1
|
Olson AT, Kang Y, Ladha AM, Zhu S, Lim CB, Nabet B, Lagunoff M, Gujral TS, Geballe AP. Polypharmacology-based kinome screen identifies new regulators of KSHV reactivation. PLoS Pathog 2023; 19:e1011169. [PMID: 37669313 PMCID: PMC10503724 DOI: 10.1371/journal.ppat.1011169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/15/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human diseases including Kaposi's sarcoma (KS), a leading cause of cancer in Africa and in patients with AIDS. KS tumor cells harbor KSHV predominantly in a latent form, while typically <5% contain lytic replicating virus. Because both latent and lytic stages likely contribute to cancer initiation and progression, continued dissection of host regulators of this biological switch will provide insights into fundamental pathways controlling the KSHV life cycle and related disease pathogenesis. Several cellular protein kinases have been reported to promote or restrict KSHV reactivation, but our knowledge of these signaling mediators and pathways is incomplete. We employed a polypharmacology-based kinome screen to identify specific kinases that regulate KSHV reactivation. Those identified by the screen and validated by knockdown experiments included several kinases that enhance lytic reactivation: ERBB2 (HER2 or neu), ERBB3 (HER3), ERBB4 (HER4), MKNK2 (MNK2), ITK, TEC, and DSTYK (RIPK5). Conversely, ERBB1 (EGFR1 or HER1), MKNK1 (MNK1) and FRK (PTK5) were found to promote the maintenance of latency. Mechanistic characterization of ERBB2 pro-lytic functions revealed a signaling connection between ERBB2 and the activation of CREB1, a transcription factor that drives KSHV lytic gene expression. These studies provided a proof-of-principle application of a polypharmacology-based kinome screen for the study of KSHV reactivation and enabled the discovery of both kinase inhibitors and specific kinases that regulate the KSHV latent-to-lytic replication switch.
Collapse
Affiliation(s)
- Annabel T. Olson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Yuqi Kang
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Anushka M. Ladha
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Songli Zhu
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Chuan Bian Lim
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Behnam Nabet
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Michael Lagunoff
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Taranjit S. Gujral
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Adam P. Geballe
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
2
|
Xue K, Chen S, Chai J, Yan W, Zhu X, Ji D, Wu Y, Liu H, Wang W. Nitration of cAMP-Response Element Binding Protein Participates in Myocardial Infarction-Induced Myocardial Fibrosis via Accelerating Transcription of Col1a2 and Cxcl12. Antioxid Redox Signal 2023; 38:709-730. [PMID: 36324232 DOI: 10.1089/ars.2021.0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aims: Myocardial fibrosis after myocardial infarction (MI) leads to heart failure. Nitration of protein can alter its function. cAMP-response element binding protein (CREB) is a key transcription factor involved in fibrosis. However, little is known about the role of nitrated CREB in MI-induced myocardial fibrosis. Meanwhile, downstream genes of transcription factor CREB in myocardial fibrosis have not been identified. This study aims to verify the hypothesis that nitrated CREB promotes MI-induced myocardial fibrosis via regulating the transcription of Col1a2 and Cxcl12. Results: Our study showed that (1) the level of nitrative stress was elevated and nitrated CREB was higher in the myocardium after MI. Tyr182, 307, and 336 were the nitration sites of CREB; (2) with the administration of peroxynitrite (ONOO-) scavengers, CREB phosphorylation, nuclear translocation, and binding activity to TORC2 (transducers of regulated CREB-2) were attenuated; (3) the expressions of extracellular matrix (ECM) proteins were upregulated and downregulated in accordance with the expression alteration of CREB both in vitro and in vivo; (4) CREB accelerated transcription of Col1a2 and Cxcl12 after MI directly. With the administration of ONOO- scavengers, ECM protein expressions were attenuated; meanwhile, the messenger RNA (mRNA) levels of Col1a2 and Cxcl12 were alleviated as well. Innovation and Conclusion: Nitration of transcription factor CREB participates in MI-induced myocardial fibrosis through enhancing its phosphorylation, nuclear translocation, and binding activity to TORCs, among which CREB transcripts Col1a2 and Cxcl12 directly. These data indicated that nitrated CREB might be a potential therapeutic target against MI-induced myocardial fibrosis.
Collapse
Affiliation(s)
- Ke Xue
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China.,Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shuai Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Jiayin Chai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Wenjing Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Xinyu Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Dengyu Ji
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Ye Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Wen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| |
Collapse
|
3
|
Orofiamma LA, Vural D, Antonescu CN. Control of cell metabolism by the epidermal growth factor receptor. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119359. [PMID: 36089077 DOI: 10.1016/j.bbamcr.2022.119359] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The epidermal growth factor receptor (EGFR) triggers the activation of many intracellular signals that control cell proliferation, growth, survival, migration, and differentiation. Given its wide expression, EGFR has many functions in development and tissue homeostasis. Some of the cellular outcomes of EGFR signaling involve alterations of specific aspects of cellular metabolism, and alterations of cell metabolism are emerging as driving influences in many physiological and pathophysiological contexts. Here we review the mechanisms by which EGFR regulates cell metabolism, including by modulation of gene expression and protein function leading to control of glucose uptake, glycolysis, biosynthetic pathways branching from glucose metabolism, amino acid metabolism, lipogenesis, and mitochondrial function. We further examine how this regulation of cell metabolism by EGFR may contribute to cell proliferation and differentiation and how EGFR-driven control of metabolism can impact certain diseases and therapy outcomes.
Collapse
Affiliation(s)
- Laura A Orofiamma
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Dafne Vural
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada.
| |
Collapse
|
4
|
Sorrin AJ, Liu C, Cicalo J, Reader J, Najafali D, Zhang Y, Roque DM, Huang HC. Photodynamic Priming Improves the Anti-Migratory Activity of Prostaglandin E Receptor 4 Antagonist in Cancer Cells In Vitro. Cancers (Basel) 2021; 13:5259. [PMID: 34771424 PMCID: PMC8582354 DOI: 10.3390/cancers13215259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 12/11/2022] Open
Abstract
The combination of photodynamic agents and biological inhibitors is rapidly gaining attention for its promise and approval in treating advanced cancer. The activity of photodynamic treatment is mainly governed by the formation of reactive oxygen species upon light activation of photosensitizers. Exposure to reactive oxygen species above a threshold dose can induce cellular damage and cancer cell death, while the surviving cancer cells are "photodynamically primed", or sensitized, to respond better to other drugs and biological treatments. Here, we report a new combination regimen of photodynamic priming (PDP) and prostaglandin E2 receptor 4 (EP4) inhibition that reduces the migration and invasion of two human ovarian cancer cell lines (OVCAR-5 and CAOV3) in vitro. PDP is achieved by red light activation of the FDA-approved photosensitizer, benzoporphyrin derivative (BPD), or a chemical conjugate composed of the BPD linked to cetuximab, an anti-epithelial growth factor receptor (EGFR) antibody. Immunoblotting data identify co-inhibition of EGFR, cAMP-response element binding protein (CREB), and extracellular signal-regulated kinase 1/2 (ERK1/2) as key in the signaling cascades modulated by the combination of EGFR-targeted PDP and EP4 inhibition. This study provides valuable insights into the development of a molecular-targeted photochemical strategy to improve the anti-metastatic effects of EP4 receptor antagonists.
