1
|
Park J, Gao L. Advancements in fluorescence lifetime imaging microscopy Instrumentation: Towards high speed and 3D. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2024; 30:101147. [PMID: 39086551 PMCID: PMC11290093 DOI: 10.1016/j.cossms.2024.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a powerful imaging tool offering molecular specific insights into samples through the measurement of fluorescence decay time, with promising applications in diverse research fields. However, to acquire two-dimensional lifetime images, conventional FLIM relies on extensive scanning in both the spatial and temporal domain, resulting in much slower acquisition rates compared to intensity-based approaches. This problem is further magnified in three-dimensional imaging, as it necessitates additional scanning along the depth axis. Recent advancements have aimed to enhance the speed and three-dimensional imaging capabilities of FLIM. This review explores the progress made in addressing these challenges and discusses potential directions for future developments in FLIM instrumentation.
Collapse
Affiliation(s)
- Jongchan Park
- Department of Bioengineering, University of California, Los Angeles, CA 90025, USA
| | - Liang Gao
- Department of Bioengineering, University of California, Los Angeles, CA 90025, USA
| |
Collapse
|
2
|
Smith JT, Liu CJ, Degnan J, Ouellette JN, Conklin MW, Kellner AV, Scribano CM, Hrycyniak L, Oliner JD, Zahm C, Wait E, Eliceiri KW, Rafter J. Label-free fluorescence lifetime imaging for the assessment of cell viability in living tumor fragments. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S22709. [PMID: 38881557 PMCID: PMC11177118 DOI: 10.1117/1.jbo.29.s2.s22709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Significance To enable non-destructive longitudinal assessment of drug agents in intact tumor tissue without the use of disruptive probes, we have designed a label-free method to quantify the health of individual tumor cells in excised tumor tissue using multiphoton fluorescence lifetime imaging microscopy (MP-FLIM). Aim Using murine tumor fragments which preserve the native tumor microenvironment, we seek to demonstrate signals generated by the intrinsically fluorescent metabolic co-factors nicotinamide adenine dinucleotide phosphate [NAD(P)H] and flavin adenine dinucleotide (FAD) correlate with irreversible cascades leading to cell death. Approach We use MP-FLIM of NAD(P)H and FAD on tissues and confirm viability using standard apoptosis and live/dead (Caspase 3/7 and propidium iodide, respectively) assays. Results Through a statistical approach, reproducible shifts in FLIM data, determined through phasor analysis, are shown to correlate with loss of cell viability. With this, we demonstrate that cell death achieved through either apoptosis/necrosis or necroptosis can be discriminated. In addition, specific responses to common chemotherapeutic treatment inducing cell death were detected. Conclusions These data demonstrate that MP-FLIM can detect and quantify cell viability without the use of potentially toxic dyes, thus enabling longitudinal multi-day studies assessing the effects of therapeutic agents on tumor fragments.
Collapse
Affiliation(s)
- Jason T Smith
- Elephas, Madison, Wisconsin, United States
- Booz Allen Hamilton, McLean, Virginia, United States
| | - Chao J Liu
- Elephas, Madison, Wisconsin, United States
| | | | | | | | | | | | | | | | - Chris Zahm
- Elephas, Madison, Wisconsin, United States
| | - Eric Wait
- Elephas, Madison, Wisconsin, United States
| | - Kevin W Eliceiri
- Center for Quantitative Cell Imaging, Madison, Wisconsin, United States
| | | |
Collapse
|
3
|
Liu CJ, Smith JT, Wang Y, Ouellette JN, Rogers JD, Oliner JD, Szulczewski M, Wait E, Brown W, Wax A, Eliceiri KW, Rafter J. Assessing cell viability with dynamic optical coherence microscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:1408-1417. [PMID: 38495713 PMCID: PMC10942685 DOI: 10.1364/boe.509835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 03/19/2024]
Abstract
Assessing cell viability is important in many fields of research. Current optical methods to assess cell viability typically involve fluorescent dyes, which are often less reliable and have poor permeability in primary tissues. Dynamic optical coherence microscopy (dOCM) is an emerging tool that provides label-free contrast reflecting changes in cellular metabolism. In this work, we compare the live contrast obtained from dOCM to viability dyes, and for the first time to our knowledge, demonstrate that dOCM can distinguish live cells from dead cells in murine syngeneic tumors. We further demonstrate a strong correlation between dOCM live contrast and optical redox ratio by metabolic imaging in primary mouse liver tissue. The dOCM technique opens a new avenue to apply label-free imaging to assess the effects of immuno-oncology agents, targeted therapies, chemotherapy, and cell therapies using live tumor tissues.
