1
|
Gant KL, Patankar MS, Campagnola PJ. A Perspective Review: Analyzing Collagen Alterations in Ovarian Cancer by High-Resolution Optical Microscopy. Cancers (Basel) 2024; 16:1560. [PMID: 38672642 PMCID: PMC11048585 DOI: 10.3390/cancers16081560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the predominant subtype of ovarian cancer (OC), occurring in more than 80% of patients diagnosed with this malignancy. Histological and genetic analysis have confirmed the secretory epithelial of the fallopian tube (FT) as a major site of origin of HGSOC. Although there have been significant strides in our understanding of this disease, early stage detection and diagnosis are still rare. Current clinical imaging modalities lack the ability to detect early stage pathogenesis in the fallopian tubes and the ovaries. However, there are several microscopic imaging techniques used to analyze the structural modifications in the extracellular matrix (ECM) protein collagen in ex vivo FT and ovarian tissues that potentially can be modified to fit the clinical setting. In this perspective, we evaluate and compare the myriad of optical tools available to visualize these alterations and the invaluable insights these data provide on HGSOC initiation. We also discuss the clinical implications of these findings and how these data may help novel tools for early diagnosis of HGSOC.
Collapse
Affiliation(s)
- Kristal L. Gant
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Manish S. Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Paul J. Campagnola
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
2
|
Jacques SL, McCormick NJ. Two-term scattering phase function for photon transport to model subdiffuse reflectance in superficial tissues. BIOMEDICAL OPTICS EXPRESS 2023; 14:751-770. [PMID: 36874481 PMCID: PMC9979686 DOI: 10.1364/boe.476461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 06/18/2023]
Abstract
For Monte Carlo simulations of light transport in a variety of diffuse scattering applications, a single-scattering two-term phase function with five adjustable parameters is sufficiently flexible to separately control the forward and backward components of scattering. The forward component dominates light penetration into a tissue and the resulting diffuse reflectance. The backward component controls early subdiffuse scatter from superficial tissues. The phase function consists of a linear combination of two phase functions [Reynolds and McCormick, J. Opt. Soc. Am.70, 1206 (1980)10.1364/JOSA.70.001206] that were derived from the generating function for Gegenbauer polynomials. The two-term phase function (TT) accommodates strongly-forward anisotropic scattering with enhanced backscattering and is a generalization of the two-term, three-parameter Henyey-Greenstein phase function. An analytical inverse of the cumulative distribution function for scattering is provided for implementation in Monte Carlo simulations. Explicit TT equations are given for the single-scattering metrics g 1, g 2, γ, and δ. Scattering data from previously published bio-optical data are shown to fit better with the TT than other phase function models. Example Monte Carlo simulations illustrate the use of the TT and its independent control of subdiffuse scatter.
Collapse
Affiliation(s)
- Steven L. Jacques
- Department of Biomedical Engineering, University of Washington, Seattle, Washington 98195-5061, USA
| | - Norman J. McCormick
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195-2600, USA
| |
Collapse
|
3
|
James DS, Jambor AN, Chang HY, Alden Z, Tilbury KB, Sandbo NK, Campagnola PJ. Probing ECM remodeling in idiopathic pulmonary fibrosis via second harmonic generation microscopy analysis of macro/supramolecular collagen structure. JOURNAL OF BIOMEDICAL OPTICS 2019; 25:1-13. [PMID: 31785093 PMCID: PMC7008503 DOI: 10.1117/1.jbo.25.1.014505] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/06/2019] [Indexed: 05/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease with poor prognosis with short lifespan following diagnosis as patients have limited effective treatment options. A fundamental limitation is a lack of knowledge of the underlying collagen alterations in the disease, as this could lead to better diagnostics, prognostics, and measures of treatment efficacy. While the fibroses is the primary presentation of the disease, the collagen architecture has not been well studied beyond standard histology. Here, we used several metrics based on second harmonic generation (SHG) microscopy and optical scattering measurements to characterize the subresolution collagen assembly in human IPF and normal lung tissues. Using SHG directional analysis, we found that while collagen synthesis is increased in IPF, the resulting average fibril architecture is more disordered than in normal tissue. Wavelength-dependent optical scattering measurements lead to the same conclusion, and both optical approaches are consistent with ultrastructural analysis. SHG circular dichroism revealed significant differences in the net chirality between the fibrotic and normal collagen, where the former has a more randomized helical structure. Collectively, the measurements reveal significant changes in the collagen macro/supramolecular structure in the abnormal fibrotic collagen, and we suggest these alterations can serve as biomarkers for IPF diagnosis and progression.
Collapse
Affiliation(s)
- Darian S. James
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Alexander N. Jambor
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Hsin-Yu Chang
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Zachary Alden
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Karissa B. Tilbury
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Nathan K. Sandbo
- University of Wisconsin–Madison, Division of Allergy, Pulmonary, and Critical Care Medicine, Madison, Wisconsin, United States
| | - Paul J. Campagnola
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
- Address all correspondence to Paul J. Campagnola, E-mail:
| |
Collapse
|
4
|
Nothelfer S, Foschum F, Kienle A. Goniometer for determination of the spectrally resolved scattering phase function of suspended particles. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:083110. [PMID: 31472625 DOI: 10.1063/1.5086294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
An apparatus for direct determination of the spectral resolved scattering phase function of suspensions and emulsions is described. The system consists of a polychromatic xenon lamp as a light source and a spectrometer as a detector. Together with a stepper motor, the system enables spectrally and angularly resolved measurements in the range of 450 nm-950 nm and 10°-170°, respectively. A model for light propagation inside the cuvette in the regime of single scattering, which also takes the spectral dimension into account, was developed. A postprocessing algorithm applying the model and an extrapolation to the measured angular data allows a direct determination of the complete scattering phase function. By comparing measurements on polystyrene microspheres with Mie theory, the concept of the presented instrument was validated. Finally, the method was used to determine the scattering phase function of different types and brands of soybean oil emulsions such as Intralipid or Lipovenös. The measured scattering phase functions were then used to calculate the corresponding Legendre moments to an order of 20 and for wavelengths between 450 nm and 750 nm (available online), which besides the anisotropy factor also allow the determination of higher order factors such as gamma.
