been identified as new Chordin-like BMP antagonists. A Chordin ortholog, Short gastrulation, has been identified in Drosophila, a protostome, but not other orthologs. By contrast, Chordin, Chordin-like 1, and Chordin-like 2 have been identified in Ciona intestinalis, the closest living relatives of the vertebrates, but Brorin and Brorin-like have not. However, all these genes have been identified in most vertebrates. These results indicate that Chordin, Chordin-like 1, and Chordin-like 2 were generated early in the metazoan lineage. Later on, Brorin and Brorin-like were potentially generated by a genome duplication event in early vertebrate evolution. All four cysteine-rich domains of Chordin are essential for the regulation of its action. However, Chordin-like 1, Chordin-like 2, Brorin, and Brorin-like contain only two or three cysteine-rich domains. Although their mechanisms of action remain unclear, they might be distinct from that of Chordin. The expression profiles of these genes in mice and zebrafish indicate unique roles at embryonic and postnatal stages. Mutant/knockdown mouse and zebrafish phenotypes indicate roles in morphogenesis during gastrulation, dorsoventral axis formation, ear, pharyngeal, and neural development, and venous and arterial patterning. Aberrant Chordin expression might result in hereditary diseases and cancer. In addition, altered serum Chordin and Chordin-like 1 levels are also observed in non-hereditary diseases. Together, these results indicate pathophysiological roles.
Collapse
|
18
|
Gustafson B, Hammarstedt A, Hedjazifar S, Hoffmann JM, Svensson PA, Grimsby J, Rondinone C, Smith U. BMP4 and BMP Antagonists Regulate Human White and Beige Adipogenesis. Diabetes 2015; 64:1670-81. [PMID: 25605802 DOI: 10.2337/db14-1127] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/14/2014] [Indexed: 11/13/2022]
Abstract
The limited expandability of subcutaneous adipose tissue, due to reduced ability to recruit and differentiate new adipocytes, prevents its buffering effect in obesity and is characterized by expanded adipocytes (hypertrophic obesity). Bone morphogenetic protein-4 (BMP4) plays a key role in regulating adipogenic precursor cell commitment and differentiation. We found BMP4 to be induced and secreted by differentiated (pre)adipocytes, and BMP4 was increased in large adipose cells. However, the precursor cells exhibited a resistance to BMP4 owing to increased secretion of the BMP inhibitor Gremlin-1 (GREM1). GREM1 is secreted by (pre)adipocytes and is an inhibitor of both BMP4 and BMP7. BMP4 alone, and/or silencing GREM1, increased transcriptional activation of peroxisome proliferator-activated receptor γ and promoted the preadipocytes to assume an oxidative beige/brown adipose phenotype including markers of increased mitochondria and PGC1α. Driving white adipose differentiation inhibited the beige/brown markers, suggesting the presence of multipotent adipogenic precursor cells. However, silencing GREM1 and/or adding BMP4 during white adipogenic differentiation reactivated beige/brown markers, suggesting that increased BMP4 preferentially regulates the beige/brown phenotype. Thus, BMP4, secreted by white adipose cells, is an integral feedback regulator of both white and beige adipogenic commitment and differentiation, and resistance to BMP4 by GREM1 characterizes hypertrophic obesity.
Collapse
Affiliation(s)
- Birgit Gustafson
- Lundberg Laboratory for Diabetes Research, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden Department of Molecular and Clinical Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ann Hammarstedt
- Lundberg Laboratory for Diabetes Research, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden Department of Molecular and Clinical Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Shahram Hedjazifar
- Lundberg Laboratory for Diabetes Research, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden Department of Molecular and Clinical Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jenny M Hoffmann
- Lundberg Laboratory for Diabetes Research, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden Department of Molecular and Clinical Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Per-Arne Svensson
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | | | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden Department of Molecular and Clinical Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Terauchi M, Ikeda G, Nishida K, Tamura A, Yamaguchi S, Harada K, Yui N. Supramolecular Polyelectrolyte Complexes of Bone Morphogenetic Protein-2 with Sulfonated Polyrotaxanes to Induce Enhanced Osteogenic Differentiation. Macromol Biosci 2015; 15:953-64. [DOI: 10.1002/mabi.201500032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/04/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Masahiko Terauchi
- Department of Maxillofacial Surgery; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima; Bunkyo Tokyo 113-8549 Japan
- Department of Organic Biomaterials; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai; Chiyoda Tokyo 101-0062 Japan
| | - Go Ikeda
- Department of Organic Biomaterials; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai; Chiyoda Tokyo 101-0062 Japan
| | - Kei Nishida
- Department of Organic Biomaterials; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai; Chiyoda Tokyo 101-0062 Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai; Chiyoda Tokyo 101-0062 Japan
| | - Satoshi Yamaguchi
- Department of Maxillofacial Surgery; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima; Bunkyo Tokyo 113-8549 Japan
| | - Kiyoshi Harada
- Department of Maxillofacial Surgery; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima; Bunkyo Tokyo 113-8549 Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai; Chiyoda Tokyo 101-0062 Japan
| |
Collapse
|
20
|
Leijten JCH, Bos SD, Landman EBM, Georgi N, Jahr H, Meulenbelt I, Post JN, van Blitterswijk CA, Karperien M. GREM1, FRZB and DKK1 mRNA levels correlate with osteoarthritis and are regulated by osteoarthritis-associated factors. Arthritis Res Ther 2013; 15:R126. [PMID: 24286177 PMCID: PMC3978825 DOI: 10.1186/ar4306] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 08/23/2013] [Indexed: 12/24/2022] Open
Abstract
Introduction Osteoarthritis is, at least in a subset of patients, associated with hypertrophic differentiation of articular chondrocytes. Recently, we identified the bone morphogenetic protein (BMP) and wingless-type MMTV integration site (WNT) signaling antagonists Gremlin 1 (GREM1), frizzled-related protein (FRZB) and dickkopf 1 homolog (Xenopus laevis) (DKK1) as articular cartilage’s natural brakes of hypertrophic differentiation. In this study, we investigated whether factors implicated in osteoarthritis or regulation of chondrocyte hypertrophy influence GREM1, FRZB and DKK1 expression levels. Methods GREM1, FRZB and DKK1 mRNA levels were studied in articular cartilage from healthy preadolescents and healthy adults as well as in preserved and degrading osteoarthritic cartilage from the same osteoarthritic joint by quantitative PCR. Subsequently, we exposed human articular chondrocytes to WNT, BMP, IL-1β, Indian hedgehog, parathyroid hormone-related peptide, mechanical loading, different medium tonicities or distinct oxygen levels and investigated GREM1, FRZB and DKK1 expression levels using a time-course analysis. Results GREM1, FRZB and DKK1 mRNA expression were strongly decreased in osteoarthritis. Moreover, this downregulation is stronger in degrading cartilage compared with macroscopically preserved cartilage from the same osteoarthritic joint. WNT, BMP, IL-1β signaling and mechanical loading regulated GREM1, FRZB and DKK1 mRNA levels. Indian hedgehog, parathyroid hormone-related peptide and tonicity influenced the mRNA levels of at least one antagonist, while oxygen levels did not demonstrate any statistically significant effect. Interestingly, BMP and WNT signaling upregulated the expression of each other’s antagonists. Conclusions Together, the current study demonstrates an inverse correlation between osteoarthritis and GREM1, FRZB and DKK1 gene expression in cartilage and provides insight into the underlying transcriptional regulation. Furthermore, we show that BMP and WNT signaling are linked in a negative feedback loop, which might prove essential in articular cartilage homeostasis by balancing BMP and WNT activity.