Collapse
Affiliation(s)
- Chao J. Liu
- Elephas Biosciences
Corporation, 1 Erdman Place, Madison, WI 53717, USA
| | - Jason T. Smith
- Elephas Biosciences
Corporation, 1 Erdman Place, Madison, WI 53717, USA
| | - Yuanbo Wang
- Elephas Biosciences
Corporation, 1 Erdman Place, Madison, WI 53717, USA
| | | | - Jeremy D. Rogers
- Department of Ophthalmology and Visual
Sciences, University of Wisconsin Madison,
2828 Marshall Ct, Madison, WI 53705, USA
| | | | | | - Eric Wait
- Elephas Biosciences
Corporation, 1 Erdman Place, Madison, WI 53717, USA
| | - William Brown
- Lumedica Inc.,
404 Hunt Street, Suite 510, Durham, NC 27701, USA
| | - Adam Wax
- Lumedica Inc.,
404 Hunt Street, Suite 510, Durham, NC 27701, USA
| | - Kevin W. Eliceiri
- Center for Quantitative Cell
Imaging, 1675 Observatory Drive, Madison, WI 53706,
USA
| | - John Rafter
- Elephas Biosciences
Corporation, 1 Erdman Place, Madison, WI 53717, USA
| |
Collapse
|
4
|
Houston JP, Valentino S, Bitton A. Fluorescence Lifetime Measurements and Analyses: Protocols Using Flow Cytometry and High-Throughput Microscopy. Methods Mol Biol 2024; 2779:323-351. [PMID: 38526793 DOI: 10.1007/978-1-0716-3738-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This chapter focuses on applications and protocols that involve the measurement of the fluorescence lifetime as an informative cytometric parameter. The timing of fluorescence decay has been well-studied for cell counting, sorting, and imaging. Therefore, provided herein is an overview of the techniques used, how they enhance cytometry protocols, and the modern techniques used for lifetime analysis. The background and theory behind fluorescence decay kinetic measurements in cells is first discussed followed by the history of the development of time-resolved flow cytometry. These sections are followed by a review of applications that benefit from the quantitative nature of fluorescence lifetimes as a photophysical trait. Lastly, perspectives on the modern ways in which the fluorescence lifetime is scanned at high throughputs which include high-speed microscopy and machine learning are provided.
Collapse
Affiliation(s)
- Jessica P Houston
- Department of Chemical & Materials Engineering, New Mexico State University, Las Cruces, NM, USA.
| | - Samantha Valentino
- Department of Chemical & Materials Engineering, New Mexico State University, Las Cruces, NM, USA
| | | |
Collapse
|
5
|
Liang W, Chen D, Guan H, Park HC, Li K, Li A, Li MJ, Gannot I, Li X. Label-Free Metabolic Imaging In Vivo by Two-Photon Fluorescence Lifetime Endomicroscopy. ACS PHOTONICS 2022; 9:4017-4029. [PMID: 39726730 PMCID: PMC11671153 DOI: 10.1021/acsphotonics.2c01493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
NADH intensity and fluorescence lifetime characteristics have proved valuable intrinsic biomarkers for profiling the cellular metabolic status of living biological tissues. To fully leverage the potential of NADH fluorescence lifetime imaging microscopy (FLIM) in (pre)clinical studies and translational applications, a compact and flexible endomicroscopic embodiment is essential. Herein we present our newly developed two-photon fluorescence (2PF) lifetime imaging endomicroscope (2p-FLeM) that features an about 2 mm diameter, subcellular resolution, and excellent emission photon utilization efficiency and can extract NADH lifetime parameters of living tissues and organs reliably using a safe excitation power (~30 mW) and moderate pixel dwelling time (≤10 μs). In vivo experiments showed that the 2p-FLeM system was capable of tracking NADH lifetime dynamics of cultured cancer cells and subcutaneous mouse tumor models subject to induced apoptosis, and of a functioning mouse kidney undergoing acute ischemia-reperfusion perturbation. The complementary structural and metabolic information afforded by the 2p-FLeM system promises functional histological imaging of label-free internal organs in vivo and in situ for practical clinical diagnosis and therapeutics applications.
