1
|
Bisht A, Simone K, Bains JS, Murari K. Distinguishing motion artifacts during optical fiber-based in-vivo hemodynamics recordings from brain regions of freely moving rodents. NEUROPHOTONICS 2024; 11:S11511. [PMID: 38799809 PMCID: PMC11123205 DOI: 10.1117/1.nph.11.s1.s11511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/25/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Significance Motion artifacts in the signals recorded during optical fiber-based measurements can lead to misinterpretation of data. In this work, we address this problem during in-vivo rodent experiments and develop a motion artifacts correction (MAC) algorithm for single-fiber system (SFS) hemodynamics measurements from the brains of rodents. Aim (i) To distinguish the effect of motion artifacts in the SFS signals. (ii) Develop a MAC algorithm by combining information from the experiments and simulations and validate it. Approach Monte-Carlo (MC) simulations were performed across 450 to 790 nm to identify wavelengths where the reflectance is least sensitive to blood absorption-based changes. This wavelength region is then used to develop a quantitative metric to measure motion artifacts, termed the dissimilarity metric (DM). We used MC simulations to mimic artifacts seen during experiments. Further, we developed a mathematical model describing light intensity at various optical interfaces. Finally, an MAC algorithm was formulated and validated using simulation and experimental data. Results We found that the 670 to 680 nm wavelength region is relatively less sensitive to blood absorption. The standard deviation of DM (σ D M ) can measure the relative magnitude of motion artifacts in the SFS signals. The artifacts cause rapid shifts in the reflectance data that can be modeled as transmission changes in the optical lightpath. The changes observed during the experiment were found to be in agreement to those obtained from MC simulations. The mathematical model developed to model transmission changes to represent motion artifacts was extended to an MAC algorithm. The MAC algorithm was validated using simulations and experimental data. Conclusions We distinguished motion artifacts from SFS signals during in vivo hemodynamic monitoring experiments. From simulation and experimental data, we showed that motion artifacts can be modeled as transmission changes. The developed MAC algorithm was shown to minimize artifactual variations in both simulation and experimental data.
Collapse
Affiliation(s)
- Anupam Bisht
- University of Calgary, Biomedical Engineering Graduate Program, Calgary, Alberta, Canada
- University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Kathryn Simone
- University of Calgary, Biomedical Engineering Graduate Program, Calgary, Alberta, Canada
- University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Jaideep S. Bains
- University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
- University of Calgary, Cumming School of Medicine, Department of Physiology and Pharmacology, Calgary, Alberta, Canada
| | - Kartikeya Murari
- University of Calgary, Biomedical Engineering Graduate Program, Calgary, Alberta, Canada
- University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
- University of Calgary, Electrical and Software Engineering, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Schmidt I, Zhao X, van der Waaij AM, Meersma GJ, Dijkstra FA, Haveman JW, van Etten B, Robinson DJ, Kats-Ugurlu G, Nagengast WB. Ultrasound-Guided Quantitative Fluorescence Molecular Endoscopy for Monitoring Response in Patients with Esophageal Cancer Following Neoadjuvant Chemoradiotherapy. Clin Cancer Res 2024; 30:3211-3219. [PMID: 38814263 DOI: 10.1158/1078-0432.ccr-24-0446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE The ability to identify residual tumor tissues in patients with locally advanced esophageal cancer following neoadjuvant chemoradiotherapy (nCRT) is essential for monitoring the treatment response. Using the fluorescent tracer bevacizumab-800CW, we evaluated whether ultrasound-guided quantitative fluorescent molecular endoscopy (US-qFME), which combines quantitative fluorescence molecular endoscopy (qFME) with ultrasound-guided needle biopsy/single-fiber fluorescence (USNB/SFF), can be used to identify residual tumor tissues in patients following nCRT. EXPERIMENTAL DESIGN Twenty patients received an additional endoscopy procedure the day before surgery. qFME was performed at the primary tumor site (PTS) and in healthy tissue to first establish the optimal tracer dose. USNB/SFF was then used to measure intrinsic fluorescence in the deeper PTS layers and lymph nodes (LN) suspected for metastasis. Finally, the intrinsic fluorescence and the tissue optical properties-specifically, the absorption and reduced scattering coefficients-were combined into a new parameter called omega. RESULTS First, a 25-mg bevacizumab-800CW dose allowed for clear differentiation between the PTS and healthy tissue, with a target-to-background ratio (TBR) of 2.98 (IQR, 1.86-3.03). Moreover, we found a clear difference between the deeper esophageal PTS layers and suspected LN compared to healthy tissues, with TBR values of 2.18 and 2.17, respectively. Finally, our new parameter, omega, further improved the ability to differentiate between the PTS and healthy tissue. CONCLUSIONS Combining bevacizumab-800CW with US-qFME may serve as a viable strategy for monitoring the response to nCRT in esophageal cancer and may help stratify patients regarding active surveillance versus surgery.
Collapse
Affiliation(s)
- Iris Schmidt
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Xiaojuan Zhao
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anne M van der Waaij
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Gert Jan Meersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Frederieke A Dijkstra
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jan Willem Haveman
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Boudewijn van Etten
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Dominic J Robinson
- Department of Otorhinolaryngology and Head and Neck Surgery, Center for Optical Diagnostics and Therapy, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Gursah Kats-Ugurlu
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Wouter B Nagengast
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
3
|
Sun T, Piao D. Diffuse photon remission associated with the center-illuminated-area-detection geometry. II. Approach to the time-domain model. APPLIED OPTICS 2023; 62:3880-3891. [PMID: 37706697 DOI: 10.1364/ao.478322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/14/2023] [Indexed: 09/15/2023]
Abstract
This part proposes a model of time-dependent diffuse photon remission for the center-illuminated-area-detection (CIAD) geometry, by virtue of area integration of the radially resolved time-dependent diffuse photon remission formulated with the master-slave dual-source scheme demonstrated in Part I for steady-state measurements. The time-domain model is assessed against Monte Carlo (MC) simulations limiting to only the Heyney-Greenstein scattering phase function for CIAD of physical scales and medium properties relevant to single-fiber reflectance (SfR) and over a 2 ns duration, in compliance with the timespan of the only experimental report of SfR demonstrated with a 50 µm gradient index fiber. The time-domain model-MC assessments are carried out for an absorption coefficient ranging three orders of magnitude over [0.001,0.01,0.1,1]m m -1 at a fixed scattering, and a reduced scattering coefficient ranging three orders of magnitude over [0.01,0.1,1,10]m m -1 at a fixed absorption, among others. Photons of shorter and longer propagation times, relative to the diameter of the area of collection, respond differently to the scattering and absorption changes. Limited comparisons of MC between CIAD and a top-hat geometry as the idealization of SfR reveal that the time-domain photon remissions of the two geometries differ appreciably in only the early arriving photons.
Collapse
|
4
|
Sun T, Piao D. Diffuse photon remission associated with the center-illuminated-area-detection geometry: Part I, an approach to the steady-state model. APPLIED OPTICS 2022; 61:9143-9153. [PMID: 36607047 DOI: 10.1364/ao.468342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/01/2022] [Indexed: 06/17/2023]
Abstract
Diffuse photon remission associated with the center-illuminated-area-detection (CIAD) geometry has been useful for non-contact sensing and may inform single-fiber reflectance (SfR). This series of work advances model approaches that help enrich the understanding and applicability of the photon remission by CIAD. The general approach is to derive the diffuse photon remission by the area integration of the radially resolved diffuse reflectance while limiting the analysis to a medium exhibiting only the Heyney-Greenstein (HG) scattering phase function. Part I assesses the steady-state photon remission in CIAD over a reduced scattering scaled diameter of μ s ' d a r e a ∈[0.5×10-3,103] that covers the range extensively modeled for SfR. The corresponding radially resolved diffuse reflectance is obtained by concatenating an empirical expression for the semi-ballistic region near the point-of-illumination and a formula utilizing a master-slave dual-source scheme over the semi-diffusive to a diffusive regime while being constrained by an extrapolated zero-boundary condition. The terminal algebraic photon remission is examined against Monte Carlo simulations for an absorption coefficient over [0.001,1]m m -1, a reduced scattering coefficient over [0.01,1000]m m -1, a HG scattering anisotropy factor within [0.5,0.95], and a diameter of the area of collection ranging [50,1000]µm. The algebraic model is also applied to phantom data acquired over a ∼2c m non-contact CIAD configuration and with a 200 µm SfR probe. The model approach will be extended in a subsequent work towards the time-of-flight characteristics of CIAD.
Collapse
|
5
|
Sun Y, Dumont AP, Arefin MS, Patil CA. Model-based characterization platform of fiber optic extended-wavelength diffuse reflectance spectroscopy for identification of neurovascular bundles. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:095002. [PMID: 36088529 PMCID: PMC9463544 DOI: 10.1117/1.jbo.27.9.095002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE Fiber-optic extended-wavelength diffuse reflectance spectroscopy (EWDRS) using both visible/near-infrared and shortwave-infrared detectors enables improved detection of spectral absorbances arising from lipids, water, and collagen and has demonstrated promise in a variety of applications, including detection of nerves and neurovascular bundles (NVB). Development of future applications of EWDRS for nerve detection could benefit from the use of model-based analyses including Monte Carlo (MC) simulations and evaluation of agreement between model systems and empirical measurements. AIM The aim of this work is to characterize agreement between EWDRS measurements and simulations and inform future applications of model-based studies of nerve-detecting applications. APPROACH A model-based platform consisting of an ex vivo microsurgical nerve dissection model, unique two-layer optical phantoms, and MC model simulations of fiber-optic EWDRS spectroscopic measurements were used to characterize EWDRS and compare agreement across models. In addition, MC simulations of an EWDRS measurement scenario are performed to provide a representative example of future analyses. RESULTS EWDRS studies performed in the common chicken thigh femoral nerve microsurgical dissection model indicate similar spectral features for classification of NVB versus adjacent tissues as reported in porcine models and human subjects. A comparison of measurements from unique EWDRS issue mimicking optical phantoms and MC simulations indicates high agreement between the two in homogeneous and two-layer optical phantoms, as well as in dissected tissues. Finally, MC simulations of measurement over a simulated NVB indicate the potential of future applications for measurement of nerve plexus. CONCLUSIONS Characterization of agreement between fiber-optic EWDRS measurements and MC simulations demonstrates strong agreement across a variety of tissues and optical phantoms, offering promise for further use to guide the continued development of EWDRS for translational applications.