Collapse
Affiliation(s)
- Aaron J. Sorrin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (A.J.S.); (C.L.); (J.C.); (D.N.)
| | - Cindy Liu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (A.J.S.); (C.L.); (J.C.); (D.N.)
| | - Julia Cicalo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (A.J.S.); (C.L.); (J.C.); (D.N.)
| | - Jocelyn Reader
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.R.); (D.M.R.)
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA;
| | - Daniel Najafali
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (A.J.S.); (C.L.); (J.C.); (D.N.)
| | - Yuji Zhang
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA;
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dana M. Roque
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.R.); (D.M.R.)
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA;
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (A.J.S.); (C.L.); (J.C.); (D.N.)
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA;
| |
Collapse
|
5
|
Luu AK, Wood GA, Viloria-Petit AM. Recent Advances in the Discovery of Biomarkers for Canine Osteosarcoma. Front Vet Sci 2021; 8:734965. [PMID: 34660770 PMCID: PMC8517113 DOI: 10.3389/fvets.2021.734965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/03/2021] [Indexed: 12/14/2022] Open
Abstract
Canine osteosarcoma (OSA) is an aggressive malignancy that frequently metastasizes to the lung and bone. Not only has there been essentially no improvement in therapeutic outcome over the past 3 decades, but there is also a lack of reliable biomarkers in clinical practice. This makes it difficult to discriminate which patients will most benefit from the standard treatment of amputation and adjuvant chemotherapy. The development of reliable diagnostic biomarkers could aid in the clinical diagnosis of primary OSA and metastasis; while prognostic, and predictive biomarkers could allow clinicians to stratify patients to predict response to treatment and outcome. This review summarizes biomarkers that have been explored in canine OSA to date. The focus is on molecular biomarkers identified in tumor samples as well as emerging biomarkers that have been identified in blood-based (liquid) biopsies, including circulating tumor cells, microRNAs, and extracellular vesicles. Lastly, we propose future directions in biomarker research to ensure they can be incorporated into a clinical setting.
Collapse
Affiliation(s)
- Anita K Luu
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Geoffrey A Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Alicia M Viloria-Petit
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
6
|
Zhu Q, Gao J, Tian G, Tang Z, Tan Y. Adrenomedullin promotes the odontogenic differentiation of dental pulp stem cells through CREB/BMP2 signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2017; 49:609-616. [PMID: 28541393 DOI: 10.1093/abbs/gmx053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Indexed: 01/25/2023] Open
Abstract
Adrenomedullin (AM) could promote the proliferation, the odontogenic differentiation and inhibit the apoptosis of dental pulp stem cells (DPSCs). AM in combination with DPSCs may be an effective strategy for pulp repair. However, there was no report on the mechanisms of AM in the odontogenic differentiation of DPSCs. The aim of this study is to investigate the molecular mechanisms through which AM promotes the odontogenic differentiation of DPSCs. Freshly extracted wisdom teeth were obtained from 27 patients. Cells at passage 3 to passage 5 were used in this study. DPSCs were treated with or without 10-7 M AM in Dulbecco's modified Eagle's medium culture, and then the accumulated calcium deposition was analyzed after 21 days by using alizarin red S staining. Odontogenic differentiation markers were determined by western blot analysis and quantitative real-time PCR. Western blot analysis results showed that AM had the capability of promoting the odontogenic differentiation of DPSCs and AM could enhance the phosphorylation of CREB and up-regulate the expression of BMP2. H89 is a CREB inhibitor which can inhibit the odontogenic differentiation of DPSCs through inhibiting the phosphorylation of CREB. Noggin could inhibit the odontogenic differentiation of DPSCs through inhibiting the activity of BMP2. These results indicated that AM could promote the odontogenic differentiation of DPSCs by upregulating the expression of BMP2 through the CREB signaling pathway.
Collapse
Affiliation(s)
- Qiang Zhu
- Department of Stomatology, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China
| | - Jianyong Gao
- Department of Stomatology, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China
| | - Gang Tian
- Department of Stomatology, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China
| | - Zhen Tang
- Department of Stomatology, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China
| | - Yinghui Tan
- Department of Stomatology, Xinqiao Hospital, the Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
7
|
Isorhynchophylline, a Potent Plant Alkaloid, Induces Apoptotic and Anti-Metastatic Effects in Human Hepatocellular Carcinoma Cells through the Modulation of Diverse Cell Signaling Cascades. Int J Mol Sci 2017; 18:ijms18051095. [PMID: 28534824 PMCID: PMC5455004 DOI: 10.3390/ijms18051095] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 01/15/2023] Open
Abstract
Isorhynchophylline (Rhy) is an active pharmacological component of Uncaria rhynchophylla that has been reported previously to exert significant antihypertensive and neuroprotective effects. However, very little is known about its potential anti-cancer activities. This study was carried out to evaluate the anticancer effects of Rhy against various human carcinoma cell lines. We found that Rhy exhibited substantial cytotoxic effect against human hepatocellular carcinoma HepG2 cells when compared with other human carcinoma cell lines including those of lung, pancreas, prostate, head and neck, breast, multiple myeloma, brain and renal cell carcinoma. Rhy induced apoptosis as characterized by accumulation of cells in sub G1 phase; positive Annexin V binding; activation of caspase-8, -9, and -3; and cleavage of PARP (poly-ADP ribose polymerase). This effect of Rhy correlated with the down-regulation of various proteins that mediated cell proliferation, cell survival, metastasis, and angiogenesis. Moreover, cell proliferation, migration, and constitutive CXCR4 (C-X-C chemokine receptor type 4), MMP-9 (Matrix metallopeptidase-9), and MMP-2 expression were inhibited upon Rhy treatment. We further investigated the effect of Rhy on the oncogenic cell signaling cascades through phospho-kinase array profiling assay. Rhy was found to abrogate phospho-p38, ERK, JNK, CREB, c-Jun, Akt, and STAT3 signals, but interestingly enhanced phospho-p53 signal. Overall, our results indicate, for the first time, that Rhy could exert anticancer and anti-metastatic effects through regulation of multiple signaling cascades in hepatocellular carcinoma cells.