Collapse
|
21
|
Cell biology of osteochondromas: bone morphogenic protein signalling and heparan sulphates. INTERNATIONAL ORTHOPAEDICS 2013; 37:1591-6. [PMID: 23771188 DOI: 10.1007/s00264-013-1906-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/18/2013] [Indexed: 01/01/2023]
Abstract
Frequent benign outgrowths from bone known as osteochondromas, exhibiting typical endochondral ossification, are reported from single to multiple lesions. Characterised by a high incidence of osteochondromas and skeletal deformities, multiple hereditary exostoses (MHE) is the most common inherited musculoskeletal condition. While factors for severity remain unknown, mutations in exostosin 1 and exostosin 2 genes, encoding glycosyltransferases involved in the biosynthesis of ubiquitously expressed heparan sulphate (HS) chains, are associated with MHE. HS-binding bone morphogenetic proteins (BMPs) are multifunctional proteins involved in the morphogenesis of bone and cartilage. HS and HS proteoglycans are involved in BMP-mediated morphogenesis by regulating their gradient formation and activity. Mutations in exostosin genes disturb HS biosynthesis, subsequently affecting its functional role in the regulation of signalling pathways. As BMPs are the primordial morphogens for bone development, we propose the hypothesis that BMP signalling may be critical in osteochondromas. For this reason, the outcomes of exostosin mutations on HS biosynthesis and interactions within osteochondromas and MHE are reviewed. Since BMPs are HS binding proteins, the interactions of HS with the BMP signalling pathway are discussed. The impact of mouse models in the quest to better understand the cell biology of osteochondromas is discussed. Several challenges and questions still remain and further investigations are needed to explore new approaches for better understanding of the pathogenesis of osteochondromas.
Collapse
|
22
|
Lorda-Diez CI, Montero JA, Rodriguez-Leon J, Garcia-Porrero JA, Hurle JM. Expression and functional study of extracellular BMP antagonists during the morphogenesis of the digits and their associated connective tissues. PLoS One 2013; 8:e60423. [PMID: 23573253 PMCID: PMC3616094 DOI: 10.1371/journal.pone.0060423] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/26/2013] [Indexed: 12/18/2022] Open
Abstract
The purpose of this study is to gain insight into the role of BMP signaling in the diversification of the embryonic limb mesodermal progenitors destined to form cartilage, joints, and tendons. Given the importance of extracellular BMP modulators in in vivo systems, we performed a systematic search of those expressed in the developing autopod during the formation of the digits. Here, we monitored the expression of extracellular BMP modulators including: Noggin, Chordin, Chordin-like 1, Chordin-like 2, Twisted gastrulation, Dan, BMPER, Sost, Sostdc1, Follistatin, Follistatin-like 1, Follistatin-like 5 and Tolloid. These factors show differential expression domains in cartilage, joints and tendons. Furthermore, they are induced in specific temporal patterns during the formation of an ectopic extra digit, preceding the appearance of changes that are identifiable by conventional histology. The analysis of gene regulation, cell proliferation and cell death that are induced by these factors in high density cultures of digit progenitors provides evidence of functional specialization in the control of mesodermal differentiation but not in cell proliferation or apoptosis. We further show that the expression of these factors is differentially controlled by the distinct signaling pathways acting in the developing limb at the stages covered by this study. In addition, our results provide evidence suggesting that TWISTED GASTRULATION cooperates with CHORDINS, BMPER, and NOGGIN in the establishment of tendons or cartilage in a fashion that is dependent on the presence or absence of TOLLOID.
Collapse
Affiliation(s)
- Carlos I. Lorda-Diez
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander, Spain
| | - Juan A. Montero
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander, Spain
| | | | - Juan A. Garcia-Porrero
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander, Spain
| | - Juan M. Hurle
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander, Spain
- * E-mail:
| |
Collapse
|
23
|
Fischerauer EE, Manninger M, Seles M, Janezic G, Pichler K, Ebner B, Weinberg AM. BMP-6 and BMPR-1a are up-regulated in the growth plate of the fractured tibia. J Orthop Res 2013; 31:357-63. [PMID: 23097200 DOI: 10.1002/jor.22238] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 08/31/2012] [Indexed: 02/04/2023]
Abstract
Bone overgrowth is a known phenomenon occurring after fracture of growing long bones with possible long-term physical consequences for affected children. Here, the physeal expression of bone morphogenetic proteins (BMPs) was investigated in a fracture-animal model to test the hypothesis that a diaphyseal fracture stimulates the physeal expression of these known key regulators of bone formation, thus stimulating bone overgrowth. Sprague-Dawley rats (male, 4 weeks old), were subjected to a unilateral mid-diaphyseal tibial fracture. Kinetic expression of physeal BMP-2, -4, -6, -7, and BMP receptor-1a (BMPR-1a) was analyzed in a monthly period by quantitative real time-polymerase chain reaction and immunohistochemistry. On Days 1, 3, 10, and 14 post-fracture, no changes in physeal BMPs gene-expression were detected. Twenty-nine days post-fracture, when the fracture was consolidated, physeal expression of BMP-6 and BMPR-1a was significantly upregulated in the growth plate of the fractured and contra-lateral intact bone compared to control (p<0.005). This study demonstrates a late role of BMP-6 and BMPR-1a in fracture-induced physeal growth alterations and furthermore, may have discovered the existence of a regulatory "cross-talk" mechanism between the lower limbs whose function could be to limit leg-length-discrepancies following the breakage of growing bones.