Collapse
Affiliation(s)
- Yu Sun
- Temple University, Department of Bioengineering, Philadelphia, Pennsylvania, United States
| | - Alexander P. Dumont
- Temple University, Department of Bioengineering, Philadelphia, Pennsylvania, United States
| | | | - Chetan A. Patil
- Temple University, Department of Bioengineering, Philadelphia, Pennsylvania, United States
| |
Collapse
|
6
|
Lauwerends LJ, Abbasi H, Bakker Schut TC, Van Driel PBAA, Hardillo JAU, Santos IP, Barroso EM, Koljenović S, Vahrmeijer AL, Baatenburg de Jong RJ, Puppels GJ, Keereweer S. The complementary value of intraoperative fluorescence imaging and Raman spectroscopy for cancer surgery: combining the incompatibles. Eur J Nucl Med Mol Imaging 2022; 49:2364-2376. [PMID: 35102436 PMCID: PMC9165240 DOI: 10.1007/s00259-022-05705-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/23/2022] [Indexed: 01/09/2023]
Abstract
A clear margin is an important prognostic factor for most solid tumours treated by surgery. Intraoperative fluorescence imaging using exogenous tumour-specific fluorescent agents has shown particular benefit in improving complete resection of tumour tissue. However, signal processing for fluorescence imaging is complex, and fluorescence signal intensity does not always perfectly correlate with tumour location. Raman spectroscopy has the capacity to accurately differentiate between malignant and healthy tissue based on their molecular composition. In Raman spectroscopy, specificity is uniquely high, but signal intensity is weak and Raman measurements are mainly performed in a point-wise manner on microscopic tissue volumes, making whole-field assessment temporally unfeasible. In this review, we describe the state-of-the-art of both optical techniques, paying special attention to the combined intraoperative application of fluorescence imaging and Raman spectroscopy in current clinical research. We demonstrate how these techniques are complementary and address the technical challenges that have traditionally led them to be considered mutually exclusive for clinical implementation. Finally, we present a novel strategy that exploits the optimal characteristics of both modalities to facilitate resection with clear surgical margins.
Collapse
Affiliation(s)
- L J Lauwerends
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - H Abbasi
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - T C Bakker Schut
- Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - P B A A Van Driel
- Department of Orthopedic Surgery, Isala Hospital, Zwolle, Netherlands
| | - J A U Hardillo
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - I P Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | | | - S Koljenović
- Department of Pathology, Antwerp University Hospital/Antwerp University, Antwerp, Belgium
| | - A L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - R J Baatenburg de Jong
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - G J Puppels
- Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - S Keereweer
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands.
| |
Collapse
|
7
|
Schmidt I, Nagengast WB, Robinson DJ. Characterizing factors influencing calibration and optical property determination in quantitative reflectance spectroscopy to improve standardization. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:074714. [PMID: 35393792 PMCID: PMC8988964 DOI: 10.1117/1.jbo.27.7.074714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
SIGNIFICANCE The combination of reflectance and fluorescence spectroscopy allows the determination of tissue optical properties and the calculation of the intrinsic fluorescence in vivo. These parameters can discriminate between tissues and may allow the discrimination of malignant from benign tissue. While this approach has significant clinical potential, the lack of standardization and quality assessment prevents the upscaling of research. AIM Investigate which factors influence device calibration and tissue optical property determination. Improve system quality assessment and allow upscaling of the clinical research using multidiameter single fiber reflectance/singe fiber fluorescence spectroscopy. APPROACH Two studies, one phantom based on uniform calibrations and skin measurements and a clinical study including clinical calibrations. The first validates the effect of factors under identical conditions and the effect of calibration quality on the optical property determination of skin. The second shows the effect of different system configurations and the performance of the system and probe over an extended period. RESULTS Phantom calibrations showed stability over a period of 20 weeks except for a 16-week-old intralipid phantom which showed a significant difference (at least p = 0.0032) for all five probes evaluated. For clinical calibrations, only the fiber tree had a significant influence (probe 4: p < 0.000001 and probe 5: p = 0.00038) on the calibration quality. Interestingly, no degradation of probe performance was detected over a period of 21 months despite the exposure to stress during clinical measurements. Calibration quality affected μs' and the power law scattering exponent, but the degree of the influence was different per fiber. CONCLUSIONS Intralipid phantom quality and fiber tree performance are the main factors influencing the calibration quality. Probe and user performance did not show any effect, which makes the upscaling of research to multicenter trials easier. A high-quality assessment procedure should be implemented to track changes during clinical trials.
Collapse
Affiliation(s)
- Iris Schmidt
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Wouter B. Nagengast
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Dominic J. Robinson
- Erasmus Medical Center, Center for Optical Diagnostics and Therapy, Department of Otorhinolaryngology and Head and Neck Surgery, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Beaudette K, Li J, Lamarre J, Majeau L, Boudoux C. Double-Clad Fiber-Based Multifunctional Biosensors and Multimodal Bioimaging Systems: Technology and Applications. BIOSENSORS 2022; 12:90. [PMID: 35200350 PMCID: PMC8869713 DOI: 10.3390/bios12020090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/27/2022]
Abstract
Optical fibers have been used to probe various tissue properties such as temperature, pH, absorption, and scattering. Combining different sensing and imaging modalities within a single fiber allows for increased sensitivity without compromising the compactness of an optical fiber probe. A double-clad fiber (DCF) can sustain concurrent propagation modes (single-mode, through its core, and multimode, through an inner cladding), making DCFs ideally suited for multimodal approaches. This study provides a technological review of how DCFs are used to combine multiple sensing functionalities and imaging modalities. Specifically, we discuss the working principles of DCF-based sensors and relevant instrumentation as well as fiber probe designs and functionalization schemes. Secondly, we review different applications using a DCF-based probe to perform multifunctional sensing and multimodal bioimaging.
Collapse
Affiliation(s)
- Kathy Beaudette
- Castor Optics Inc., Montreal, QC H4N 2G6, Canada; (J.L.); (L.M.); (C.B.)
| | - Jiawen Li
- Institute for Photonics and Advanced Sensing, School of Electrical Electronic Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Joseph Lamarre
- Castor Optics Inc., Montreal, QC H4N 2G6, Canada; (J.L.); (L.M.); (C.B.)
| | - Lucas Majeau
- Castor Optics Inc., Montreal, QC H4N 2G6, Canada; (J.L.); (L.M.); (C.B.)
| | - Caroline Boudoux
- Castor Optics Inc., Montreal, QC H4N 2G6, Canada; (J.L.); (L.M.); (C.B.)
- Department of Engineering Physics, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
9
|
Vergeer RA, Postma MR, Schmidt I, Korsten-Meijer AG, Feijen RA, Kruijff S, Nagengast WB, van Dijk JMC, den Dunnen WFA, van Beek AP, Kuijlen JMA, van den Berg G. Detection by fluorescence of pituitary neuroendocrine tumour (PitNET) tissue during endoscopic transsphenoidal surgery using bevacizumab-800CW (DEPARTURE trial): study protocol for a non-randomised, non-blinded, single centre, feasibility and dose-finding trial. BMJ Open 2021; 11:e049109. [PMID: 34620658 PMCID: PMC8499267 DOI: 10.1136/bmjopen-2021-049109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Achieving gross total resection and endocrine remission in pituitary neuroendocrine tumours (PitNET) can be challenging, especially in PitNETs with cavernous sinus (CS) invasion, defined as a Knosp grade of 3 or 4. A potential target to identify PitNET tissue is vascular endothelial growth factor A (VEGF-A), which expression is known to be significantly higher in PitNETs with CS invasion. METHODS AND ANALYSIS The aim of this non-randomised, non-blinded, single centre, feasibility and dose-finding phase 1 trial is to determine the feasibility of intraoperative fluorescence imaging detection of PitNET tissue during endoscopic transsphenoidal surgery using the VEGF-A targeting optical agent bevacizumab-800CW (4, 5, 10 or 25 mg). Nine to fifteen patients with a PitNET with a Knosp grade of 3 or 4 will be included. Secondary objectives are: (1) To identify the optimal tracer dose for imaging of PitNET tissue during transsphenoidal surgery for further development in a phase 2 fluorescence molecular endoscopy trial. (2) To quantify fluorescence intensity in vivo and ex vivo with multidiameter single-fibre reflectance, single-fibre fluorescence (MDSFR/SFF) spectroscopy. (3) To correlate and validate both the in vivo and ex vivo measured fluorescence signals with histopathological analysis and immunohistochemical staining. (4) To assess the (sub)cellular location of bevacizumab-800CW by ex vivo fluorescence microscopy. Intraoperative, three imaging moments are defined to detect the fluorescent signal. The tumour-to-background ratios are defined by intraoperative fluorescence in vivo measurements including MDSFR/SFF spectroscopy data and by ex vivo back-table fluorescence imaging. After inclusion of three patients in each dose group, an interim analysis will be performed to define the optimal dose. ETHICS AND DISSEMINATION Approval was obtained from the Medical Ethics Review Board of the University Medical Centre Groningen. Results will be disseminated through national and international journals. The participants and relevant patient support groups will be informed about the results. TRIAL REGISTRATION NUMBER NCT04212793.
Collapse
Affiliation(s)
- Rob A Vergeer
- Department of Neurosurgery, University Medical Centre Groningen, Groningen, The Netherlands
| | - Mark R Postma
- Department of Endocrinology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Iris Schmidt
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Astrid Gw Korsten-Meijer
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Centre Groningen, Groningen, The Netherlands
| | - Robert A Feijen
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Centre Groningen, Groningen, The Netherlands
| | - Schelto Kruijff
- Department of Surgical Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Wouter B Nagengast
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
| | - J Marc C van Dijk
- Department of Neurosurgery, University of Groningen, Groningen, The Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology, University Medical Centre Groningen, Groningen, The Netherlands
| | - André P van Beek
- Department of Endocrinology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Jos M A Kuijlen
- Department of Neurosurgery, University Medical Centre Groningen, Groningen, The Netherlands
| | - Gerrit van den Berg
- Department of Endocrinology, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Sun T, Piao D, Yu L, Murari K. Diffuse photon-remission associated with single-fiber geometry may be a simple scaling of that collected over the same area when under centered-illumination. OPTICS LETTERS 2021; 46:4817-4820. [PMID: 34598207 DOI: 10.1364/ol.433233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Robust models for single-fiber reflectance (SFR) are relatively complex [Opt. Lett.45, 2078 (2020)OPLEDP0146-959210.1364/OL.385845] due to overlapping of the illumination and collection areas that entails probability weighting of the spatial integration of photon-remission. We demonstrate, via analytical means for limiting cases and Monte Carlo simulation of broader conditions, that diffuse photon-remission collected by single-fiber geometry may be scaled over the center-illuminated photon-remission. We specify for a medium revealing Henyey-Greenstein (HG) scattering anisotropy that the diffuse photon-remission from a sub-diffusive area of a top-hat illumination is ∼84.9% of that collected over the same area when under a centered-illumination. This ratio remains consistent over a reduced-scattering fiber-size product of μs'dfib=[10-5,100], for absorption varying 3 orders of magnitude. When applied to hemoglobin oxygenation changes induced in an aqueous phantom using a 200 µm single-fiber probe, the center-illumination-scaled model of SFR produced fitting results agreeing with reference measurements.