Collapse
|
8
|
Golden T, Siordia JA. Osteochondromyxoma: Review of a rare carney complex criterion. J Bone Oncol 2016; 5:194-197. [PMID: 28008382 PMCID: PMC5154699 DOI: 10.1016/j.jbo.2016.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 12/16/2022] Open
Abstract
Osteochondromyxoma is an extremely rare bone tumor associated with 1% of Carney complex patients and constitutes one of its 11 diagnostic criteria. This narrative review of osteochondromyxoma is based on a search of all references to the topic in PubMed, Web Of Science, SCOPUS, ScienceDirect, and JSTOR databases. Special attention was focused on case reports, leading to a review encompassing the case reports to date, as well as related animal model studies. This review covers the current understanding of osteochondromyxoma, highlighting its variability while providing consensus on the most common clinical presentation, pathological findings, and genetic features of this rare bone tumor.
Collapse
Affiliation(s)
- Todd Golden
- University of Arizona Medical Center, University of Arizona, 1501 N Campbell Ave., Tucson, AZ 85724, United States
- Corresponding author.
| | - Juan A. Siordia
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
9
|
Walia MK, Ho PM, Taylor S, Ng AJ, Gupte A, Chalk AM, Zannettino AC, Martin TJ, Walkley CR. Activation of PTHrP-cAMP-CREB1 signaling following p53 loss is essential for osteosarcoma initiation and maintenance. eLife 2016; 5. [PMID: 27070462 PMCID: PMC4854515 DOI: 10.7554/elife.13446] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/08/2016] [Indexed: 12/17/2022] Open
Abstract
Mutations in the P53 pathway are a hallmark of human cancer. The identification of pathways upon which p53-deficient cells depend could reveal therapeutic targets that may spare normal cells with intact p53. In contrast to P53 point mutations in other cancer, complete loss of P53 is a frequent event in osteosarcoma (OS), the most common cancer of bone. The consequences of p53 loss for osteoblastic cells and OS development are poorly understood. Here we use murine OS models to demonstrate that elevated Pthlh (Pthrp), cAMP levels and signalling via CREB1 are characteristic of both p53-deficient osteoblasts and OS. Normal osteoblasts survive depletion of both PTHrP and CREB1. In contrast, p53-deficient osteoblasts and OS depend upon continuous activation of this pathway and undergo proliferation arrest and apoptosis in the absence of PTHrP or CREB1. Our results identify the PTHrP-cAMP-CREB1 axis as an attractive pathway for therapeutic inhibition in OS. DOI:http://dx.doi.org/10.7554/eLife.13446.001 Bone cancer (osteosarcoma) is caused by mutations in certain genes, which results in cells growing and dividing uncontrollably. In particular, a gene that produces a protein called P53 in humans is lost in all bone cancers. However, we don’t understand what happens to the bone cells when they lose P53. Although a number of studies have identified several molecular pathways that are changed in bone cancers – such as the cyclic AMP (cAMP) pathway – how these interact to cause a cancer is not well understood. Walia et al. compared bone-forming cells from normal mice with cells from mutant mice from which the gene that produces the mouse p53 protein could be removed. This revealed that the loss of p53 causes these cells to grow faster. The activity of the cAMP pathway also increases in p53-deficient cells. Further investigation revealed that the cells grow faster only if they are able to activate the cAMP pathway, and that this pathway needs to stay active for bone cancer cells to grow and survive. This suggests that inhibiting this pathway could present a new way to treat bone cancer. Walia et al. confirmed several of their findings in human cells. Future studies will now investigate how the loss of the P53 protein in humans activates the cAMP pathway, which will be important for understanding how this cancer forms. It will also be worthwhile to begin testing ways to block this pathway to determine whether it is a useful target for therapies. DOI:http://dx.doi.org/10.7554/eLife.13446.002
Collapse
Affiliation(s)
- Mannu K Walia
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Patricia Mw Ho
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Scott Taylor
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Alvin Jm Ng
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Ankita Gupte
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Alistair M Chalk
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Andrew Cw Zannettino
- Myeloma Research Laboratory, School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - T John Martin
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Carl R Walkley
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Australia.,ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Australia
| |
Collapse
|
10
|
Hong WG, Cho JH, Hwang SG, Lee E, Lee J, Kim JI, Um HD, Park JK. Chemosensitizing effect of podophyllotoxin acetate on topoisomerase inhibitors leads to synergistic enhancement of lung cancer cell apoptosis. Int J Oncol 2016; 48:2265-76. [PMID: 27035096 PMCID: PMC4863929 DOI: 10.3892/ijo.2016.3471] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/04/2016] [Indexed: 12/26/2022] Open
Abstract
Podophyllotoxin acetate (PA) acts as a radiosensitizer against non-small cell lung cancer (NSCLC) in vitro and in vivo. In this study, we examined its potential role as a chemosensitizer in conjunction with the topoisomerase inhibitors etoposide (Eto) and camptothecin (Cpt). The effects of combinations of PA and Eto/Cpt were examined with CompuSyn software in two NSCLC cell lines, A549 and NCI-H1299. Combination index (CI) values indicated synergistic effects of PA and the topoisomerase inhibitors. The intracellular mechanism underlying synergism was further determined using propidium iodide uptake, immunoblotting and electrophoretic mobility shift assay (EMSA). Combination of PA with Eto/Cpt promoted disruption of the dynamics of actin filaments, leading to subsequent enhancement of apoptotic cell death via induction of caspase-3, -8, and -9, accompanied by increased phosphorylation of p38. Conversely, suppression of p38 phosphorylation blocked the apoptotic effect of the drug combinations. Notably, CREB-1, a transcription factor, was constitutively activated in both cell types, and synergistically inhibited upon combination treatment. Our results collectively indicate that PA functions as a chemosensitizer by enhancing apoptosis through activation of the p38/caspase axis and suppression of CREB-1.