Collapse
Affiliation(s)
- Wenxuan Liang
- School of Biomedical Engineering, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215000, China; School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Defu Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Honghua Guan
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hyeon-Cheol Park
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Kaiyan Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Ang Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Ming-Jun Li
- Science and Technology Division, Corning Incorporated, Corning, New York 14831, United States
| | - Israel Gannot
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Xingde Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States; Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Sorrells J, Iyer RR, Yang L, Martin EM, Wang G, Tu H, Marjanovic M, Boppart SA. Computational Photon Counting Using Multithreshold Peak Detection for Fast Fluorescence Lifetime Imaging Microscopy. ACS PHOTONICS 2022; 9:2748-2755. [PMID: 35996369 PMCID: PMC9389606 DOI: 10.1021/acsphotonics.2c00505] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Time-resolved photon counting methods have a finite bandwidth that restricts the acquisition speed of techniques like fluorescence lifetime imaging microscopy (FLIM). To enable faster imaging, computational methods can be employed to count photons when the output of a detector is directly digitized at a high sampling rate. Here, we present computational photon counting using a hybrid photodetector in conjunction with multithreshold peak detection to count instances where one or more photons arrive at the detector within the detector response time. This method can be used to distinguish up to five photon counts per digitized point, whereas previous demonstrations of computational photon counting on data acquired with photomultiplier tubes have only counted one photon at a time. We demonstrate in both freely moving C. elegans and a human breast cancer cell line undergoing apoptosis that this novel multithreshold peak detection method can accurately characterize the intensity and fluorescence lifetime of samples producing photon rates up to 223%, higher than previously demonstrated photon counting FLIM systems.
Collapse
Affiliation(s)
- Janet
E. Sorrells
- Department
of Bioengineering, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rishyashring R. Iyer
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department
of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lingxiao Yang
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department
of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Elisabeth M. Martin
- Department
of Bioengineering, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Geng Wang
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Haohua Tu
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department
of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Marina Marjanovic
- Department
of Bioengineering, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stephen A. Boppart
- Department
of Bioengineering, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department
of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer
Center at Illinois, Urbana, Illinois 61801, United States
- Carle
Illinois College of Medicine, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Becker L, Fischer F, Fleck JL, Harland N, Herkommer A, Stenzl A, Aicher WK, Schenke-Layland K, Marzi J. Data-Driven Identification of Biomarkers for In Situ Monitoring of Drug Treatment in Bladder Cancer Organoids. Int J Mol Sci 2022; 23:ijms23136956. [PMID: 35805961 PMCID: PMC9266781 DOI: 10.3390/ijms23136956] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Three-dimensional (3D) organoid culture recapitulating patient-specific histopathological and molecular diversity offers great promise for precision medicine in cancer. In this study, we established label-free imaging procedures, including Raman microspectroscopy (RMS) and fluorescence lifetime imaging microscopy (FLIM), for in situ cellular analysis and metabolic monitoring of drug treatment efficacy. Primary tumor and urine specimens were utilized to generate bladder cancer organoids, which were further treated with various concentrations of pharmaceutical agents relevant for the treatment of bladder cancer (i.e., cisplatin, venetoclax). Direct cellular response upon drug treatment was monitored by RMS. Raman spectra of treated and untreated bladder cancer organoids were compared using multivariate data analysis to monitor the impact of drugs on subcellular structures such as nuclei and mitochondria based on shifts and intensity changes of specific molecular vibrations. The effects of different drugs on cell metabolism were assessed by the local autofluorophore environment of NADH and FAD, determined by multiexponential fitting of lifetime decays. Data-driven neural network and data validation analyses (k-means clustering) were performed to retrieve additional and non-biased biomarkers for the classification of drug-specific responsiveness. Together, FLIM and RMS allowed for non-invasive and molecular-sensitive monitoring of tumor-drug interactions, providing the potential to determine and optimize patient-specific treatment efficacy.
Collapse
Affiliation(s)
- Lucas Becker
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tuebingen, 72076 Tuebingen, Germany; (L.B.); (K.S.-L.)
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Felix Fischer
- Institute of Applied Optics (ITO), University of Stuttgart, 70569 Stuttgart, Germany; (F.F.); (A.H.)
| | - Julia L. Fleck
- Mines Saint-Etienne, CNRS, UMR 6158 LIMOS, Centre CIS, Université Clermont Auvergne, 42270 Saint Jarez-en-Priest, France;
| | - Niklas Harland
- Department of Urology, University of Tuebingen Hospital, 72076 Tuebingen, Germany; (N.H.); (A.S.)
| | - Alois Herkommer
- Institute of Applied Optics (ITO), University of Stuttgart, 70569 Stuttgart, Germany; (F.F.); (A.H.)
| | - Arnulf Stenzl
- Department of Urology, University of Tuebingen Hospital, 72076 Tuebingen, Germany; (N.H.); (A.S.)
| | - Wilhelm K. Aicher
- Center of Medical Research, Department of Urology at UKT, University of Tuebingen, 72076 Tuebingen, Germany;
| | - Katja Schenke-Layland
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tuebingen, 72076 Tuebingen, Germany; (L.B.); (K.S.-L.)