Collapse
Affiliation(s)
- S Nothelfer
- Institut für Lasertechnologien in der Medizin und Messtechnik, Helmholtzstr. 12, D-89081 Ulm, Germany
| | - F Foschum
- Institut für Lasertechnologien in der Medizin und Messtechnik, Helmholtzstr. 12, D-89081 Ulm, Germany
| | - A Kienle
- Institut für Lasertechnologien in der Medizin und Messtechnik, Helmholtzstr. 12, D-89081 Ulm, Germany
| |
Collapse
|
5
|
Bugter O, Hardillo JA, Baatenburg de Jong RJ, Amelink A, Robinson DJ. Optical pre-screening for laryngeal cancer using reflectance spectroscopy of the buccal mucosa. BIOMEDICAL OPTICS EXPRESS 2018; 9:4665-4678. [PMID: 30319894 PMCID: PMC6179391 DOI: 10.1364/boe.9.004665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 05/04/2023]
Abstract
A new approach in early cancer detection focuses on detecting field cancerization (FC) instead of the tumor itself. The aim of the current study is to investigate whether reflectance spectroscopy can detect FC in the buccal mucosa of patients with laryngeal cancer. The optical properties of the buccal mucosa of patients were measured with multidiameter single-fiber reflectance spectroscopy. The blood oxygen saturation and blood volume fraction were significantly lower in the buccal mucosa of laryngeal cancer patients than in non-oncologic controls. The data of these two parameters were combined to form a single 'biomarker α', which optimally discriminates these two groups. Alpha was lower in the laryngeal cancer group (0.28) than the control group (0.30, p = 0.007). Alpha could identify oncologic patients with a sensitivity of 78% and a specificity of 74%. These results might be the first step toward optical pre-screening for laryngeal cancer.
Collapse
Affiliation(s)
- Oisín Bugter
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015 CE Rotterdam, the Netherlands
- Center for Optical Diagnostics and Therapy, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015 CE Rotterdam, the Netherlands
| | - Jose A. Hardillo
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015 CE Rotterdam, the Netherlands
| | - Robert J. Baatenburg de Jong
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015 CE Rotterdam, the Netherlands
| | - Arjen Amelink
- Department of Optics, the Netherlands Organization for Applied Scientific Research (TNO), Stieltjesweg 1, 2628 CK Delft, the Netherlands
| | - Dominic J. Robinson
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015 CE Rotterdam, the Netherlands
- Center for Optical Diagnostics and Therapy, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015 CE Rotterdam, the Netherlands
| |
Collapse
|
6
|
Krauter P, Reitzle D, Geiger S, Kienle A. Determination of three optical properties from subdiffusive spatially resolved reflectance calculations. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:75003. [PMID: 28732096 DOI: 10.1117/1.jbo.22.7.075003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
We report a theoretical study on the determination of three optical properties from spatially resolved reflectance calculations. In particular, the reduced scattering coefficient μs′, the absorption coefficient μa, and the recently defined phase function parameter σ are identified. The solution of the inverse problem is based on the principal component analysis of a large set of reflectance profiles that were calculated using an analytical solution of the radiative transfer equation. Different phase function types were studied to test the method in the range of 0.63 mm−1≤μs′≤4.2 mm−1 and 0.002 mm−1≤μa≤0.1 mm−1. For curves impaired with noise, we were able to reconstruct μs′ and μa with relative median errors of 2.5% and 12%, respectively, and σ with an absolute median error of 0.04.
Collapse
Affiliation(s)
- Philipp Krauter
- Institut für Lasertechnologien in der Medizin und Meßtechnik, Germany
| | - Dominik Reitzle
- Institut für Lasertechnologien in der Medizin und Meßtechnik, Germany
| | - Simeon Geiger
- Institut für Lasertechnologien in der Medizin und Meßtechnik, Germany
| | - Alwin Kienle
- Institut für Lasertechnologien in der Medizin und Meßtechnik, Germany
| |
Collapse
|
7
|
Tilbury KB, Campbell KR, Eliceiri KW, Salih SM, Patankar M, Campagnola PJ. Stromal alterations in ovarian cancers via wavelength dependent Second Harmonic Generation microscopy and optical scattering. BMC Cancer 2017; 17:102. [PMID: 28166758 PMCID: PMC5294710 DOI: 10.1186/s12885-017-3090-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 01/26/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ovarian cancer remains the most deadly gynecological cancer with a poor aggregate survival rate; however, the specific rates are highly dependent on the stage of the disease upon diagnosis. Current screening and imaging tools are insufficient to detect early lesions and are not capable of differentiating the subtypes of ovarian cancer that may benefit from specific treatments. METHOD As an alternative to current screening and imaging tools, we utilized wavelength dependent collagen-specific Second Harmonic Generation (SHG) imaging microscopy and optical scattering measurements to probe the structural differences in the extracellular matrix (ECM) of normal stroma, benign tumors, endometrioid tumors, and low and high-grade serous tumors. RESULTS The SHG signatures of the emission directionality and conversion efficiency as well as the optical scattering are related to the organization of collagen on the sub-micron size scale and encode structural information. The wavelength dependence of these readouts adds additional characterization of the size and distribution of collagen fibrils/fibers relative to the interrogating wavelengths. We found a strong wavelength dependence of these metrics that are related to significant structural differences in the collagen organization and are consistent with the dualistic classification of type I and II serous tumors. Moreover, type I endometrioid tumors have strongly differing ECM architecture than the serous malignancies. The SHG metrics and optical scattering measurements were used to form a linear discriminant model to classify the tissues, and we obtained high accuracy (>90%) between high-grade serous tumors from the other tissue types. High-grade serous tumors account for ~70% of ovarian cancers, and this delineation has potential clinical applications in terms of supplementing histological analysis, understanding the etiology, as well as development of an in vivo screening tool. CONCLUSIONS SHG and optical scattering measurements provide sub-resolution information and when combined provide superior diagnostic power over clinical imaging modalities. Additionally the measurements are able to delineate the different subtypes of ovarian cancer and may potentially assist in treatment protocols. Understanding the altered collagen assembly can supplement histological analysis and provide new insight into the etiology. These methods could become an in vivo screening tool for earlier detection which is important since ovarian malignancies can metastasize while undetectable by current clinical imaging resolution.