Collapse
Affiliation(s)
- Wan Gi Hong
- Department of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-Gu, Seoul, Republic of Korea
| | - Jeong Hyun Cho
- Department of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-Gu, Seoul, Republic of Korea
| | - Sang-Gu Hwang
- Department of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-Gu, Seoul, Republic of Korea
| | - Eunah Lee
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Geonggi-do, Republic of Korea
| | - Jaeseok Lee
- Department of Biological Science, College of Biological Science, Konkuk University, Seoul, Republic of Korea
| | - Jong-Il Kim
- Department of Food and Microbial Technology, College of Natural Sciences, Seoul Women's University, Seoul, Republic of Korea
| | - Hong-Duck Um
- Department of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-Gu, Seoul, Republic of Korea
| | - Jong Kuk Park
- Department of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-Gu, Seoul, Republic of Korea
| |
Collapse
|
11
|
Lei R, Zhang K, Wei Y, Chen M, Weinstein LS, Hong Y, Zhu M, Li H, Li H. G-Protein α-Subunit Gsα Is Required for Craniofacial Morphogenesis. PLoS One 2016; 11:e0147535. [PMID: 26859889 PMCID: PMC4747491 DOI: 10.1371/journal.pone.0147535] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/05/2016] [Indexed: 02/05/2023] Open
Abstract
The heterotrimeric G protein subunit Gsα couples receptors to activate adenylyl cyclase and is required for the intracellular cAMP response and protein kinase A (PKA) activation. Gsα is ubiquitously expressed in many cell types; however, the role of Gsα in neural crest cells (NCCs) remains unclear. Here we report that NCCs-specific Gsα knockout mice die within hours after birth and exhibit dramatic craniofacial malformations, including hypoplastic maxilla and mandible, cleft palate and craniofacial skeleton defects. Histological and anatomical analysis reveal that the cleft palate in Gsα knockout mice is a secondary defect resulting from craniofacial skeleton deficiencies. In Gsα knockout mice, the morphologies of NCCs-derived cranial nerves are normal, but the development of dorsal root and sympathetic ganglia are impaired. Furthermore, loss of Gsα in NCCs does not affect cranial NCCs migration or cell proliferation, but significantly accelerate osteochondrogenic differentiation. Taken together, our study suggests that Gsα is required for neural crest cells-derived craniofacial development.
Collapse
Affiliation(s)
- Run Lei
- West China Developmental & Stem Cell Institute, West China Second Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Laboratory of Developmental and Regenerative biology, Institute of Biomedicine & Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Chinese Academy of Sciences, Shanghai, China
| | - Ke Zhang
- West China Developmental & Stem Cell Institute, West China Second Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Laboratory of Developmental and Regenerative biology, Institute of Biomedicine & Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Chinese Academy of Sciences, Shanghai, China
| | - Yanxia Wei
- West China Developmental & Stem Cell Institute, West China Second Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lee S. Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yang Hong
- Department of Cell Biology & Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Minyan Zhu
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Chinese Academy of Sciences, Shanghai, China
| | - Hongchang Li
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Laboratory of Developmental and Regenerative biology, Institute of Biomedicine & Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- * E-mail: Hongchang Li (HCL); Huashun Li (HSL)
| | - Huashun Li
- West China Developmental & Stem Cell Institute, West China Second Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Chinese Academy of Sciences, Shanghai, China
- * E-mail: Hongchang Li (HCL); Huashun Li (HSL)
| |
Collapse
|
12
|
Sunkel B, Wu D, Chen Z, Wang CM, Liu X, Ye Z, Horning AM, Liu J, Mahalingam D, Lopez-Nicora H, Lin CL, Goodfellow PJ, Clinton SK, Jin VX, Chen CL, Huang THM, Wang Q. Integrative analysis identifies targetable CREB1/FoxA1 transcriptional co-regulation as a predictor of prostate cancer recurrence. Nucleic Acids Res 2016; 44:4105-22. [PMID: 26743006 PMCID: PMC4872073 DOI: 10.1093/nar/gkv1528] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/22/2015] [Indexed: 01/22/2023] Open
Abstract
Identifying prostate cancer-driving transcription factors (TFs) in addition to the androgen receptor promises to improve our ability to effectively diagnose and treat this disease. We employed an integrative genomics analysis of master TFs CREB1 and FoxA1 in androgen-dependent prostate cancer (ADPC) and castration-resistant prostate cancer (CRPC) cell lines, primary prostate cancer tissues and circulating tumor cells (CTCs) to investigate their role in defining prostate cancer gene expression profiles. Combining genome-wide binding site and gene expression profiles we define CREB1 as a critical driver of pro-survival, cell cycle and metabolic transcription programs. We show that CREB1 and FoxA1 co-localize and mutually influence each other's binding to define disease-driving transcription profiles associated with advanced prostate cancer. Gene expression analysis in human prostate cancer samples found that CREB1/FoxA1 target gene panels predict prostate cancer recurrence. Finally, we showed that this signaling pathway is sensitive to compounds that inhibit the transcription co-regulatory factor MED1. These findings not only reveal a novel, global transcriptional co-regulatory function of CREB1 and FoxA1, but also suggest CREB1/FoxA1 signaling is a targetable driver of prostate cancer progression and serves as a biomarker of poor clinical outcomes.
Collapse
Affiliation(s)
- Benjamin Sunkel
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Dayong Wu
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Zhong Chen
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Chiou-Miin Wang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xiangtao Liu
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Zhenqing Ye
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Aaron M Horning
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Joseph Liu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Devalingam Mahalingam
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Horacio Lopez-Nicora
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Chun-Lin Lin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Paul J Goodfellow
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Steven K Clinton
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Victor X Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Chun-Liang Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Tim H-M Huang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Qianben Wang
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Γ-Ionizing radiation-induced activation of the EGFR-p38/ERK-STAT3/CREB-1-EMT pathway promotes the migration/invasion of non-small cell lung cancer cells and is inhibited by podophyllotoxin acetate. Tumour Biol 2015; 37:7315-25. [PMID: 26671552 DOI: 10.1007/s13277-015-4548-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/30/2015] [Indexed: 12/18/2022] Open
Abstract
Here, we report a new intracellular signaling pathway involved in γ-ionizing radiation (IR)-induced migration/invasion and show that podophyllotoxin acetate (PA) inhibits the IR-induced invasion and migration of A549 cells (a non-small cell lung cancer (NSCLC) cell line). Our results revealed that IR increased the invasion/migration of A549 cells, and this effect was decreased by 10 nM PA treatment. PA also inhibited the expressions/activities of matrix metalloprotase (MMP) -2, MMP-9, and vimentin, suggesting that PA could block the IR-induced epithelial-mesenchymal transition (EMT). The IR-induced increases in invasion/migration were associated with the activation of EGFR-AKT, and PA inhibited this effect. P38 and p44/42 ERK were also involved in IR-induced invasion/migration, and combined treatments with PA plus inhibitors of each MAPK synergistically blocked this invasion/migration. In terms of transcription factors (TFs), IR-induced increases in cyclic AMP response element-binding protein-1 (CREB-1) and signal transducer and activator of transcription 3 (STAT3) increased invasion/migration and EMT. PA also inhibited these transcription factors and then blocked IR-induced invasion/migration. Collectively, these results indicate that IR induces cancer cell invasion/migration by activating the EGFR-p38/ERK-CREB-1/STAT3-EMT pathway and that PA blocks this pathway to inhibit IR-induced invasion/migration.
