1
|
Langley A, Sweeney A, Shethia RT, Bednarke B, Wulandana F, Xavierselvan M, Mallidi S. In vivo, online label-free monitoring of heterogenous oxygen utilization during phototherapy with real-time ultrasound-guided photoacoustic imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625759. [PMID: 39677615 PMCID: PMC11642742 DOI: 10.1101/2024.11.27.625759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Understanding the tumor microenvironment, particularly the vascular density and the availability of oxygen, is key in individualizing treatment approaches and determining their efficacy. While there are many therapies including radiotherapy that are ineffective in hypoxic tumor microenvironments, here we demonstrate the heterogeneous oxygen consumption during photodynamic therapy (PDT), a non-invasive treatment method using localized light to activate a photosensitive drug in the presence of oxygen that has shown high effectiveness in the treatment of various types of tumors, including those presented in head and neck cancer (HNC) patients. While our previous work has demonstrated that blood oxygen saturation (StO2) mapped before and after treatment with ultrasound-guided photoacoustic imaging (US-PAI) can be used as a surrogate marker for the regionalized long-term efficacy of PDT, real-time monitoring of StO2 during PDT could provide additional insights on oxygen consumption and inform dose design for "on the spot" treatment decisions. Specifically, in this work, we integrated the US-PAI transducer probe with PDT light delivery fibers. We tested the setup on murine tumor models intravenously injected with liposomal benzoporphyrin derivative (BPD) photosensitizer at 0.5 mg/kg dose and photodynamic illumination at 100 and 400 mW/cm2 fluence rate. As expected, we observed with our US-PAI StO2 images that the rate of oxygen utilization increases when using a high fluence rate (HFR) light dose. Particularly in the higher fluence rate group, we observed StO2 reaching a minimum mid-light dose, followed by some degree of reoxygenation. US-PAI added the advantage of spatial information to StO2 monitoring, which allowed us to match regions of re-oxygenation during therapy to retained vascular function with immunohistochemistry. Overall, our results have demonstrated the potential of US-PAI for applications in online dosimetry for cancer therapies such as PDT, using oxygen changes to detect regionalized physiological vascular response in the tumor microenvironment.
Collapse
Affiliation(s)
- Andrew Langley
- Department of Biomedical Engineering, Tufts University, MA, USA
| | - Allison Sweeney
- Department of Biomedical Engineering, Tufts University, MA, USA
| | - Ronak T Shethia
- Department of Biomedical Engineering, Tufts University, MA, USA
| | - Brooke Bednarke
- Department of Biomedical Engineering, Tufts University, MA, USA
| | | | | | | |
Collapse
|
2
|
Alekseeva P, Makarov V, Efendiev K, Shiryaev A, Reshetov I, Loschenov V. Devices and Methods for Dosimetry of Personalized Photodynamic Therapy of Tumors: A Review on Recent Trends. Cancers (Basel) 2024; 16:2484. [PMID: 39001546 PMCID: PMC11240380 DOI: 10.3390/cancers16132484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Significance: Despite the widespread use of photodynamic therapy in clinical practice, there is a lack of personalized methods for assessing the sufficiency of photodynamic exposure on tumors, depending on tissue parameters that change during light irradiation. This can lead to different treatment results. Aim: The objective of this article was to conduct a comprehensive review of devices and methods employed for the implicit dosimetric monitoring of personalized photodynamic therapy for tumors. Methods: The review included 88 peer-reviewed research articles published between January 2010 and April 2024 that employed implicit monitoring methods, such as fluorescence imaging and diffuse reflectance spectroscopy. Additionally, it encompassed computer modeling methods that are most often and successfully used in preclinical and clinical practice to predict treatment outcomes. The Internet search engine Google Scholar and the Scopus database were used to search the literature for relevant articles. Results: The review analyzed and compared the results of 88 peer-reviewed research articles presenting various methods of implicit dosimetry during photodynamic therapy. The most prominent wavelengths for PDT are in the visible and near-infrared spectral range such as 405, 630, 660, and 690 nm. Conclusions: The problem of developing an accurate, reliable, and easily implemented dosimetry method for photodynamic therapy remains a current problem, since determining the effective light dose for a specific tumor is a decisive factor in achieving a positive treatment outcome.
Collapse
Affiliation(s)
- Polina Alekseeva
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.)
| | - Vladimir Makarov
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.)
- Department of Laser Micro-Nano and Biotechnologies, Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Kanamat Efendiev
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.)
- Department of Laser Micro-Nano and Biotechnologies, Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Artem Shiryaev
- Department of Oncology and Radiotherapy, Levshin Institute of Cluster Oncology, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Igor Reshetov
- Department of Oncology and Radiotherapy, Levshin Institute of Cluster Oncology, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Victor Loschenov
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.)
- Department of Laser Micro-Nano and Biotechnologies, Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| |
Collapse
|
3
|
Efendiev K, Alekseeva P, Linkov K, Shiryaev A, Pisareva T, Gilyadova A, Reshetov I, Voitova A, Loschenov V. Tumor fluorescence and oxygenation monitoring during photodynamic therapy with chlorin e6 photosensitizer. Photodiagnosis Photodyn Ther 2024; 45:103969. [PMID: 38211779 DOI: 10.1016/j.pdpdt.2024.103969] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND The study is aimed at developing a method for monitoring photodynamic therapy (PDT) of a tumor using chlorin-type photosensitizers (PSs). Lack of monitoring of chlorin e6 (Cе6) photobleaching, hemoglobin oxygenation and blood flow during light exposure can limit the PDT effectiveness. MATERIALS AND METHODS Phototheranostics includes spectral-fluorescence diagnostics of Ce6 distribution in the NIR range and PDT with simultaneous assessment of hemoglobin oxygenation and tumor blood flow. Fluorescence diagnostics and PDT were performed using the single laser λexc=660 ± 5 nm. RESULTS Combined spectroscopic PDT monitoring method allowed simultaneous estimation of Ce6 photobleaching, hemoglobin oxygenation and tumor vascular thrombosis during PDT without interrupting the therapeutic light exposure. CONCLUSION The developed method of tumor phototheranostics using chlorin-type PSs may make it possible to personalize the duration of therapeutic light exposure during PDT.
Collapse
Affiliation(s)
- Kanamat Efendiev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia; National Research Nuclear University "MEPhI", Moscow, Russia.
| | - Polina Alekseeva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Kirill Linkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Artem Shiryaev
- Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Aida Gilyadova
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Igor Reshetov
- Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Victor Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia; National Research Nuclear University "MEPhI", Moscow, Russia
| |
Collapse
|
4
|
Overchuk M, Weersink RA, Wilson BC, Zheng G. Photodynamic and Photothermal Therapies: Synergy Opportunities for Nanomedicine. ACS NANO 2023; 17:7979-8003. [PMID: 37129253 PMCID: PMC10173698 DOI: 10.1021/acsnano.3c00891] [Citation(s) in RCA: 393] [Impact Index Per Article: 196.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tumoricidal photodynamic (PDT) and photothermal (PTT) therapies harness light to eliminate cancer cells with spatiotemporal precision by either generating reactive oxygen species or increasing temperature. Great strides have been made in understanding biological effects of PDT and PTT at the cellular, vascular and tumor microenvironmental levels, as well as translating both modalities in the clinic. Emerging evidence suggests that PDT and PTT may synergize due to their different mechanisms of action, and their nonoverlapping toxicity profiles make such combination potentially efficacious. Moreover, PDT/PTT combinations have gained momentum in recent years due to the development of multimodal nanoplatforms that simultaneously incorporate photodynamically- and photothermally active agents. In this review, we discuss how combining PDT and PTT can address the limitations of each modality alone and enhance treatment safety and efficacy. We provide an overview of recent literature featuring dual PDT/PTT nanoparticles and analyze the strengths and limitations of various nanoparticle design strategies. We also detail how treatment sequence and dose may affect cellular states, tumor pathophysiology and drug delivery, ultimately shaping the treatment response. Lastly, we analyze common experimental design pitfalls that complicate preclinical assessment of PDT/PTT combinations and propose rational guidelines to elucidate the mechanisms underlying PDT/PTT interactions.
Collapse
Affiliation(s)
- Marta Overchuk
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
| | - Robert A Weersink
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Brian C Wilson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
5
|
Efendiev KT, Alekseeva PM, Shiryaev AA, Skobeltsin AS, Solonina IL, Fatyanova AS, Reshetov IV, Loschenov VB. Preliminary low-dose photodynamic exposure to the skin cancer with chlorin e6 photosensitizer. Photodiagnosis Photodyn Ther 2022; 38:102894. [PMID: 35490962 DOI: 10.1016/j.pdpdt.2022.102894] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The study was aimed to investigate the chlorin e6 photosensitizer distribution in the tumor and tumor border (5 mm) during low-dose photodynamic treatment and to increase the effectiveness of the therapy for skin neoplasms. METHODS Sensitized boundaries of neoplasms were evaluated by video fluorescence imaging. The study of changes in the chlorin e6 distribution before/after photodynamic therapy and in the process of low-dose photodynamic exposure was carried out by the method of spectral fluorescence diagnostics. RESULTS All 19 patients with basal-cell skin cancer had a contrast of chlorin e6 accumulation compared to normal tissues. 3 hours after intravenous administration of the photosensitizer at a dose of 1 mg/kg, the chlorin e6 concentration was: in normal tissues - 0.18 mg/kg, in the tumor - 1.26 mg/kg, in the tumor border - 0.63 mg/kg. In most cases, the fluorescence indices of chlorin e6 in tumor tissues after low-dose photodynamic therapy increased and exceeded the values before light exposure. CONCLUSION Low-dose photodynamic therapy seems to be the optimal method for treating neoplasms, which does not cause severe pain in patients during the light exposure and allows locally increasing of the photosensitizer concentration in tumor tissues. This method of photodynamic therapy can improve the effectiveness of thе treatment.