Collapse
Affiliation(s)
- Eva E Fischerauer
- Department of Paediatric and Adolescence Surgery, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz, Austria.
| | | | | | | | | | | | | |
Collapse
|
24
|
Guang LG, Boskey AL, Zhu W. Regulatory role of stromal cell-derived factor-1 in bone morphogenetic protein-2-induced chondrogenic differentiation in vitro. Int J Biochem Cell Biol 2012; 44:1825-33. [PMID: 22771956 DOI: 10.1016/j.biocel.2012.06.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/22/2012] [Accepted: 06/27/2012] [Indexed: 12/18/2022]
Abstract
Chemokine stromal cell-derived factor-1 (SDF-1) signals via binding to its primary transmembrane receptor, cysteine (C)-X-C chemokine receptor-4 (CXCR4). We previously reported that SDF-1 regulates osteogenic differentiation of mesenchymal stem/progenitor cells (MPCs) induced by bone morphogenetic protein-2 (BMP2). Although BMP2 is also capable of inducing chondrogenic differentiation of MPCs, the involvement of SDF-1 signaling in this function of BMP2 remains unknown. In this study, we aimed to test the role of SDF-1 signaling involved in BMP2-induced chondrogenic differentiation, using ATDC5 chondroprogenitors and mouse bone marrow-derived mesenchymal stromal cells (BMSCs). Our data showed that blocking of the SDF-1/CXCR4 pathway inhibits the differentiation of these cells into the chondrocytic lineages in response to BMP2 stimulation, evidenced by the reduced expression of type II collagen α1 (Col2α1), aggrecan, and type X collagen α1 (Col10α1), markers for chondrogenic differentiation. This effect of blocking SDF-1 signaling on BMP2-chondrogenic differentiation is associated with suppressed Sox9 and Runx2 expression (key transcription factors required for early and late stages of chondrogenic differentiation, respectively) and mediated via inhibiting intracellular Smad and Erk activation. Moreover, we found that addition of exogenous SDF-1 protein synergistically enhances the BMP2-induced chondrogenic differentiation in a dose-dependent manner. Collectively, our results demonstrated a novel role of SDF-1 signaling in regulating BMP2-induced chondrogenic differentiation in vitro. These data provide new insights into molecular mechanisms underlying BMP2-osteo/chondrogenesis, and may lead to the identification of new therapeutic targets and strategies to improve cartilage repair and regeneration in broad orthopaedic situations.
Collapse
Affiliation(s)
- Liang G Guang
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY 10021, USA
| | | | | |
Collapse
|
25
|
Kloen P, Lauzier D, Hamdy RC. Co-expression of BMPs and BMP-inhibitors in human fractures and non-unions. Bone 2012; 51:59-68. [PMID: 22521262 DOI: 10.1016/j.bone.2012.03.032] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 03/30/2012] [Accepted: 03/31/2012] [Indexed: 01/08/2023]
Abstract
Bone morphogenetic proteins (BMPs) are increasingly being used clinically to enhance fracture repair and healing of non-unions. However, the potential efficacy of supraphysiological dosing for clinical results warrants further clarification of the BMP signaling pathway in human fracture healing. As BMP signaling can be fine-tuned at numerous levels, the role of BMP-inhibitors has become a major focus. The aim of the present study was to document co-expression of BMPs, pSmad 1/5/8, and BMP-inhibitors in human fracture callus and human non-unions. Using human tissue of fracture callus (n=14) and non-unions (n=4) we documented expression of BMPs (BMP2, BMP3 and BMP7), pSmad 1/5/8 and the BMP-inhibitors noggin, gremlin, chordin, Smad-6, Smad-7 and BAMBI. Co-expression of pSmad 1/5/8, BMPs and BMP-inhibitors was noted in the osteoblasts of fracture callus as well as of non-unions. Expression of BMP-inhibitors was generally stronger in non-unions than in fracture callus. The most pertinent differences were noted in the cartilaginous tissue components. Expression of BMP2 in chondrocytes was markedly decreased in non-unions compared to fracture callus and that of BMP7 was almost completely absent. Expression of BMP-inhibitors was almost the same in osteoblasts, chondrocytes and fibroblasts of fracture callus and well as in non-unions. Interestingly, although BMP ligands were present in the chondrocytes and fibroblasts of non-unions, they did not co-express pSmad 1/5/8 suggesting that BMP signaling may have been inhibited at some point before Smad 1/5/8 phosphorylation. These results suggest co-expression of BMP, pSmad 1/5/8 and BMP-inhibitors occurs in human fracture callus as well as non-unions but the relative expression of BMPs vs. BMP-inhibitors was different between these two tissue types. In contrast to our expectations, the expression of BMP inhibitors was comparable between fracture callus and non-unions, whereas the expression of BMPs was notably lower in the cartilaginous component of the non-unions in comparison to fracture callus. Based on these results, we believe that aberrations in the BMP-signaling pathway in the cartilaginous component of fracture healing could influence clinical fracture healing. An imbalance between the local presence of BMP and BMP-inhibitors may switch the direction towards healing or non-healing of a fracture.
Collapse
Affiliation(s)
- Peter Kloen
- Department of Orthopaedic Surgery, Academic Medical Centre, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
26
|
Chang X, Lu Y, Shibata Y, Tsukazaki T, Yamaguchi A. Role of Bone Morphogenetic Proteins and Their Antagonists during Fracture Healing. J HARD TISSUE BIOL 2012. [DOI: 10.2485/jhtb.21.203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Estrada KD, Retting KN, Chin AM, Lyons KM. Smad6 is essential to limit BMP signaling during cartilage development. J Bone Miner Res 2011; 26:2498-510. [PMID: 21681813 PMCID: PMC3183270 DOI: 10.1002/jbmr.443] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bone morphogenetic protein (BMP) signaling pathways regulate multiple aspects of endochondral bone formation. The importance of extracellular antagonists as regulators of BMP signaling has been defined. In vitro studies reveal that the intracellular regulators, inhibitory Smads 6 and 7, can regulate BMP-mediated effects on chondrocytes. Although in vivo studies in which inhibitory Smads were overexpressed in cartilage have shown that inhibitory Smads have the potential to limit BMP signaling in vivo, the physiological relevance of inhibitory Smad activity in skeletal tissues is unknown. In this study, we have determined the role of Smad6 in endochondral bone formation. Loss of Smad6 in mice leads to defects in both axial and appendicular skeletal development. Specifically, Smad6-/- mice exhibit a posterior transformation of the seventh cervical vertebra, bilateral ossification centers in lumbar vertebrae, and bifid sternebrae due to incomplete sternal band fusion. Histological analysis of appendicular bones revealed delayed onset of hypertrophic differentiation and mineralization at midgestation in Smad6-/- mice. By late gestation, however, an expanded hypertrophic zone, associated with an increased pool of proliferating cells undergoing hypertrophy, was evident in Smad6 mutant growth plates. The mutant phenotype is attributed, at least in part, to increased BMP responsiveness in Smad6-deficient chondrocytes. Overall, our results show that Smad6 is required to limit BMP signaling during endochondral bone formation.