Collapse
|
14
|
Cary RL, Waddell S, Racioppi L, Long F, Novack DV, Voor MJ, Sankar U. Inhibition of Ca²⁺/calmodulin-dependent protein kinase kinase 2 stimulates osteoblast formation and inhibits osteoclast differentiation. J Bone Miner Res 2013; 28:1599-610. [PMID: 23408651 PMCID: PMC3688641 DOI: 10.1002/jbmr.1890] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 01/18/2013] [Accepted: 02/04/2013] [Indexed: 01/09/2023]
Abstract
Bone remodeling, a physiological process characterized by bone formation by osteoblasts (OBs) and resorption of preexisting bone matrix by osteoclasts (OCs), is vital for the maintenance of healthy bone tissue in adult humans. Imbalances in this vital process result in pathological conditions including osteoporosis. Owing to its initial asymptomatic nature, osteoporosis is often detected only after the patient has sustained significant bone loss or a fracture. Hence, anabolic therapeutics that stimulate bone accrual is in high clinical demand. Here we identify Ca²⁺/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) as a potential target for such therapeutics because its inhibition enhances OB differentiation and bone growth and suppresses OC differentiation. Mice null for CaMKK2 possess higher trabecular bone mass in their long bones, along with significantly more OBs and fewer multinuclear OCs. In vitro, although Camkk2⁻/⁻ mesenchymal stem cells (MSCs) yield significantly higher numbers of OBs, bone marrow cells from Camkk2⁻/⁻ mice produce fewer multinuclear OCs. Acute inhibition of CaMKK2 by its selective, cell-permeable pharmacological inhibitor STO-609 also results in increased OB and diminished OC formation. Further, we find phospho-protein kinase A (PKA) and Ser¹³³ phosphorylated form of cyclic adenosine monophosphate (cAMP) response element binding protein (pCREB) to be markedly elevated in OB progenitors deficient in CaMKK2. On the other hand, genetic ablation of CaMKK2 or its pharmacological inhibition in OC progenitors results in reduced pCREB as well as significantly reduced levels of its transcriptional target, nuclear factor of activated T cells, cytoplasmic (NFATc1). Moreover, in vivo administration of STO-609 results in increased OBs and diminished OCs, conferring significant protection from ovariectomy (OVX)-induced osteoporosis in adult mice. Overall, our findings reveal a novel function for CaMKK2 in bone remodeling and highlight the potential for its therapeutic inhibition as a valuable bone anabolic strategy that also inhibits OC differentiation in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Rachel L. Cary
- James Graham Brown Cancer Center and Owensboro Cancer Research Program,
University of Louisville, Louisville, KY 40202
| | - Seid Waddell
- Department of Orthopaedic Surgery, University of Louisville,
Louisville, KY 40202
| | - Luigi Racioppi
- Department of Medicine, Duke University, Durham, NC 27705
- University of Naples Federico II, Naples, Italy 80131
| | - Fanxin Long
- Department of Medicine, Department of Developmental Biology, Washington
University School of Medicine, St. Louis, MO 63110
| | - Deborah V. Novack
- Department of Medicine and Pathology, Washington University School of
Medicine, St. Louis, MO 63110
| | - Michael J. Voor
- Department of Orthopaedic Surgery, University of Louisville,
Louisville, KY 40202
| | - Uma Sankar
- James Graham Brown Cancer Center and Owensboro Cancer Research Program,
University of Louisville, Louisville, KY 40202
- Department of Pharmacology and Toxicology, University of Louisville,
Louisville, KY 40202
| |
Collapse
|
15
|
Zhang R, Edwards JR, Ko SY, Dong S, Liu H, Oyajobi BO, Papasian C, Deng HW, Zhao M. Transcriptional regulation of BMP2 expression by the PTH-CREB signaling pathway in osteoblasts. PLoS One 2011; 6:e20780. [PMID: 21695256 PMCID: PMC3111437 DOI: 10.1371/journal.pone.0020780] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 05/09/2011] [Indexed: 11/18/2022] Open
Abstract
Intermittent application of parathyroid hormone (PTH) has well established anabolic effects on bone mass in rodents and humans. Although transcriptional mechanisms responsible for these effects are not fully understood, it is recognized that transcriptional factor cAMP response element binding protein (CREB) mediates PTH signaling in osteoblasts, and that there is a communication between the PTH-CREB pathway and the BMP2 signaling pathway, which is important for osteoblast differentiation and bone formations. These findings, in conjunction with putative cAMP response elements (CREs) in the BMP2 promoter, led us to hypothesize that the PTH-CREB pathway could be a positive regulator of BMP2 transcription in osteoblasts. To test this hypothesis, we first demonstrated that PTH signaling activated CREB by phosphorylation in osteoblasts, and that both PTH and CREB were capable of promoting osteoblastic differentiation of primary mouse osteoblast cells and multiple rodent osteoblast cell lines. Importantly, we found that the PTH-CREB signaling pathway functioned as an effective activator of BMP2 expression, as pharmacologic and genetic modulation of PTH-CREB activity significantly affected BMP2 expression levels in these cells. Lastly, through multiple promoter assays, including promoter reporter deletion, mutation, chromatin immunoprecipitation (ChIP), and electrophoretic mobility shift assay (EMSA), we identified a specific CRE in the BMP2 promoter which is responsible for CREB transactivation of the BMP2 gene in osteoblasts. Together, these results demonstrate that the anabolic function of PTH signaling in bone is mediated, at least in part, by CREB transactivation of BMP2 expression in osteoblasts.