Collapse
Affiliation(s)
- Karissa B Tilbury
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin - Madison, 1550 Engineering Drive, Madison, WI, 53706, USA
| | - Kirby R Campbell
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin - Madison, 1550 Engineering Drive, Madison, WI, 53706, USA
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin - Madison, 1550 Engineering Drive, Madison, WI, 53706, USA.,Medical Physics Department, University of Wisconsin - Madison, 1111 Highland Avenue, Madison, WI, 53706, USA.,Morgridge Institute for Research, 330 N. Orchard Street, Madison, WI, 53715, USA
| | - Sana M Salih
- Department of Obstetrics and Gynecology, University of Wisconsin - Madison, 600 Highland Avenue, Madison, WI, 53706, USA
| | - Manish Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin - Madison, 600 Highland Avenue, Madison, WI, 53706, USA
| | - Paul J Campagnola
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin - Madison, 1550 Engineering Drive, Madison, WI, 53706, USA. .,Medical Physics Department, University of Wisconsin - Madison, 1111 Highland Avenue, Madison, WI, 53706, USA.
| |
Collapse
|
8
|
Towards monitoring dysplastic progression in the oral cavity using a hybrid fiber-bundle imaging and spectroscopy probe. Sci Rep 2016; 6:26734. [PMID: 27220821 PMCID: PMC4879668 DOI: 10.1038/srep26734] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023] Open
Abstract
Intraepithelial dysplasia of the oral mucosa typically originates in the proliferative cell layer at the basement membrane and extends to the upper epithelial layers as the disease progresses. Detection of malignancies typically occurs upon visual inspection by non-specialists at a late-stage. In this manuscript, we validate a quantitative hybrid imaging and spectroscopy microendoscope to monitor dysplastic progression within the oral cavity microenvironment in a phantom and pre-clinical study. We use an empirical model to quantify optical properties and sampling depth from sub-diffuse reflectance spectra (450–750 nm) at two source-detector separations (374 and 730 μm). Average errors in recovering reduced scattering (5–26 cm−1) and absorption coefficients (0–10 cm−1) in hemoglobin-based phantoms were approximately 2% and 6%, respectively. Next, a 300 μm-thick phantom tumor model was used to validate the probe’s ability to monitor progression of a proliferating optical heterogeneity. Finally, the technique was demonstrated on 13 healthy volunteers and volume-averaged optical coefficients, scattering exponent, hemoglobin concentration, oxygen saturation, and sampling depth are presented alongside a high-resolution microendoscopy image of oral mucosa from one volunteer. This multimodal microendoscopy approach encompasses both structural and spectroscopic reporters of perfusion within the tissue microenvironment and can potentially be used to monitor tumor response to therapy.
Collapse
|
9
|
Bodenschatz N, Krauter P, Liemert A, Kienle A. Quantifying phase function influence in subdiffusively backscattered light. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:35002. [PMID: 26968384 DOI: 10.1117/1.jbo.21.3.035002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/11/2016] [Indexed: 05/18/2023]
Abstract
Light backscattering at short source-detector separations is considerably influenced by the scattering phase function of a turbid medium. We seek to more precisely relate a medium's subdiffusive backscattering to the angular scattering characteristics of its microstructure. First, we demonstrate the inability of the scattering asymmetry g1 = < cos θ > to predict phase function influence on backscattering and reveal ambiguities related to the established phase function parameter γ. Through the use of high-order similarity relations, we introduce a new parameter that more accurately relates a scattering phase function to its subdiffusive backscattering intensity. Using extensive analytical forward calculations based on solutions to the radiative transfer equation in the spatial domain and spatial frequency domain, we demonstrate the superiority of our empirically derived quantifier σ over the established parameter γ.
Collapse
|
10
|
Greening GJ, James HM, Powless AJ, Hutcheson JA, Dierks MK, Rajaram N, Muldoon TJ. Fiber-bundle microendoscopy with sub-diffuse reflectance spectroscopy and intensity mapping for multimodal optical biopsy of stratified epithelium. BIOMEDICAL OPTICS EXPRESS 2015; 6:4934-50. [PMID: 26713207 PMCID: PMC4679267 DOI: 10.1364/boe.6.004934] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/14/2015] [Accepted: 11/14/2015] [Indexed: 05/05/2023]
Abstract
Early detection of structural or functional changes in dysplastic epithelia may be crucial for improving long-term patient care. Recent work has explored myriad non-invasive or minimally invasive "optical biopsy" techniques for diagnosing early dysplasia, such as high-resolution microendoscopy, a method to resolve sub-cellular features of apical epithelia, as well as broadband sub-diffuse reflectance spectroscopy, a method that evaluates bulk health of a small volume of tissue. We present a multimodal fiber-based microendoscopy technique that combines high-resolution microendoscopy, broadband (450-750 nm) sub-diffuse reflectance spectroscopy (sDRS) at two discrete source-detector separations (374 and 730 μm), and sub-diffuse reflectance intensity mapping (sDRIM) using a 635 nm laser. Spatial resolution, magnification, field-of-view, and sampling frequency were determined. Additionally, the ability of the sDRS modality to extract optical properties over a range of depths is reported. Following this, proof-of-concept experiments were performed on tissue-simulating phantoms made with poly(dimethysiloxane) as a substrate material with cultured MDA-MB-468 cells. Then, all modalities were demonstrated on a human melanocytic nevus from a healthy volunteer and on resected colonic tissue from a murine model. Qualitative in vivo image data is correlated with reduced scattering and absorption coefficients.