Collapse
Affiliation(s)
- Kristine D Estrada
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
28
|
Winslow BB, Burke AC. Atypical molecular profile for joint development in the avian costal joint. Dev Dyn 2011; 239:2547-57. [PMID: 20730871 DOI: 10.1002/dvdy.22388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Development of synovial joints involves generation of cartilaginous anlagen, formation of interzones between cartilage anlagen, and cavitation of interzones to produce fluid filled cavities. Interzone development is not fully understood, but interzones are thought to develop from skeletogenic cells that are inhibited from further chondrogenic development by a cascade of gene expression including Wnt and Bmp family members. We examined the development of the rarely studied avian costal joint to better understand mechanisms of joint development. The costal joint is found within ribs, is morphologically similar to the metatarsophalangeal joint, and undergoes cavitation in a similar manner. In contrast to other interzones, Wnt14/9a, Gdf5, Chordin, Barx1, and Bapx1 are absent from the costal joint interzone, consistent with the absence of active β-catenin and phosphorylated Smad 1/5/8. However Autotaxin and Noggin are expressed. The molecular profile of the costal joint suggests there are alternative mechanisms of interzone development.
Collapse
Affiliation(s)
- B B Winslow
- Wesleyan University, Biology Department, Middletown, Connecticut 06459, USA
| | | |
Collapse
|
29
|
Hernández-Martínez R, Covarrubias L. Interdigital cell death function and regulation: New insights on an old programmed cell death model. Dev Growth Differ 2011; 53:245-58. [DOI: 10.1111/j.1440-169x.2010.01246.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Temporal and Spatial Expression of BMPs and BMP Antagonists During Posterolateral Lumbar Fusion. Spine (Phila Pa 1976) 2011; 36:E237-44. [PMID: 21099737 DOI: 10.1097/brs.0b013e3181d73541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Quantitative gene expression analysis and immunohistochemistry were used to investigate the temporal and spatial expression of bone morphogenic proteins (BMPs) and BMP antagonists in a posterolateral spine fusion model in rabbits. OBJECTIVE To identify the expression pattern of BMPs and BMP antagonists and to determine the molecular and histologic changes of the graft and surrounding tissue during fusion. SUMMARY OF BACKGROUND DATA There are no studies on BMP antagonists during spinal fusion. Furthermore, the reciprocal interaction between bone grafts and surrounding tissue is still unknown in fusion. METHODS Eighteen New Zealand White rabbits underwent bilateral posterolateral spine fusion with autogenous bone graft. Rabbits were killed at 1, 2, 4, or 6 weeks after arthrodesis. The spinal fusions were analyzed by radiography. On the right side, specimens were collected from the outer zone over the transverse processes, the inner zone between the transverse processes, muscle surrounding bone grafts, and the transverse process. Gene expression of BMP-2, BMP-4, and BMP-7, noggin, chordin, Sox9, and Runx2 were measured by real-time polymerase chain reaction at each time point of each sample. On the left side, molecules of interest were evaluated by immunohistochemistry on tissue sections. RESULTS BMP-2, BMP-4, and BMP-7, noggin, and chordin were colocalized in rimming osteoblasts, osteoclasts, and chondrocytes. The outer zone demonstrated earlier bone maturation and faster increase in BMP gene expression than the inner zone. Muscle surrounding bone grafts showed significantly higher BMP expression and Runx2 activity at the early phase. BMP-positive cells were also noted around blood vessels. CONCLUSION The colocalization and temporal relationship of BMPs and BMP antagonists suggests that BMP activity is tightly regulated by the antagonists during fusion. In addition, not only the decorticated transverse process, but also muscle surrounding bone grafts, is actively involved in osteogenesis during fusion.
Collapse
|
31
|
Bone morphogenetic proteins: a critical review. Cell Signal 2010; 23:609-20. [PMID: 20959140 DOI: 10.1016/j.cellsig.2010.10.003] [Citation(s) in RCA: 510] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 09/14/2010] [Accepted: 10/01/2010] [Indexed: 12/14/2022]
Abstract
Bone Morphogenetic Proteins (BMPs) are potent growth factors belonging to the Transforming Growth Factor Beta superfamily. To date over 20 members have been identified in humans with varying functions during processes such as embryogenesis, skeletal formation, hematopoiesis and neurogenesis. Though their functions have been identified, less is known regarding levels of regulation at the extracellular matrix, membrane surface, and receptor activation. Further, current models of activation lack the integration of these regulatory mechanisms. This review focuses on the different levels of regulation, ranging from the release of BMPs into the extracellular components to receptor activation for different BMPs. It also highlights areas in research that is lacking or contradictory.
Collapse
|
32
|
Jeong J, Kang DI, Lee GT, Kim IY. Bone morphogenetic protein signaling: implications in urology. Korean J Urol 2010; 51:511-7. [PMID: 20733955 PMCID: PMC2924553 DOI: 10.4111/kju.2010.51.8.511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 07/18/2010] [Indexed: 11/18/2022] Open
Abstract
The bone morphogenetic proteins (BMPs), as members of the transforming growth factor-beta (TGF-beta) superfamily, not only control bone formation, but also regulate multiple key steps during embryonic development and differentiation. Furthermore, BMPs play critical roles in maintaining the homeostasis of the cardiovascular, pulmonary, reproductive, urogenital, and nervous systems in adult life. Like all members of the TGF-beta superfamily, BMP signaling is mediated through a heteromeric complex of type I and type II transmembrane serine/threonine kinase receptors. The subsequent signal transduction cascade includes either the canonical Smad-dependent or non-canonical Smad-independent pathways. Reflecting the critical function of BMPs, BMP signaling is tightly regulated at multiple steps by various mechanisms including extracellular endogenous antagonists, neutralizing antibodies/extracellular soluble receptor domains, small molecule inhibitors, cytoplasmic inhibitory Smads, and transcriptional co-repressors. Recently, dorsomorphin, the first small molecule inhibitor of BMP signaling, was identified and suggested as a useful tool for dissecting the mechanisms of signaling pathways and for developing novel therapeutics for diverse human diseases that are related to the BMP signaling pathways. In this article, we discuss various mechanisms involved in regulating BMP signaling pathways and their implications for urology.