Collapse
Affiliation(s)
- K T Efendiev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; National Research Nuclear University "MEPhI", 115409 Moscow, Russia.
| | - P M Alekseeva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; National Research Nuclear University "MEPhI", 115409 Moscow, Russia
| | - A A Shiryaev
- University Clinical Hospital No. 1, Levshin Institute of Cluster Oncology, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, 119435 Moscow, Russia
| | - A S Skobeltsin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; National Research Nuclear University "MEPhI", 115409 Moscow, Russia
| | - I L Solonina
- University Clinical Hospital No. 1, Levshin Institute of Cluster Oncology, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, 119435 Moscow, Russia
| | - A S Fatyanova
- University Clinical Hospital No. 1, Levshin Institute of Cluster Oncology, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, 119435 Moscow, Russia
| | - I V Reshetov
- University Clinical Hospital No. 1, Levshin Institute of Cluster Oncology, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, 119435 Moscow, Russia
| | - V B Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; National Research Nuclear University "MEPhI", 115409 Moscow, Russia
| |
Collapse
|
6
|
Carter S, Miller J, Cramer G, Yuan M, Guzman S, Putt ME, Cengel KA, Freedman GM, Busch TM. Adjuvant Photodynamic Therapy, Mediated via Topical Versus Systemic Administration of 5-Aminolevulinic Acid for Control of Murine Mammary Tumor after Surgical Resection. Photochem Photobiol 2022; 98:117-126. [PMID: 34224156 PMCID: PMC9682898 DOI: 10.1111/php.13482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/04/2021] [Accepted: 07/02/2021] [Indexed: 01/03/2023]
Abstract
Treatment de-escalation is sought in the management of precursor lesions of early stage breast cancer, driving the appeal of adjuvant modalities to lumpectomy that reduce toxicity and minimally detract from patient quality of life. We investigate photodynamic therapy (PDT), with the photosensitizing prodrug, 5-aminolevulinic acid (ALA), as adjuvant therapy to complete resection of murine mammary tumor (propagated from TUBO cells). ALA was delivered either systemically (oral, 250 mg kg-1 ) at 5 h before 632 nm illumination or topically (20% solution) to the resection site at 10 min before light delivery to 135 J cm-2 . Treatment with either oral-ALA-PDT (oALA-PDT) or topical-ALA-PDT (tALA-PDT) to the mammary fat pad after TUBO complete resection (CR) produced long-term tumor control with 90-day complete response rates of 21% and 32%, respectively, compared to control rates of 0-5% in mice receiving only CR. Thus, CR/tALA-PDT was equipotent to CR/oALA-PDT despite ~10-fold lower levels of ALA-induced protoporphyrin XI as photosensitizer after topical versus oral-ALA administration. CR/oALA-PDT produced more vascular damage, greater proportion of tissue-resident neutrophils and stronger inflammation when compared to CR/tALA-PDT. Collectively, these data provide rationale for ongoing investigation of ALA-PDT as adjuvant therapy after lumpectomy for increased probability of local control in the treatment of breast cancer.
Collapse
Affiliation(s)
- Shirron Carter
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joann Miller
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gwendolyn Cramer
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Min Yuan
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stacy Guzman
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary E. Putt
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Keith A. Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gary M. Freedman
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theresa M. Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Corresponding author (Theresa M. Busch)
| |
Collapse
|
7
|
Turchin I, Bano S, Kirillin M, Orlova A, Perekatova V, Plekhanov V, Sergeeva E, Kurakina D, Khilov A, Kurnikov A, Subochev P, Shirmanova M, Komarova A, Yuzhakova D, Gavrina A, Mallidi S, Hasan T. Combined Fluorescence and Optoacoustic Imaging for Monitoring Treatments against CT26 Tumors with Photoactivatable Liposomes. Cancers (Basel) 2021; 14:197. [PMID: 35008362 PMCID: PMC8750546 DOI: 10.3390/cancers14010197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
The newly developed multimodal imaging system combining raster-scan optoacoustic (OA) microscopy and fluorescence (FL) wide-field imaging was used for characterizing the tumor vascular structure with 38/50 μm axial/transverse resolution and assessment of photosensitizer fluorescence kinetics during treatment with novel theranostic agents. A multifunctional photoactivatable multi-inhibitor liposomal (PMILs) nano platform was engineered here, containing a clinically approved photosensitizer, Benzoporphyrin derivative (BPD) in the bilayer, and topoisomerase I inhibitor, Irinotecan (IRI) in its inner core, for a synergetic therapeutic impact. The optimized PMIL was anionic, with the hydrodynamic diameter of 131.6 ± 2.1 nm and polydispersity index (PDI) of 0.05 ± 0.01, and the zeta potential between -14.9 ± 1.04 to -16.9 ± 0.92 mV. In the in vivo studies on BALB/c mice with CT26 tumors were performed to evaluate PMILs' therapeutic efficacy. PMILs demonstrated the best inhibitory effect of 97% on tumor growth compared to the treatment with BPD-PC containing liposomes (PALs), 81%, or IRI containing liposomes (L-[IRI]) alone, 50%. This confirms the release of IRI within the tumor cells upon PMILs triggering by NIR light, which is additionally illustrated by FL monitoring demonstrating enhancement of drug accumulation in tumor initiated by PDT in 24 h after the treatment. OA monitoring revealed the largest alterations of the tumor vascular structure in the PMILs treated mice as compared to BPD-PC or IRI treated mice. The results were further corroborated with histological data that also showed a 5-fold higher percentage of hemorrhages in PMIL treated mice compared to the control groups. Overall, these results suggest that multifunctional PMILs simultaneously delivering PDT and chemotherapy agents along with OA and FL multi-modal imaging offers an efficient and personalized image-guided platform to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Ilya Turchin
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Shazia Bano
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (S.B.); (S.M.); (T.H.)
| | - Mikhail Kirillin
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Anna Orlova
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Valeriya Perekatova
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Vladimir Plekhanov
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Ekaterina Sergeeva
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Daria Kurakina
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Aleksandr Khilov
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Alexey Kurnikov
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Pavel Subochev
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Marina Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (M.S.); (A.K.); (D.Y.); (A.G.)
| | - Anastasiya Komarova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (M.S.); (A.K.); (D.Y.); (A.G.)
| | - Diana Yuzhakova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (M.S.); (A.K.); (D.Y.); (A.G.)
| | - Alena Gavrina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (M.S.); (A.K.); (D.Y.); (A.G.)
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (S.B.); (S.M.); (T.H.)
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (S.B.); (S.M.); (T.H.)
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Chen D, Wang Y, Zhao H, Qiu H, Wang Y, Yang J, Gu Y. Monitoring perfusion and oxygen saturation in port-wine stains during vascular targeted photodynamic therapy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:214. [PMID: 33708841 PMCID: PMC7940906 DOI: 10.21037/atm-20-3210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background Vascular targeted photodynamic therapy (V-PDT) is a safe and effective therapeutic modality for port-wine stains (PWS) by targetedly damaging the dilated and malformed blood vessels. This study aims to monitor and quantify the changes in oxygen saturation (StO2), blood volume fraction (BVF) and perfusion in PWS lesions before and during V-PDT. Methods Microvascular parameters (i.e., StO2 and BVF) and skin perfusion were measured noninvasively by using diffuse reflectance spectroscopy (DRS) and laser Doppler imaging (LDI), respectively. The change in StO2, BVF and perfusion that occurred in the PWS lesions of 26 patients were monitored and investigated before and during V-PDT in vivo with the systematic administration of the porphyrin-based photosensitizer HiPorfin. Results The mean StO2 (P<0.05), BVF (P<0.05), and perfusion (P<0.001) in PWS lesions of all subjects significantly increased by 6%, 34%, and 113%, respectively, 3 min after the initiation of V-PDT. The StO2 increased first and fluctuated during V-PDT. The overall trend of BVF change was consistent with the perfusion change. The BVF and the perfusion of PWS lesions increased after the initiation of V-PDT, and then gradually decreased. Conclusions V-PDT is an effective therapeutic modality in treating PWS. Results showed that LDI and DRS permitted the noninvasive monitoring of the changes in StO2, BVF, and perfusion in PWS lesions during V-PDT, and these methods can be useful in facilitating our understanding of the basic physiological mechanisms during V-PDT.
Collapse
Affiliation(s)
- Defu Chen
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China.,Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Electronics, Beijing Institute of Technology, Beijing, China
| | - Ying Wang
- Department of Laser Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongyou Zhao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Haixia Qiu
- Department of Laser Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yongtian Wang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Electronics, Beijing Institute of Technology, Beijing, China
| | - Jian Yang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Electronics, Beijing Institute of Technology, Beijing, China
| | - Ying Gu
- Department of Laser Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China.,Precision laser medical diagnosis and treatment Innovation unit, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Kirillin M, Kurakina D, Khilov A, Orlova A, Shakhova M, Orlinskaya N, Sergeeva E. Red and blue light in antitumor photodynamic therapy with chlorin-based photosensitizers: a comparative animal study assisted by optical imaging modalities. BIOMEDICAL OPTICS EXPRESS 2021; 12:872-892. [PMID: 33680547 PMCID: PMC7901330 DOI: 10.1364/boe.411518] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 05/10/2023]
Abstract
The goal of this study is a comparative analysis of the efficiency of the PDT protocols for CT26 tumor model treatment in Balb/c mice employing red and blue light with both topical and intravenous administration of chlorin-based photosensitizers (PSs). The considered protocols include the doses of 250 J/cm2 delivered at 660 nm, 200 J/cm2 delivered at 405 nm, and 250 J/cm2 delivered at both wavelengths with equal energy density contribution. Dual-wavelength fluorescence imaging was employed to estimate both photobleaching efficiency, typical photobleaching rates and the procedure impact depth, while optical coherence tomography with angiography modality (OCT-A) was employed to monitor the tumor vasculature response for up to 7 days after the procedure with subsequent histology inspection. Red light or dual-wavelength PDT regimes with intravenous PS injection were demonstrated to provide the most pronounced tumor response among all the considered cases. On the contrary, blue light regimes were demonstrated to be most efficient among topical application and irradiation only regimes. Tumor size dynamics for different groups is in good agreement with the tumor response predictions based on OCT-A taken in 24h after exposure and the results of histology analysis performed in 7 days after the exposure.
Collapse
Affiliation(s)
- Mikhail Kirillin
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
| | - Daria Kurakina
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
| | - Aleksandr Khilov
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
| | - Anna Orlova
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
| | - Maria Shakhova
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, 603950, Russia
| | - Natalia Orlinskaya
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, 603950, Russia
| | - Ekaterina Sergeeva
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
| |
Collapse
|
10
|
De Silva P, Saad MA, Thomsen HC, Bano S, Ashraf S, Hasan T. Photodynamic therapy, priming and optical imaging: Potential co-conspirators in treatment design and optimization - a Thomas Dougherty Award for Excellence in PDT paper. J PORPHYR PHTHALOCYA 2020; 24:1320-1360. [PMID: 37425217 PMCID: PMC10327884 DOI: 10.1142/s1088424620300098] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Photodynamic therapy is a photochemistry-based approach, approved for the treatment of several malignant and non-malignant pathologies. It relies on the use of a non-toxic, light activatable chemical, photosensitizer, which preferentially accumulates in tissues/cells and, upon irradiation with the appropriate wavelength of light, confers cytotoxicity by generation of reactive molecular species. The preferential accumulation however is not universal and, depending on the anatomical site, the ratio of tumor to normal tissue may be reversed in favor of normal tissue. Under such circumstances, control of the volume of light illumination provides a second handle of selectivity. Singlet oxygen is the putative favorite reactive molecular species although other entities such as nitric oxide have been credibly implicated. Typically, most photosensitizers in current clinical use have a finite quantum yield of fluorescence which is exploited for surgery guidance and can also be incorporated for monitoring and treatment design. In addition, the photodynamic process alters the cellular, stromal, and/or vascular microenvironment transiently in a process termed photodynamic priming, making it more receptive to subsequent additional therapies including chemo- and immunotherapy. Thus, photodynamic priming may be considered as an enabling technology for the more commonly used frontline treatments. Recently, there has been an increase in the exploitation of the theranostic potential of photodynamic therapy in different preclinical and clinical settings with the use of new photosensitizer formulations and combinatorial therapeutic options. The emergence of nanomedicine has further added to the repertoire of photodynamic therapy's potential and the convergence and co-evolution of these two exciting tools is expected to push the barriers of smart therapies, where such optical approaches might have a special niche. This review provides a perspective on current status of photodynamic therapy in anti-cancer and anti-microbial therapies and it suggests how evolving technologies combined with photochemically-initiated molecular processes may be exploited to become co-conspirators in optimization of treatment outcomes. We also project, at least for the short term, the direction that this modality may be taking in the near future.