Collapse
Affiliation(s)
- Gage J. Greening
- Department of Biomedical Engineering, University of Arkansas, 1 University of Arkansas, Fayetteville, AR 72701,
USA
| | - Haley M. James
- Department of Chemistry and Biochemistry, University of Arkansas, 1 University of Arkansas, Fayetteville, AR 72701,
USA
| | - Amy J. Powless
- Department of Biomedical Engineering, University of Arkansas, 1 University of Arkansas, Fayetteville, AR 72701,
USA
| | - Joshua A. Hutcheson
- Department of Biomedical Engineering, University of Arkansas, 1 University of Arkansas, Fayetteville, AR 72701,
USA
| | - Mary K. Dierks
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR 72701,
USA
| | - Narasimhan Rajaram
- Department of Biomedical Engineering, University of Arkansas, 1 University of Arkansas, Fayetteville, AR 72701,
USA
| | - Timothy J. Muldoon
- Department of Biomedical Engineering, University of Arkansas, 1 University of Arkansas, Fayetteville, AR 72701,
USA
| |
Collapse
|
11
|
Mutyal NN, Radosevich AJ, Bajaj S, Konda V, Siddiqui UD, Waxman I, Goldberg MJ, Rogers JD, Gould B, Eshein A, Upadhye S, Koons A, Gonzalez-Haba Ruiz M, Roy HK, Backman V. In vivo risk analysis of pancreatic cancer through optical characterization of duodenal mucosa. Pancreas 2015; 44:735-41. [PMID: 25906443 PMCID: PMC4464933 DOI: 10.1097/mpa.0000000000000340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/17/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To reduce pancreatic cancer mortality, a paradigm shift in cancer screening is needed. Our group pioneered the use of low-coherence enhanced backscattering (LEBS) spectroscopy to predict the presence of pancreatic cancer by interrogating the duodenal mucosa. A previous ex vivo study (n = 203) demonstrated excellent diagnostic potential: sensitivity, 95%; specificity, 71%; and accuracy, 85%. The objective of the current case-control study was to evaluate this approach in vivo. METHODS We developed a novel endoscope-compatible fiber-optic probe to measure LEBS in the periampullary duodenum of 41 patients undergoing upper endoscopy. This approach enables minimally invasive detection of the ultrastructural consequences of pancreatic field carcinogenesis. RESULTS The LEBS parameters and optical properties were significantly altered in patients harboring adenocarcinomas (including early-stage) throughout the pancreas relative to healthy controls. Test performance characteristics were excellent with sensitivity = 78%, specificity = 85%, and accuracy = 81%. Moreover, the LEBS prediction rule was not confounded by patients' demographics. CONCLUSION We demonstrate the feasibility of in vivo measurement of histologically normal duodenal mucosa to predict the presence of adenocarcinoma throughout the pancreas. This represents the next step in establishing duodenal LEBS analysis as a prescreening technique that identifies clinically asymptomatic patients who are at elevated risk of PC.
Collapse
Affiliation(s)
- Nikhil N. Mutyal
- From the *Department of Biomedical Engineering, Northwestern University; †Department of Internal Medicine, NorthShore University HealthSystems, Evanston; ‡Center for Endoscopic Research and Therapeutics, University of Chicago Medicine, Chicago, IL; and §Department of Gastroenterology, Boston Medical Center, Boston, MA
| | - Andrew J. Radosevich
- From the *Department of Biomedical Engineering, Northwestern University; †Department of Internal Medicine, NorthShore University HealthSystems, Evanston; ‡Center for Endoscopic Research and Therapeutics, University of Chicago Medicine, Chicago, IL; and §Department of Gastroenterology, Boston Medical Center, Boston, MA
| | - Shailesh Bajaj
- From the *Department of Biomedical Engineering, Northwestern University; †Department of Internal Medicine, NorthShore University HealthSystems, Evanston; ‡Center for Endoscopic Research and Therapeutics, University of Chicago Medicine, Chicago, IL; and §Department of Gastroenterology, Boston Medical Center, Boston, MA
| | - Vani Konda
- From the *Department of Biomedical Engineering, Northwestern University; †Department of Internal Medicine, NorthShore University HealthSystems, Evanston; ‡Center for Endoscopic Research and Therapeutics, University of Chicago Medicine, Chicago, IL; and §Department of Gastroenterology, Boston Medical Center, Boston, MA
| | - Uzma D. Siddiqui
- From the *Department of Biomedical Engineering, Northwestern University; †Department of Internal Medicine, NorthShore University HealthSystems, Evanston; ‡Center for Endoscopic Research and Therapeutics, University of Chicago Medicine, Chicago, IL; and §Department of Gastroenterology, Boston Medical Center, Boston, MA
| | - Irving Waxman
- From the *Department of Biomedical Engineering, Northwestern University; †Department of Internal Medicine, NorthShore University HealthSystems, Evanston; ‡Center for Endoscopic Research and Therapeutics, University of Chicago Medicine, Chicago, IL; and §Department of Gastroenterology, Boston Medical Center, Boston, MA
| | - Michael J. Goldberg
- From the *Department of Biomedical Engineering, Northwestern University; †Department of Internal Medicine, NorthShore University HealthSystems, Evanston; ‡Center for Endoscopic Research and Therapeutics, University of Chicago Medicine, Chicago, IL; and §Department of Gastroenterology, Boston Medical Center, Boston, MA
| | - Jeremy D. Rogers
- From the *Department of Biomedical Engineering, Northwestern University; †Department of Internal Medicine, NorthShore University HealthSystems, Evanston; ‡Center for Endoscopic Research and Therapeutics, University of Chicago Medicine, Chicago, IL; and §Department of Gastroenterology, Boston Medical Center, Boston, MA
| | - Bradley Gould
- From the *Department of Biomedical Engineering, Northwestern University; †Department of Internal Medicine, NorthShore University HealthSystems, Evanston; ‡Center for Endoscopic Research and Therapeutics, University of Chicago Medicine, Chicago, IL; and §Department of Gastroenterology, Boston Medical Center, Boston, MA
| | - Adam Eshein
- From the *Department of Biomedical Engineering, Northwestern University; †Department of Internal Medicine, NorthShore University HealthSystems, Evanston; ‡Center for Endoscopic Research and Therapeutics, University of Chicago Medicine, Chicago, IL; and §Department of Gastroenterology, Boston Medical Center, Boston, MA
| | - Sudeep Upadhye
- From the *Department of Biomedical Engineering, Northwestern University; †Department of Internal Medicine, NorthShore University HealthSystems, Evanston; ‡Center for Endoscopic Research and Therapeutics, University of Chicago Medicine, Chicago, IL; and §Department of Gastroenterology, Boston Medical Center, Boston, MA