Collapse
Affiliation(s)
- Rongrong Zhang
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, Louisiana, United States of America
| | - James R. Edwards
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Seon-Yle Ko
- School of Dentistry, Dankook University, Cheonan, Choongnam, Korea
| | - Shanshan Dong
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, Louisiana, United States of America
| | - Hongbin Liu
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, Louisiana, United States of America
| | - Babatunde O. Oyajobi
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Christopher Papasian
- Department of Basic Medical Sciences, University of Missouri – Kansas City, Kansas City, Missouri, United States of America
| | - Hong-Wen Deng
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, Louisiana, United States of America
| | - Ming Zhao
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, Louisiana, United States of America
- Department of Cellular and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
16
|
Ofek O, Attar-Namdar M, Kram V, Dvir-Ginzberg M, Mechoulam R, Zimmer A, Frenkel B, Shohami E, Bab I. CB2 cannabinoid receptor targets mitogenic Gi protein-cyclin D1 axis in osteoblasts. J Bone Miner Res 2011; 26:308-16. [PMID: 20803555 PMCID: PMC3179350 DOI: 10.1002/jbmr.228] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CB2 is a Gi protein-coupled receptor activated by endo- and phytocannabinoids, thus inhibiting stimulated adenylyl cyclase activity. CB2 is expressed in bone cells and Cb2 null mice show a marked age-related bone loss. CB2-specific agonists both attenuate and rescue ovariectomy-induced bone loss. Activation of CB2 stimulates osteoblast proliferation and bone marrow derived colony-forming units osteoblastic. Here we show that selective and nonselective CB2 agonists are mitogenic in MC3T3 E1 and newborn mouse calvarial osteoblastic cultures. The CB2 mitogenic signaling depends critically on the stimulation of Erk1/2 phosphorylation and de novo synthesis of MAP kinase-activated protein kinase 2 (Mapkapk2) mRNA and protein. Further downstream, CB2 activation enhances CREB transcriptional activity and cyclin D1 mRNA expression. The CB2-induced stimulation of CREB and cyclin D1 is inhibitable by pertussis toxin, the MEK-Erk1/2 inhibitors PD098059 and U0126, and Mapkapk2 siRNA. These data demonstrate that in osteoblasts CB2 targets a Gi protein-cyclin D1 mitogenic axis. Erk1/2 phosphorylation and Mapkapk2 protein synthesis are critical intermediates in this axis.
Collapse
Affiliation(s)
- Orr Ofek
- Bone Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chen YQ, Xie X. Podophyllotoxin induces CREB phosphorylation and CRE-driven gene expression via PKA but not MAPKs. Mol Cells 2010; 29:41-50. [PMID: 20033853 DOI: 10.1007/s10059-010-0015-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/15/2009] [Accepted: 10/20/2009] [Indexed: 12/11/2022] Open
Abstract
CRE-driven luciferase reporter is commonly used in drug screening systems involving G protein-coupled receptors (GPCRs). In a screen campaign designed to search for melanocortin-4 receptor (MC4R) agonists, podophyllotoxin, a microtubules disruptor, was found to induce cAMP-responsive element (CRE)-driven reporter expression. MC4R was not involved because podophyllotoxin induced CREB activation and CRE-driven transcription in cells not expressing MC4R. Previous studies indicated that intracellular calcium, PKA, and MAPKs are involved in CREB phosphorylation and activation. Our studies revealed that podophyllotoxin did not affect intracellular calcium level and the phosphorylation state of p38. Podophyllotoxin induced JNK and ERK activation, but blockade of JNK and ERK activation with specific inhibitors had no effect on podophyllotoxin-induced CREB activation and CRE-regulated gene expression. Further experiments revealed that H89, a specific inhibitor of PKA, significantly inhibited podophyllotoxin-induced CREB activation. Podophyllotoxin itself did not alter intracellular cAMP level. Taken together, podophyllotoxin induces CREB activation and CRE-driven gene expression via PKA activation by a cAMP-independent mechanism.
Collapse
Affiliation(s)
- Ya Qiong Chen
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | | |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Parathyroid hormone (PTH) maintains a physiological balance of calcium and phosphate concentrations by binding to its receptor on the plasma membrane of cells in bone and kidney. It signals through multiple pathways, including protein kinase A and protein kinase C, although a preference for certain pathways is apparent in each organ and function. Here, we will review the recent advancements regarding PTH signaling in bone and kidney. RECENT FINDINGS Wnt proteins have been reported as important regulators of bone metabolism in both PTH-dependent and independent pathways. Recent studies emphasize its role as a mediator of PTH signaling, as PTH treatment increased the expression of wnt4 and sfrp4 and decreased the expression of Wnt inhibitors such as Sost and sclerostin, leading to an increase in Wnt signaling. In kidney, sodium-hydrogen exchanger regulatory factor 1, originally known for its role in the retention of NaPi-IIa at the apical membrane, was shown to have multiple roles in PTH signaling, both as a mediator and regulator. SUMMARY PTH activates a number of different signaling pathways by binding to a single receptor in bone and kidney. Recent studies demonstrate the involvement of novel factors as well as additional roles for previously identified downstream factors of PTH.
Collapse
|
19
|
Qin L, Partridge NC. Stimulation of amphiregulin expression in osteoblastic cells by parathyroid hormone requires the protein kinase A and cAMP response element-binding protein signaling pathway. J Cell Biochem 2005; 96:632-40. [PMID: 16088955 DOI: 10.1002/jcb.20550] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Parathyroid hormone (PTH), an anabolic agent for bone metabolism, has profound effects on gene expression in the osteoblast. Recently, we identified that amphiregulin (AR), an EGF-like ligand, is an immediate early gene for PTH treatment and has an important role in bone metabolism. In the present report, by using different PTH peptide fragments, protein kinase activators, and inhibitors, we have demonstrated that PTH regulates amphiregulin in a cAMP-protein kinase A (PKA)-dependent manner both in vitro and in vivo. We found that the phosphorylation of cAMP-response element (CRE)-binding protein (CREB) preceded AR transcription after PTH treatment. Moreover, luciferase reporter assays revealed that the binding of phosphorylated CREB to a conserved CRE site in the AR promoter plays an important role in basal, PTH-induced, and prostaglandin E2 (PGE2)-induced AR expression in osteoblastic cells. In summary, our data suggest that PTH-induced AR mRNA expression is mediated primarily through cAMP-PKA-CREB signaling.
Collapse
Affiliation(s)
- Ling Qin
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
20
|
Miguel SMS, Namdar-Attar M, Noh T, Frenkel B, Bab I. ERK1/2-activated de Novo Mapkapk2 Synthesis Is Essential for Osteogenic Growth Peptide Mitogenic Signaling in Osteoblastic Cells. J Biol Chem 2005; 280:37495-502. [PMID: 16150701 DOI: 10.1074/jbc.m503861200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In osteoblasts, the mitogen-activated protein kinases ERK1/2 and p38 as well as the cAMP-response element-binding protein (CREB) have been implicated in the regulation of proliferation and differentiation. The osteogenic growth peptide (OGP) is a 14-mer bone cell mitogen that increases bone formation and trabecular bone density and stimulates fracture healing. OGP-(10-14) is the physiologically active form of OGP. Using gene array analysis, real-time reverse transcription-PCR, and immunoblot and DNA synthesis assays we show here that in MC3T3 E1 and newborn mouse calvarial osteoblastic cultures the OGP-(10-14) mitogenic signaling is critically dependent on de novo synthesis of mitogen-activated protein kinase-activated protein kinase 2 (Mapkapk2) mRNA and protein. The increase in Mapkapk2 occurs following short term (5-60 min) stimulation of ERK1/2 activity by OGP-(10-14); phosphorylation of p38 remains unaffected. Downstream of Mapkapk2, CREB is phosphorylated on Ser(133) leading to its enhanced transcriptional activity. That these events are critical for the OGP-(10-14) mitogenic signaling is demonstrated by blocking the effects of OGP-(10-14) on the ERK1/2 pathway, Mapkapk2, CREB, and DNA synthesis using the MEK inhibitor PD098059. The OGP-(10-14) stimulation of CREB transcriptional activity and DNA synthesis is also blocked by Mapkapk2 siRNA. These data define a novel mitogenic signaling pathway in osteoblasts whereby ERK1/2 stimulation of CREB phosphorylation and transcriptional activity as well as DNA synthesis are critically dependent on de novo Mapkapk2 synthesis.