Collapse
Affiliation(s)
- Pushpamali De Silva
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mohammad A. Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hanna C. Thomsen
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shazia Bano
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shoaib Ashraf
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
Blood Flow Measurements Enable Optimization of Light Delivery for Personalized Photodynamic Therapy. Cancers (Basel) 2020; 12:cancers12061584. [PMID: 32549354 PMCID: PMC7353010 DOI: 10.3390/cancers12061584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Fluence rate is an effector of photodynamic therapy (PDT) outcome. Lower light fluence rates can conserve tumor perfusion during some illumination protocols for PDT, but then treatment times are proportionally longer to deliver equivalent fluence. Likewise, higher fluence rates can shorten treatment time but may compromise treatment efficacy by inducing blood flow stasis during illumination. We developed blood-flow-informed PDT (BFI-PDT) to balance these effects. BFI-PDT uses real-time noninvasive monitoring of tumor blood flow to inform selection of irradiance, i.e., incident fluence rate, on the treated surface. BFI-PDT thus aims to conserve tumor perfusion during PDT while minimizing treatment time. Pre-clinical studies in murine tumors of radiation-induced fibrosarcoma (RIF) and a mesothelioma cell line (AB12) show that BFI-PDT preserves tumor blood flow during illumination better than standard PDT with continuous light delivery at high irradiance. Compared to standard high irradiance PDT, BFI-PDT maintains better tumor oxygenation during illumination and increases direct tumor cell kill in a manner consistent with known oxygen dependencies in PDT-mediated cytotoxicity. BFI-PDT promotes vascular shutdown after PDT, thereby depriving remaining tumor cells of oxygen and nutrients. Collectively, these benefits of BFI-PDT produce a significantly better therapeutic outcome than standard high irradiance PDT. Moreover, BFI-PDT requires ~40% less time on average to achieve outcomes that are modestly better than those with standard low irradiance treatment. This contribution introduces BFI-PDT as a platform for personalized light delivery in PDT, documents the design of a clinically-relevant instrument, and establishes the benefits of BFI-PDT with respect to treatment outcome and duration.
Collapse
|
12
|
Arisi M, Zane C, Polonioli M, Tomasi C, Moggio E, Cozzi C, Soglia S, Caravello S, Calzavara-Pinton I, Venturini M, Rossi MT, Calzavara-Pinton PG. Effects of MAL-PDT, ingenol mebutate and diclofenac plus hyaluronate gel monitored by high-frequency ultrasound and digital dermoscopy in actinic keratosis - a randomized trial. J Eur Acad Dermatol Venereol 2020; 34:1225-1232. [PMID: 31793041 DOI: 10.1111/jdv.16123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The efficacy for actinic keratosis (AK) clearance of field-directed treatments has been investigated in randomized studies against placebo, but the comparison of results is difficult for several methodological reasons. OBJECTIVES The present study aims to compare efficacy of MAL-photodynamic therapy (MAL-PDT), ingenol mebutate gel (IMB) and diclofenac plus hyaluronate gel (DHA) on multiple AKs assessing a new performance index of efficacy, the cumulative AK area and evaluating dermoscopical and high-frequency ultrasound (HFUS) changes. METHODS Patients with ≥5 Olsen II AKs in a 25 cm2 area of the scalp and face were enrolled and randomized to one of the treatment choices. Number of AKs and cumulative area were assessed before and after treatment. Dermoscopy and HFUS were performed on a single AK and surrounding photo-damaged skin in the treatment area. RESULTS Cumulative AKs area reduced significantly more with PDT compared to other treatment options and with IMB in comparison to DHA. PDT was also the only treatment option that increased at a significant level the dermal density in both target AK and the surrounding skin and decreased significantly the SLEB thickness in the perilesional skin at HFUS. CONCLUSIONS MAL-PDT is more effective than IMB and DHA for reducing the cumulative AK area which is calculated digitally from 3D pictures and should be the preferred performance index for the evaluation of the efficacy of treatments for AKs, rolling out clinical and dermoscopy evaluation. MAL-PDT improves all HFUS features of chronic photodamages of the dermis of the skin underlying and surrounding the AK spots.
Collapse
Affiliation(s)
- M Arisi
- Department of Dermatology, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - C Zane
- Department of Dermatology, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - M Polonioli
- Department of Dermatology, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - C Tomasi
- Department of Experimental and Applied Medicine, Section of Industrial Hygiene, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - E Moggio
- Department of Dermatology, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - C Cozzi
- Department of Dermatology, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - S Soglia
- Department of Dermatology, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - S Caravello
- Department of Dermatology, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - I Calzavara-Pinton
- Department of Dermatology, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - M Venturini
- Department of Dermatology, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - M T Rossi
- Department of Dermatology, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - P G Calzavara-Pinton
- Department of Dermatology, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| |
Collapse
|
13
|
Zhou W, Chen Z, Zhou Q, Xing D. Optical Biopsy of Melanoma and Basal Cell Carcinoma Progression by Noncontact Photoacoustic and Optical Coherence Tomography: In Vivo Multi-Parametric Characterizing Tumor Microenvironment. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1967-1974. [PMID: 31880548 DOI: 10.1109/tmi.2019.2962614] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Measuring the structural and functional status of tumor microenvironment for malignant melanoma (MM) and basal cell carcinoma (BCC) is of profound significance in understanding dermatological condition for biopsy. However, conventional optical imaging techniques are limited to visualize superficial skin features and parameter information is deficient to depict pathophysiology correlations of skin diseases. Here, we demonstrate a preclinical device, all-optically integrated photoacoustic and optical coherence tomography (AOPA/OCT), that, for the first time, can simultaneously provide label-free biomarkers of vascular patterns, temporal and spatial heterogeneity of blood flow, and tissue micro-structure changes during tumor growth with pathophysiological correlations in mice models. We found that tumor microenvironment of MM and BCC led to the alternation in spatial-temporal heterogeneity that affected morphological and functional parameters, performing the AOPA/OCT quantitative metrics. A robust correlation between imaging biomarkers derived from this in vivo technique and histopathology validation ex vivo in distinguishing benign from malignant is also presented. In receiver operating characteristics (ROC) analysis, multi-parametric AOPA/OCT yields improved diagnostic accuracy of 98.4% and 95.8% for MM and BCC respectively, which indicate that AOPA/OCT represents a high-performance and clinically translatable technique for accurate diagnosis and therapy monitoring in dermatology.
Collapse
|
14
|
Mousavi M, Moriyama LT, Grecco C, Nogueira MS, Svanberg K, Kurachi C, Andersson-Engels S. Photodynamic therapy dosimetry using multiexcitation multiemission wavelength: toward real-time prediction of treatment outcome. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-14. [PMID: 32246614 PMCID: PMC7118359 DOI: 10.1117/1.jbo.25.6.063812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/27/2020] [Indexed: 05/28/2023]
Abstract
Evaluating the optical properties of biological tissues is needed to achieve accurate dosimetry during photodynamic therapy (PDT). Currently, accurate assessment of the photosensitizer (PS) concentration by fluorescence measurements during PDT is typically hindered by the lack of information about tissue optical properties. In the present work, a hand-held fiber-optic probe instrument monitoring fluorescence and reflectance is used for assessing blood volume, reduced scattering coefficient, and PS concentration facilitating accurate dosimetry for PDT. System validation was carried out on tissue phantoms using nonlinear least squares support machine regression analysis. It showed a high correlation coefficient (>0.99) in the prediction of the PS concentration upon a large variety of phantom optical properties. In vivo measurements were conducted in a PDT chlorine e6 dose escalating trial involving 36 male Swiss mice with Ehrlich solid tumors in which fluences of 5, 15, and 40 J cm - 2 were delivered at two fluence rates (100 and 40 mW cm - 2). Remarkably, quantitative measurement of fluorophore concentration was achieved in the in vivo experiment. Diffuse reflectance spectroscopy (DRS) system was also used to independently measure the physiological properties of the target tissues for result comparisons. Then, blood volume and scattering coefficient measured by the fiber-optic probe system were compared with the corresponding result measured by DRS and showed agreement. Additionally, tumor hemoglobin oxygen saturation was measured using the DRS system. Overall, the system is capable of assessing the implicit photodynamic dose to predict the PDT outcome.
Collapse
Affiliation(s)
| | - Lilian Tan Moriyama
- University of São Paulo, São Carlos Institute of Physics, Optics Group, São Carlos/SP, Brazil
| | - Clovis Grecco
- University of São Paulo, São Carlos Institute of Physics, Optics Group, São Carlos/SP, Brazil
| | - Marcelo Saito Nogueira
- Tyndall National Institute, IPIC, Biophotonics@Tyndall, Lee Maltings, Cork, Ireland
- University College Cork, Department of Physics, Cork, Ireland
| | - Katarina Svanberg
- Lund University, Department of Physics, Biophotonics Group, Lund, Sweden
| | - Cristina Kurachi
- University of São Paulo, São Carlos Institute of Physics, Optics Group, São Carlos/SP, Brazil
| | - Stefan Andersson-Engels
- Lund University, Department of Physics, Biophotonics Group, Lund, Sweden
- Tyndall National Institute, IPIC, Biophotonics@Tyndall, Lee Maltings, Cork, Ireland
- University College Cork, Department of Physics, Cork, Ireland
| |
Collapse
|
15
|
Assessment of singlet oxygen dosimetry concepts in photodynamic therapy through computational modeling. Photodiagnosis Photodyn Ther 2018; 21:224-233. [DOI: 10.1016/j.pdpdt.2017.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/13/2017] [Accepted: 12/28/2017] [Indexed: 12/20/2022]
|
16
|
Thong PSP, Lee K, Toh HJ, Dong J, Tee CS, Low KP, Chang PH, Bhuvaneswari R, Tan NC, Soo KC. Early assessment of tumor response to photodynamic therapy using combined diffuse optical and diffuse correlation spectroscopy to predict treatment outcome. Oncotarget 2017; 8:19902-19913. [PMID: 28423634 PMCID: PMC5386732 DOI: 10.18632/oncotarget.15720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 01/16/2017] [Indexed: 12/30/2022] Open
Abstract
Photodynamic therapy (PDT) of cancer involves the use of a photosensitizer that can be light-activated to eradicate tumors via direct cytotoxicity, damage to tumor vasculature and stimulating the body's immune system. Treatment outcome may vary between individuals even under the same regime; therefore a non-invasive tumor response monitoring system will be useful for personalization of the treatment protocol. We present the combined use of diffuse optical spectroscopy (DOS) and diffuse correlation spectroscopy (DCS) to provide early assessment of tumor response. The relative tissue oxygen saturation (rStO2) and relative blood flow (rBF) in tumors were measured using DOS and DCS respectively before and after PDT with reference to baseline values in a mouse model. In complete responders, PDT-induced decreases in both rStO2 and rBF levels were observed at 3 h post-PDT and the rBF remained low until 48 h post-PDT. Recovery of these parameters to baseline values was observed around 2 weeks after PDT. In partial responders, the rStO2 and rBF levels also decreased at 3 h post PDT, however the rBF values returned toward baseline values earlier at 24 h post-PDT. In contrast, the rStO2 and rBF readings in control tumors showed fluctuations above the baseline values within the first 48 h. Therefore tumor response can be predicted at 3 to 48 h post-PDT. Recovery or sustained decreases in the rBF at 48 h post-PDT corresponded to long-term tumor control. Diffuse optical measurements can thus facilitate early assessment of tumor response. This approach can enable physicians to personalize PDT treatment regimens for best outcomes.