| | - Ann Koons
- From the *Department of Biomedical Engineering, Northwestern University; †Department of Internal Medicine, NorthShore University HealthSystems, Evanston; ‡Center for Endoscopic Research and Therapeutics, University of Chicago Medicine, Chicago, IL; and §Department of Gastroenterology, Boston Medical Center, Boston, MA
| | - Mariano Gonzalez-Haba Ruiz
- From the *Department of Biomedical Engineering, Northwestern University; †Department of Internal Medicine, NorthShore University HealthSystems, Evanston; ‡Center for Endoscopic Research and Therapeutics, University of Chicago Medicine, Chicago, IL; and §Department of Gastroenterology, Boston Medical Center, Boston, MA
| | - Hemant K. Roy
- From the *Department of Biomedical Engineering, Northwestern University; †Department of Internal Medicine, NorthShore University HealthSystems, Evanston; ‡Center for Endoscopic Research and Therapeutics, University of Chicago Medicine, Chicago, IL; and §Department of Gastroenterology, Boston Medical Center, Boston, MA
| | - Vadim Backman
- From the *Department of Biomedical Engineering, Northwestern University; †Department of Internal Medicine, NorthShore University HealthSystems, Evanston; ‡Center for Endoscopic Research and Therapeutics, University of Chicago Medicine, Chicago, IL; and §Department of Gastroenterology, Boston Medical Center, Boston, MA
| |
Collapse
|
12
|
Radosevich AJ, Eshein A, Nguyen TQ, Backman V. Subdiffusion reflectance spectroscopy to measure tissue ultrastructure and microvasculature: model and inverse algorithm. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:097002. [PMID: 26414387 PMCID: PMC4963470 DOI: 10.1117/1.jbo.20.9.097002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/31/2015] [Indexed: 05/19/2023]
Abstract
Reflectance measurements acquired from within the subdiffusion regime (i.e., lengthscales smaller than a transport mean free path) retain much of the original information about the shape of the scattering phase function. Given this sensitivity, many models of subdiffusion regime light propagation have focused on parametrizing the optical signal through various optical and empirical parameters. We argue, however, that a more useful and universal way to characterize such measurements is to focus instead on the fundamental physical properties, which give rise to the optical signal. This work presents the methodologies that used to model and extract tissue ultrastructural and microvascular properties from spatially resolved subdiffusion reflectance spectroscopy measurements. We demonstrate this approach using ex-vivo rat tissue samples measured by enhanced backscattering spectroscopy.
Collapse
Affiliation(s)
- Andrew J. Radosevich
- Northwestern University, Biomedical Engineering, Tech E310, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Address all correspondence to: Andrew J. Radosevich, E-mail:
| | - Adam Eshein
- Northwestern University, Biomedical Engineering, Tech E310, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - The-Quyen Nguyen
- Northwestern University, Biomedical Engineering, Tech E310, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Vadim Backman
- Northwestern University, Biomedical Engineering, Tech E310, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Wang P, Li YM, Chen BH. Measurement of the anisotropy factor with azimuthal light backscattering. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11801-014-4118-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Buccal spectral markers for lung cancer risk stratification. PLoS One 2014; 9:e110157. [PMID: 25299667 PMCID: PMC4192585 DOI: 10.1371/journal.pone.0110157] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/04/2014] [Indexed: 12/11/2022] Open
Abstract
Lung cancer remains the leading cause of cancer deaths in the US with >150,000 deaths per year. In order to more effectively reduce lung cancer mortality, more sophisticated screening paradigms are needed. Previously, our group demonstrated the use of low-coherence enhanced backscattering (LEBS) spectroscopy to detect and quantify the micro/nano-architectural correlates of colorectal and pancreatic field carcinogenesis. In the lung, the buccal (cheek) mucosa has been suggested as an excellent surrogate site in the “field of injury”. We, therefore, wanted to assess whether LEBS could similarly sense the presence of lung. To this end, we applied a fiber-optic LEBS probe to a dataset of 27 smokers without diagnosed lung cancer (controls) and 46 with lung cancer (cases), which was divided into a training and a blinded validation set (32 and 41 subjects, respectively). LEBS readings of the buccal mucosa were taken from the oral cavity applying gentle contact. The diagnostic LEBS marker was notably altered in patients harboring lung cancer compared to smoking controls. The prediction rule developed on training set data provided excellent diagnostics with 94% sensitivity, 80% specificity, and 95% accuracy. Applying the same threshold to the blinded validation set yielded 79% sensitivity and 83% specificity. These results were not confounded by patient demographics or impacted by cancer type or location. Moreover, the prediction rule was robust across all stages of cancer including stage I. We envision the use of LEBS as the first part of a two-step paradigm shift in lung cancer screening in which patients with high LEBS risk markers are funnelled into more invasive screening for confirmation.
Collapse
|
15
|
Gomes AJ, Wolfsen HC, Wallace MB, Cayer FK, Backman V. Monte Carlo model of the depolarization of backscattered linearly polarized light in the sub-diffusion regime. OPTICS EXPRESS 2014; 22:5325-5340. [PMID: 24663873 DOI: 10.1364/oe.22.005325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present a predictive model of the depolarization ratio of backscattered linearly polarized light from spatially continuous refractive index media that is applicable to the sub-diffusion regime of light scattering. Using Monte Carlo simulations, we derived a simple relationship between the depolarization ratio and both the sample optical properties and illumination-collection geometry. Our model was validated on tissue simulating phantoms and found to be in good agreement. We further show the utility of this model by demonstrating its use for measuring the depolarization length from biological tissue in vivo. We expect our results to aid in the interpretation of the depolarization ratio from sub-diffusive reflectance measurements.