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tueingen, 72770 Reutlingen, Germany
| | - Julia Marzi
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tuebingen, 72076 Tuebingen, Germany; (L.B.); (K.S.-L.)
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tueingen, 72770 Reutlingen, Germany
- Correspondence:
| |
Collapse
|
8
|
Yang L, Park J, Chaney EJ, Sorrells JE, Marjanovic M, Phillips H, Spillman DR, Boppart SA. Label-free multimodal nonlinear optical imaging of needle biopsy cores for intraoperative cancer diagnosis. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220031GR. [PMID: 35643823 PMCID: PMC9142840 DOI: 10.1117/1.jbo.27.5.056504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/09/2022] [Indexed: 05/29/2023]
Abstract
SIGNIFICANCE Needle biopsy (NB) procedures are important for the initial diagnosis of many types of cancer. However, the possibility of NB specimens being unable to provide diagnostic information, (i.e., non-diagnostic sampling) and the time-consuming histological evaluation process can cause delays in diagnoses that affect patient care. AIM We aim to demonstrate the advantages of this label-free multimodal nonlinear optical imaging (NLOI) technique as a non-destructive point-of-procedure evaluation method for NB tissue cores, for the visualization and characterization of the tissue microenvironment. APPROACH A portable, label-free, multimodal NLOI system combined second-harmonic generation (SHG) and third-harmonic generation and two- and three-photon autofluorescence (2PF, 3PF) microscopy. It was used for intraoperative imaging of fresh NB tissue cores acquired during canine cancer surgeries, which involved liver, lung, and mammary tumors as well as soft-tissue sarcoma; in total, eight canine patients were recruited. An added tissue culture chamber enabled the use of this NLOI system for longitudinal imaging of fresh NB tissue cores taken from an induced rat mammary tumor and healthy mouse livers. RESULTS The intraoperative NLOI system was used to assess fresh canine NB specimens during veterinary cancer surgeries. Histology-like morphological features were visualized by the combination of four NLOI modalities at the point-of-procedure. The NLOI results provided quantitative information on the tissue microenvironment such as the collagen fiber orientation using Fourier-domain SHG analysis and metabolic profiling by optical redox ratio (ORR) defined by 2PF/(2PF + 3PF). The analyses showed that the canine mammary tumor had more randomly oriented collagen fibers compared to the tumor margin, and hepatocarcinoma had a wider distribution of ORR with a lower mean value compared to the liver fibrosis and the normal-appearing liver. Moreover, the loss of metabolic information during tissue degradation of fresh murine NB specimens was shown by overall intensity decreases in all channels and an increase of mean ORR from 0.94 (standard deviation 0.099) to 0.97 (standard deviation 0.077) during 1-h longitudinal imaging of a rat mammary tumor NB specimen. The tissue response to staurosporine (STS), an apoptotic inducer, from fresh murine liver NB specimens was also observed. The mean ORR decreased from 0.86 to 0.74 in the first 40 min and then increased to 0.8 during the rest of the hour of imaging, compared to the imaging results without the addition of STS, which showed a continuous increase of ORR from 0.72 to 0.75. CONCLUSIONS A label-free, multimodal NLOI platform reveals microstructural and metabolic information of the fresh NB cores during intraoperative cancer imaging. This system has been demonstrated on animal models to show its potential to provide a more comprehensive histological assessment and a better understanding of the unperturbed tumor microenvironment. Considering tissue degradation, or loss of viability upon fixation, this intraoperative NLOI system has the advantage of immediate assessment of freshly excised tissue specimens at the point of procedure.