Collapse
Affiliation(s)
| | - Kijoon Lee
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore.,Nanyang Technological University, Singapore.,Current address: Daegu Gyeongbuk Institute of Science and Technology, Korea
| | - Hui-Jin Toh
- Division of Medical Sciences, National Cancer Centre, Singapore
| | - Jing Dong
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore.,Nanyang Technological University, Singapore.,Current address: Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, USA
| | - Chuan-Sia Tee
- Division of Medical Sciences, National Cancer Centre, Singapore
| | - Kar-Perng Low
- Division of Medical Sciences, National Cancer Centre, Singapore
| | - Pui-Haan Chang
- Division of Medical Sciences, National Cancer Centre, Singapore
| | | | - Ngian-Chye Tan
- Division of Surgical Oncology, National Cancer Centre, Singapore
| | - Khee-Chee Soo
- Division of Medical Sciences, National Cancer Centre, Singapore
| |
Collapse
|
17
|
Farzam P, Johansson J, Mireles M, Jiménez-Valerio G, Martínez-Lozano M, Choe R, Casanovas O, Durduran T. Pre-clinical longitudinal monitoring of hemodynamic response to anti-vascular chemotherapy by hybrid diffuse optics. BIOMEDICAL OPTICS EXPRESS 2017; 8:2563-2582. [PMID: 28663891 PMCID: PMC5480498 DOI: 10.1364/boe.8.002563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 03/20/2017] [Accepted: 03/30/2017] [Indexed: 05/20/2023]
Abstract
The longitudinal effect of an anti-vascular endothelial growth factor receptor 2 (VEGFR-2) antibody (DC 101) therapy on a xenografted renal cell carcinoma (RCC) mouse model was monitored using hybrid diffuse optics. Two groups of immunosuppressed male nude mice (seven treated, seven controls) were measured. Tumor microvascular blood flow, total hemoglobin concentration and blood oxygenation were investigated as potential biomarkers for the monitoring of the therapy effect twice a week and were related to the final treatment outcome. These hemodynamic biomarkers have shown a clear differentiation between two groups by day four. Moreover, we have observed that pre-treatment values and early changes in hemodynamics are highly correlated with the therapeutic outcome demonstrating the potential of diffuse optics to predict the therapy response at an early time point.
Collapse
Affiliation(s)
- Parisa Farzam
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona),
Spain
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129,
USA
| | - Johannes Johansson
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona),
Spain
- Department of Biomedical Engineering, Linköping University, 58185 Linköping,
Sweden
| | - Miguel Mireles
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona),
Spain
| | - Gabriela Jiménez-Valerio
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Biomedical Research Institute – IDIBELL, 08908, L’Hospitalet de Llobregat (Barcelona),
Spain
| | - Mar Martínez-Lozano
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Biomedical Research Institute – IDIBELL, 08908, L’Hospitalet de Llobregat (Barcelona),
Spain
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Oriol Casanovas
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Biomedical Research Institute – IDIBELL, 08908, L’Hospitalet de Llobregat (Barcelona),
Spain
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona),
Spain
- Instituciò Catalana de Recerca i Estudis Avançats (ICREA), 08015, Barcelona,
Spain
| |
Collapse
|
18
|
Diaz D, Lafontant A, Neidrauer M, Weingarten MS, DiMaria-Ghalili RA, Scruggs E, Rece J, Fried GW, Kuzmin VL, Zubkov L. Pressure injury prediction using diffusely scattered light. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:25003. [PMID: 28301656 DOI: 10.1117/1.jbo.22.2.025003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
Pressure injuries (PIs) originate beneath the surface of the skin at the interface between bone and soft tissue. We used diffuse correlation spectroscopy (DCS) and diffuse near-infrared spectroscopy (DNIRS) to predict the development of PIs by measuring dermal and subcutaneous red cell motion and optical absorption and scattering properties in 11 spinal cord injury subjects with only nonbleachable redness in the sacrococcygeal area in a rehabilitation hospital and 20 healthy volunteers. A custom optical probe was developed to obtain continuous DCS and DNIRS data from sacrococcygeal tissue while the subjects were placed in supine and lateral positions to apply pressure from body weight and to release pressure, respectively. Rehabilitation patients were measured up to four times over a two-week period. Three rehabilitation patients developed open PIs (POs) within four weeks and eight patients did not (PNOs). Temporal correlation functions in the area of redness were significantly different ( p < 0.01 ) during both baseline and applied pressure stages for POs and PNOs. The results show that our optical method may be used for the early prediction of ulcer progression.
Collapse
Affiliation(s)
- David Diaz
- Drexel University, School of Biomedical Engineering, Philadelphia, Pennsylvania, United States
| | - Alec Lafontant
- Drexel University, School of Biomedical Engineering, Philadelphia, Pennsylvania, United States
| | - Michael Neidrauer
- Drexel University, School of Biomedical Engineering, Philadelphia, Pennsylvania, United States
| | - Michael S Weingarten
- Drexel University, College of Medicine, Department of Surgery, Philadelphia, Pennsylvania, United States
| | - Rose Ann DiMaria-Ghalili
- Drexel University, College of Nursing and Health Professions, Philadelphia, Pennsylvania, United States
| | - Ericka Scruggs
- Magee Rehabilitation Hospital, Philadelphia, Pennsylvania, United States
| | - Julianne Rece
- Magee Rehabilitation Hospital, Philadelphia, Pennsylvania, United States
| | - Guy W Fried
- Magee Rehabilitation Hospital, Philadelphia, Pennsylvania, United States
| | | | - Leonid Zubkov
- Drexel University, School of Biomedical Engineering, Philadelphia, Pennsylvania, United States
| |
Collapse
|
19
|
Tabassum S, Zhao Y, Istfan R, Wu J, Waxman DJ, Roblyer D. Feasibility of spatial frequency domain imaging (SFDI) for optically characterizing a preclinical oncology model. BIOMEDICAL OPTICS EXPRESS 2016; 7:4154-4170. [PMID: 27867722 PMCID: PMC5102554 DOI: 10.1364/boe.7.004154] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 05/02/2023]
Abstract
Determination of chemotherapy efficacy early during treatment would provide more opportunities for physicians to alter and adapt treatment plans. Diffuse optical technologies may be ideally suited to track early biological events following chemotherapy administration due to low cost and high information content. We evaluated the use of spatial frequency domain imaging (SFDI) to characterize a small animal tumor model in order to move towards the goal of endogenous optical monitoring of cancer therapy in a controlled preclinical setting. The effects of key measurement parameters including the choice of imaging spatial frequency and the repeatability of measurements were evaluated. The precision of SFDI optical property extractions over repeat mouse measurements was determined to be within 3.52% for move and replace experiments. Baseline optical properties and chromophore values as well as intratumor heterogeneity were evaluated over 25 tumors. Additionally, tumor growth and chemotherapy response were monitored over a 45 day longitudinal study in a small number of mice to demonstrate the ability of SFDI to track treatment effects. Optical scattering and oxygen saturation increased as much as 70% and 25% respectively in treated tumors, suggesting SFDI may be useful for preclinical tracking of cancer therapies.
Collapse
Affiliation(s)
- Syeda Tabassum
- Electrical and Computer Engineering, Boston University, 8 Saint Mary’s Street, Boston, MA 02215,USA
| | - Yanyu Zhao
- Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Raeef Istfan
- Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Junjie Wu
- Division of Cell and Molecular Biology, Department of Biology and Bioinformatics Program, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - David J. Waxman
- Division of Cell and Molecular Biology, Department of Biology and Bioinformatics Program, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Darren Roblyer
- Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| |
Collapse
|
20
|
Photodynamic Therapy-Induced Microvascular Changes in a Nonmelanoma Skin Cancer Model Assessed by Photoacoustic Microscopy and Diffuse Correlation Spectroscopy. PHOTONICS 2016. [DOI: 10.3390/photonics3030048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Chen D, Ren J, Wang Y, Li B, Gu Y. Intraoperative monitoring of blood perfusion in port wine stains by laser Doppler imaging during vascular targeted photodynamic therapy: A preliminary study. Photodiagnosis Photodyn Ther 2016; 14:142-51. [PMID: 27068654 DOI: 10.1016/j.pdpdt.2016.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/11/2016] [Accepted: 04/05/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The objective of this study was to monitor blood perfusion dynamics of port wine stains (PWS) during vascular targeted photodynamic therapy (V-PDT) with laser Doppler imaging (LDI). METHODS The PWS lesions of 30 facial PWS patients received V-PDT, while the normal skins on the forearm of 5 healthy subjects were treated as light-only controls for comparison. Furthermore, two different PWS lesions in the same individual from each of 3 PWS patients successively received laser irradiation only and V-PDT, respectively. LDI was used to monitor intraoperative blood perfusion dynamics. RESULTS During V-PDT, the blood perfusion (278±96 PU) in PWS lesions for 31 of 33 PWS patients significantly increased after the initiation of V-PDT treatment, then reached a peak (638±105 PU) within 10min, followed by a slow decrease to a relatively lower level (515±100 PU). Furthermore, the time for reaching peak and the subsequent magnitude of decrease in blood perfusion varied with different patients. For light-only controls, an initial perfusion peak at 3min followed by a nadir and a secondary increase were found not only in normal skin, but also in PWS lesions. CONCLUSION The preliminary results showed that the LDI permits non-invasive monitoring blood perfusion changes of PWS lesions during V-PDT. There was a clear trend in blood perfusion responses during V-PDT and laser irradiation. The blood perfusion changes during treatment were due to V-PDT effects as well as local temperature increase induced by laser irradiation.
Collapse
Affiliation(s)
- Defu Chen
- School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Jie Ren
- Department of Laser Medicine, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Ying Wang
- Department of Laser Medicine, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Buhong Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fujian 350007, China
| | - Ying Gu
- School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China; Department of Laser Medicine, Chinese People's Liberation Army General Hospital, Beijing 100853, China.
| |
Collapse
|
22
|
Johansson JD, Mireles M, Morales-Dalmau J, Farzam P, Martínez-Lozano M, Casanovas O, Durduran T. Scanning, non-contact, hybrid broadband diffuse optical spectroscopy and diffuse correlation spectroscopy system. BIOMEDICAL OPTICS EXPRESS 2016; 7:481-98. [PMID: 26977357 PMCID: PMC4771466 DOI: 10.1364/boe.7.000481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/19/2015] [Accepted: 01/13/2016] [Indexed: 05/24/2023]
Abstract
A scanning system for small animal imaging using non-contact, hybrid broadband diffuse optical spectroscopy (ncDOS) and diffuse correlation spectroscopy (ncDCS) is presented. The ncDOS uses a two-dimensional spectrophotometer retrieving broadband (610-900 nm) spectral information from up to fifty-seven source-detector distances between 2 and 5 mm. The ncDCS data is simultaneously acquired from four source-detector pairs. The sample is scanned in two dimensions while tracking variations in height. The system has been validated with liquid phantoms, demonstrated in vivo on a human fingertip during an arm cuff occlusion and on a group of mice with xenoimplanted renal cell carcinoma.