Collapse
Affiliation(s)
- Jeongyun Jeong
- Department of Urologic Oncology and Dean and Betty Gallo Prostate Cancer Center, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | | | | | |
Collapse
|
33
|
Extracellular BMP-antagonist regulation in development and disease: tied up in knots. Trends Cell Biol 2010; 20:244-56. [PMID: 20188563 DOI: 10.1016/j.tcb.2010.01.008] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/20/2010] [Accepted: 01/20/2010] [Indexed: 01/11/2023]
Abstract
Developmental processes are regulated by the bone morphogenetic protein (BMP) family of secreted molecules. BMPs bind to serine/threonine kinase receptors and signal through the canonical Smad pathway and other intracellular effectors. Integral to the control of BMPs is a diverse group of secreted BMP antagonists that bind to BMPs and prevent engagement with their cognate receptors. Tight temporospatial regulation of both BMP and BMP-antagonist expression provides an exquisite control system for developing tissues. Additional facets of BMP-antagonist biology, such as crosstalk with Wnt and Sonic hedgehog signaling during development, have been revealed in recent years. In addition, previously unappreciated roles for the BMP antagonists in kidney fibrosis and cancer have been elucidated. This review provides a description of BMP-antagonist biology, together with highlights of recent novel insights into the role of these antagonists in development, signal transduction and human disease.
Collapse
|
34
|
Uebersax L, Merkle HP, Meinel L. Biopolymer-Based Growth Factor Delivery for Tissue Repair: From Natural Concepts to Engineered Systems. TISSUE ENGINEERING PART B-REVIEWS 2009; 15:263-89. [DOI: 10.1089/ten.teb.2008.0668] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lorenz Uebersax
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zurich, Switzerland
| | - Hans P. Merkle
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zurich, Switzerland
| | - Lorenz Meinel
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zurich, Switzerland
| |
Collapse
|
35
|
Clark CA, Li TF, Kim KO, Drissi H, Zuscik MJ, Zhang X, O'Keefe RJ. Prostaglandin E2 inhibits BMP signaling and delays chondrocyte maturation. J Orthop Res 2009; 27:785-92. [PMID: 19023895 PMCID: PMC2737521 DOI: 10.1002/jor.20805] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
While cyclooxygenases are important in endochondral bone formation during fracture healing, mechanisms involved in prostaglandin E2 (PGE2) regulation of chondrocyte maturation are incompletely understood. The present study was undertaken to determine if PGE2 effects on chondrocyte differentiation are related to modulation of the bone morphogenetic protein (BMP) signaling pathway. In primary murine sternal chondrocytes, PGE2 differentially regulated genes involved in differentiation. PGE2 induced type II collagen and MMP-13, had minimal effects on alkaline phosphatase, and inhibited the expression of the maturational marker, type X collagen. In BMP-2-treated cultures, PGE2 blocked the induction of type X collagen. All four EP receptors were expressed in chondrocytes and tended to be inhibited by BMP-2 treatment. RCJ3.1C5.18 chondrocytes transfected with the protein kinase A (PKA) responsive reporter, CRE-luciferase, showed luciferase induction following exposure to PGE2, consistent with activation of PKA signaling and the presence of the EP2 and EP4 receptors. Both PGE2 and the PKA agonist, dibutyryl cAMP, blocked the induction of the BMP-responsive reporter, 12XSBE, by BMP-2 in RCJ3.1C5.18 chondrocytes. In contrast, PGE2 increased the ability of TGF-beta to activate the TGF-beta-responsive reporter, 4XSBE. Finally, PGE2 down-regulated BMP-mediated phosphorylation of Smads 1, 5, and 8 in RCJ3.1C5.18 cells and in primary murine sternal chondrocytes. Altogether, the findings show that PGE2 regulates chondrocyte maturation in part by targeting BMP/Smad signaling and suggest an important role for PGE2 in endochondral bone formation.
Collapse
Affiliation(s)
- Christine A Clark
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Functional profiling reveals critical role for miRNA in differentiation of human mesenchymal stem cells. PLoS One 2009; 4:e5605. [PMID: 19440384 PMCID: PMC2680014 DOI: 10.1371/journal.pone.0005605] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 04/15/2009] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mesenchymal stem (MS) cells are excellent candidates for cell-based therapeutic strategies to regenerate injured tissue. Although human MS cells can be isolated from bone marrow and directed to differentiate by means of an osteogenic pathway, the regulation of cell-fate determination is not well understood. Recent reports identify critical roles for microRNAs (miRNAs), regulators of gene expression either by inhibiting the translation or by stimulating the degradation of target mRNAs. METHODOLOGY/PRINCIPAL FINDINGS In this study, we employed a library of miRNA inhibitors to evaluate the role of miRNAs in early osteogenic differentiation of human MS cells. We discovered that miR-148b, -27a and -489 are essential for the regulation of osteogenesis: miR-27a and miR-489 down-regulate while miR-148b up-regulates differentiation. Modulation of these miRNAs induced osteogenesis in the absence of other external differentiation cues and restored osteogenic potential in high passage number human MS cells. CONCLUSIONS/SIGNIFICANCE Overall, we have demonstrated the utility of the functional profiling strategy for unraveling complex miRNA pathways. Our findings indicate that miRNAs regulate early osteogenic differentiation in human MS cells: miR-148b, -27a, and -489 were found to play a critical role in osteogenesis.
Collapse
|
37
|
[Roles of TGF-b superfamily in the genesis, development and maintenance of cartilage]. YI CHUAN = HEREDITAS 2009; 30:953-9. [PMID: 18779142 DOI: 10.3724/sp.j.1005.2008.00953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The transforming growth factor beta (TGF-beta) superfamily is composed of TGF-beta subfamily and bone morphogenetic protein (BMP) subfamily. The ligands, ligand antagonists, receptors and intracellular transductors that engage in the TGF-beta superfamily signaling pathway play their unique roles during endochondral ossification via regulating the lineage differentiation, proliferation, maturation, apoptosis and mineralization of chondrocytes. BMP signaling dominates chondro-genesis through initiating the chondrocytic commitment of mesenchymal cells and maintaining the chondrocytic phenotype. During the development of growth plate, BMP signaling promotes the maturation of chondrocytes to facilitate ossification, whereas TGF-beta signaling inhibits the hypertrophic differentiation to preserve adequate chondrocytes within the growth plate. Both TGF-beta signaling and BMP signaling are indispensable for the maintenance and repair of articular cartilage. Therefore, it indicates that TGF-beta superfamily may function essentially all throughout the development of skeletons.