Collapse
Affiliation(s)
- Lingxiao Yang
- University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Jaena Park
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Eric J. Chaney
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Janet E. Sorrells
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Marina Marjanovic
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Carle Illinois College of Medicine, Champaign, Illinois, United States
| | - Heidi Phillips
- University of Illinois at Urbana-Champaign, College of Veterinary Medicine, Urbana, Illinois, United States
| | - Darold R. Spillman
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Stephen A. Boppart
- University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Carle Illinois College of Medicine, Champaign, Illinois, United States
- University of Illinois at Urbana-Champaign, Cancer Center at Illinois, Urbana, Illinois, United States
| |
Collapse
|
9
|
Pearl WG, Perevedentseva EV, Karmenyan AV, Khanadeev VA, Wu SY, Ma YR, Khlebtsov NG, Cheng CL. Multifunctional plasmonic gold nanostars for cancer diagnostic and therapeutic applications. JOURNAL OF BIOPHOTONICS 2022; 15:e202100264. [PMID: 34784104 DOI: 10.1002/jbio.202100264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Gold nanostar (AuNSt) has gained great attention in bioimaging and cancer therapy due to their tunable surface plasmon resonance across the visible-near infrared range. Photothermal treatment and imaging capabilities including fluorescence lifetime imaging at two-photon excitation (TP-FLIM) and dark-field microscopic imaging are considered in this work. Two types of AuNSts having plasmon absorption peaks centred at 600 and 750 nm wavelength were synthesized and studied. Both NSts exhibited low cytotoxicity on A549 human lung carcinoma cells. A strong emission at two-photon excitation was observed for both NSts, well-distinguishable from lifetimes of bio-object autofluorescence. High efficiency in raising the temperature in the NSts environment with the irradiation of near infrared, AuNSts triggered photothermal effect. The decreased cell viability of A549 observed via MTT test and the cell membrane damaging was demonstrated with trypan blue staining. These results suggest AuNSts can be agents with tunable plasmonic properties for imaging and photothermal therapy.
Collapse
Affiliation(s)
- Wrenit Gem Pearl
- Department of Physics, National Dong Hwa University, Hualien, Taiwan
| | - Elena V Perevedentseva
- Department of Physics, National Dong Hwa University, Hualien, Taiwan
- P. N. Lebedev Physics Institute of Russian Academy of Sciences, Moscow, Russia
| | | | - Vitaly A Khanadeev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
- Saratov State Vavilov Agrarian University, Saratov, Russia
| | - Sheng-Yun Wu
- Department of Physics, National Dong Hwa University, Hualien, Taiwan
| | - Yuan-Ron Ma
- Department of Physics, National Dong Hwa University, Hualien, Taiwan
| | - Nikolai G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
- Saratov State University, Saratov, Russia
| | - Chia-Liang Cheng
- Department of Physics, National Dong Hwa University, Hualien, Taiwan
| |
Collapse
|
10
|
Sorrells JE, Iyer RR, Yang L, Chaney EJ, Marjanovic M, Tu H, Boppart SA. Single-photon peak event detection (SPEED): a computational method for fast photon counting in fluorescence lifetime imaging microscopy. OPTICS EXPRESS 2021; 29:37759-37775. [PMID: 34808842 PMCID: PMC8687103 DOI: 10.1364/oe.439675] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 05/05/2023]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) characterizes samples by examining the temporal properties of fluorescence emission, providing useful contrast within samples based on the local physical and biochemical environment of fluorophores. Despite this, FLIM applications have been limited in scope by either poor accuracy or long acquisition times. Here, we present a method for computational single-photon counting of directly sampled time-domain FLIM data that is capable of accurate fluorescence lifetime and intensity measurements while acquiring over 160 Mega-counts-per-second with sub-nanosecond time resolution between consecutive photon counts. We demonstrate that our novel method of Single-photon PEak Event Detection (SPEED) is more accurate than direct pulse sampling and faster than established photon counting FLIM methods. We further show that SPEED can be implemented for imaging and quantifying samples that benefit from higher -throughput and -dynamic range imaging with real-time GPU-accelerated processing and use this capability to examine the NAD(P)H-related metabolic dynamics of apoptosis in human breast cancer cells. Computational methods for photon counting such as SPEED open up more opportunities for fast and accurate FLIM imaging and additionally provide a basis for future innovation into alternative FLIM techniques.