Collapse
Affiliation(s)
- Johannes D. Johansson
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Miguel Mireles
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Jordi Morales-Dalmau
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Parisa Farzam
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Mar Martínez-Lozano
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Biomedical Research Institute–IDIBELL, 08908, L’Hospitalet de Llobregat (Barcelona), Spain
| | - Oriol Casanovas
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Biomedical Research Institute–IDIBELL, 08908, L’Hospitalet de Llobregat (Barcelona), Spain
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08015 Barcelona, Spain
| |
Collapse
|
23
|
Gallagher-Colombo SM, Quon H, Malloy KM, Ahn PH, Cengel KA, Simone CB, Chalian AA, O'Malley BW, Weinstein GS, Zhu TC, Putt ME, Finlay JC, Busch TM. Measuring the Physiologic Properties of Oral Lesions Receiving Fractionated Photodynamic Therapy. Photochem Photobiol 2015; 91:1210-8. [PMID: 26037487 DOI: 10.1111/php.12475] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/26/2015] [Indexed: 11/28/2022]
Abstract
Photodynamic therapy (PDT) can treat superficial, early-stage disease with minimal damage to underlying tissues and without cumulative dose-limiting toxicity. Treatment efficacy is affected by disease physiologic properties, but these properties are not routinely measured. We assessed diffuse reflectance spectroscopy (DRS) for the noninvasive, contact measurement of tissue hemoglobin oxygen saturation (St O2 ) and total hemoglobin concentration ([tHb]) in the premalignant or superficial microinvasive oral lesions of patients treated with 5-aminolevulinic acid (ALA)-PDT. Patients were enrolled on a Phase 1 study of ALA-PDT that evaluated fluences of 50, 100, 150 or 200 J cm(-2) delivered at 100 mW cm(-2) . To test the feasibility of incorporating DRS measurements within the illumination period, studies were performed in patients who received fractionated (two-part) illumination that included a dark interval of 90-180 s. Using DRS, tissue oxygenation at different depths within the lesion could also be assessed. DRS could be performed concurrently with contact measurements of photosensitizer levels by fluorescence spectroscopy, but a separate noncontact fluorescence spectroscopy system provided continuous assessment of photobleaching during illumination to greater tissue depths. Results establish that the integration of DRS into PDT of early-stage oral disease is feasible, and motivates further studies to evaluate its predictive and dosimetric value.
Collapse
Affiliation(s)
| | - Harry Quon
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kelly M Malloy
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Peter H Ahn
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Keith A Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Charles B Simone
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ara A Chalian
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bert W O'Malley
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gregory S Weinstein
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Timothy C Zhu
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mary E Putt
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jarod C Finlay
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
24
|
Mallidi S, Mai Z, Rizvi I, Hempstead J, Arnason S, Celli J, Hasan T. In vivo evaluation of battery-operated light-emitting diode-based photodynamic therapy efficacy using tumor volume and biomarker expression as endpoints. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:048003. [PMID: 25909707 PMCID: PMC4408448 DOI: 10.1117/1.jbo.20.4.048003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 03/30/2015] [Indexed: 05/12/2023]
Abstract
In view of the increase in cancer-related mortality rates in low- to middle-income countries (LMIC), there is an urgent need to develop economical therapies that can be utilized at minimal infrastructure institutions. Photodynamic therapy (PDT), a photochemistry-based treatment modality, offers such a possibility provided that low-cost light sources and photosensitizers are available. In this proof-of-principle study, we focus on adapting the PDT light source to a low-resource setting and compare an inexpensive, portable, battery-powered light-emitting diode (LED) light source with a standard, high-cost laser source. The comparison studies were performed in vivo in a xenograft murine model of human squamous cell carcinoma subjected to 5-aminolevulinic acid-induced protoporphyrin IX PDT. We observed virtually identical control of the tumor burden by both the LED source and the standard laser source. Further insights into the biological response were evaluated by biomarker analysis of necrosis, microvessel density, and hypoxia [carbonic anhydrase IX (CAIX) expression] among groups of control, LED-PDT, and laser-PDT treated mice. There is no significant difference in the percent necrotic volume and CAIX expression in tumors that were treated with the two different light sources. These encouraging preliminary results merit further investigations in orthotopic animal models of cancers prevalent in LMICs.
Collapse
Affiliation(s)
- Srivalleesha Mallidi
- Massachusetts General Hospital, Wellman Center for Photomedicine, 40 Blossom Street, Boston, Massachusetts 02114, United States
| | - Zhiming Mai
- Massachusetts General Hospital, Wellman Center for Photomedicine, 40 Blossom Street, Boston, Massachusetts 02114, United States
| | - Imran Rizvi
- Massachusetts General Hospital, Wellman Center for Photomedicine, 40 Blossom Street, Boston, Massachusetts 02114, United States
- Brigham and Women’s Hospital, Department of Medicine, Boston, Massachusetts, United States
| | - Joshua Hempstead
- University of Massachusetts, Department of Physics, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Stephen Arnason
- University of Massachusetts, Department of Physics, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Jonathan Celli
- University of Massachusetts, Department of Physics, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Tayyaba Hasan
- Massachusetts General Hospital, Wellman Center for Photomedicine, 40 Blossom Street, Boston, Massachusetts 02114, United States
- Address all correspondence to: Tayyaba Hasan, E-mail:
| |
Collapse
|
25
|
Mallidi S, Watanabe K, Timerman D, Schoenfeld D, Hasan T. Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging. Am J Cancer Res 2015; 5:289-301. [PMID: 25553116 PMCID: PMC4279192 DOI: 10.7150/thno.10155] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/21/2014] [Indexed: 12/29/2022] Open
Abstract
Selection and design of individualized treatments remains a key goal in cancer therapeutics; prediction of response and tumor recurrence following a given therapy provides a basis for subsequent personalized treatment design. We demonstrate an approach towards this goal with the example of photodynamic therapy (PDT) as the treatment modality and photoacoustic imaging (PAI) as a non-invasive, response and disease recurrence monitor in a murine model of glioblastoma (GBM). PDT is a photochemistry-based, clinically-used technique that consumes oxygen to generate cytotoxic species, thus causing changes in blood oxygen saturation (StO2). We hypothesize that this change in StO2 can be a surrogate marker for predicting treatment efficacy and tumor recurrence. PAI is a technique that can provide a 3D atlas of tumor StO2 by measuring oxygenated and deoxygenated hemoglobin. We demonstrate that tumors responding to PDT undergo approximately 85% change in StO2 by 24-hrs post-therapy while there is no significant change in StO2 values in the non-responding group. Furthermore, the 3D tumor StO2 maps predicted whether a tumor was likely to regrow at a later time point post-therapy. Information on the likelihood of tumor regrowth that normally would have been available only upon actual regrowth (10-30 days post treatment) in a xenograft tumor model, was available within 24-hrs of treatment using PAI, thus making early intervention a possibility. Given the advances and push towards availability of PAI in the clinical settings, the results of this study encourage applicability of PAI as an important step to guide and monitor therapies (e.g. PDT, radiation, anti-angiogenic) involving a change in StO2.
Collapse
|
26
|
Tumor Microenvironment as a Determinant of Photodynamic Therapy Resistance. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-12730-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
|
28
|
Dong J, Toh HJ, Thong PSP, Tee CS, Bi R, Soo KC, Lee K. Hemodynamic monitoring of Chlorin e6-mediated photodynamic therapy using diffuse optical measurements. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 140:163-72. [PMID: 25146878 DOI: 10.1016/j.jphotobiol.2014.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/04/2014] [Accepted: 07/30/2014] [Indexed: 02/08/2023]
Abstract
Tumor response during photodynamic therapy (PDT) is heavily dependent on treatment parameters such as light dose, photosensitizer concentration, and tissue oxygenation. Therefore, it is desirable to have a real-time hemodynamic monitoring device in order to fine-tune the parameters and improve PDT efficacy. In this paper, such a tumor response monitoring system was built incorporating both frequency domain diffuse optical spectroscopy (FD-DOS) and diffuse correlation spectroscopy (DCS), which enables concurrent monitoring of tissue oxygenation (StO₂), total hemoglobin concentration (THC) and relative blood flow (rBF). The tumor metabolic rate of oxygen (TMRO₂) was calculated by using the hemodynamic parameters. Mouse models bearing xenograft tumors were subjected to chlorin e6 (Ce6)-mediated PDT, and the four parameters were monitored with varying treatment conditions. The results show (1) At 3 h post-PDT, rStO₂, rBF and rTMRO₂ exhibited sharp PDT-induced decreases in responders (>40% reduction in tumor volume). Statistically significant difference between responders and non-responders were observed in rStO₂ and rBF, but not in rTMRO₂. (2) Non-responders show gradual recovery of rStO₂, rBF and rTMRO₂ from ∼24 h post-PDT, while responder group did not show recovery up until 48 h post-PDT. Long-term study results up to 2 weeks are also shown. It suggests the hybrid diffuse optical system is not only capable of real-time treatment monitoring, but also able to extract tumor metabolic rate of oxygen to provide more insights about therapy mechanism. Translation of this technique to the clinic will make a quick prognosis feasible and help with treatment optimization.
Collapse
Affiliation(s)
- Jing Dong
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore
| | - Hui Jin Toh
- Division of Medical Sciences, National Cancer Centre Singapore, 169610, Singapore
| | - Patricia S P Thong
- Division of Medical Sciences, National Cancer Centre Singapore, 169610, Singapore
| | - Chuan Sia Tee
- Division of Medical Sciences, National Cancer Centre Singapore, 169610, Singapore
| | - Renzhe Bi
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore
| | - Khee-Chee Soo
- Division of Medical Sciences, National Cancer Centre Singapore, 169610, Singapore
| | - Kijoon Lee
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore; School of Basic Science, Daegu Gyeongbuk Institute of Science & Technology, Daegu 711-873, Republic of Korea.
| |
Collapse
|
29
|
Middelburg TA, de Vijlder HC, de Bruijn HS, van der Ploeg-van den Heuvel A, Neumann HAM, de Haas ERM, Robinson DJ. Topical photodynamic therapy using different porphyrin precursors leads to differences in vascular photosensitization and vascular damage in normal mouse skin. Photochem Photobiol 2014; 90:896-902. [PMID: 24628584 DOI: 10.1111/php.12271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/11/2014] [Indexed: 12/29/2022]
Abstract
Different distributions of hexyl aminolevulinate (HAL), aminolevulinic acid (ALA) and methyl aminolevulinate (MAL) in the superficial vasculature are not well studied but they are hypothesized to play an important role in topical photodynamic therapy (PDT). The colocalization of fluorescent CD31 and protoporphyrin IX (PpIX) was calculated using confocal microscopy of mouse skin sections to investigate the vascular distribution after topical application. Vascular damage leads to disruption of the normal endothelial adherens junction complex, of which CD144 is an integral component. Therefore, normal CD31 combined with loss of normal fluorescent CD144 staining was visually scored to assess vascular damage. Both the vascular PpIX concentration and the vascular damage were highest for HAL, then ALA and then MAL. Vascular damage in MAL was not different from normal contralateral control skin. This pattern is consistent with literature data on vasoconstriction after PDT, and with the hypothesis that the vasculature plays a role in light fractionation that increases efficacy for HAL and ALA-PDT but not for MAL. These findings indicate that endothelial cells of superficial blood vessels synthesize biologically relevant PpIX concentrations, leading to vascular damage. Such vascular effects are expected to influence the oxygenation of tissue after PDT which can be important for treatment efficacy.