Collapse
|
16
|
van Leeuwen–van Zaane F, Gamm UA, van Driel PBAA, Snoeks TJA, de Bruijn HS, van der Ploeg–van den Heuvel A, Mol IM, Löwik CWGM, Sterenborg HJCM, Amelink A, Robinson DJ. In vivo quantification of the scattering properties of tissue using multi-diameter single fiber reflectance spectroscopy. BIOMEDICAL OPTICS EXPRESS 2013; 4:696-708. [PMID: 23667786 PMCID: PMC3646597 DOI: 10.1364/boe.4.000696] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/20/2013] [Accepted: 02/23/2013] [Indexed: 05/19/2023]
Abstract
Multi diameter single fiber reflectance (MDSFR) spectroscopy is a non-invasive optical technique based on using multiple fibers of different diameters to determine both the reduced scattering coefficient (μs') and a parameter γ that is related to the angular distribution of scattering, where γ = (1-g2)/(1-g1) and g1 and g2 the first and second moment of the phase function, respectively. Here we present the first in vivo MDSFR measurements of μs'(λ) and γ(λ) and their wavelength dependence. MDSFR is performed on nineteen mice in four tissue types including skin, liver, normal tongue and in an orthotopic oral squamous cell carcinoma. The wavelength-dependent slope of μs'(λ) (scattering power) is significantly higher for tongue and skin than for oral cancer and liver. The reduced scattering coefficient at 800 nm of oral cancer is significantly higher than of normal tongue and liver. Gamma generally increases with increasing wavelength; for tumor it increases monotonically with wavelength, while for skin, liver and tongue γ(λ) reaches a plateau or even decreases for longer wavelengths. The mean γ(λ) in the wavelength range 400-850 nm is highest for liver (1.87 ± 0.07) and lowest for skin (1.37 ± 0.14). Gamma of tumor and normal tongue falls in between these values where tumor exhibits a higher average γ(λ) (1.72 ± 0.09) than normal tongue (1.58 ± 0.07). This study shows the potential of using light scattering spectroscopy to optically characterize tissue in vivo.
Collapse
Affiliation(s)
- F. van Leeuwen–van Zaane
- Department of Radiation Oncology, Center for Optical Diagnostics
and Therapy, Postgraduate School Molecular Medicine, Erasmus MC, P.O. box 2040, 3000 CA
Rotterdam, The Netherlands
| | - U. A. Gamm
- Department of Radiation Oncology, Center for Optical Diagnostics
and Therapy, Postgraduate School Molecular Medicine, Erasmus MC, P.O. box 2040, 3000 CA
Rotterdam, The Netherlands
| | | | - T. J. A. Snoeks
- Department of Radiology, Leiden University Medical Centre,
Leiden, The Netherlands
| | - H. S. de Bruijn
- Department of Radiation Oncology, Center for Optical Diagnostics
and Therapy, Postgraduate School Molecular Medicine, Erasmus MC, P.O. box 2040, 3000 CA
Rotterdam, The Netherlands
| | - A. van der Ploeg–van den Heuvel
- Department of Radiation Oncology, Center for Optical Diagnostics
and Therapy, Postgraduate School Molecular Medicine, Erasmus MC, P.O. box 2040, 3000 CA
Rotterdam, The Netherlands
| | - I. M. Mol
- Department of Radiology, Leiden University Medical Centre,
Leiden, The Netherlands
| | - C. W. G. M. Löwik
- Department of Radiology, Leiden University Medical Centre,
Leiden, The Netherlands
| | - H. J. C. M. Sterenborg
- Department of Radiation Oncology, Center for Optical Diagnostics
and Therapy, Postgraduate School Molecular Medicine, Erasmus MC, P.O. box 2040, 3000 CA
Rotterdam, The Netherlands
| | - A. Amelink
- Department of Radiation Oncology, Center for Optical Diagnostics
and Therapy, Postgraduate School Molecular Medicine, Erasmus MC, P.O. box 2040, 3000 CA
Rotterdam, The Netherlands
| | - D. J. Robinson
- Department of Radiation Oncology, Center for Optical Diagnostics
and Therapy, Postgraduate School Molecular Medicine, Erasmus MC, P.O. box 2040, 3000 CA
Rotterdam, The Netherlands
- Department of Dermatology, Erasmus MC Rotterdam, The
Netherlands
| |
Collapse
|
17
|
Hall G, Jacques SL, Eliceiri KW, Campagnola PJ. Goniometric measurements of thick tissue using Monte Carlo simulations to obtain the single scattering anisotropy coefficient. BIOMEDICAL OPTICS EXPRESS 2012; 3:2707-19. [PMID: 23162710 PMCID: PMC3493220 DOI: 10.1364/boe.3.002707] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/24/2012] [Accepted: 09/24/2012] [Indexed: 05/20/2023]
Abstract
The scattering anisotropy, g, of tissue can be a powerful metric of tissue structure, and is most directly measured via goniometry and fitting to the Henyey-Greenstein phase function. We present a method based on an independent attenuation measurement of the scattering coefficient along with Monte Carlo simulations to account for multiple scattering, allowing the accurate determination of measurement of g for tissues of thickness within the quasi-ballistic regime. Simulations incorporating the experimental geometry and bulk optical properties show that significant errors occur in extraction of g values, even for tissues of thickness less than one scattering length without modeling corrections. Experimental validation is provided by determination of g in mouse muscle tissues and it is shown that the obtained values are independent of thickness. In addition we present a simple deconvolution-based method and show that it provides excellent estimates for high anisotropy values (above 0.95) when coupled with an independent attenuation measurement.