Collapse
|
11
|
Stier AC, Goth W, Hurley A, Brown T, Feng X, Zhang Y, Lopes FCPS, Sebastian KR, Ren P, Fox MC, Reichenberg JS, Markey MK, Tunnell JW. Imaging sub-diffuse optical properties of cancerous and normal skin tissue using machine learning-aided spatial frequency domain imaging. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210048RR. [PMID: 34558235 PMCID: PMC8459901 DOI: 10.1117/1.jbo.26.9.096007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/27/2021] [Indexed: 05/28/2023]
Abstract
SIGNIFICANCE Sub-diffuse optical properties may serve as useful cancer biomarkers, and wide-field heatmaps of these properties could aid physicians in identifying cancerous tissue. Sub-diffuse spatial frequency domain imaging (sd-SFDI) can reveal such wide-field maps, but the current time cost of experimentally validated methods for rendering these heatmaps precludes this technology from potential real-time applications. AIM Our study renders heatmaps of sub-diffuse optical properties from experimental sd-SFDI images in real time and reports these properties for cancerous and normal skin tissue subtypes. APPROACH A phase function sampling method was used to simulate sd-SFDI spectra over a wide range of optical properties. A machine learning model trained on these simulations and tested on tissue phantoms was used to render sub-diffuse optical property heatmaps from sd-SFDI images of cancerous and normal skin tissue. RESULTS The model accurately rendered heatmaps from experimental sd-SFDI images in real time. In addition, heatmaps of a small number of tissue samples are presented to inform hypotheses on sub-diffuse optical property differences across skin tissue subtypes. CONCLUSION These results bring the overall process of sd-SFDI a fundamental step closer to real-time speeds and set a foundation for future real-time medical applications of sd-SFDI such as image guided surgery.
Collapse
Affiliation(s)
- Andrew C. Stier
- The University of Texas at Austin, Department of Electrical and Computer Engineering, Austin, Texas, United States
| | - Will Goth
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Aislinn Hurley
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Treshayla Brown
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Xu Feng
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Yao Zhang
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Fabiana C. P. S. Lopes
- The University of Texas at Austin, Dell Medical School, Department of Internal Medicine, Austin, Texas, United States
| | - Katherine R. Sebastian
- The University of Texas at Austin, Dell Medical School, Department of Internal Medicine, Austin, Texas, United States
| | - Pengyu Ren
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Matthew C. Fox
- The University of Texas at Austin, Dell Medical School, Department of Internal Medicine, Austin, Texas, United States
| | - Jason S. Reichenberg
- The University of Texas at Austin, Dell Medical School, Department of Internal Medicine, Austin, Texas, United States
| | - Mia K. Markey
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
- The University of Texas MD Anderson Cancer Center, Imaging Physics Residency Program, Houston, Texas, United States
| | - James W. Tunnell
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| |
Collapse
|
12
|
van der Laan JJH, van der Waaij AM, Gabriëls RY, Festen EAM, Dijkstra G, Nagengast WB. Endoscopic imaging in inflammatory bowel disease: current developments and emerging strategies. Expert Rev Gastroenterol Hepatol 2021; 15:115-126. [PMID: 33094654 DOI: 10.1080/17474124.2021.1840352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Developments in enhanced and magnified endoscopy have signified major advances in endoscopic imaging of ileocolonic pathology in inflammatory bowel disease (IBD). Artificial intelligence is increasingly being used to augment the benefits of these advanced techniques. Nevertheless, treatment of IBD patients is frustrated by high rates of non-response to therapy, while delayed detection and failures to detect neoplastic lesions impede successful surveillance. A possible solution is offered by molecular imaging, which adds functional imaging data to mucosal morphology assessment through visualizing biological parameters. Other label-free modalities enable visualization beyond the mucosal surface without the need of tracers. AREAS COVERED A literature search up to May 2020 was conducted in PubMed/MEDLINE in order to find relevant articles that involve the (pre-)clinical application of high-definition white light endoscopy, chromoendoscopy, artificial intelligence, confocal laser endomicroscopy, endocytoscopy, molecular imaging, optical coherence tomography, and Raman spectroscopy in IBD. EXPERT OPINION Enhanced and magnified endoscopy have enabled an improved assessment of the ileocolonic mucosa. Implementing molecular imaging in endoscopy could overcome the remaining clinical challenges by giving practitioners a real-time in vivo view of targeted biomarkers. Label-free modalities could help optimize the endoscopic assessment of mucosal healing and dysplasia detection in IBD patients.
Collapse
Affiliation(s)
- Jouke J H van der Laan
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen , Groningen, The Netherlands
| | - Anne M van der Waaij
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen , Groningen, The Netherlands
| | - Ruben Y Gabriëls
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen , Groningen, The Netherlands
| | - Eleonora A M Festen
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen , Groningen, The Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen , Groningen, The Netherlands
| | - Wouter B Nagengast
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen , Groningen, The Netherlands
| |
Collapse
|
13
|
Post AL, Faber DJ, Sterenborg HJCM, van Leeuwen TG. Experimental validation of a recently developed model for single-fiber reflectance spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200341R. [PMID: 33641270 PMCID: PMC7913601 DOI: 10.1117/1.jbo.26.2.025004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/03/2021] [Indexed: 05/22/2023]
Abstract
SIGNIFICANCE We recently developed a model for the reflectance measured with (multi-diameter) single-fiber reflectance (SFR) spectroscopy as a function of the reduced scattering coefficient μs', the absorption coefficient μa, and the phase function parameter psb. We validated this model with simulations. AIM We validate our model experimentally. To prevent overfitting, we investigate the wavelength-dependence of psb and propose a parametrization with only three parameters. We also investigate whether this parametrization enables measurements with a single fiber, as opposed to multiple fibers used in multi-diameter SFR (MDSFR). APPROACH We validate our model on 16 phantoms with two concentrations of Intralipid-20% (μs'=13 and 21 cm - 1 at 500 nm) and eight concentrations of Evans Blue (μa = 1 to 20 cm - 1 at 605 nm). We parametrize psb as 10 - 5 · ( p1 ( λ / 650 ) + p2(λ/650)2 + p3(λ/650)3 ) . RESULTS Average errors were 7% for μs', 11% for μa, and 16% with the parametrization of psb; and 7%, 17%, and 16%, respectively, without. The parametrization of psb improved the fit speed 25 times (94 s to <4 s). Average errors for only one fiber were 50%, 33%, and 186%, respectively. CONCLUSIONS Our recently developed model provides accurate results for MDSFR measurements but not for a single fiber. The psb parametrization prevents overfitting and speeds up the fit.
Collapse
Affiliation(s)
- Anouk L. Post
- University of Amsterdam, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
- The Netherlands Cancer Institute, Department of Surgery, Amsterdam, The Netherlands
- Address all correspondence to Anouk L. Post,
| | - Dirk J. Faber
- University of Amsterdam, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Henricus J. C. M. Sterenborg
- University of Amsterdam, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
- The Netherlands Cancer Institute, Department of Surgery, Amsterdam, The Netherlands
| | - Ton G. van Leeuwen
- University of Amsterdam, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Post AL, Faber DJ, Sterenborg HJCM, van Leeuwen TG. Subdiffuse scattering and absorption model for single fiber reflectance spectroscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:6620-6633. [PMID: 33282512 PMCID: PMC7687961 DOI: 10.1364/boe.402466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 05/05/2023]
Abstract
Single fiber reflectance (SFR) spectroscopy is a technique that is sensitive to small-scale changes in tissue. An additional benefit is that SFR measurements can be performed through endoscopes or biopsy needles. In SFR spectroscopy, a single fiber emits and collects light. Tissue optical properties can be extracted from SFR spectra and related to the disease state of tissue. However, the model currently used to extract optical properties was derived for tissues with modified Henyey-Greenstein phase functions only and is inadequate for other tissue phase functions. Here, we will present a model for SFR spectroscopy that provides accurate results for a large range of tissue phase functions, reduced scattering coefficients, and absorption coefficients. Our model predicts the reflectance with a median error of 5.6% compared to 19.3% for the currently used model. For two simulated tissue spectra, our model fit provides accurate results.
Collapse
Affiliation(s)
- Anouk L. Post
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- The Netherlands Cancer Institute, Department of Surgery, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Dirk J. Faber
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Henricus J. C. M. Sterenborg
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- The Netherlands Cancer Institute, Department of Surgery, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Ton G. van Leeuwen
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Kuriakose M, Nguyen CD, Kuniyil Ajith Singh M, Mallidi S. Optimizing Irradiation Geometry in LED-Based Photoacoustic Imaging with 3D Printed Flexible and Modular Light Delivery System. SENSORS 2020; 20:s20133789. [PMID: 32640683 PMCID: PMC7374354 DOI: 10.3390/s20133789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 01/04/2023]
Abstract
Photoacoustic (PA) imaging–a technique combining the ability of optical imaging to probe functional properties of the tissue and deep structural imaging ability of ultrasound–has gained significant popularity in the past two decades for its utility in several biomedical applications. More recently, light-emitting diodes (LED) are being explored as an alternative to bulky and expensive laser systems used in PA imaging for their portability and low-cost. Due to the large beam divergence of LEDs compared to traditional laser beams, it is imperative to quantify the angular dependence of LED-based illumination and optimize its performance for imaging superficial or deep-seated lesions. A custom-built modular 3-D printed hinge system and tissue-mimicking phantoms with various absorption and scattering properties were used in this study to quantify the angular dependence of LED-based illumination. We also experimentally calculated the source divergence of the pulsed-LED arrays to be 58° ± 8°. Our results from point sources (pencil lead phantom) in non-scattering medium obey the cotangential relationship between the angle of irradiation and maximum PA intensity obtained at various imaging depths, as expected. Strong dependence on the angle of illumination at superficial depths (−5°/mm at 10 mm) was observed that becomes weaker at intermediate depths (−2.5°/mm at 20 mm) and negligible at deeper locations (−1.1°/mm at 30 mm). The results from the tissue-mimicking phantom in scattering media indicate that angles between 30–75° could be used for imaging lesions at various depths (12 mm–28 mm) where lower LED illumination angles (closer to being parallel to the imaging plane) are preferable for deep tissue imaging and superficial lesion imaging is possible with higher LED illumination angles (closer to being perpendicular to the imaging plane). Our results can serve as a priori knowledge for the future LED-based PA system designs employed for both preclinical and clinical applications.
Collapse
Affiliation(s)
- Maju Kuriakose
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (M.K.); (C.D.N.)
| | - Christopher D. Nguyen
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (M.K.); (C.D.N.)
| | | | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (M.K.); (C.D.N.)
- Correspondence:
| |
Collapse
|
16
|
Zhang XU, Faber DJ, Van Leeuwen TG, Sterenborg HJCM. Effect of probe pressure on skin tissue optical properties measurement using multi-diameter single fiber reflectance spectroscopy. JPHYS PHOTONICS 2020. [DOI: 10.1088/2515-7647/ab9071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
17
|
Nie Z, Yeh SCA, LePalud M, Badr F, Tse F, Armstrong D, Liu LWC, Deen MJ, Fang Q. Optical Biopsy of the Upper GI Tract Using Fluorescence Lifetime and Spectra. Front Physiol 2020; 11:339. [PMID: 32477151 PMCID: PMC7237753 DOI: 10.3389/fphys.2020.00339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/24/2020] [Indexed: 12/11/2022] Open
Abstract
Screening and surveillance for gastrointestinal (GI) cancers by endoscope guided biopsy is invasive, time consuming, and has the potential for sampling error. Tissue endogenous fluorescence spectra contain biochemical and physiological information, which may enable real-time, objective diagnosis. We first briefly reviewed optical biopsy modalities for GI cancer diagnosis with a focus on fluorescence-based techniques. In an ex vivo pilot clinical study, we measured fluorescence spectra and lifetime on fresh biopsy specimens obtained during routine upper GI screening procedures. Our results demonstrated the feasibility of rapid acquisition of time-resolved fluorescence (TRF) spectra from fresh GI mucosal specimens. We also identified spectroscopic signatures that can differentiate between normal mucosal samples obtained from the esophagus, stomach, and duodenum.