Collapse
Affiliation(s)
- Tom A Middelburg
- Department of Dermatology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
30
|
van Leeuwen-van Zaane F, de Bruijn HS, van der Ploeg-van den Heuvel A, Sterenborg HJMC, Robinson DJ. The effect of fluence rate on the acute response of vessel diameter and red blood cell velocity during topical 5-aminolevulinic acid photodynamic therapy. Photodiagnosis Photodyn Ther 2014; 11:71-81. [PMID: 24709508 DOI: 10.1016/j.pdpdt.2014.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND In a previous study it is shown that for topically applied ALA-PDT, PpIX concentration correlates with vascular changes including vasoconstriction and/or vascular leakage of small vessels and arterioles in the mouse epidermis and dermis. In this study we report on vascular responses induced by ALA-PDT for different fluence rates, including both changes in vessel diameter and dynamics in RBC velocity in arterioles, imaged using intra-vital confocal microscopy in skinfold chambers in hairless mice. Our interest is in the dynamics of vascular changes in the early stages of illumination. METHODS We have determined the total PDT dose to be relatively low, 13 J cm(-2), and fluence rates of 26, 65 and 130 mW cm(-2) were investigated. Local vascular effects occurred very soon after the start of the therapeutic illumination in ALA-PDT. RESULTS In this study, we did not find a significant difference between fluence rates. Arterioles were particularly sensitive to vasoconstriction during low dose PDT, often resulting in complete vasoconstriction. When we observed complete vasoconstriction, this coincided with changes in RBC velocity. CONCLUSION Since the therapeutic effects of PDT are dependent on a fine balance between the need for oxygen during illumination and disruption of the vasculature, the results of the present study add to our understanding of acute vascular effects during ALA-PDT and aid our efforts to optimize PDT using porphyrin pre-cursors.
Collapse
Affiliation(s)
- F van Leeuwen-van Zaane
- Department of Radiation Oncology, Center for Optical Diagnostics and Therapy, Postgraduate School Molecular Medicine, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - H S de Bruijn
- Department of Otolaryngology - Head and Neck Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - A van der Ploeg-van den Heuvel
- Department of Radiation Oncology, Center for Optical Diagnostics and Therapy, Postgraduate School Molecular Medicine, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - H J M C Sterenborg
- Department of Radiation Oncology, Center for Optical Diagnostics and Therapy, Postgraduate School Molecular Medicine, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - D J Robinson
- Department of Otolaryngology - Head and Neck Surgery, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
31
|
Mallidi S, Anbil S, Lee S, Manstein D, Elrington S, Kositratna G, Schoenfeld D, Pogue B, Davis SJ, Hasan T. Photosensitizer fluorescence and singlet oxygen luminescence as dosimetric predictors of topical 5-aminolevulinic acid photodynamic therapy induced clinical erythema. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:028001. [PMID: 24503639 PMCID: PMC3915169 DOI: 10.1117/1.jbo.19.2.028001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 12/05/2013] [Accepted: 12/05/2013] [Indexed: 05/19/2023]
Abstract
The need for patient-specific photodynamic therapy (PDT) in dermatologic and oncologic applications has triggered several studies that explore the utility of surrogate parameters as predictive reporters of treatment outcome. Although photosensitizer (PS) fluorescence, a widely used parameter, can be viewed as emission from several fluorescent states of the PS (e.g., minimally aggregated and monomeric), we suggest that singlet oxygen luminescence (SOL) indicates only the active PS component responsible for the PDT. Here, the ability of discrete PS fluorescence-based metrics (absolute and percent PS photobleaching and PS re-accumulation post-PDT) to predict the clinical phototoxic response (erythema) resulting from 5-aminolevulinic acid PDT was compared with discrete SOL (DSOL)-based metrics (DSOL counts pre-PDT and change in DSOL counts pre/post-PDT) in healthy human skin. Receiver operating characteristic curve (ROC) analyses demonstrated that absolute fluorescence photobleaching metric (AFPM) exhibited the highest area under the curve (AUC) of all tested parameters, including DSOL based metrics. The combination of dose-metrics did not yield better AUC than AFPM alone. Although sophisticated real-time SOL measurements may improve the clinical utility of SOL-based dosimetry, discrete PS fluorescence-based metrics are easy to implement, and our results suggest that AFPM may sufficiently predict the PDT outcomes and identify treatment nonresponders with high specificity in clinical contexts.
Collapse
Affiliation(s)
- Srivalleesha Mallidi
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts 02114
| | - Sriram Anbil
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts 02114
| | - Seonkyung Lee
- Physical Sciences Inc., Andover, Massachusetts 01810
| | - Dieter Manstein
- Massachusetts General Hospital, Department of Dermatology, Boston, Massachusetts 02114
| | - Stefan Elrington
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts 02114
| | - Garuna Kositratna
- Massachusetts General Hospital, Department of Dermatology, Boston, Massachusetts 02114
| | - David Schoenfeld
- Massachusetts General Hospital, Biostatistics Department, Boston, Massachusetts 02114
| | - Brian Pogue
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire 03755
| | | | - Tayyaba Hasan
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts 02114
- Address all correspondence to: Tayyaba Hasan, E-mail:
| |
Collapse
|
32
|
Kanick SC, Davis SC, Zhao Y, Hasan T, Maytin EV, Pogue BW, Chapman MS. Dual-channel red/blue fluorescence dosimetry with broadband reflectance spectroscopic correction measures protoporphyrin IX production during photodynamic therapy of actinic keratosis. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:75002. [PMID: 24996661 PMCID: PMC4082494 DOI: 10.1117/1.jbo.19.7.075002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/27/2014] [Indexed: 05/10/2023]
Abstract
Dosimetry for aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) photodynamic therapy of actinic keratosis was examined with an optimized fluorescence dosimeter to measure PpIX during treatment. While insufficient PpIX generation may be an indicator of incomplete response, there exists no standardized method to quantitate PpIX production at depths in the skin during clinical treatments. In this study, a spectrometer-based point probe dosimeter system was used to sample PpIX fluorescence from superficial (blue wavelength excitation) and deeper (red wavelength excitation) tissue layers. Broadband white light spectroscopy (WLS) was used to monitor aspects of vascular physiology and inform a correction of fluorescence for the background optical properties. Measurements in tissue phantoms showed accurate recovery of blood volume fraction and reduced scattering coefficient from WLS, and a linear response of PpIX fluorescence versus concentration down to 1.95 and 250 nM for blue and red excitations, respectively. A pilot clinical study of 19 patients receiving 1-h ALA incubation before treatment showed high intrinsic variance in PpIX fluorescence with a standard deviation/mean ratio of > 0.9. PpIX fluorescence was significantly higher in patients reporting higher pain levels on a visual analog scale. These pilot data suggest that patient-specific PpIX quantitation may predict outcome response.
Collapse
Affiliation(s)
- Stephen Chad Kanick
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
- Address all correspondence to: Stephen Chad Kanick, E-mail:
| | - Scott C. Davis
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
| | - Yan Zhao
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| | | | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Surgery, Section of Dermatology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766
| | - M. Shane Chapman
- Department of Surgery, Section of Dermatology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766
| |
Collapse
|
33
|
|
34
|
Mazurenka M, Di Sieno L, Boso G, Contini D, Pifferi A, Mora AD, Tosi A, Wabnitz H, Macdonald R. Non-contact in vivo diffuse optical imaging using a time-gated scanning system. BIOMEDICAL OPTICS EXPRESS 2013; 4:2257-68. [PMID: 24156081 PMCID: PMC3799683 DOI: 10.1364/boe.4.002257] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/21/2013] [Accepted: 09/22/2013] [Indexed: 05/19/2023]
Abstract
We report on the design and first in vivo tests of a novel non-contact scanning imaging system for time-domain near-infrared spectroscopy. Our system is based on a null source-detector separation approach and utilizes polarization-selective detection and a fast-gated single-photon avalanche diode to record late photons only. The in-vivo tests included the recording of hemodynamics during arm occlusion and two brain activation tasks. Localized and non-localized changes in oxy- and deoxyhemoglobin concentration were detected for motor and cognitive tasks, respectively. The tests demonstrate the feasibility of non-contact imaging of absorption changes in deeper tissues.
Collapse
Affiliation(s)
- M. Mazurenka
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587, Berlin, Germany
| | - L. Di Sieno
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano I-20133, Italy
| | - G. Boso
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano I-20133, Italy
| | - D. Contini
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano I-20133, Italy
| | - A. Pifferi
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano I-20133, Italy
| | - A. Dalla Mora
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano I-20133, Italy
| | - A. Tosi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano I-20133, Italy
| | - H. Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587, Berlin, Germany
| | - R. Macdonald
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587, Berlin, Germany
| |
Collapse
|
35
|
Middelburg TA, de Bruijn HS, Tettero L, van der Ploeg van den Heuvel A, Neumann HAM, de Haas ERM, Robinson DJ. Topical hexylaminolevulinate and aminolevulinic acid photodynamic therapy: complete arteriole vasoconstriction occurs frequently and depends on protoporphyrin IX concentration in vessel wall. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 126:26-32. [PMID: 23892187 DOI: 10.1016/j.jphotobiol.2013.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/11/2013] [Accepted: 06/22/2013] [Indexed: 12/28/2022]
Abstract
Vascular responses to photodynamic therapy (PDT) may influence the availability of oxygen during PDT and the extent of tumor destruction after PDT. However, for topical PDT vascular effects are largely unknown. Arteriole and venule diameters were measured before and after hexylaminolevulinate (HAL) and aminolevulinic acid (ALA) PDT and related to the protoporphyrin IX (PpIX) concentration in the vessel wall. A mouse skin fold chamber model and an intravital confocal microscope allowed direct imaging of the subcutaneous vessels underlying the treated area. In both HAL and ALA groups over 60% of arterioles constricted completely, while venules generally did not respond, except for two larger veins that constricted partially. Arteriole vasoconstriction strongly correlated with PpIX fluorescence intensity in the arteriole wall. Total PpIX fluorescence intensity was significantly higher for HAL than ALA for the whole area that was imaged but not for the arteriole walls. In conclusion, complete arteriole vasoconstriction occurs frequently in both HAL and ALA based topical PDT, especially when relatively high PpIX concentrations in arteriole walls are reached. Vasoconstriction will likely influence PDT effect and should be considered in studies on topical HAL and ALA-PDT. Also, our results may redefine the vasculature as a potential secondary target for topical PDT.