Collapse
Affiliation(s)
- Gunnsteinn Hall
- Department of Biomedical Engineering & Laboratory of Optical
and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin 53706,
USA
| | - Steven L. Jacques
- Department of Biomedical Engineering, Oregon Health & Science
University, Portland, Oregon 97239, USA
| | - Kevin W. Eliceiri
- Department of Biomedical Engineering & Laboratory of Optical
and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin 53706,
USA
- Medical Physics Department, University of Wisconsin-Madison,
Madison, Wisconsin 53706, USA
| | - Paul J. Campagnola
- Department of Biomedical Engineering & Laboratory of Optical
and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin 53706,
USA
- Medical Physics Department, University of Wisconsin-Madison,
Madison, Wisconsin 53706, USA
| |
Collapse
|
18
|
Radosevich AJ, Rogers JD, Capoğlu IR, Mutyal NN, Pradhan P, Backman V. Open source software for electric field Monte Carlo simulation of coherent backscattering in biological media containing birefringence. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:115001. [PMID: 23123973 PMCID: PMC3487050 DOI: 10.1117/1.jbo.17.11.115001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
ABSTRACT. We present an open source electric field tracking Monte Carlo program to model backscattering in biological media containing birefringence, with computation of the coherent backscattering phenomenon as an example. These simulations enable the modeling of tissue scattering as a statistically homogeneous continuous random media under the Whittle-Matérn model, which includes the Henyey-Greenstein phase function as a special case, or as a composition of discrete spherical scatterers under Mie theory. The calculation of the amplitude scattering matrix for the above two cases as well as the implementation of birefringence using the Jones N-matrix formalism is presented. For ease of operator use and data processing, our simulation incorporates a graphical user interface written in MATLAB to interact with the underlying C code. Additionally, an increase in computational speed is achieved through implementation of message passing interface and the semi-analytical approach. Finally, we provide demonstrations of the results of our simulation for purely scattering media and scattering media containing linear birefringence.
Collapse
Affiliation(s)
- Andrew J Radosevich
- Northwestern University, Biomedical Engineering Department, Tech E310, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Muñoz Morales AA, Vázquez y Montiel S. Retrieving the optical parameters of biological tissues using diffuse reflectance spectroscopy and Fourier series expansions. I. theory and application. BIOMEDICAL OPTICS EXPRESS 2012; 3:2395-2404. [PMID: 23082281 PMCID: PMC3469998 DOI: 10.1364/boe.3.002395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 06/23/2012] [Accepted: 06/30/2012] [Indexed: 06/01/2023]
Abstract
The determination of optical parameters of biological tissues is essential for the application of optical techniques in the diagnosis and treatment of diseases. Diffuse Reflection Spectroscopy is a widely used technique to analyze the optical characteristics of biological tissues. In this paper we show that by using diffuse reflectance spectra and a new mathematical model we can retrieve the optical parameters by applying an adjustment of the data with nonlinear least squares. In our model we represent the spectra using a Fourier series expansion finding mathematical relations between the polynomial coefficients and the optical parameters. In this first paper we use spectra generated by the Monte Carlo Multilayered Technique to simulate the propagation of photons in turbid media. Using these spectra we determine the behavior of Fourier series coefficients when varying the optical parameters of the medium under study. With this procedure we find mathematical relations between Fourier series coefficients and optical parameters. Finally, the results show that our method can retrieve the optical parameters of biological tissues with accuracy that is adequate for medical applications.
Collapse
Affiliation(s)
- Aarón A. Muñoz Morales
- Universidad de Carabobo, Facultad Experimental de Ciencia y Tecnología, Departamento de Física y Centro de Investigaciones Médica y Biotecnólogica,Carabobo,
Venezuela, 2002
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla,
México, 72840
| | | |
Collapse
|
20
|
Bi R, Dong J, Lee K. Coherent backscattering cone shape depends on the beam size. APPLIED OPTICS 2012; 51:6301-6306. [PMID: 22968267 DOI: 10.1364/ao.51.006301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/08/2012] [Indexed: 06/01/2023]
Abstract
Coherent backscattering (CBS) is a beautiful physical phenomenon that takes place in a highly scattering medium, which has potential application in noninvasive optical property measurement. The current model that explains the CBS cone shape, however, assumes the incoming beam diameter is infinitely large compared to the transport length. In this paper, we evaluate the effect of a finite scalar light illumination area on the CBS cone, both theoretically and experimentally. The quantitative relationship between laser beam size and the CBS cone shape is established by using two different finite beam models (uniform top hat and Gaussian distribution). A series of experimental data with varying beam diameters is obtained for comparison with the theory. Our study shows the CBS cone shape begins to show distortion when beam size becomes submillimeter, and this effect should not be ignored in general. In biological tissue where a normal large beam CBS cone is too narrow for detection, this small beam CBS may be more advantageous for more accurate and higher resolution tissue characterization.
Collapse
Affiliation(s)
- Renzhe Bi
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | | | | |
Collapse
|
21
|
Gomes AJ, Turzhitsky V, Ruderman S, Backman V. Monte Carlo model of the penetration depth for polarization gating spectroscopy: influence of illumination-collection geometry and sample optical properties. APPLIED OPTICS 2012; 51:4627-37. [PMID: 22781238 PMCID: PMC3557942 DOI: 10.1364/ao.51.004627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Polarization-gating has been widely used to probe superficial tissue structures, but the penetration depth properties of this method have not been completely elucidated. This study employs a polarization-sensitive Monte Carlo method to characterize the penetration depth statistics of polarization-gating. The analysis demonstrates that the penetration depth depends on both the illumination-collection geometry [illumination-collection area (R) and collection angle (θ(c))] and on the optical properties of the sample, which include the scattering coefficient (μ(s)), absorption coefficient (μ(a)), anisotropy factor (g), and the type of the phase function. We develop a mathematical expression relating the average penetration depth to the illumination-collection beam properties and optical properties of the medium. Finally, we quantify the sensitivity of the average penetration depth to changes in optical properties for different geometries of illumination and collection. The penetration depth model derived in this study can be applied to optimizing application-specific fiber-optic probes to target a sampling depth of interest with minimal sensitivity to the optical properties of the sample.