Collapse
Affiliation(s)
- Zhaojun Nie
- School of Biomedical Engineering, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
| | - Shu-Chi Allison Yeh
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Michelle LePalud
- School of Biomedical Engineering, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
| | - Fares Badr
- School of Biomedical Engineering, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
| | - Frances Tse
- Division of Gastroenterology and Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - David Armstrong
- Division of Gastroenterology and Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Louis W. C. Liu
- Division of Gastrointestinal Diseases, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - M. Jamal Deen
- School of Biomedical Engineering, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
- Department of Electrical and Computer Engineering, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
| | - Qiyin Fang
- School of Biomedical Engineering, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
- Department of Engineering Physics, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
18
|
McKay GN, Mohan N, Durr NJ. Imaging human blood cells in vivo with oblique back-illumination capillaroscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:2373-2382. [PMID: 32499930 PMCID: PMC7249808 DOI: 10.1364/boe.389088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/12/2020] [Accepted: 04/01/2020] [Indexed: 05/08/2023]
Abstract
We present a non-invasive, label-free method of imaging blood cells flowing through human capillaries in vivo using oblique back-illumination capillaroscopy (OBC). Green light illumination allows simultaneous phase and absorption contrast, enhancing the ability to distinguish red and white blood cells. Single-sided illumination through the objective lens enables 200 Hz imaging with close illumination-detection separation and a simplified setup. Phase contrast is optimized when the illumination axis is offset from the detection axis by approximately 225 µm when imaging ∼80 µm deep in phantoms and human ventral tongue. We demonstrate high-speed imaging of individual red blood cells, white blood cells with sub-cellular detail, and platelets flowing through capillaries and vessels in human tongue. A custom pneumatic cap placed over the objective lens stabilizes the field of view, enabling longitudinal imaging of a single capillary for up to seven minutes. We present high-quality images of blood cells in individuals with Fitzpatrick skin phototypes II, IV, and VI, showing that the technique is robust to high peripheral melanin concentration. The signal quality, speed, simplicity, and robustness of this approach underscores its potential for non-invasive blood cell counting.
Collapse
|
19
|
Liu W, Jin X, Li J, Xue Y, Li Y, Qian Z, Li W, Yan X. Study of cervical precancerous lesions detection by spectroscopy and support vector machine. MINIM INVASIV THER 2020; 30:208-214. [PMID: 32347137 DOI: 10.1080/13645706.2020.1723111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Diffuse reflectance spectroscopy (DRS) offers a fast, non-invasive, and low-cost alternative for cervical cancer diagnosis. We aim to develop a method for screening precancerous lesions based on DRS. MATERIAL AND METHODS Characteristic parameters of cervical tissue were extracted from spectra, including optical characteristic parameters such as absorption and scattering coefficients, and some slope and area parameters of the spectrum. Data were randomly divided into training (60%) and test (40%) sets. Of the 210 included patients, 166 were healthy, 22 had erosion of the cervix, and 31 had cervical intraepithelial neoplasia (CIN). The support vector machine (SVM) algorithm was used to classify normal and abnormal cervical tissue based on 11 characteristic parameters. RESULTS The SVM with linear kernel function, applied on the training data, could distinguish tissue with lesions from healthy tissue with an accuracy of 1.00. When the classifiers were applied to the test set, erosion of cervix and CIN could be discriminated from healthy tissue with an accuracy of 0.95 (±0.03). CONCLUSIONS This research shows that the diagnostic algorithm can be valuable for non-invasive diagnosis of cervical cancer. This is a significant step toward the development of a tool for tissue assessment of cervical cancer.
Collapse
Affiliation(s)
- Wenwen Liu
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xiaofei Jin
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Junjun Li
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yanbai Xue
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yiran Li
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Weitao Li
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xuemei Yan
- Department of Gynecology, Nanjing BenQ Hospital Co Ltd, Nanjing, China
| |
Collapse
|
20
|
Deken MM, Kijanka MM, Beltrán Hernández I, Slooter MD, de Bruijn HS, van Diest PJ, van Bergen En Henegouwen PMP, Lowik CWGM, Robinson DJ, Vahrmeijer AL, Oliveira S. Nanobody-targeted photodynamic therapy induces significant tumor regression of trastuzumab-resistant HER2-positive breast cancer, after a single treatment session. J Control Release 2020; 323:269-281. [PMID: 32330574 PMCID: PMC7116241 DOI: 10.1016/j.jconrel.2020.04.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022]
Abstract
Rationale A substantial number of breast cancer patients with an overexpression of the human epidermal growth factor receptor 2 (HER2) have residual disease after neoadjuvant therapy or become resistant to trastuzumab. Photodynamic therapy (PDT) using nanobodies targeted to HER2 is a promising treatment option for these patients. Here we investigate the in vitro and in vivo antitumor efficacy of HER2-targeted nanobody-photosensitizer (PS) conjugate PDT. Methods Nanobodies targeting HER2 were obtained from phage display selections. Monovalent nanobodies were engineered into a biparatopic construct. The specificity of selected nanobodies was tested in immunofluorescence assays and their affinity was evaluated in binding studies, both performed in a panel of breast cancer cells varying in HER2 expression levels. The selected HER2-targeted nanobodies 1D5 and 1D5-18A12 were conjugated to the photosensitizer IRDye700DX and tested in in vitro PDT assays. Mice bearing orthotopic HCC1954 trastuzumab-resistant tumors with high HER2 expression or MCF-7 tumors with low HER2 expression were intravenously injected with nanobody-PS conjugates. Quantitative fluorescence spectroscopy was performed for the determination of the local pharmacokinetics of the fluorescence conjugates. After nanobody-PS administration, tumors were illuminated to a fluence of 100 J∙cm-2, with a fluence rate of 50 mW∙cm-2, and thereafter tumor growth was measured with a follow-up until 30 days. Results The selected nanobodies remained functional after conjugation to the PS, binding specifically and with high affinity to HER2-positive cells. Both nanobody-PS conjugates potently and selectively induced cell death of HER2 overexpressing cells, either sensitive or resistant to trastuzumab, with low nanomolar LD50 values. In vivo, quantitative fluorescence spectroscopy showed specific accumulation of nanobody-PS conjugates in HCC1954 tumors and indicated 2 h post injection as the most suitable time point to apply light. Nanobody-targeted PDT with 1D5-PS and 1D5-18A12-PS induced significant tumor regression of trastuzumab-resistant high HER2 expressing tumors, whereas in low HER2 expressing tumors only a slight growth delay was observed. Conclusion Nanobody-PS conjugates accumulated selectively in vivo and their fluorescence could be detected through optical imaging. Upon illumination, they selectively induced significant tumor regression of HER2 overexpressing tumors with a single treatment session. Nanobody-targeted PDT is therefore suggested as a new additional treatment for HER2-positive breast cancer, particularly of interest for trastuzumab-resistant HER2-positive breast cancer. Further studies are now needed to assess the value of this approach in clinical practice.
Collapse
Affiliation(s)
- Marion M Deken
- Dept. of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Marta M Kijanka
- Division of Cell Biology, Neurobiology and Biophysics, Dept. of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Irati Beltrán Hernández
- Pharmaceutics, Dept. of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Maxime D Slooter
- Dept. of Radiology, Division of Molecular Imaging, Leiden University Medical Center, Leiden, the Netherlands
| | - Henriette S de Bruijn
- Dept. of Otorhinolaryngology & Head and Neck Surgery, Center for Optical Diagnostics and Therapy, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Paul J van Diest
- Dept. of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paul M P van Bergen En Henegouwen
- Division of Cell Biology, Neurobiology and Biophysics, Dept. of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Clemens W G M Lowik
- Dept. of Radiology, Optical Molecular Imaging, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Dominic J Robinson
- Dept. of Surgery, Leiden University Medical Center, Leiden, the Netherlands; Dept. of Otorhinolaryngology & Head and Neck Surgery, Center for Optical Diagnostics and Therapy, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Sabrina Oliveira
- Division of Cell Biology, Neurobiology and Biophysics, Dept. of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Pharmaceutics, Dept. of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
21
|
de Jongh SJ, Voskuil FJ, Schmidt I, Karrenbeld A, Kats-Ugurlu G, Meersma GJ, Westerhof J, Witjes MJ, van Dam GM, Robinson DJ, Nagengast WB. C-Met targeted fluorescence molecular endoscopy in Barrett's esophagus patients and identification of outcome parameters for phase-I studies. Am J Cancer Res 2020; 10:5357-5367. [PMID: 32373217 PMCID: PMC7196285 DOI: 10.7150/thno.42224] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/18/2020] [Indexed: 11/09/2022] Open
Abstract
Fluorescence molecular endoscopy (FME) is an emerging technique in the field of gastroenterology that holds potential to improve diagnosis and guide therapy, by serving as a 'red-flag' endoscopic imaging technique. Here, we investigated the safety, feasibility and optimal method of administration of EMI-137, targeting c-Met, during FME in Barrett's Esophagus (BE) and report several outcome parameters for early phase FME studies. Methods: FME was performed in 15 Barrett's neoplasia patients. EMI-137 was administered to three cohorts of five patients: 0.13 mg/kg intravenously (IV); 0.09 mg/kg IV or topically at a dose of 200 μg/cm BE (n=1) or 100 μg/cm BE (n=4). Fluorescence was visualized in vivo, quantified in vivo using multi-diameter single-fiber reflectance, single-fiber fluorescence (MDSFR/SFF) spectroscopy and correlated to histopathology and immunohistochemistry. EMI-137 localization was assessed using fluorescence microscopy. Results: FME using different IV and topical doses of EMI-137 appeared to be safe and correctly identified 16/18 lesions, although modest target-to-background ratios were observed (median range of 1.12-1.50). C-Met overexpression varied between lesions, while physiological expression in the stomach-type epithelium was observed. Microscopically, EMI-137 accumulated around the neoplastic cell membranes. We identified several outcome parameters important for the validation of EMI-137 for FME: 1) the optimal administration route; 2) optimal dose and safety; 3) in vivo FME contrast; 4) quantification of intrinsic fluorescence; 5) ex vivo correlation of fluorescence, histopathology and target expression; and 6) microscopic tracer distribution. Conclusions: C-Met targeted FME using EMI-137 may not be the ideal combination to improve BE surveillance endoscopies, however the identified outcome parameters may serve as a valuable guidance for designing and performing future early phase clinical FME studies, independent of which fluorescent tracer is investigated.