Collapse
|
38
|
Suzuki A, Takayama T, Suzuki N, Kojima T, Ota N, Asano S, Ito K. Daily low-intensity pulsed ultrasound stimulates production of bone morphogenetic protein in ROS 17/2.8 cells. J Oral Sci 2009; 51:29-36. [DOI: 10.2334/josnusd.51.29] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
39
|
Kwong FNK, Hoyland JA, Evans CH, Freemont AJ. Regional and cellular localisation of BMPs and their inhibitors' expression in human fractures. INTERNATIONAL ORTHOPAEDICS 2008; 33:281-8. [PMID: 19023570 DOI: 10.1007/s00264-008-0691-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 09/21/2008] [Accepted: 09/26/2008] [Indexed: 12/01/2022]
Abstract
The objective of this study was to determine whether BMP-2 and -14, noggin, and chordin could be detected in human fractures and to assess their regional and cellular distribution. The expression of these proteins was detected by immunohistochemistry in an archive of human fractures. BMP-2 and BMP-14 expression was strongest in areas of cartilage formation and, to a lesser extent, in areas of bone formation. Within areas of cartilage formation, both BMP-2 and BMP-14 were expressed more strongly by the non-hypertrophic chondrocytes. The BMP inhibitors noggin and chordin were also expressed most intensely in areas of cartilage formation and there was no difference in their expression between the non-hypertrophic and hypertrophic chondrocytes. Our study demonstrates the expression of BMP-14 and the BMP inhibitors in human fractures for the first time, and our findings will contribute to an improved understanding of the physiological processes in bone repair.
Collapse
Affiliation(s)
- Francois N K Kwong
- Center for Molecular Orthopaedics, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
40
|
Abstract
Mesenchymal stem cells (MSCs), the nonhematopoietic progenitor cells found in various adult tissues, are characterized by their ease of isolation and their rapid growth in vitro while maintaining their differentiation potential, allowing for extensive culture expansion to obtain large quantities suitable for therapeutic use. These properties make MSCs an ideal candidate cell type as building blocks for tissue engineering efforts to regenerate replacement tissues and repair damaged structures as encountered in various arthritic conditions. Osteoarthritis (OA) is the most common arthritic condition and, like rheumatoid arthritis (RA), presents an inflammatory environment with immunological involvement and this has been an enduring obstacle that can potentially limit the use of cartilage tissue engineering. Recent advances in our understanding of the functions of MSCs have shown that MSCs also possess potent immunosuppression and anti-inflammation effects. In addition, through secretion of various soluble factors, MSCs can influence the local tissue environment and exert protective effects with an end result of effectively stimulating regeneration in situ. This function of MSCs can be exploited for their therapeutic application in degenerative joint diseases such as RA and OA. This review surveys the advances made in the past decade which have led to our current understanding of stem cell biology as relevant to diseases of the joint. The potential involvement of MSCs in the pathophysiology of degenerative joint diseases will also be discussed. Specifically, we will explore the potential of MSC-based cell therapy of OA and RA by means of functional replacement of damaged cartilage via tissue engineering as well as their anti-inflammatory and immunosuppressive activities.
Collapse
Affiliation(s)
- Faye H Chen
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892, USA.
| | | |
Collapse
|
41
|
Pearl EJ, Barker D, Day RC, Beck CW. Identification of genes associated with regenerative success of Xenopus laevis hindlimbs. BMC DEVELOPMENTAL BIOLOGY 2008; 8:66. [PMID: 18570684 PMCID: PMC2483965 DOI: 10.1186/1471-213x-8-66] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 06/23/2008] [Indexed: 02/06/2023]
Abstract
BACKGROUND Epimorphic regeneration is the process by which complete regeneration of a complex structure such as a limb occurs through production of a proliferating blastema. This type of regeneration is rare among vertebrates but does occur in the African clawed frog Xenopus laevis, traditionally a model organism for the study of early development. Xenopus tadpoles can regenerate their tails, limb buds and the lens of the eye, although the ability of the latter two organs to regenerate diminishes with advancing developmental stage. Using a heat shock inducible transgene that remains silent unless activated, we have established a stable line of transgenic Xenopus (strain N1) in which the BMP inhibitor Noggin can be over-expressed at any time during development. Activation of this transgene blocks regeneration of the tail and limb of Xenopus tadpoles. RESULTS In the current study, we have taken advantage of the N1 transgenic line to directly compare morphology and gene expression in same stage regenerating vs. BMP signalling deficient non-regenerating hindlimb buds. The wound epithelium of N1 transgenic hindlimb buds, which forms over the cut surface of the limb bud after amputation, does not transition normally into the distal thickened apical epithelial cap. Instead, a basement membrane and dermis form, indicative of mature skin. Furthermore, the underlying mesenchyme remains rounded and does not expand to form a cone shaped blastema, a normal feature of successful regeneration. Using Affymetrix Gene Chip analysis, we have identified genes linked to regenerative success downstream of BMP signalling, including the BMP inhibitor Gremlin and the stress protein Hsp60 (no blastema in zebrafish). Gene Ontology analysis showed that genes involved in embryonic development and growth are significantly over-represented in regenerating early hindlimb buds and that successful regeneration in the Xenopus hindlimb correlates with the induction of stress response pathways. CONCLUSION N1 transgenic hindlimbs, which do not regenerate, do not form an apical epithelial cap or cone shaped blastema following amputation. Comparison of gene expression in stage matched N1 vs. wild type hindlimb buds has revealed several new targets for regeneration research.
Collapse
Affiliation(s)
- Esther J Pearl
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- Laboratory of Molecular Organogenesis, Institut de Recherches Cliniques de Montreal (IRCM), 110 avenue des Pins Ouest, Montreal, QC H2W 1R7, Canada
| | - Donna Barker
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Robert C Day
- Biochemistry Department, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Caroline W Beck
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
42
|
Xiao YT, Xiang LX, Shao JZ. Bone morphogenetic protein. Biochem Biophys Res Commun 2007; 362:550-3. [PMID: 17719560 DOI: 10.1016/j.bbrc.2007.08.045] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 08/03/2007] [Indexed: 12/25/2022]
Abstract
Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the transforming growth factor-beta superfamily. It has been demonstrated that BMPs had been involved in the regulation of cell proliferation, survival, differentiation and apoptosis. However, their hallmark ability is that play a pivotal role in inducing bone, cartilage, ligament, and tendon formation at both heterotopic and orthotopic sites. In this review, we mainly concentrate on BMP structure, function, molecular signaling and potential medical application.