Collapse
Affiliation(s)
- Janet E. Sorrells
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rishyashring R. Iyer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lingxiao Yang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Eric J. Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Marina Marjanovic
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Haohua Tu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, Urbana, IL 61801, USA
| |
Collapse
|
11
|
Sorrells JE, Iyer RR, Yang L, Bower AJ, Spillman DR, Chaney EJ, Tu H, Boppart SA. Real-time pixelwise phasor analysis for video-rate two-photon fluorescence lifetime imaging microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:4003-4019. [PMID: 34457395 PMCID: PMC8367245 DOI: 10.1364/boe.424533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 05/06/2023]
Abstract
Two-photon fluorescence lifetime imaging microscopy (FLIM) is a widely used technique in biomedical optical imaging. Presently, many two-photon time-domain FLIM setups are limited by long acquisition and postprocessing times that decrease data throughput and inhibit the ability to image fast sub-second processes. Here, we present a versatile two-photon FLIM setup capable of video-rate (up to 25 fps) imaging with graphics processing unit (GPU)-accelerated pixelwise phasor analysis displayed and saved simultaneously with acquisition. The system uses an analog output photomultiplier tube in conjunction with 12-bit digitization at 3.2 GHz to overcome the limited maximum acceptable photon rate associated with the photon counting electronics in many FLIM systems. This allows for higher throughput FLIM acquisition and analysis, and additionally enables the user to assess sample fluorescence lifetime in real-time. We further explore the capabilities of the system to examine the kinetics of Rhodamine B uptake by human breast cancer cells and characterize the effect of pixel dwell time on the reduced nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H) autofluorescence lifetime estimation accuracy.
Collapse
Affiliation(s)
- Janet E. Sorrells
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rishyashring R. Iyer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lingxiao Yang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew J. Bower
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Darold R. Spillman
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Eric J. Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Haohua Tu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Ouyang Y, Liu Y, Wang ZM, Liu Z, Wu M. FLIM as a Promising Tool for Cancer Diagnosis and Treatment Monitoring. NANO-MICRO LETTERS 2021; 13:133. [PMID: 34138374 PMCID: PMC8175610 DOI: 10.1007/s40820-021-00653-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/19/2021] [Indexed: 05/04/2023]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) has been rapidly developed over the past 30 years and widely applied in biomedical engineering. Recent progress in fluorophore-dyed probe design has widened the application prospects of fluorescence. Because fluorescence lifetime is sensitive to microenvironments and molecule alterations, FLIM is promising for the detection of pathological conditions. Current cancer-related FLIM applications can be divided into three main categories: (i) FLIM with autofluorescence molecules in or out of a cell, especially with reduced form of nicotinamide adenine dinucleotide, and flavin adenine dinucleotide for cellular metabolism research; (ii) FLIM with Förster resonance energy transfer for monitoring protein interactions; and (iii) FLIM with fluorophore-dyed probes for specific aberration detection. Advancements in nanomaterial production and efficient calculation systems, as well as novel cancer biomarker discoveries, have promoted FLIM optimization, offering more opportunities for medical research and applications to cancer diagnosis and treatment monitoring. This review summarizes cutting-edge researches from 2015 to 2020 on cancer-related FLIM applications and the potential of FLIM for future cancer diagnosis methods and anti-cancer therapy development. We also highlight current challenges and provide perspectives for further investigation.
Collapse
Affiliation(s)
- Yuzhen Ouyang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, People's Republic of China
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yanping Liu
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China.
- Shenzhen Research Institute of Central South University, A510a, Virtual University Building, Nanshan District, Southern District, High-tech Industrial Park, Yuehai Street, Shenzhen, People's Republic of China.
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China.
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, People's Republic of China
| | - Zongwen Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, People's Republic of China.
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China.
| |
Collapse
|
13
|
Bitton A, Sambrano J, Valentino S, Houston JP. A Review of New High-Throughput Methods Designed for Fluorescence Lifetime Sensing From Cells and Tissues. FRONTIERS IN PHYSICS 2021; 9:648553. [PMID: 34007839 PMCID: PMC8127321 DOI: 10.3389/fphy.2021.648553] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Though much of the interest in fluorescence in the past has been on measuring spectral qualities such as wavelength and intensity, there are two other highly useful intrinsic properties of fluorescence: lifetime (or decay) and anisotropy (or polarization). Each has its own set of unique advantages, limitations, and challenges in detection when it comes to use in biological studies. This review will focus on the property of fluorescence lifetime, providing a brief background on instrumentation and theory, and examine the recent advancements and applications of measuring lifetime in the fields of high-throughput fluorescence lifetime imaging microscopy (HT-FLIM) and time-resolved flow cytometry (TRFC). In addition, the crossover of these two methods and their outlooks will be discussed.