Collapse
|
22
|
de Jongh SJ, Vrouwe JPM, Voskuil FJ, Schmidt I, Westerhof J, Koornstra JJ, de Kam ML, Karrenbeld A, Hardwick JCH, Robinson DJ, Burggraaf J, Kamerling IMC, Nagengast WB. The Optimal Imaging Window for Dysplastic Colorectal Polyp Detection Using c-Met-Targeted Fluorescence Molecular Endoscopy. J Nucl Med 2020; 61:1435-1441. [PMID: 32198312 DOI: 10.2967/jnumed.119.238790] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
Fluorescence molecular endoscopy (FME) is an emerging technique that has the potential to improve the 22% colorectal polyp detection miss-rate. We determined the optimal dose-to-imaging interval and safety of FME using EMI-137, a c-Met-targeted fluorescent peptide, in a population at high risk for colorectal cancer. Methods: We performed in vivo FME and quantification of fluorescence by multidiameter single-fiber reflectance/single-fiber fluorescence spectroscopy in 15 patients with a dysplastic colorectal adenoma. EMI-137 was intravenously administered (0.13 mg/kg) at a 1-, 2- or 3-h dose-to-imaging interval (n = 3 patients per cohort). Two cohorts were expanded to 6 patients on the basis of target-to-background ratios. Fluorescence was correlated to histopathology and c-Met expression. EMI-137 binding specificity was assessed by fluorescence microscopy and in vitro experiments. Results: FME using EMI-137 appeared to be safe and well tolerated. All dose-to-imaging intervals showed significantly higher fluorescence in the colorectal lesions than in surrounding tissue, with a target-to-background ratio of 1.53, 1.66, and 1.74 for the 1-, 2-, and 3-h cohorts, respectively, and a mean intrinsic fluorescence of 0.035 vs. 0.023 mm-1 (P < 0.0003), 0.034 vs. 0.021 mm-1 (P < 0.0001), and 0.033 vs. 0.019 mm-1 (P < 0.0001), respectively. Fluorescence correlated with histopathology on a macroscopic and microscopic level, with significant c-Met overexpression in dysplastic mucosa. In vitro, a dose-dependent specific binding was confirmed. Conclusion: FME using EMI-137 appeared to be safe and feasible within a 1- to 3-h dose-to-imaging interval. No clinically significant differences were observed among the cohorts, although a 1-h dose-to-imaging interval was preferred from a clinical perspective. Future studies will investigate EMI-137 for improved colorectal polyp detection during screening colonoscopies.
Collapse
Affiliation(s)
- Steven J de Jongh
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Floris J Voskuil
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Iris Schmidt
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | - Jessie Westerhof
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan J Koornstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Arend Karrenbeld
- Department of Pathology, University Medical Center Groningen, Groningen, The Netherlands
| | - James C H Hardwick
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Dominic J Robinson
- Center for Optical Diagnostics and Therapy, Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | | | - Wouter B Nagengast
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
23
|
Voskuil FJ, de Jongh SJ, Hooghiemstra WTR, Linssen MD, Steinkamp PJ, de Visscher SAHJ, Schepman KP, Elias SG, Meersma GJ, Jonker PKC, Doff JJ, Jorritsma-Smit A, Nagengast WB, van der Vegt B, Robinson DJ, van Dam GM, Witjes MJH. Fluorescence-guided imaging for resection margin evaluation in head and neck cancer patients using cetuximab-800CW: A quantitative dose-escalation study. Theranostics 2020; 10:3994-4005. [PMID: 32226534 PMCID: PMC7086353 DOI: 10.7150/thno.43227] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor-positive resection margins are present in up to 23% of head and neck cancer (HNC) surgeries, as intraoperative techniques for real-time evaluation of the resection margins are lacking. In this study, we investigated the safety and potential clinical value of fluorescence-guided imaging (FGI) for resection margin evaluation in HNC patients. We determined the optimal cetuximab-800CW dose by quantification of intrinsic fluorescence values using multi-diameter single-fiber reflectance, single-fiber fluorescence (MDSFR/SFF) spectroscopy. Methods: Five cohorts of three HNC patients received cetuximab-800CW systemically: three single dose cohorts (10, 25, 50 mg) and two cohorts pre-dosed with 75 mg unlabeled cetuximab (15 or 25 mg). Fluorescence visualization and MDSFR/SFF spectroscopy quantification was performed and were correlated to histopathology. Results: There were no study-related adverse events higher than Common Terminology Criteria for Adverse Events grade-II. Quantification of intrinsic fluorescence values showed a dose-dependent increase in background fluorescence in the single dose cohorts (p<0.001, p<0.001), which remained consistently low in the pre-dosed cohorts (p=0.6808). Resection margin status was evaluated with a sensitivity of 100% (4/4 tumor-positive margins) and specificity of 91% (10/11 tumor-negative margins). Conclusion: A pre-dose of 75 mg unlabeled cetuximab followed by 15 mg cetuximab-800CW was considered the optimal dose based on safety, fluorescence visualization and quantification of intrinsic fluorescence values. We were able to use a lower dose cetuximab-800CW than previously described, while remaining a high sensitivity for tumor detection due to application of equipment optimized for IRDye800CW detection, which was validated by quantification of intrinsic fluorescence values.
Collapse
|
24
|
Peng W, de Bruijn HS, ten Hagen TLM, Berg K, Roodenburg JLN, van Dam GM, Witjes MJH, Robinson DJ. In-Vivo Optical Monitoring of the Efficacy of Epidermal Growth Factor Receptor Targeted Photodynamic Therapy: The Effect of Fluence Rate. Cancers (Basel) 2020; 12:E190. [PMID: 31940973 PMCID: PMC7017190 DOI: 10.3390/cancers12010190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Targeted photodynamic therapy (PDT) has the potential to improve the therapeutic effect of PDT due to significantly better tumor responses and less normal tissue damage. Here we investigated if the efficacy of epidermal growth factor receptor (EGFR) targeted PDT using cetuximab-IRDye700DX is fluence rate dependent. Cell survival after treatment with different fluence rates was investigated in three cell lines. Singlet oxygen formation was investigated using the singlet oxygen quencher sodium azide and singlet oxygen sensor green (SOSG). The long-term response (to 90 days) of solid OSC-19-luc2-cGFP tumors in mice was determined after illumination with 20, 50, or 150 mW·cm-2. Reflectance and fluorescence spectroscopy were used to monitor therapy. Singlet oxygen was formed during illumination as shown by the increase in SOSG fluorescence and the decreased response in the presence of sodium azide. Significantly more cell death and more cures were observed after reducing the fluence rate from 150 mW·cm-2 to 20 mW·cm-2 both in-vitro and in-vivo. Photobleaching of IRDye700DX increased with lower fluence rates and correlated with efficacy. The response in EGFR targeted PDT is strongly dependent on fluence rate used. The effectiveness of targeted PDT is, like PDT, dependent on the generation of singlet oxygen and thus the availability of intracellular oxygen.
Collapse
Affiliation(s)
- Wei Peng
- ErasmusMC Cancer Institute, Department of Otolaryngology and Head & Neck Surgery, Center for Optical Diagnostics and Therapy, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Henriette S. de Bruijn
- ErasmusMC Cancer Institute, Department of Otolaryngology and Head & Neck Surgery, Center for Optical Diagnostics and Therapy, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Timo L. M. ten Hagen
- ErasmusMC, Laboratory of Experimental Oncology, Department of Pathology, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Boks 1072 Blindern, NO-0316 Oslo, Norway
- Department of Pharmacy, School of Pharmacy, University of Oslo, Boks 1072 Blindern, NO-0316 Oslo, Norway
| | - Jan L. N. Roodenburg
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Go M. van Dam
- Department of Surgery, Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Max J. H. Witjes
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Dominic J. Robinson
- ErasmusMC Cancer Institute, Department of Otolaryngology and Head & Neck Surgery, Center for Optical Diagnostics and Therapy, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
25
|
Zhang XU, van der Zee P, Atzeni I, Faber DJ, van Leeuwen TG, Sterenborg HJCM. Multidiameter single-fiber reflectance spectroscopy of heavily pigmented skin: modeling the inhomogeneous distribution of melanin. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 31820596 PMCID: PMC7006040 DOI: 10.1117/1.jbo.24.12.127001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/28/2019] [Indexed: 05/05/2023]
Abstract
When analyzing multidiameter single-fiber reflectance (MDSFR) spectra, the inhomogeneous distribution of melanin pigments in skin tissue is usually not accounted for. Especially in heavily pigmented skins, this can result in bad fits and biased estimation of tissue optical properties. A model is introduced to account for the inhomogeneous distribution of melanin pigments in skin tissue. In vivo visible MDSFR measurements were performed on heavily pigmented skin of type IV to VI. Skin tissue optical properties and related physiological properties were extracted from the measured spectra using the introduced model. The absorption of melanin pigments described by the introduced model demonstrates a good correlation with the co-localized measurement of the well-known melanin index.
Collapse
Affiliation(s)
- Xu U. Zhang
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
- Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Address all correspondence to Xu U. Zhang, E-mail:
| | | | - Isabella Atzeni
- University of Groningen, University Medical Center Groningen, Division of Vascular Medicine, Department of Internal Medicine, Groningen, The Netherlands
| | - Dirk J. Faber
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
- Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Ton G. van Leeuwen
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
- Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Henricus J. C. M. Sterenborg
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
- Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- The Netherlands Cancer Institute, Department of Surgery, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Sun T, Piao D. Simple analytical total diffuse reflectance over a reduced-scattering-pathlength scaled dimension of [10 -5, 10 -1] from a medium with HG scattering anisotropy. APPLIED OPTICS 2019; 58:9279-9289. [PMID: 31873607 DOI: 10.1364/ao.58.009279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/23/2019] [Indexed: 05/22/2023]
Abstract
Model approximation is necessary for reflectance assessment of tissue at sub-diffusive to non-diffusive scale. For tissue probing over a sub-diffusive circular area centered on the point of incidence, we demonstrate simple analytical steady-state total diffuse reflectance from a semi-infinite medium with the Henyey-Greenstein (HG) scattering anisotropy (factor $g$g). Two physical constraints are abided to: (1) the total diffuse reflectance is the integration of the radial diffuse reflectance; (2) the radial and total diffuse reflectance at $g \gt {0}$g>0 analytically must resort to their respective forms corresponding to isotropic scattering as $g$g becomes zero. Steady-state radial diffuse reflectance near the point of incidence from a semi-infinite medium of $g \approx 0$g≈0 is developed based on the radiative transfer for isotropic scattering, then integrated to find the total diffuse reflectance for $g \approx 0$g≈0. The radial diffuse reflectance for $g \ge 0.5$g≥0.5 is semi-empirically formulated by comparing to Monte Carlo simulation results and abiding to the second constraint. Its integration leads to a total diffuse reflectance for $g \ge 0.5$g≥0.5 that is also bounded by the second constraint. Over a collection diameter of the reduced-scattering pathlength ($1/\mu _s^{ \prime}$1/μs') scaled size of [${{10}^{ - 5}}$10-5, ${{10}^{ - 1}}$10-1] for $g = [{0.5},{0.95}]$g=[0.5,0.95] and the absorption coefficient as strong as the reduced scattering coefficient, the simple analytical total diffuse reflectance is found to be accurate, with an average error of 16.1%.