Collapse
Affiliation(s)
- Andrew J. Gomes
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60218, USA
| | - Vladimir Turzhitsky
- Biomedical Imaging and Spectroscopy Laboratory, Departments of Medicine and Obstetrics and Gynecology and Reproductive Biology, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts 02215, USA
| | - Sarah Ruderman
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60218, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60218, USA
- Corresponding author:
| |
Collapse
|
22
|
Radosevich AJ, Rogers JD, Turzhitsky V, Mutyal NN, Yi J, Roy HK, Backman V. Polarized Enhanced Backscattering Spectroscopy for Characterization of Biological Tissues at Subdiffusion Length-scales. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2012; 18:1313-1325. [PMID: 24163574 PMCID: PMC3806115 DOI: 10.1109/jstqe.2011.2173659] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Since the early 1980's, the enhanced backscattering (EBS) phenomenon has been well-studied in a large variety of non-biological materials. Yet, until recently the use of conventional EBS for the characterization of biological tissue has been fairly limited. In this work we detail the unique ability of EBS to provide spectroscopic, polarimetric, and depth-resolved characterization of biological tissue using a simple backscattering instrument. We first explain the experimental and numerical procedures used to accurately measure and model the full azimuthal EBS peak shape in biological tissue. Next we explore the peak shape and height dependencies for different polarization channels and spatial coherence of illumination. We then illustrate the extraordinary sensitivity of EBS to the shape of the scattering phase function using suspensions of latex microspheres. Finally, we apply EBS to biological tissue samples in order to measure optical properties and observe the spatial length-scales at which backscattering is altered in early colon carcinogenesis.
Collapse
Affiliation(s)
- Andrew J Radosevich
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Xu M. Scattering-phase theorem: anomalous diffraction by forward-peaked scattering media. OPTICS EXPRESS 2011; 19:21643-51. [PMID: 22109013 PMCID: PMC3500101 DOI: 10.1364/oe.19.021643] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The scattering-phase theorem states that the values of scattering and reduced scattering coefficients of the bulk random media are proportional to the variance of the phase and the variance of the phase gradient, respectively, of the phase map of light passing through one thin slice of the medium. We report a new derivation of the scattering phase theorem and provide the correct form of the relation between the variance of phase gradient and the reduced scattering coefficient. We show the scattering-phase theorem is the consequence of anomalous diffraction by a thin slice of forward-peaked scattering media. A new set of scattering-phase relations with relaxed requirement on the thickness of the slice are provided. The condition for the scattering-phase theorem to be valid is discussed and illustrated with simulated data. The scattering-phase theorem is then applied to determine the scattering coefficient μs, the reduced scattering coefficient μ's, and the anisotropy factor g for polystyrene sphere and Intralipid-20% suspensions with excellent accuracy from quantitative phase imaging of respective thin slices. The spatially-resolved μs, μ's and g maps obtained via such a scattering-phase relationship may find general applications in the characterization of the optical property of homogeneous and heterogeneous random media.
Collapse
Affiliation(s)
- Min Xu
- Department of Physics, Fairfield University, 1073 North Benson Road, Fairfield, Connecticut 06824, USA.
| |
Collapse
|
24
|
Turzhitsky V, Mutyal NN, Radosevich AJ, Backman V. Multiple scattering model for the penetration depth of low-coherence enhanced backscattering. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:097006. [PMID: 21950941 PMCID: PMC3188644 DOI: 10.1117/1.3625402] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 05/24/2023]
Abstract
Low-coherence enhanced backscattering (LEBS) is a depth-selective self-interference phenomenon that originates from light traveling time-reversed paths in a scattering medium. The depth selectivity of LEBS and its sensitivity to optical properties of the scattering medium has made it a promising technique for probing the structure of biological tissue with applications to disease diagnosis and, in particular, precancerous conditions. The ability to accurately predict the penetration depth of the LEBS signal is important in targeting an optimal tissue depth for detecting precancerous cells. This prediction is further complicated by the variation in optical properties of different tissue types. In this paper, the effects of the reduced scattering coefficient (μ(s)'), the phase function and the instrument spatial coherence length (L(sc)) on the LEBS penetration depth are quantified. It is determined that the LEBS penetration depth is primarily dependent on L(sc), μ(s)', and the anisotropy factor (g), but has minimal dependence on higher moments of the phase function. An empirical expression, having a similar form as the double scattering approximation for LEBS, is found to accurately predict the average penetration depth in the multiple scattering regime. The expression is shown to be accurate for a broad range of experimentally relevant optical properties and spatial coherence lengths.
Collapse
Affiliation(s)
- Vladimir Turzhitsky
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois 60208, USA.
| | | | | | | |
Collapse
|
25
|
Turzhitsky V, Radosevich AJ, Rogers JD, Mutyal NN, Backman V. Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:067007. [PMID: 21721828 PMCID: PMC3138801 DOI: 10.1117/1.3589349] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 05/04/2023]
Abstract
Low-coherence enhanced backscattering (LEBS) is a depth selective technique that allows noninvasive characterization of turbid media such as biological tissue. LEBS provides a spectral measurement of the tissue reflectance distribution as a function of distance between incident and reflected ray pairs through the use of partial spatial coherence broadband illumination. We present LEBS as a new depth-selective technique to measure optical properties of tissue in situ. Because LEBS enables measurements of reflectance due to initial scattering events, LEBS is sensitive to the shape of the phase function in addition to the reduced scattering coefficient (μ(s) (*)). We introduce a simulation of LEBS that implements a two parameter phase function based on the Whittle-Matérn refractive index correlation function model. We show that the LEBS enhancement factor (E) primarily depends on μ(s) (*), the normalized spectral dependence of E (S(n)) depends on one of the two parameters of the phase function that also defines the functional type of the refractive index correlation function (m), and the LEBS peak width depends on both the anisotropy factor (g) and m. Three inverse models for calculating these optical properties are described and the calculations are validated with an experimental measurement from a tissue phantom.
Collapse
Affiliation(s)
- Vladimir Turzhitsky
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois 60208, USA.
| | | | | | | | | |
Collapse
|