Collapse
Affiliation(s)
- Aric Bitton
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, United States
| | - Jesus Sambrano
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, United States
| | - Samantha Valentino
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, United States
| | - Jessica P. Houston
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
14
|
Bower AJ, Renteria C, Li J, Marjanovic M, Barkalifa R, Boppart SA. High-speed label-free two-photon fluorescence microscopy of metabolic transients during neuronal activity. APPLIED PHYSICS LETTERS 2021; 118:081104. [PMID: 33642609 PMCID: PMC7904318 DOI: 10.1063/5.0031348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/03/2021] [Indexed: 05/21/2023]
Abstract
The brain is an especially active metabolic system, requiring a large supply of energy following neuronal activation. However, direct observation of cellular metabolic dynamics associated with neuronal activation is challenging with currently available imaging tools. In this study, an optical imaging approach combining imaging of calcium transients and the metabolic co-enzyme nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) is utilized to track the metabolic dynamics in hippocampal neuron cultures. Results show distinct cellular components for the NAD(P)H response following neuronal activity, where notable differences in the NAD(P)H dynamics between neurons and astrocytes can be directly observed. Additionally, tracking of these responses across a large field of view is demonstrated for metabolic profiling of neuronal activation. Observation of neuronal dynamics using these methods allows for closer examination of the complex metabolic machinery of the brain, and may lead to a better understanding of the cellular metabolism of neuronal activation.
Collapse
Affiliation(s)
| | | | | | | | - Ronit Barkalifa
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
15
|
Sorrells JE, Martin EM, Aksamitiene E, Mukherjee P, Alex A, Chaney EJ, Marjanovic M, Boppart SA. Label-free characterization of single extracellular vesicles using two-photon fluorescence lifetime imaging microscopy of NAD(P)H. Sci Rep 2021; 11:3308. [PMID: 33558561 PMCID: PMC7870923 DOI: 10.1038/s41598-020-80813-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
The heterogeneous nature of extracellular vesicles (EVs) creates the need for single EV characterization techniques. However, many common biochemical and functional EV analysis techniques lack single EV resolution. Two-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to functionally characterize the reduced form of nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate (NAD(P)H) in cells and tissues. Here, we demonstrate that FLIM can also be used to image and characterize NAD(P)H in single isolated EVs. EVs were isolated using standard differential ultracentrifugation techniques from multiple cell lines and imaged using a custom two-photon FLIM system. The presented data show that the NAD(P)H fluorescence lifetimes in isolated cell-derived EVs follow a wide Gaussian distribution, indicating the presence of a range of different protein-bound and free NAD(P)H species. EV NAD(P)H fluorescence lifetime distribution has a larger standard deviation than that of cells and a significantly different fluorescence lifetime distribution than the nuclei, mitochondria, and cytosol of cells. Additionally, changes in the metabolic conditions of cells were reflected in changes in the mean fluorescence lifetime of NAD(P)H in the produced EVs. These data suggest that FLIM of NAD(P)H could be a valuable tool for EV research.
Collapse
Affiliation(s)
- Janet E Sorrells
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Elisabeth M Martin
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Edita Aksamitiene
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Prabuddha Mukherjee
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Aneesh Alex
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Eric J Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marina Marjanovic
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Cancer Center at Illinois, Urbana, IL, 61801, USA.
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
16
|
Liu YZ, Renteria C, Courtney CD, Ibrahim B, You S, Chaney EJ, Barkalifa R, Iyer RR, Zurauskas M, Tu H, Llano DA, Christian-Hinman CA, Boppart SA. Simultaneous two-photon activation and imaging of neural activity based on spectral-temporal modulation of supercontinuum light. NEUROPHOTONICS 2020; 7:045007. [PMID: 33163545 PMCID: PMC7607614 DOI: 10.1117/1.nph.7.4.045007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/14/2020] [Indexed: 05/03/2023]
Abstract
SIGNIFICANCE Recent advances in nonlinear optics in neuroscience have focused on using two ultrafast lasers for activity imaging and optogenetic stimulation. Broadband femtosecond light sources can obviate the need for multiple lasers by spectral separation for chromatically targeted excitation. AIM We present a photonic crystal fiber (PCF)-based supercontinuum source for spectrally resolved two-photon (2P) imaging and excitation of GCaMP6s and C1V1-mCherry, respectively. APPROACH A PCF is pumped using a 20-MHz repetition rate femtosecond laser to generate a supercontinuum of light, which is spectrally separated, compressed, and recombined to image GCaMP6s (930 nm excitation) and stimulate the optogenetic protein, C1V1-mCherry (1060 nm excitation). Galvanometric spiral scanning is employed on a single-cell level for multiphoton excitation and high-speed resonant scanning is employed for imaging of calcium activity. RESULTS Continuous wave lasers were used to verify functionality of optogenetic activation followed by directed 2P excitation. Results from these experiments demonstrate the utility of a supercontinuum light source for simultaneous, single-cell excitation and calcium imaging. CONCLUSIONS A PCF-based supercontinuum light source was employed for simultaneous imaging and excitation of calcium dynamics in brain tissue. Pumped PCFs can serve as powerful light sources for imaging and activation of neural activity, and overcome the limited spectra and space associated with multilaser approaches.