Collapse
|
27
|
Swaan A, Muller BG, Wilk LS, Almasian M, van Kollenburg RAA, Zwartkruis E, Rozendaal LR, de Bruin DM, Faber DJ, van Leeuwen TG, van Herk MB. One-to-one registration of en-face optical coherence tomography attenuation coefficients with histology of a prostatectomy specimen. JOURNAL OF BIOPHOTONICS 2019; 12:e201800274. [PMID: 30565879 DOI: 10.1002/jbio.201800274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/31/2018] [Accepted: 11/18/2018] [Indexed: 05/08/2023]
Abstract
Optical coherence tomography (OCT), enables high-resolution 3D imaging of the morphology of light scattering tissues. From the OCT signal, parameters can be extracted and related to tissue structures. One of the quantitative parameters is the attenuation coefficient; the rate at which the intensity of detected light decays in depth. To couple the quantitative parameters with the histology one-to-one registration is needed. The primary aim of this study is to validate a registration method of quantitative OCT parameters to histological tissue outcome through one-to-one registration of OCT with histology. We matched OCT images of unstained fixated prostate tissue slices with corresponding histology slides, wherein different histologic types were demarcated. Attenuation coefficients were determined by a supervised automated exponential fit (corrected for point spread function and sensitivity roll-off related signal losses) over a depth of 0.32 mm starting from 0.10 mm below the automatically detected tissue edge. Finally, the attenuation coefficients corresponding to the different tissue types of the prostate were compared. From the attenuation coefficients, we produced the squared relative residue and goodness-of-fit metric R2 . This article explains the method to perform supervised automated quantitative analysis of OCT data, and the one-to-one registration of OCT extracted quantitative data with histopathological outcomes.
Collapse
Affiliation(s)
- Abel Swaan
- Department of Urology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Biomedical Engineering & Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Berrend G Muller
- Department of Urology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Leah S Wilk
- Biomedical Engineering & Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mitra Almasian
- Biomedical Engineering & Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Evita Zwartkruis
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - L Rence Rozendaal
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Daniel M de Bruin
- Department of Urology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Biomedical Engineering & Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Dirk J Faber
- Biomedical Engineering & Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ton G van Leeuwen
- Biomedical Engineering & Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marcel B van Herk
- Biomedical Engineering & Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Division of Cancer Science, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Cancer Research Centre, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| |
Collapse
|
28
|
Koller M, Qiu SQ, Linssen MD, Jansen L, Kelder W, de Vries J, Kruithof I, Zhang GJ, Robinson DJ, Nagengast WB, Jorritsma-Smit A, van der Vegt B, van Dam GM. Implementation and benchmarking of a novel analytical framework to clinically evaluate tumor-specific fluorescent tracers. Nat Commun 2018; 9:3739. [PMID: 30228269 PMCID: PMC6143516 DOI: 10.1038/s41467-018-05727-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/20/2018] [Indexed: 02/05/2023] Open
Abstract
During the last decade, the emerging field of molecular fluorescence imaging has led to the development of tumor-specific fluorescent tracers and an increase in early-phase clinical trials without having consensus on a standard methodology for evaluating an optical tracer. By combining multiple complementary state-of-the-art clinical optical imaging techniques, we propose a novel analytical framework for the clinical translation and evaluation of tumor-targeted fluorescent tracers for molecular fluorescence imaging which can be used for a range of tumor types and with different optical tracers. Here we report the implementation of this analytical framework and demonstrate the tumor-specific targeting of escalating doses of the near-infrared fluorescent tracer bevacizumab-800CW on a macroscopic and microscopic level. We subsequently demonstrate an 88% increase in the intraoperative detection rate of tumor-involved margins in primary breast cancer patients, indicating the clinical feasibility and support of future studies to evaluate the definitive clinical impact of fluorescence-guided surgery.
Collapse
Affiliation(s)
- Marjory Koller
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
| | - Si-Qi Qiu
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China
| | - Matthijs D Linssen
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
| | - Liesbeth Jansen
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
| | - Wendy Kelder
- Department of Surgery, Martini Hospital, Groningen, 9700 RM, The Netherlands
| | - Jakob de Vries
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
| | - Inge Kruithof
- Department of Pathology, Martini Hospital, Groningen, 9700 RM, The Netherlands
| | - Guo-Jun Zhang
- Changjiang Scholar's Laboratory of Shantou University Medical College, 515000, Shantou, Guangdong, China
| | | | - Wouter B Nagengast
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
| | - Annelies Jorritsma-Smit
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
| | - Bert van der Vegt
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
| | - Gooitzen M van Dam
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands.
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands.
- Department of Intensive Care, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands.
| |
Collapse
|
29
|
Piao D, Ritchey JW, Holyoak GR, Wall CR, Sultana N, Murray JK, Bartels KE. In vivo percutaneous reflectance spectroscopy of fatty liver development in rats suggests that the elevation of the scattering power is an early indicator of hepatic steatosis. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2018; 11. [DOI: 10.1142/s1793545818500190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
This study assessed whether there was a scattering spectral marker quantifiable by reflectance measurements that could indicate early development of hepatic steatosis in rats for potential applications to pre-procurement organ evaluation. Sixteen rats were fed a methionine-choline-deficient (MCD) diet and eight rats were fed a normal diet. Direct assessment of the liver parenchyma of rats in vivo was performed by percutaneous reflectance spectroscopy using a single fiber probe at the beginning of diet-intake and arbitrary post-diet-intake times up to 11 weeks to render longitudinal comparison. Histological sampling of the liver over the duration of diet administration was performed on two MCD-diet treated rats and one control rat euthanized after reflectance spectroscopy measurement. The images of hematoxylin/eosin-stained liver specimens were analyzed morphometrically to evaluate the lipid size changes associated with the level of steatosis. The MCD-diet-treated group ([Formula: see text]) had mild steatosis in seven rats, moderate in three rats, severe in six rats, and no other significant pathology. No control rats ([Formula: see text]) developed hepatic steatosis. Among the parameters retrieved from per-SfS, only the scattering power (can be either positive or negative) appeared to be statistically different between MCD-treated and control livers. The scattering power for the 16 MCD-diet-treated livers at the time of euthanasia and presenting various levels of steatosis was [Formula: see text], in comparison to [Formula: see text] of the eight control livers [Formula: see text]. When evaluated at days 12 and 13 combined, the scattering power of the 16 MCD-diet-treated livers was [Formula: see text], in comparison to [Formula: see text] of the eight control livers ([Formula: see text]). All of four MCD-treated livers harvested at days 12 and 13 presented mild steatosis with sub-micron size lipid droplets, even though none of the MCD-treated livers were sonographically remarkable for fatty changes. The elevation of the scattering power may be a valuable marker indicating early hepatic steatosis before the steatosis is sonographically detectable.
Collapse
Affiliation(s)
- Daqing Piao
- School of Electrical and Computer Engineering, Oklahoma State University, 202 Engineering South, Stillwater, OK 74078, USA
- Department of Veterinary Clinical Sciences, Center for Veterinary Health Sciences, 002 VTH, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jerry W. Ritchey
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078, USA
| | - G. Reed Holyoak
- Department of Veterinary Clinical Sciences, Center for Veterinary Health Sciences, 002 VTH, Oklahoma State University, Stillwater, OK 74078, USA
| | - Corey R. Wall
- Department of Veterinary Clinical Sciences, Center for Veterinary Health Sciences, 002 VTH, Oklahoma State University, Stillwater, OK 74078, USA
| | - Nigar Sultana
- Graduate Program on Interdisciplinary Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jill K. Murray
- Department of Veterinary Clinical Sciences, Center for Veterinary Health Sciences, 002 VTH, Oklahoma State University, Stillwater, OK 74078, USA
| | - Kenneth E. Bartels
- Department of Veterinary Clinical Sciences, Center for Veterinary Health Sciences, 002 VTH, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
30
|
Hartmans E, Tjalma JJ, Linssen MD, Allende PBG, Koller M, Jorritsma-Smit A, Nery MESDO, Elias SG, Karrenbeld A, de Vries EG, Kleibeuker JH, van Dam GM, Robinson DJ, Ntziachristos V, Nagengast WB. Potential Red-Flag Identification of Colorectal Adenomas with Wide-Field Fluorescence Molecular Endoscopy. Am J Cancer Res 2018; 8:1458-1467. [PMID: 29556334 PMCID: PMC5858160 DOI: 10.7150/thno.22033] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/19/2017] [Indexed: 12/23/2022] Open
Abstract
Adenoma miss rates in colonoscopy are unacceptably high, especially for sessile serrated adenomas / polyps (SSA/Ps) and in high-risk populations, such as patients with Lynch syndrome. Detection rates may be improved by fluorescence molecular endoscopy (FME), which allows morphological visualization of lesions with high-definition white-light imaging as well as fluorescence-guided identification of lesions with a specific molecular marker. In a clinical proof-of-principal study, we investigated FME for colorectal adenoma detection, using a fluorescently labelled antibody (bevacizumab-800CW) against vascular endothelial growth factor A (VEGFA), which is highly upregulated in colorectal adenomas. Methods: Patients with familial adenomatous polyposis (n = 17), received an intravenous injection with 4.5, 10 or 25 mg of bevacizumab-800CW. Three days later, they received NIR-FME. Results: VEGFA-targeted NIR-FME detected colorectal adenomas at all doses. Best results were achieved in the highest (25 mg) cohort, which even detected small adenomas (<3 mm). Spectroscopy analyses of freshly excised specimen demonstrated the highest adenoma-to-normal ratio of 1.84 for the 25 mg cohort, with a calculated median tracer concentration in adenomas of 6.43 nmol/mL. Ex vivo signal analyses demonstrated NIR fluorescence within the dysplastic areas of the adenomas. Conclusion: These results suggest that NIR-FME is clinically feasible as a real-time, red-flag technique for detection of colorectal adenomas.
Collapse
|
31
|
Nivetha KB, Sujatha N. Development of thin skin mimicking bilayer solid tissue phantoms for optical spectroscopic studies. BIOMEDICAL OPTICS EXPRESS 2017; 8:3198-3212. [PMID: 28717562 PMCID: PMC5508823 DOI: 10.1364/boe.8.003198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 05/31/2023]
Abstract
In vivo spectroscopic measurements have the proven potential to provide important insight about the changes in tissue during the development of malignancies and thus help to diagnose tissue pathologies. Extraction of intrinsic data in the presence of varying amounts of scatterers and absorbers offers great challenges in the development of such techniques to the clinical level. Fabrication of optical phantoms, tailored to the biochemical as well as morphological features of the target tissue, can help to generate a spectral database for a given optical spectral measurement system. Such databases, along with appropriate pattern matching algorithms, could be integrated with in vivo measurements for any desired quantitative analysis of the target tissue. This paper addresses the fabrication of such soft, photo stable, thin bilayer phantoms, mimicking skin tissue in layer dimensions and optical properties. The performance evaluation of the fabricated set of phantoms is carried out using a portable fluorescence spectral measurement system. The alterations in flavin adenine dinucleotide (FAD)-a tissue fluorophore that provides important information about dysplastic progressions in tissues associated with cancer development based on changes in emission spectra-fluorescence with varied concentrations of absorbers and scatterers present in the phantom are analyzed and the results are presented. Alterations in the emission intensity, shift in emission wavelength and broadening of the emission spectrum were found to be potential markers in the assessment of biochemical changes that occur during the progression of dysplasia.