Collapse
Affiliation(s)
- T A Middelburg
- Department of Dermatology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
36
|
Sunar U. Monitoring photodynamic therapy of head and neck malignancies with optical spectroscopies. World J Clin Cases 2013; 1:96-105. [PMID: 24303476 PMCID: PMC3845916 DOI: 10.12998/wjcc.v1.i3.96] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/02/2013] [Accepted: 05/08/2013] [Indexed: 02/05/2023] Open
Abstract
In recent years there has been significant developments in photosensitizers (PSs), light sources and light delivery systems that have allowed decreasing the treatment time and skin phototoxicity resulting in more frequent use of photodynamic therapy (PDT) in the clinical settings. Compared to standard treatment approaches such as chemo-radiation and surgery, PDT has much reduced morbidity for head and neck malignancies and is becoming an alternative treatment option. It can be used as an adjunct therapy to other treatment modalities without any additive cumulative side effects. Surface illumination can be an option for pre-malignant and early-stage malignancies while interstitial treatment is for debulking of thick tumors in the head and neck region. PDT can achieve equivalent or greater efficacy in treating head and neck malignancies, suggesting that it may be considered as a first line therapy in the future. Despite progressive development, clinical PDT needs improvement in several topics for wider acceptance including standardization of protocols that involve the same administrated light and PS doses and establishing quantitative tools for PDT dosimetry planning and response monitoring. Quantitative measures such as optical parameters, PS concentration, tissue oxygenation and blood flow are essential for accurate PDT dosimetry as well as PDT response monitoring and assessing therapy outcome. Unlike conventional imaging modalities like magnetic resonance imaging, novel optical imaging techniques can quantify PDT-related parameters without any contrast agent administration and enable real-time assessment during PDT for providing fast feedback to clinicians. Ongoing developments in optical imaging offer the promise of optimization of PDT protocols with improved outcomes.
Collapse
|
37
|
Qian G, Wang S, Deng D, Yang G. Is the step-up therapy of topical 5-aminolevulinic acid photodynamic therapy effective and safe for the patients with recalcitrant facial flat wart? Dermatol Ther 2013; 27:83-8. [PMID: 24703264 DOI: 10.1111/dth.12060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Facial flat wart, caused by human papilloma virus type 3 and less often, type 10, 27, and 41, often brings many cosmetic problems to children and young adults. Considering the disturbing cosmetic problem, the treatment of facial flat wart is always frustrating and often unsuccessful, although there are many treatment modalities. Considering the possible serious side effects of 5-aminolevulinic acid photodynamic therapy (ALA-PDT), we designed step-up therapy of ALA-PDT on different clinical phases of facial flat wart. As a new protocol of ALA-PDT, we found the step-up therapy of ALA-PDT could also receive excellent effects with the lower side effects. Meanwhile, the tolerance of patients to ALA-PDT could improve with subsequent treatment sessions and escalating doses of ALA-PDT.
Collapse
Affiliation(s)
- Ge Qian
- Department of Dermatology and Venereology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, China
| | | | | | | |
Collapse
|
38
|
Liu B, Kim MM, Zhu TC. A theoretical comparison of macroscopic and microscopic modeling of singlet oxygen during Photofrin and HPPH mediated-PDT. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2013; 8568:856805. [PMID: 25999642 PMCID: PMC4437727 DOI: 10.1117/12.2002489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Mathematic models were developed to simulate the complex dynamic process of photodynamic therapy (PDT). Macroscopic or microscopic modeling of singlet oxygen (1O2) is particularly of interest because it is the major cytotoxic agent causing biological effects during PDT. Our previously introduced macroscopic PDT model incorporates the diffusion equation for the light propagation in tissue and the macroscopic kinetic equations for the production of the 1O2. The distance-dependent distribution of 3O2 and reacted 1O2 can be numerically calculated using finite-element method (FEM). We recently improved the model to include microscopic kinetic equations of oxygen diffusion from uniformly distributed blood vessels and within tissue. In the model, the cylindrical blood capillary has radius in the range of 2-5 μm and a mean length of 300 μm, and supplies oxygen into tissue. The blood vessel network is assumed to form a 2-D square grid perpendicular to a linear light source. The spacing of the grid is 60 μm. Oxygen can also diffuse along the radius and the longitudinal axial of the cylinder within tissue. The oxygen depletion during Photofrin-PDT can be simulated using both macroscopic and microscopic approaches. The comparison of the simulation results have reasonable agreements when velocity of blood flow is reduced during PDT.
Collapse
Affiliation(s)
- Baochang Liu
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Michele M Kim
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Timothy C Zhu
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
39
|
Mo W, Rohrbach D, Sunar U. Imaging a photodynamic therapy photosensitizer in vivo with a time-gated fluorescence tomography system. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:071306. [PMID: 22894467 PMCID: PMC3381019 DOI: 10.1117/1.jbo.17.7.071306] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/20/2012] [Accepted: 03/05/2012] [Indexed: 05/29/2023]
Abstract
We report the tomographic imaging of a photodynamic therapy (PDT) photosensitizer, 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) in vivo with time-domain fluorescence diffuse optical tomography (TD-FDOT). Simultaneous reconstruction of fluorescence yield and lifetime of HPPH was performed before and after PDT. The methodology was validated in phantom experiments, and depth-resolved in vivo imaging was achieved through simultaneous three-dimensional (3-D) mappings of fluorescence yield and lifetime contrasts. The tomographic images of a human head-and-neck xenograft in a mouse confirmed the preferential uptake and retention of HPPH by the tumor 24-h post-injection. HPPH-mediated PDT induced significant changes in fluorescence yield and lifetime. This pilot study demonstrates that TD-FDOT may be a good imaging modality for assessing photosensitizer distributions in deep tissue during PDT monitoring.
Collapse
Affiliation(s)
- Weirong Mo
- Roswell Park Cancer Institute, Department of Cell Stress Biology and PDT Center, Elm and Carlton Streets, Buffalo, New York, 14263
| | - Daniel Rohrbach
- Roswell Park Cancer Institute, Department of Cell Stress Biology and PDT Center, Elm and Carlton Streets, Buffalo, New York, 14263
| | - Ulas Sunar
- Roswell Park Cancer Institute, Department of Cell Stress Biology and PDT Center, Elm and Carlton Streets, Buffalo, New York, 14263
| |
Collapse
|
40
|
Yanase S, Nomura J, Matsumura Y, Kato H, Tagawa T. Hyperthermia enhances the antitumor effect of photodynamic therapy with ALA hexyl ester in a squamous cell carcinoma tumor model. Photodiagnosis Photodyn Ther 2012. [PMID: 23200020 DOI: 10.1016/j.pdpdt.2012.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) using 5-aminolevulinic acid is considered to be ineffective in the treatment of tumors with progression to the deep layer. Therefore, for such tumors, a method is required which can enhance the effectiveness of this therapy. We examined the anti tumor effect of the combination of PDT with 5-aminolevulinic acid hexyl ester (hALA) and hyperthermia (HT) in a squamous cell carcinoma (SCC) tumor model. METHODS A tumor model was prepared by subcutaneously implanting SCC into nude mice, and treated with HT, PDT with hALA (hALA-PDT), or hALA-PDT combined with HT (PDT+HT). The treatment was performed by remodeled near infra-red irradiator which allows the generation of two types of rays for PDT and HT. With HT, the tumor was irradiated for raising the temperature with a light dose of 437.5 J/cm(2). With hALA-PDT, the tumor treated with 250 mg/kg hALA was irradiated with a light dose of 50 J/cm(2). With PDT+HT, the tumor was treated as for hALA-PDT except that the temperature was raised during irradiation with a light dose of 437.5 J/cm(2) (including light dose of 50 J/cm(2) for PDT). RESULTS The tumor growth rates on Day 12 were 97.10% in HT, 67.55% in hALA-PDT and 33.90% in PDT+HT, and PDT+HT showed significant inhibitory effects on tumor growth, although the anti-tumoral effects of HT and hALA-PDT were not seen. CONCLUSION hALA-PDT combined with HT demonstrated a significant inhibitory effect on the tumor growth of squamous cell carcinoma showing a progression in the deep layer. This suggests that this therapy is useful for tumors showing progression to the deep layer, which hALA-PDT alone is generally ineffective in treating.
Collapse
Affiliation(s)
- Shigeaki Yanase
- Department of Dentistry and Oral Surgery, Mie-chuo Medical Center, National Hospital Organization, 2158-5 Hisaimyojin-cho, Tsu, Mie 514-1101, Japan.
| | | | | | | | | |
Collapse
|
41
|
Mesquita RC, Han SW, Miller J, Schenkel SS, Pole A, Esipova TV, Vinogradov SA, Putt ME, Yodh AG, Busch TM. Tumor blood flow differs between mouse strains: consequences for vasoresponse to photodynamic therapy. PLoS One 2012; 7:e37322. [PMID: 22624014 PMCID: PMC3356280 DOI: 10.1371/journal.pone.0037322] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/18/2012] [Indexed: 12/25/2022] Open
Abstract
Fluctuations in tumor blood flow are common and attributed to factors such as vasomotion or local vascular structure, yet, because vessel structure and physiology are host-derived, animal strain of tumor propagation may further determine blood flow characteristics. In the present report, baseline and stress-altered tumor hemodynamics as a function of murine strain were studied using radiation-induced fibrosacomas (RIF) grown in C3H or nude mice. Fluctuations in tumor blood flow during one hour of baseline monitoring or during vascular stress induced by photodynamic therapy (PDT) were measured by diffuse correlation spectroscopy. Baseline monitoring revealed fluctuating tumor blood flow highly correlated with heart rate and with similar median periods (i.e., ∼9 and 14 min in C3H and nudes, respectively). However, tumor blood flow in C3H animals was more sensitive to physiologic or stress-induced perturbations. Specifically, PDT-induced vascular insults produced greater decreases in blood flow in the tumors of C3H versus nude mice; similarly, during baseline monitoring, fluctuations in blood flow were more regular and more prevalent within the tumors of C3H mice versus nude mice; finally, the vasoconstrictor L-NNA reduced tumor blood flow in C3H mice but did not affect tumor blood flow in nudes. Underlying differences in vascular structure, such as smaller tumor blood vessels in C3H versus nude animals, may contribute to strain-dependent variation in vascular function. These data thus identify clear effects of mouse strain on tumor hemodynamics with consequences to PDT and potentially other vascular-mediated therapies.