Collapse
|
21
|
Kirschner LS, Kusewitt DF, Matyakhina L, Towns WH, Carney JA, Westphal H, Stratakis CA. A mouse model for the Carney complex tumor syndrome develops neoplasia in cyclic AMP-responsive tissues. Cancer Res 2005; 65:4506-14. [PMID: 15930266 DOI: 10.1158/0008-5472.can-05-0580] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Carney complex is an autosomal dominant neoplasia syndrome characterized by spotty skin pigmentation, myxomatosis, endocrine tumors, and schwannomas. This condition may be caused by inactivating mutations in PRKAR1A, the gene encoding the type 1A regulatory subunit of protein kinase A. To better understand the mechanism by which PRKAR1A mutations cause disease, we have developed conventional and conditional null alleles for Prkar1a in the mouse. Prkar1a(+/-) mice developed nonpigmented schwannomas and fibro-osseous bone lesions beginning at approximately 6 months of age. Although genotype-specific cardiac and adrenal lesions were not seen, benign and malignant thyroid neoplasias were observed in older mice. This spectrum of tumors overlaps that seen in Carney complex patients, confirming the validity of this mouse model. Genetic analysis indicated that allelic loss occurred in a subset of tumor cells, suggesting that complete loss of Prkar1a plays a key role in tumorigenesis. Similarly, tissue-specific ablation of Prkar1a from a subset of facial neural crest cells caused the formation of schwannomas with divergent differentiation. These observations confirm the identity of PRKAR1A as a tumor suppressor gene with specific importance to cyclic AMP-responsive tissues and suggest that these mice may be valuable tools not only for understanding endocrine tumorigenesis but also for understanding inherited predispositions for schwannoma formation.
Collapse
Affiliation(s)
- Lawrence S Kirschner
- Human Cancer Genetics Program, and Division of Endocrinology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Wang JM, Tseng JT, Chang WC. Induction of human NF-IL6beta by epidermal growth factor is mediated through the p38 signaling pathway and cAMP response element-binding protein activation in A431 cells. Mol Biol Cell 2005; 16:3365-76. [PMID: 15901830 PMCID: PMC1165418 DOI: 10.1091/mbc.e05-02-0105] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The CCAAT/enhancer binding protein delta (C/EBPdelta, CRP3, CELF, NF-IL6beta) regulates gene expression and plays functional roles in many tissues, such as in acute phase response to inflammatory stimuli, adipocyte differentiation, and mammary epithelial cell growth control. In this study, we examined the expression of human C/EBPdelta (NF-IL6beta) gene by epidermal growth factor (EGF) stimulation in human epidermoid carcinoma A431 cells. NF-IL6beta was an immediate-early gene activated by the EGF-induced signaling pathways in cells. By using 5'-serial deletion reporter analysis, we showed that the region comprising the -347 to +9 base pairs was required for EGF response of the NF-IL6beta promoter. This region contains putative consensus binding sequences of Sp1 and cAMP response element-binding protein (CREB). The NF-IL6beta promoter activity induced by EGF was abolished by mutating the sequence of cAMP response element or Sp1 sites in the -347/+9 base pairs region. Both in vitro and in vivo DNA binding assay revealed that the CREB binding activity was low in EGF-starved cells, whereas it was induced within 30 min after EGF treatment of A431 cells. However, no change in Sp1 binding activity was found by EGF treatment. Moreover, the phosphatidylinositol 3 (PI3)-kinase inhibitor (wortmannin) and p38(MAPK) inhibitor (SB203580) inhibited the EGF-induced CREB phosphorylation and the expression of NF-IL6beta gene in cells. We also demonstrated that CREB was involved in regulating the NF-IL6beta gene transcriptional activity mediated by p38(MAPK). Our results suggested that PI3-kinase/p38(MAPK)/CREB pathway contributed to the EGF activation of NF-IL6beta gene expression.
Collapse
Affiliation(s)
- Ju-Ming Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | | | | |
Collapse
|
23
|
Qin L, Tamasi J, Raggatt L, Li X, Feyen JHM, Lee DC, Dicicco-Bloom E, Partridge NC. Amphiregulin Is a Novel Growth Factor Involved in Normal Bone Development and in the Cellular Response to Parathyroid Hormone Stimulation. J Biol Chem 2005; 280:3974-81. [PMID: 15509566 DOI: 10.1074/jbc.m409807200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parathyroid hormone (PTH) is the major mediator of calcium homeostasis and bone remodeling and is now known to be an effective drug for osteoporosis treatment. Yet the mechanisms responsible for its functions in bone are largely unknown. Here we report that the expression of amphiregulin (AR), a member of the epidermal growth factor (EGF) family, is rapidly and highly up-regulated by PTH in several osteoblastic cell lines and bone tissues. Other osteotropic hormones (1alpha,25-dihydroxyvitamin D3 and prostaglandin E2) also strongly stimulate AR expression. We found all EGF-like ligands and their receptors are expressed in osteoblasts, but AR is the only member that is highly regulated by PTH. Functional studies demonstrated that although AR is a potent growth factor for preosteoblasts, it completely inhibits further differentiation. AR also strongly and quickly stimulated Akt and ERK phosphorylation and c-fos and c-jun expression in an EGF receptor-dependent manner. Moreover, AR null mice displayed significantly less tibial trabecular bone than wild-type mice. Taken together, we have identified a novel growth factor that is PTH-regulated and appears to have an important role in bone metabolism.