Collapse
Affiliation(s)
- K Bala Nivetha
- Biophotonics Lab, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai-600036, India
| | - N Sujatha
- Biophotonics Lab, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai-600036, India
| |
Collapse
|
32
|
Post AL, Jacques SL, Sterenborg HJCM, Faber DJ, van Leeuwen TG. Modeling subdiffusive light scattering by incorporating the tissue phase function and detector numerical aperture. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:50501. [PMID: 28530013 DOI: 10.1117/1.jbo.22.5.050501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/01/2017] [Indexed: 05/04/2023]
Abstract
To detect small-scale changes in tissue with optical techniques, small sampling volumes and, therefore, short source–detector separations are required. In this case, reflectance measurements are not adequately described by the diffusion approximation. Previous studies related subdiffusive reflectance to ? or ? , which parameterize the phase function. Recently, it was demonstrated that ? predicts subdiffusive reflectance better than ? , and that ? becomes less predictive for lower numerical apertures (NAs). We derive and evaluate the parameter R p NA , which incorporates the NA of the detector and the integral of the phase function over the NA in the backward and forward directions. Monte Carlo simulations are performed for overlapping source/detector geometries for a range of phase functions, reduced scattering coefficients, NAs, and source/detector diameters. R p NA improves prediction of the measured reflectance compared to ? and ? . It is, therefore, expected that R p NA will improve derivation of optical properties from subdiffusive measurements.
Collapse
Affiliation(s)
- Anouk L Post
- University of Amsterdam, Academic Medical Center, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Steven L Jacques
- Oregon Health and Science University, Department of Biomedical Engineering, Portland, Oregon, United States
| | - Henricus J C M Sterenborg
- University of Amsterdam, Academic Medical Center, Department of Biomedical Engineering and Physics, Amsterdam, The NetherlandscThe Netherlands Cancer Institute, Department of Surgery, Amsterdam, The Netherlands
| | - Dirk J Faber
- University of Amsterdam, Academic Medical Center, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Ton G van Leeuwen
- University of Amsterdam, Academic Medical Center, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Reisman MD, Markow ZE, Bauer AQ, Culver JP. Structured illumination diffuse optical tomography for noninvasive functional neuroimaging in mice. NEUROPHOTONICS 2017; 4:021102. [PMID: 28439519 PMCID: PMC5391480 DOI: 10.1117/1.nph.4.2.021102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/01/2017] [Indexed: 05/15/2023]
Abstract
Optical intrinsic signal (OIS) imaging has been a powerful tool for capturing functional brain hemodynamics in rodents. Recent wide field-of-view implementations of OIS have provided efficient maps of functional connectivity from spontaneous brain activity in mice. However, OIS requires scalp retraction and is limited to superficial cortical tissues. Diffuse optical tomography (DOT) techniques provide noninvasive imaging, but previous DOT systems for rodent neuroimaging have been limited either by sparse spatial sampling or by slow speed. Here, we develop a DOT system with asymmetric source-detector sampling that combines the high-density spatial sampling (0.4 mm) detection of a scientific complementary metal-oxide-semiconductor camera with the rapid (2 Hz) imaging of a few ([Formula: see text]) structured illumination (SI) patterns. Analysis techniques are developed to take advantage of the system's flexibility and optimize trade-offs among spatial sampling, imaging speed, and signal-to-noise ratio. An effective source-detector separation for the SI patterns was developed and compared with light intensity for a quantitative assessment of data quality. The light fall-off versus effective distance was also used for in situ empirical optimization of our light model. We demonstrated the feasibility of this technique by noninvasively mapping the functional response in the somatosensory cortex of the mouse following electrical stimulation of the forepaw.
Collapse
Affiliation(s)
- Matthew D. Reisman
- Washington University in St. Louis, Department of Physics, St. Louis, Missouri, United States
| | - Zachary E. Markow
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Adam Q. Bauer
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Joseph P. Culver
- Washington University in St. Louis, Department of Physics, St. Louis, Missouri, United States
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
- Address all correspondence to: Joseph P. Culver, E-mail:
| |
Collapse
|
34
|
Naglič P, Pernuš F, Likar B, Bürmen M. Lookup table-based sampling of the phase function for Monte Carlo simulations of light propagation in turbid media. BIOMEDICAL OPTICS EXPRESS 2017; 8:1895-1910. [PMID: 28663872 PMCID: PMC5480587 DOI: 10.1364/boe.8.001895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/25/2017] [Accepted: 02/15/2017] [Indexed: 05/28/2023]
Abstract
Analytical expressions for sampling the scattering angle from a phase function in Monte Carlo simulations of light propagation are available only for a limited number of phase functions. Consequently, numerical sampling methods based on tabulated values are often required instead. By using Monte Carlo simulated reflectance, we compare two existing and propose an improved numerical sampling method and show that both the number of the tabulated values and the numerical sampling method significantly influence the accuracy of the simulated reflectance. The provided results and guidelines should serve as a good starting point for conducting computationally efficient Monte Carlo simulations with numerical phase function sampling.
Collapse
|
35
|
Stegehuis PL, Boogerd LSF, Inderson A, Veenendaal RA, van Gerven P, Bonsing BA, Sven Mieog J, Amelink A, Veselic M, Morreau H, van de Velde CJH, Lelieveldt BPF, Dijkstra J, Robinson DJ, Vahrmeijer AL. Toward optical guidance during endoscopic ultrasound-guided fine needle aspirations of pancreatic masses using single fiber reflectance spectroscopy: a feasibility study. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:24001. [PMID: 28170030 DOI: 10.1117/1.jbo.22.2.024001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/12/2017] [Indexed: 05/04/2023]
Abstract
Endoscopic ultrasound-guided fine needle aspirations (EUS-FNA) of pancreatic masses suffer from sample errors and low-negative predictive values. Fiber-optic spectroscopy in the visible to near-infrared wavelength spectrum can noninvasively extract physiological parameters from tissue and has the potential to guide the sampling process and reduce sample errors. We assessed the feasibility of single fiber (SF) reflectance spectroscopy measurements during EUS-FNA of pancreatic masses and its ability to distinguish benign from malignant pancreatic tissue. A single optical fiber was placed inside a 19-gauge biopsy needle during EUS-FNA and at least three reflectance measurements were taken prior to FNA. Spectroscopy measurements did not cause any related adverse events and prolonged procedure time with ? 5 ?? min . An accurate correlation between spectroscopy measurements and cytology could be made in nine patients (three benign and six malignant). The oxygen saturation and bilirubin concentration were significantly higher in benign tissue compared with malignant tissue (55% versus 21%, p = 0.038 ; 166 ?? ? mol / L versus 17 ?? ? mol / L , p = 0.039 , respectively). To conclude, incorporation of SF spectroscopy during EUS-FNA was feasible, safe, and relatively quick to perform. The optical properties of benign and malignant pancreatic tissue are different, implying that SF spectroscopy can potentially guide the FNA sampling.
Collapse
Affiliation(s)
- Paulien L Stegehuis
- Leiden University Medical Center, Department of Surgery, Leiden, The NetherlandsbLeiden University Medical Center, Department of Radiology, Leiden, The Netherlands
| | - Leonora S F Boogerd
- Leiden University Medical Center, Department of Surgery, Leiden, The Netherlands
| | - Akin Inderson
- Leiden University Medical Center, Department of Gastroenterology and Hepatology, Leiden, The Netherlands
| | - Roeland A Veenendaal
- Leiden University Medical Center, Department of Gastroenterology and Hepatology, Leiden, The Netherlands
| | - P van Gerven
- Leiden University Medical Center, Department of Surgery, Leiden, The Netherlands
| | - Bert A Bonsing
- Leiden University Medical Center, Department of Surgery, Leiden, The Netherlands
| | - J Sven Mieog
- Leiden University Medical Center, Department of Surgery, Leiden, The Netherlands
| | - Arjen Amelink
- Netherlands Organisation for Applied Scientific Research TNO, Department of Optics, Delft, The Netherlands
| | - Maud Veselic
- Leiden University Medical Center, Department of Pathology, Leiden, The Netherlands
| | - Hans Morreau
- Leiden University Medical Center, Department of Pathology, Leiden, The Netherlands
| | | | | | - Jouke Dijkstra
- Leiden University Medical Center, Department of Radiology, Leiden, The Netherlands
| | - Dominic J Robinson
- Center for Optical Diagnostics and Therapy, Department of Otolaryngology and Head and Neck Surgery, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
36
|
MCCLATCHY DAVIDM, RIZZO ELIZABETHJ, WELLS WENDYA, CHENEY PHILIPP, HWANG JEESEONGC, PAULSEN KEITHD, POGUE BRIANW, KANICK STEPHENC. Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging. OPTICA 2016; 3:613-621. [PMID: 27547790 PMCID: PMC4989924 DOI: 10.1364/optica.3.000613] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Localized measurements of scattering in biological tissue provide sensitivity to microstructural morphology but have limited utility to wide-field applications, such as surgical guidance. This study introduces sub-diffusive spatial frequency domain imaging (sd-SFDI), which uses high spatial frequency illumination to achieve wide-field sampling of localized reflectances. Model-based inversion recovers macroscopic variations in the reduced scattering coefficient [Formula: see text] and the phase function backscatter parameter (γ). Measurements in optical phantoms show quantitative imaging of user-tuned phase-function-based contrast with accurate decoupling of parameters that define both the density and the size-scale distribution of scatterers. Measurements of fresh ex vivo breast tissue samples revealed, for the first time, unique clustering of sub-diffusive scattering properties for different tissue types. The results support that sd-SFDI provides maps of microscopic structural biomarkers that cannot be obtained with diffuse wide-field imaging and characterizes spatial variations not resolved by point-based optical sampling.