Collapse
Affiliation(s)
- Yong-Tao Xiao
- College of Life Sciences, Zhejiang University, 310058, China
| | | | | |
Collapse
|
43
|
Zhang JL, Huang Y, Qiu LY, Nickel J, Sebald W. von Willebrand Factor Type C Domain-containing Proteins Regulate Bone Morphogenetic Protein Signaling through Different Recognition Mechanisms. J Biol Chem 2007; 282:20002-14. [PMID: 17483092 DOI: 10.1074/jbc.m700456200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein (BMP) function is regulated in the extracellular space by many modulator proteins, including those containing a von Willebrand factor type C (VWC) domain. The function of the VWC domain-containing proteins in development and diseases has been extensively studied. The structural basis, however, for the mechanism by which BMP is regulated by these proteins is still poorly understood. By analyzing chordin, CHL2 (chordin-like 2), and CV2 (crossveinless 2) as well as their individual VWC domains, we show that the VWC domain is a versatile binding module that in its multiple forms and environments can expose a variety of binding specificities. Three of four, two of three, and one of five VWCs from chordin, CHL2, and CV2, respectively, can bind BMPs. Using an array of BMP-2 mutant proteins, it can be demonstrated that the binding-competent VWC domains all use a specific subset of BMP-2 binding determinants that overlap with the binding site for the type II receptors (knuckle epitope) or for the type I receptors (wrist epitope). This explains the competition between modulator proteins and receptors for BMP binding and therefore the inhibition of BMP signaling. A subset of VWC domains from CHL2 binds to the Tsg (twisted gastrulation) protein similar to chordin. A stable ternary complex consisting of BMP-2, CHL2, and Tsg can be formed, thus making CHL2 a more efficient BMP-2 inhibitor. The VWCs of CV2, however, do not interact with Tsg. The present results show that chordin, CHL2, and CV2 regulate BMP-2 signaling by different recognition mechanisms.
Collapse
Affiliation(s)
- Jin-Li Zhang
- Department of Physiological Chemistry II, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany.
| | | | | | | | | |
Collapse
|
44
|
Hu Z, Yu M, Hu G. NDST-1 modulates BMPR and PTHrP signaling during endochondral bone formation in a gene knockout model. Bone 2007; 40:1462-74. [PMID: 17376755 DOI: 10.1016/j.bone.2007.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 01/09/2007] [Accepted: 01/31/2007] [Indexed: 10/23/2022]
Abstract
GlcNAc N-deacetylase/N-sulfotransferase-1 (NDST-1), a member of the enzyme family catalyzing the first modification step in the biosynthesis of heparan sulfate (HS), was knocked out in mice to investigate its role in embryonic development. NDST-1 null mice exhibited delayed endochondral bone formation including shortened calcified zones in limbs, delayed chondrocyte and osteogenetic differentiation, and increased chondrocyte proliferation. In situ HS binding assay revealed that the binding ability of bone morphogenetic protein (BMP) -2, -4, and -6 to endogenous HS was decreased in mutant phalanges, while that of fibroblast growth factor-1 (FGF-1) was not affected. Up-regulation of BMPR-IA, Phospho-Smad1 (P-Smad1) and parathyroid-hormone related protein (PTHrP), but not the Indian hedgehog, Gli1, Gli3, Patched, and FGFR-3, was observed. Furthermore, block of BMPR signaling with noggin rescued the delayed chondrocyte hypertrophic differentiation in NDST-1 (-/-) mice and recovered the expression of both P-Smad1 and PTHrP proteins. These results suggested that NDST-1-dependent heparan sulfate might negatively modulate BMP and its downstream PTHrP signaling, and thus affect endochondral bone development.
Collapse
Affiliation(s)
- Zhonghua Hu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | | | | |
Collapse
|
45
|
Abstract
Fracture healing is a complex physiological process involving a coordinated interaction of hematopoietic and immune cells within the bone marrow, in conjunction with vascular and skeletal cell precursors. Multiple factors regulate this cascade of molecular events, which affects different stages in the osteoblast and chondroblast lineage during processes such as migration, proliferation, chemotaxis, differentiation, inhibition, and extracellular protein synthesis. A clear understanding of the cellular and molecular pathways in fracture healing is not only critical for advancing fracture treatment, but it may also enhance further our knowledge of the mechanisms involved within skeletal growth and repair, as well as the mechanisms of aging. An overview of the important molecules involved in fracture healing, including osteogenic autocoids and inhibitory molecules, and their interactions and possible mechanisms of synergy during the healing process is presented in this article.
Collapse
Affiliation(s)
- Eleftherios Tsiridis
- Academic Department of Trauma and Orthopaedic Surgery, St James's University Hospital, Beckett Street, Leeds, UK
| | | | | |
Collapse
|
46
|
Schwaninger R, Rentsch CA, Wetterwald A, van der Horst G, van Bezooijen RL, van der Pluijm G, Löwik CWGM, Ackermann K, Pyerin W, Hamdy FC, Thalmann GN, Cecchini MG. Lack of noggin expression by cancer cells is a determinant of the osteoblast response in bone metastases. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:160-75. [PMID: 17200191 PMCID: PMC1762703 DOI: 10.2353/ajpath.2007.051276] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prostate and mammary cancer bone metastases can be osteoblastic or osteolytic, but the mechanisms determining these features are unclear. Bone morphogenetic and Wnt proteins are osteoinductive molecules. Their activity is modulated by antagonists such as noggin and dickkopf-1. Differential expression analysis of bone morphogenetic and Wnt protein antagonists in human prostate and mammary cancer cell lines showed that osteolytic cell lines constitutively express in vitro noggin and dickkopf-1 and at least one of the osteolytic cytokines parathyroid hormone-related protein, colony-stimulating factor-1, and interleukin-8. In contrast, osteoinductive cell lines express neither noggin nor dickkopf-1 nor osteolytic cytokines in vitro. The noggin differential expression profile observed in vitro was confirmed in vivo in prostate cancer cell lines xenografted into bone and in clinical samples of bone metastasis. Forced noggin expression in an osteoinductive prostate cancer cell line abolished the osteoblast response induced in vivo by its intraosseous xenografts. Basal bone resorption and tumor growth kinetics were marginally affected. Lack of noggin and possibly dickkopf-1 expression by cancer cells may be a relevant mechanism contributing to the osteoblast response in bone metastases. Concomitant lack of osteolytic cytokines may be permissive of this effect. Noggin is a candidate drug for the adjuvant therapy of bone metastasis.