Collapse
Affiliation(s)
- Yuan-Zhi Liu
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Carlos Renteria
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Connor D. Courtney
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Neuroscience Program, Urbana, Illinois, United States
| | - Baher Ibrahim
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Sixian You
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Computational Science and Engineering, Urbana, Illinois, United States
| | - Eric J. Chaney
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Ronit Barkalifa
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Rishyashring R. Iyer
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Mantas Zurauskas
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Haohua Tu
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Daniel A. Llano
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Neuroscience Program, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Molecular and Integrative Physiology, Urbana, Illinois, United States
| | - Catherine A. Christian-Hinman
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Neuroscience Program, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Molecular and Integrative Physiology, Urbana, Illinois, United States
| | - Stephen A. Boppart
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Neuroscience Program, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Computational Science and Engineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Carle Illinois College of Medicine, Urbana, Illinois, United States
| |
Collapse
|
17
|
Awasthi K, Chang FL, Hsieh PY, Hsu HY, Ohta N. Characterization of endogenous fluorescence in nonsmall lung cancerous cells: A comparison with nonmalignant lung normal cells. JOURNAL OF BIOPHOTONICS 2020; 13:e201960210. [PMID: 32067342 DOI: 10.1002/jbio.201960210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Monitoring fluorescence properties of endogenous fluorophores such as nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) in normal and cancerous cells provide substantial information noninvasively on biochemical and biophysical aspects of metabolic dysfunction of cancerous cells. Time-resolved spectral profiles and fluorescence lifetime images of NADH and FAD were obtained in human lung nonsmall carcinomas (H661 and A549) and normal lung cells (MRC-5). Both fluorophores show the fast and slowly decaying emission components upon pulsed excitation, and fluorescence spectra of NADH and FAD show blue- and red-shifts, respectively, during their decay. All identified lifetime components of NADH and FAD were found to be shorter in cancerous cells than in normal cells, no matter how they were measured under different extra-cellular conditions (cells suspended in cuvette and cells attached on glass substrate), indicating that the changes in metabolism likely altered the subcellular milieu and potentially also affected the interaction of NADH and FAD with enzymes to which these cofactors were bound. The intensity ratio of NADH and FAD of cancerous cells was also shown to be larger than that of normal cells.
Collapse
Affiliation(s)
- Kamlesh Awasthi
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Feng-Lin Chang
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Pei-Ying Hsieh
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Hsin-Yun Hsu
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Nobuhiro Ohta
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
18
|
Li J, Wilson MN, Bower AJ, Marjanovic M, Chaney EJ, Barkalifa R, Boppart SA. Video-rate multimodal multiphoton imaging and three-dimensional characterization of cellular dynamics in wounded skin. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2020; 13:2050007. [PMID: 33584862 PMCID: PMC7880242 DOI: 10.1142/s1793545820500078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
To date, numerous studies have been performed to elucidate the complex cellular dynamics in skin diseases, but few have attempted to characterize these cellular events under conditions similar to the native environment. To address this challenge, a three-dimensional (3D) multimodal analysis platform was developed for characterizing in vivo cellular dynamics in skin, which was then utilized to process in vivo wound healing data to demonstrate its applicability. Special attention is focused on in vivo biological parameters that are difficult to study with ex vivo analysis, including 3D cell tracking and techniques to connect biological information obtained from different imaging modalities. These results here open new possibilities for evaluating 3D cellular dynamics in vivo, and can potentially provide new tools for characterizing the skin microenvironment and pathologies in the future.
Collapse
Affiliation(s)
- Joanne Li
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, U.S.A
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, U.S.A
| | - Madison N. Wilson
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign Urbana, IL, U.S.A
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, U.S.A
| | - Andrew J. Bower
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign Urbana, IL, U.S.A
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, U.S.A
| | - Marina Marjanovic
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, U.S.A
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, U.S.A
| | - Eric J. Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, U.S.A
| | - Ronit Barkalifa
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, U.S.A
| | - Stephen A. Boppart
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, U.S.A
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign Urbana, IL, U.S.A
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, U.S.A
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, U.S.A
| |
Collapse
|