Collapse
Affiliation(s)
- Ling Qin
- Physiology and Biophysics and Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Li TF, Zuscik MJ, Ionescu AM, Zhang X, Rosier RN, Schwarz EM, Drissi H, O'Keefe RJ. PGE2 inhibits chondrocyte differentiation through PKA and PKC signaling. Exp Cell Res 2004; 300:159-69. [PMID: 15383323 DOI: 10.1016/j.yexcr.2004.06.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 06/17/2004] [Indexed: 01/21/2023]
Abstract
Prostaglandins are ubiquitous metabolites of arachidonic acid, and cyclooxygenase inhibitors prevent their production and secretion. Animals with loss of cyclooxygenase-2 function have reduced reparative bone formation, but the role of prostaglandins during endochondral bone formation is not defined. The role of PGE2 as a regulator of chondrocyte differentiation in chick growth plate chondrocytes (GPCs) was examined. While PGE2, PGD2, PGF2alpha, and PGJ2 all inhibited colX expression, approximately 80% at 10(-6) M, PGE2 was the most potent activator of cAMP response element (CRE)-mediated transcription. PGE2 dose-dependently inhibited the expression of the differentiation-related genes, colX, VEGF, MMP-13, and alkaline phosphatase gene, and enzyme activity with significant effects at concentrations as low as 10(-10) M. PGE2 induced cyclic AMP response element binding protein (CREB) phosphorylation and increased c-Fos protein levels by 5 min, and activated transcription at CRE-Luc, AP-1-Luc, and c-Fos promoter constructs. The protein kinase A (PKA) inhibitor, H-89, completely blocked PGE2-mediated induction of CRE-Luc and c-Fos promoter-Luc promoters, and partially inhibited induction of AP-1-Luc, while the protein kinase C (PKC) inhibitor Go-6976 partially inhibited all three promoters, demonstrating substantial cross-talk between these signaling pathways. PGE2 inhibition of colX gene expression was dependent upon both PKA and PKC signaling. These observations demonstrate potent prostaglandin regulatory effects on chondrocyte maturation and show a role for both PKA and PKC signaling in PGE2 regulatory events.
Collapse
Affiliation(s)
- Tian-Fang Li
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The transactivation domain of the cAMP response element-binding protein (CREB) consists of two major domains. The glutamine-rich Q2 domain, which interacts with the general transcription factor TAFII130/135, is sufficient for the recruitment of a functional RNA polymerase II complex and allows basal transcriptional activity. The kinase-inducible domain, however, mediates signal-induced activation of CREB-mediated transcription. It is generally believed that recruitment of the coactivators CREB-binding protein (CBP) and p300 after signal-induced phosphorylation of this domain at serine-133 strongly enhances CREB-dependent transcription. Transcriptional activity of CREB can also be potentiated by phosphoserine-133-independent mechanisms, and not all stimuli that provoke phosphorylation of serine-133 stimulate CREB-dependent transcription. This review presents an overview of the diversity of stimuli that induce CREB phosphorylation at Ser-133, focuses on phosphoserine-133-dependent and -independent mechanisms that affect CREB-mediated transcription, and discusses different models that may explain the discrepancy between CREB Ser-133 phosphorylation and activation of CREB-mediated transcription.
Collapse
Affiliation(s)
- Mona Johannessen
- Department of Biochemistry, Institute of Medical Biology, University of Tromsø, N-9037, Norway
| | | | | |
Collapse
|
26
|
Qin L, Li X, Ko JK, Partridge NC. Parathyroid hormone uses multiple mechanisms to arrest the cell cycle progression of osteoblastic cells from G1 to S phase. J Biol Chem 2004; 280:3104-11. [PMID: 15513917 DOI: 10.1074/jbc.m409846200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parathyroid hormone (PTH) plays a major role in bone remodeling and has the ability to increase bone mass if administered daily. In vitro, PTH inhibits the growth of osteoblastic cell lines, arresting them in G(1) phase. Here, we demonstrate that PTH regulates the expression of at least three genes to achieve the following: inducing expression of MAPK phosphatase 1 (MKP-1) and p21(Cip1) and decreasing expression of cyclin D1 at both mRNA and protein levels. The induction of MKP-1 causes the dephosphorylation of extracellular signal-regulated kinase and therefore the decrease in cyclin D1. Overexpression of MKP-1 arrests UMR cells in G(1) phase. The mechanisms involved in PTH regulation of these genes were studied. Most importantly, PTH administration produces similar effects on expression of these genes in rat femoral metaphyseal primary spongiosa. Analyses of p21(Cip1) expression levels in bone indicate that repeated daily PTH injections make the osteoblast more sensitive to successive PTH treatments, and this might be an important feature for the anabolic functions of PTH. In summary, our data suggest that one mechanism for PTH to exert its anabolic effect is to arrest the cell cycle progression of the osteoblast and hence increase its differentiation.
Collapse
Affiliation(s)
- Ling Qin
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
27
|
Qin L, Qiu P, Wang L, Li X, Swarthout JT, Soteropoulos P, Tolias P, Partridge NC. Gene expression profiles and transcription factors involved in parathyroid hormone signaling in osteoblasts revealed by microarray and bioinformatics. J Biol Chem 2003; 278:19723-31. [PMID: 12644456 DOI: 10.1074/jbc.m212226200] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parathyroid hormone (PTH) binds to its receptor PTH1R (parathyroid hormone 1 receptor) in osteoblastic cells to regulate bone remodeling and calcium homeostasis. While prolonged exposure to PTH causes increased bone resorption, intermittent injections of PTH have an anabolic effect on bone. The molecular mechanisms regulating these processes are still largely unknown. Here, we present our results on gene expression profile changes in the PTH-treated osteoblastic cell line, UMR 106-01, using DNA microarray analysis. A total of 125 known genes and 30 unknown expressed sequence tags (ESTs) were found to have at least 2-fold expression changes after PTH treatment at 4, 12, and 24 h. 14 genes were previously known to be PTH-regulated but many were unknown to be regulated by PTH prior to our experiments. Real-time reverse transcriptase-PCR confirmed that 90 and 50% of the genes are regulated more than 2-fold by PTH in UMR 106-01 and rat primary osteoblastic cells, respectively. Most genes belong to the following protein families: hormones, growth factors, and receptors; signal transduction pathway proteins; transcription factors; proteases; metabolic enzymes; structural and matrix proteins; transporters; etc. These results provide a comprehensive and deeper knowledge about PTH regulation of osteoblastic gene expression. Next, we designed a computational method to extract information about transcription factors likely involved in regulating these genes. These factors include those previously known to be involved in PTH signaling (AP-1 and the cAMP response element-binding protein), those that were identified by microarray data (C/EBP), and some novel transcription factors (AP-2, AP-4, SP1, FoxD3, etc.). Our results suggest that a reliable bioinformatics approach can be easily applied for other systems.
Collapse
Affiliation(s)
- Ling Qin
- Department of Physiology and Biophysics, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|