Collapse
Affiliation(s)
- Rickson C Mesquita
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yu G. Near-infrared diffuse correlation spectroscopy in cancer diagnosis and therapy monitoring. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:010901. [PMID: 22352633 PMCID: PMC3380819 DOI: 10.1117/1.jbo.17.1.010901] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 11/08/2011] [Accepted: 11/14/2011] [Indexed: 05/19/2023]
Abstract
A novel near-infrared (NIR) diffuse correlation spectroscopy (DCS) for tumor blood flow measurement is introduced in this review paper. DCS measures speckle fluctuations of NIR diffuse light in tissue, which are sensitive to the motions of red blood cells. DCS offers several attractive new features for tumor blood flow measurement such as noninvasiveness, portability, high temporal resolution, and relatively large penetration depth. DCS technology has been utilized for continuous measurement of tumor blood flow before, during, and after cancer therapies. In those pilot investigations, DCS hemodynamic measurements add important new variables into the mix for differentiation of benign from malignant tumors and for prediction of treatment outcomes. It is envisaged that with more clinical applications in large patient populations, DCS might emerge as an important method of choice for bedside management of cancer therapy, and it will certainly provide important new information about cancer physiology that may be of use in diagnosis.
Collapse
Affiliation(s)
- Guoqiang Yu
- University of Kentucky, Center for Biomedical Engineering, Lexington, Kentucky 40506-0070, USA.
| |
Collapse
|
43
|
Milstein DMJ, van Kuijen AM, Copper MP, Karakullukçu B, Tan IB, Lindeboom JAH, Fokkens WJ, Ince C. Monitoring microcirculatory alterations in oral squamous cell carcinoma following photodynamic therapy. Photodiagnosis Photodyn Ther 2011; 9:69-75. [PMID: 22369731 DOI: 10.1016/j.pdpdt.2011.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/08/2011] [Accepted: 11/10/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND One of the mechanisms through which photodynamic therapy (PDT) is thought to elicit tumour destruction is by producing microvascular damage and obstruction of nutritive blood flow. The aim of this study was to directly monitor and quantify microcirculatory changes following tissue illumination by PDT for oral squamous cell carcinoma. METHODS Ten consecutive patients receiving PDT for a carcinoma in situ, a T1 or T2 tumour in the oral cavity without evidence of lymph node metastasis were selected for this study. Tumour and marginal healthy mucosa total capillary density (TCD) and functional capillary density (FCD) inside the field of illumination were measured and compared using sidestream dark-field (SDF) imaging prior to tissue illumination, immediately after PDT, and again after 15min. RESULTS Baseline mean tumour TCD was 21.2±5capillaries per square millimetres (cpll/mm²) and 24.9±19cpll/mm² in the surrounding marginal healthy tissue; there were no significant differences between tumour and healthy tissue or time points. Comparisons between baseline and post-illumination time points revealed significant differences in both tumour and healthy tissue FCD (P<0.05). No significant differences in FCD were observed between the two tissues. CONCLUSIONS Our findings using SDF imaging demonstrate that PDT significantly attenuates tumour and marginal healthy tissue perfusion by directly disrupting the functionality of the microcirculation.
Collapse
Affiliation(s)
- Dan M J Milstein
- Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Mesquita RC, Durduran T, Yu G, Buckley EM, Kim MN, Zhou C, Choe R, Sunar U, Yodh AG. Direct measurement of tissue blood flow and metabolism with diffuse optics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:4390-406. [PMID: 22006897 PMCID: PMC3263785 DOI: 10.1098/rsta.2011.0232] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Diffuse optics has proven useful for quantitative assessment of tissue oxy- and deoxyhaemoglobin concentrations and, more recently, for measurement of microvascular blood flow. In this paper, we focus on the flow monitoring technique: diffuse correlation spectroscopy (DCS). Representative clinical and pre-clinical studies from our laboratory illustrate the potential of DCS. Validation of DCS blood flow indices in human brain and muscle is presented. Comparison of DCS with arterial spin-labelled MRI, xenon-CT and Doppler ultrasound shows good agreement (0.50<r<0.95) over a wide range of tissue types and source detector distances, corroborating the potential of the method to measure perfusion non-invasively and in vivo at the microvasculature level. All-optical measurements of cerebral oxygen metabolism in both rat brain, following middle cerebral artery occlusion, and human brain, during functional activation, are also described. In both situations, the use of combined DCS and diffuse optical spectroscopy/near-infrared spectroscopy to monitor changes in oxygen consumption by the tissue is demonstrated. Finally, recent results spanning from gene expression-induced angiogenic response to stroke care and cancer treatment monitoring are discussed. Collectively, the research illustrates the capability of DCS to quantitatively monitor perfusion from bench to bedside, providing results that match up both with literature findings and with similar experiments performed with other techniques.
Collapse
Affiliation(s)
- Rickson C Mesquita
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Middelburg TA, Kanick SC, de Haas ERM, Sterenborg HJCM, Amelink A, Neumann MHAM, Robinson DJ. Monitoring blood volume and saturation using superficial fibre optic reflectance spectroscopy during PDT of actinic keratosis. JOURNAL OF BIOPHOTONICS 2011; 4:721-730. [PMID: 21842485 DOI: 10.1002/jbio.201100053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/08/2011] [Accepted: 07/25/2011] [Indexed: 05/31/2023]
Abstract
Optically monitoring the vascular physiology during photodynamic therapy (PDT) may help understand patient-specific treatment outcome. However, diffuse optical techniques have failed to observe changes herein, probably by optically sampling too deep. Therefore, we investigated using differential path-length spectroscopy (DPS) to obtain superficial measurements of vascular physiology in actinic keratosis (AK) skin. The AK-specific DPS interrogation depth was chosen up to 400 microns in depth, based on the thickness of AK histology samples. During light fractionated aminolevulinic acid-PDT, reflectance spectra were analyzed to yield quantitative estimates of blood volume and saturation. Blood volume showed significant lesion-specific changes during PDT without a general trend for all lesions and saturation remained high during PDT. This study shows that DPS allows optically monitoring the superficial blood volume and saturation during skin PDT. The patient-specific variability supports the need for dosimetric measurements. In DPS, the lesion-specific optimal interrogation depth can be varied based on lesion thickness.
Collapse
Affiliation(s)
- Tom A Middelburg
- Department of Dermatology, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
46
|
Harms FA, de Boon WMI, Balestra GM, Bodmer SIA, Johannes T, Stolker RJ, Mik EG. Oxygen-dependent delayed fluorescence measured in skin after topical application of 5-aminolevulinic acid. JOURNAL OF BIOPHOTONICS 2011; 4:731-739. [PMID: 21770036 DOI: 10.1002/jbio.201100040] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/26/2011] [Accepted: 06/27/2011] [Indexed: 05/31/2023]
Abstract
Mitochondrial oxygen tension can be measured in vivo by means of oxygen-dependent quenching of delayed fluorescence of protoporphyrin IX (PpIX). Here we demonstrate that delayed fluorescence is readily observed from skin in rat and man after topical application of the PpIX precursor 5-aminolevulinic acid (ALA). Delayed fluorescence lifetimes respond to changes in inspired oxygen fraction and blood supply. The signals contain lifetime distributions and the fitting of rectangular distributions to the data appears more adequate than mono-exponential fitting. The use of topically applied ALA for delayed fluorescence lifetime measurements might pave the way for clinical use of this technique.
Collapse
Affiliation(s)
- Floor A Harms
- Department of Anesthesiology, Laboratory of Experimental Anesthesiology, ErasmusMC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
47
|
Marrero A, Becker T, Sunar U, Morgan J, Bellnier D. Aminolevulinic acid-photodynamic therapy combined with topically applied vascular disrupting agent vadimezan leads to enhanced antitumor responses. Photochem Photobiol 2011; 87:910-9. [PMID: 21575001 PMCID: PMC3139765 DOI: 10.1111/j.1751-1097.2011.00943.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The tumor vascular-disrupting agent (VDA) vadimezan (5,6-dimethylxanthenone-4-acetic acid, DMXAA) has been shown to potentiate the antitumor activity of photodynamic therapy (PDT) using systemically administered photosensitizers. Here, we characterized the response of subcutaneous syngeneic Colon26 murine colon adenocarcinoma tumors to PDT using the locally applied photosensitizer precursor aminolevulinic acid (ALA) in combination with a topical formulation of vadimezan. Diffuse correlation spectroscopy (DCS), a noninvasive method for monitoring blood flow, was utilized to determine tumor vascular response to treatment. In addition, correlative CD31-immunohistochemistry to visualize endothelial damage, ELISA to measure induction of tumor necrosis factor-alpha (TNF-α) and tumor weight measurements were also examined in separate animals. In our previous work, DCS revealed a selective decrease in tumor blood flow over time following topical vadimezan. ALA-PDT treatment also induced a decrease in tumor blood flow. The onset of blood flow reduction was rapid in tumors treated with both ALA-PDT and vadimezan. CD31-immunostaining of tumor sections confirmed vascular damage following topical application of vadimezan. Tumor weight measurements revealed enhanced tumor growth inhibition with combination treatment compared with ALA-PDT or vadimezan treatment alone. In conclusion, vadimezan as a topical agent enhances treatment efficacy when combined with ALA-PDT. This combination could be useful in clinical applications.
Collapse
Affiliation(s)
- Allison Marrero
- Department of Molecular Pharmacology & Cancer Therapeutics, Roswell Park Cancer Institute, Elm & Carlton Sts., Buffalo, NY, USA 14263
| | - Theresa Becker
- Department of Dermatology, Roswell Park Cancer Institute, Elm & Carlton Sts., Buffalo, NY, USA 14263
| | - Ulas Sunar
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm & Carlton Sts., Buffalo, NY, USA 14263
| | - Janet Morgan
- Department of Dermatology, Roswell Park Cancer Institute, Elm & Carlton Sts., Buffalo, NY, USA 14263
| | - David Bellnier
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm & Carlton Sts., Buffalo, NY, USA 14263
| |
Collapse
|
48
|
Diop M, Verdecchia K, Lee TY, St Lawrence K. Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements. BIOMEDICAL OPTICS EXPRESS 2011; 2:2068-81. [PMID: 21750781 PMCID: PMC3130590 DOI: 10.1364/boe.2.002068] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/23/2011] [Accepted: 06/25/2011] [Indexed: 05/18/2023]
Abstract
A primary focus of neurointensive care is the prevention of secondary brain injury, mainly caused by ischemia. A noninvasive bedside technique for continuous monitoring of cerebral blood flow (CBF) could improve patient management by detecting ischemia before brain injury occurs. A promising technique for this purpose is diffuse correlation spectroscopy (DCS) since it can continuously monitor relative perfusion changes in deep tissue. In this study, DCS was combined with a time-resolved near-infrared technique (TR-NIR) that can directly measure CBF using indocyanine green as a flow tracer. With this combination, the TR-NIR technique can be used to convert DCS data into absolute CBF measurements. The agreement between the two techniques was assessed by concurrent measurements of CBF changes in piglets. A strong correlation between CBF changes measured by TR-NIR and changes in the scaled diffusion coefficient measured by DCS was observed (R(2) = 0.93) with a slope of 1.05 ± 0.06 and an intercept of 6.4 ± 4.3% (mean ± standard error).
Collapse
Affiliation(s)
- Mamadou Diop
- Imaging Program, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Kyle Verdecchia
- Imaging Program, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Ting-Yim Lee
- Imaging Program, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario N6G 2V4, Canada
| | - Keith St Lawrence
- Imaging Program, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7, Canada
| |
Collapse
|