Collapse
Affiliation(s)
- Ruth Schwaninger
- Urology Research Laboratory, Department of Urology, University of Bern, Murtenstrasse 35, CH-3010, Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Schmidl M, Adam N, Surmann-Schmitt C, Hattori T, Stock M, Dietz U, de Crombrugghe B, Po¨schl E, von der Mark K. Twisted Gastrulation Modulates Bone Morphogenetic Protein-induced Collagen II and X Expression in Chondrocytes in Vitro and in Vivo. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Tsukahara S, Ikeda R, Goto S, Yoshida K, Mitsumori R, Sakamoto Y, Tajima A, Yokoyama T, Toh S, Furukawa KI, Inoue I. Tumour necrosis factor alpha-stimulated gene-6 inhibits osteoblastic differentiation of human mesenchymal stem cells induced by osteogenic differentiation medium and BMP-2. Biochem J 2006; 398:595-603. [PMID: 16771708 PMCID: PMC1559450 DOI: 10.1042/bj20060027] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To better understand the molecular pathogenesis of OPLL (ossification of the posterior longitudinal ligament) of the spine, an ectopic bone formation disease, we performed cDNA microarray analysis on cultured ligament cells from OPLL patients. We found that TSG-6 (tumour necrosis factor alpha-stimulated gene-6) is down-regulated during osteoblastic differentiation. Adenovirus vector-mediated overexpression of TSG-6 inhibited osteoblastic differentiation of human mesenchymal stem cells induced by BMP (bone morphogenetic protein)-2 or OS (osteogenic differentiation medium). TSG-6 suppressed phosphorylation and nuclear accumulation of Smad 1/5 induced by BMP-2, probably by inhibiting binding of the ligand to the receptor, since interaction between TSG-6 and BMP-2 was observed in vitro. TSG-6 has two functional domains, a Link domain (a hyaluronan binding domain) and a CUB domain implicated in protein interaction. The inhibitory effect on osteoblastic differentiation was completely lost with exogenously added Link domain-truncated TSG-6, while partial inhibition was retained by the CUB domain-truncated protein. In addition, the inhibitory action of TSG-6 and the in vitro interaction of TSG-6 with BMP-2 were abolished by the addition of hyaluronan. Thus, TSG-6, identified as a down-regulated gene during osteoblastic differentiation, suppresses osteoblastic differentiation induced by both BMP-2 and OS and is a plausible target for therapeutic intervention in OPLL.
Collapse
Affiliation(s)
- So Tsukahara
- *Division of Genetic Diagnosis, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- †Department of Orthopaedic Surgery, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Ryuji Ikeda
- *Division of Genetic Diagnosis, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shin Goto
- *Division of Genetic Diagnosis, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kenichi Yoshida
- *Division of Genetic Diagnosis, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Rie Mitsumori
- *Division of Genetic Diagnosis, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yoshiko Sakamoto
- *Division of Genetic Diagnosis, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Atsushi Tajima
- *Division of Genetic Diagnosis, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Toru Yokoyama
- †Department of Orthopaedic Surgery, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Satoshi Toh
- †Department of Orthopaedic Surgery, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Ken-Ichi Furukawa
- ‡Department of Pharmacology, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Ituro Inoue
- *Division of Genetic Diagnosis, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- §Core Research for Evolutional Science and Technology, Japan Technology Corporation, 4-1-8 Honmachi, Kawaguchi 332-0012, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
49
|
Fukui N, Ikeda Y, Ohnuki T, Hikita A, Tanaka S, Yamane S, Suzuki R, Sandell LJ, Ochi T. Pro-inflammatory Cytokine Tumor Necrosis Factor-α Induces Bone Morphogenetic Protein-2 in Chondrocytes via mRNA Stabilization and Transcriptional Up-regulation. J Biol Chem 2006; 281:27229-41. [PMID: 16835229 DOI: 10.1074/jbc.m603385200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In articular chondrocytes, the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) induces the expression of bone morphogenetic protein-2 (BMP-2), a growth factor known to be involved in the induction of cartilage and bone. A study was performed to clarify the mechanism(s) underlying the induction of BMP-2 in chondrogenic ATDC5 cells and primary cultured adult human articular chondrocytes. In ATDC5 cells, the endogenous BMP-2 expression was consistently low throughout the process of chondrogenic differentiation, and TNF-alpha induced BMP-2 expression only after the cells acquired the chondrogenic phenotype. The results of nuclear run-off assay and cycloheximide treatment consistently indicated that ATDC5 cells acquire the capacity to synthesize BMP-2 mRNA in the nuclei during the differentiation process. In an attempt to explain the discrepancy between the active nuclear mRNA synthesis and the observed low expression level in differentiated ATDC5 cells, the stability of BMP-2 mRNA was evaluated, and the cells were found to regulate the expression of BMP-2 at the post-transcriptional level. Human chondrocytes were confirmed to have a similar post-transcriptional regulation. The result of 3'-rapid amplification of cDNA end revealed that both human and mouse BMP-2 mRNAs contain multiple pentameric AUUUA motifs in a conserved manner in the 3'-untranslated regions, and transient transfection experiments demonstrated that TNF-alpha increases the stability of BMP-2 mRNA through the pentameric motifs. Further experiments revealed that TNF-alpha modulates mRNA stability via p38 signal transduction pathway, whereas the cytokine also augmented the expression of BMP-2 through transcriptional up-regulation via the transcriptional factor NF-kappaB.
Collapse
Affiliation(s)
- Naoshi Fukui
- Department of Pathomechanisms, Clinical Research Center, National Hospital Organization Sagamihara Hospital, Sagamihara, Kanagawa,and Department of Orthopaedic Surgery, Faculty of Medicine, the University of Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Schmidl M, Adam N, Surmann-Schmitt C, Hattori T, Stock M, Dietz U, de Crombrugghe B, Pöschl E, von der Mark K. Twisted Gastrulation Modulates Bone Morphogenetic Protein-induced Collagen II and X Expression in Chondrocytesin Vitroandin Vivo. J Biol Chem 2006; 281:31790-800. [PMID: 16905550 DOI: 10.1074/jbc.m603419200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Twisted gastrulation (TSG) is an extracellular modulator of bone morphogenetic protein (BMP) activity and regulates dorsoventral axis formation in early Drosophila and Xenopus development. Studies on tsg-deficient mice also indicated a role of this protein in skeletal growth, but the mechanism of TSG activity in this process has not yet been investigated. Here we show for the first time by in situ hybridization and immunohistochemistry that TSG is strongly expressed in bovine and mouse growth plate cartilage as well as in fetal ribs, vertebral cartilage, and cartilage anlagen of the skull. Furthermore we provide evidence that TSG is directly involved in BMP-regulated chondrocyte differentiation and maturation. In vitro, TSG impaired the dose-dependent BMP-2 stimulation of collagen II and X expression in cultures of MC615 chondrocytes and primary mouse chondrocytes. In the presence of chordin, a BMP antagonist, the inhibitory effect of TSG was further enhanced. TSG also inhibited BMP-2-stimulated phosphorylation of Smad factors in chondrocytes, confirming the role of TSG as a modulator of BMP signaling. For analysis of TSG functions in cartilage development in vivo, the gene was overexpressed in transgenic mice under the control of the cartilage-specific Col2a1 promoter. As a result, Col10a1 expression was significantly reduced in the growth plates of transgenic embryos and newborns in comparison with wild type littermates as shown by in situ hybridization and by real time PCR analysis. The data suggest that TSG is an important modulator of BMP-regulated cartilage development and chondrocyte differentiation.
Collapse
Affiliation(s)
- Martina Schmidl
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center of Molecular Medicine, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|