Collapse
Affiliation(s)
- DAVID M. MCCLATCHY
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, USA
| | - ELIZABETH J. RIZZO
- Department of Pathology, Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, New Hampshire 03756, USA
| | - WENDY A. WELLS
- Department of Pathology, Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, New Hampshire 03756, USA
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, New Hampshire 03756, USA
| | - PHILIP P. CHENEY
- Quantum Elecromagnetics Division, National Institute of Standards and Technology, 325 Broadway Street, Boulder, Colorado 80305, USA
| | - JEESEONG C. HWANG
- Quantum Elecromagnetics Division, National Institute of Standards and Technology, 325 Broadway Street, Boulder, Colorado 80305, USA
| | - KEITH D. PAULSEN
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, USA
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, New Hampshire 03756, USA
| | - BRIAN W. POGUE
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, USA
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, New Hampshire 03756, USA
| | - STEPHEN C. KANICK
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, USA
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, New Hampshire 03756, USA
- Corresponding author:
| |
Collapse
|
37
|
Bodenschatz N, Lam S, Carraro A, Korbelik J, Miller DM, McAlpine JN, Lee M, Kienle A, MacAulay C. Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:66001. [PMID: 27251077 PMCID: PMC8357336 DOI: 10.1117/1.jbo.21.6.066001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/02/2016] [Indexed: 05/21/2023]
Abstract
A fiber optic imaging approach is presented using structured illumination for quantification of almost pure epithelial backscattering. We employ multiple spatially modulated projection patterns and camera-based reflectance capture to image depth-dependent epithelial scattering. The potential diagnostic value of our approach is investigated on cervical ex vivo tissue specimens. Our study indicates a strong backscattering increase in the upper part of the cervical epithelium caused by dysplastic microstructural changes. Quantization of relative depth-dependent backscattering is confirmed as a potentially useful diagnostic feature for detection of precancerous lesions in cervical squamous epithelium.
Collapse
Affiliation(s)
- Nico Bodenschatz
- Institut für Lasertechnologien in der Medizin und Meßtechnik, Helmholtzstr. 12, D-89081 Ulm, Germany
- British Columbia Cancer Research Centre, Cancer Imaging Department, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Sylvia Lam
- British Columbia Cancer Research Centre, Cancer Imaging Department, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Anita Carraro
- British Columbia Cancer Research Centre, Cancer Imaging Department, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Jagoda Korbelik
- British Columbia Cancer Research Centre, Cancer Imaging Department, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Dianne M. Miller
- University of British Columbia, Division of Gynaecologic Oncology, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada
| | - Jessica N. McAlpine
- University of British Columbia, Division of Gynaecologic Oncology, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada
| | - Marette Lee
- University of British Columbia, Division of Gynaecologic Oncology, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada
| | - Alwin Kienle
- Institut für Lasertechnologien in der Medizin und Meßtechnik, Helmholtzstr. 12, D-89081 Ulm, Germany
| | - Calum MacAulay
- British Columbia Cancer Research Centre, Cancer Imaging Department, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
38
|
van Driel PBAA, Boonstra MC, Slooter MD, Heukers R, Stammes MA, Snoeks TJA, de Bruijn HS, van Diest PJ, Vahrmeijer AL, van Bergen En Henegouwen PMP, van de Velde CJH, Löwik CWGM, Robinson DJ, Oliveira S. EGFR targeted nanobody-photosensitizer conjugates for photodynamic therapy in a pre-clinical model of head and neck cancer. J Control Release 2016; 229:93-105. [PMID: 26988602 PMCID: PMC7116242 DOI: 10.1016/j.jconrel.2016.03.014] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 12/21/2022]
Abstract
Photodynamic therapy (PDT) induces cell death through local light activation of a photosensitizer (PS) and has been used to treat head and neck cancers. Yet, common PS lack tumor specificity, which leads to collateral damage to normal tissues. Targeted delivery of PS via antibodies has pre-clinically improved tumor selectivity. However, antibodies have long half-lives and relatively poor tissue penetration, which could limit therapeutic efficacy and lead to long photosensitivity. Here, in this feasibility study, we evaluate at the pre-clinical level a recently introduced format of targeted PDT, which employs nanobodies as targeting agents and a water-soluble PS (IRDye700DX) that is traceable through optical imaging. In vitro, the PS solely binds to cells and induces phototoxicity on cells overexpressing the epidermal growth factor receptor (EGFR), when conjugated to the EGFR targeted nanobodies. To investigate whether this new format of targeted PDT is capable of inducing selective tumor cell death in vivo, PDT was applied on an orthotopic mouse tumor model with illumination at 1h post-injection of the nanobody-PS conjugates, as selected from quantitative fluorescence spectroscopy measurements. In parallel, and as a reference, PDT was applied with an antibody-PS conjugate, with illumination performed 24h post-injection. Importantly, EGFR targeted nanobody-PS conjugates led to extensive tumor necrosis (approx. 90%) and almost no toxicity in healthy tissues, as observed through histology 24h after PDT. Overall, results show that these EGFR targeted nanobody-PS conjugates are selective and able to induce tumor cell death in vivo. Additional studies are now needed to assess the full potential of this approach to improving PDT.
Collapse
Affiliation(s)
- Pieter B A A van Driel
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; Percuros BV, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Martin C Boonstra
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Maxime D Slooter
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; Percuros BV, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Raimond Heukers
- Molecular Oncology, Cell Biology Division, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Marieke A Stammes
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; Percuros BV, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Thomas J A Snoeks
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Henriette S de Bruijn
- Department of Otorhinolaryngology & Head and Neck Surgery, Center for Optical Diagnostics and Therapy, Erasmus Medical Center, s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Paul M P van Bergen En Henegouwen
- Molecular Oncology, Cell Biology Division, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Cornelis J H van de Velde
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Clemens W G M Löwik
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Dominic J Robinson
- Department of Otorhinolaryngology & Head and Neck Surgery, Center for Optical Diagnostics and Therapy, Erasmus Medical Center, s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Sabrina Oliveira
- Molecular Oncology, Cell Biology Division, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
39
|
Layer-by-layer assembled fluorescent probes in the second near-infrared window for systemic delivery and detection of ovarian cancer. Proc Natl Acad Sci U S A 2016; 113:5179-84. [PMID: 27114520 DOI: 10.1073/pnas.1521175113] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fluorescence imaging in the second near-infrared window (NIR-II, 1,000-1,700 nm) features deep tissue penetration, reduced tissue scattering, and diminishing tissue autofluorescence. Here, NIR-II fluorescent probes, including down-conversion nanoparticles, quantum dots, single-walled carbon nanotubes, and organic dyes, are constructed into biocompatible nanoparticles using the layer-by-layer (LbL) platform due to its modular and versatile nature. The LbL platform has previously been demonstrated to enable incorporation of diagnostic agents, drugs, and nucleic acids such as siRNA while providing enhanced blood plasma half-life and tumor targeting. This work carries out head-to-head comparisons of currently available NIR-II probes with identical LbL coatings with regard to their biodistribution, pharmacokinetics, and toxicities. Overall, rare-earth-based down-conversion nanoparticles demonstrate optimal biological and optical performance and are evaluated as a diagnostic probe for high-grade serous ovarian cancer, typically diagnosed at late stage. Successful detection of orthotopic ovarian tumors is achieved by in vivo NIR-II imaging and confirmed by ex vivo microscopic imaging. Collectively, these results indicate that LbL-based NIR-II probes can serve as a promising theranostic platform to effectively and noninvasively monitor the progression and treatment of serous ovarian cancer.
Collapse
|
40
|
Bravo JJ, Paulsen KD, Roberts DW, Kanick SC. Sub-diffuse optical biomarkers characterize localized microstructure and function of cortex and malignant tumor. OPTICS LETTERS 2016; 41:781-4. [PMID: 26872187 PMCID: PMC4769594 DOI: 10.1364/ol.41.000781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This study uses a sub-diffusive light transport model to analyze fiber-optic measurements of reflectance spectra to recover endogenous tissue biomarkers and to correct raw fluorescence emissions for distortions from background optical properties. Measurements in tissue-simulating phantoms validated accurate recovery of the reduced scattering coefficient [(0.3-3.4 mm-1), error 10%], blood volume fraction [(1-3 vol%), error 7%], and a dimensionless metric of anisotropic scattering, γ, that is sensitive to submillimeter tissue ultrastructure [(1.29-2.06), error 11%]. In vivo sub-diffusive optical data acquired during clinical neurosurgeries characterize differences in microstructure (γ), perfusion (blood volume), and metabolism (PpIX fluorescence) between normal cortex and malignant tumor.
Collapse
Affiliation(s)
- Jaime J. Bravo
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, USA
| | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, USA
- Department of Neurosurgery, Dartmouth Hitchcock Medical Center, 1 Medical Center Dr., Bldg. 50, Lebanon, New Hampshire 03766, USA
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, 1 Medical Center Dr., Bldg. 50, Lebanon, New Hampshire 03766, USA
| | - David W. Roberts
- Department of Neurosurgery, Dartmouth Hitchcock Medical Center, 1 Medical Center Dr., Bldg. 50, Lebanon, New Hampshire 03766, USA
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, 1 Medical Center Dr., Bldg. 50, Lebanon, New Hampshire 03766, USA
| | - Stephen C. Kanick
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, USA
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, 1 Medical Center Dr., Bldg. 50, Lebanon, New Hampshire 03766, USA
| |
Collapse
|
41
|
Greening GJ, James HM, Powless AJ, Hutcheson JA, Dierks MK, Rajaram N, Muldoon TJ. Fiber-bundle microendoscopy with sub-diffuse reflectance spectroscopy and intensity mapping for multimodal optical biopsy of stratified epithelium. BIOMEDICAL OPTICS EXPRESS 2015; 6:4934-50. [PMID: 26713207 PMCID: PMC4679267 DOI: 10.1364/boe.6.004934] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/14/2015] [Accepted: 11/14/2015] [Indexed: 05/05/2023]
Abstract
Early detection of structural or functional changes in dysplastic epithelia may be crucial for improving long-term patient care. Recent work has explored myriad non-invasive or minimally invasive "optical biopsy" techniques for diagnosing early dysplasia, such as high-resolution microendoscopy, a method to resolve sub-cellular features of apical epithelia, as well as broadband sub-diffuse reflectance spectroscopy, a method that evaluates bulk health of a small volume of tissue. We present a multimodal fiber-based microendoscopy technique that combines high-resolution microendoscopy, broadband (450-750 nm) sub-diffuse reflectance spectroscopy (sDRS) at two discrete source-detector separations (374 and 730 μm), and sub-diffuse reflectance intensity mapping (sDRIM) using a 635 nm laser. Spatial resolution, magnification, field-of-view, and sampling frequency were determined. Additionally, the ability of the sDRS modality to extract optical properties over a range of depths is reported. Following this, proof-of-concept experiments were performed on tissue-simulating phantoms made with poly(dimethysiloxane) as a substrate material with cultured MDA-MB-468 cells. Then, all modalities were demonstrated on a human melanocytic nevus from a healthy volunteer and on resected colonic tissue from a murine model. Qualitative in vivo image data is correlated with reduced scattering and absorption coefficients.
Collapse
Affiliation(s)
- Gage J. Greening
- Department of Biomedical Engineering, University of Arkansas, 1 University of Arkansas, Fayetteville, AR 72701,
USA
| | - Haley M. James
- Department of Chemistry and Biochemistry, University of Arkansas, 1 University of Arkansas, Fayetteville, AR 72701,
USA
| | - Amy J. Powless
- Department of Biomedical Engineering, University of Arkansas, 1 University of Arkansas, Fayetteville, AR 72701,
USA
| | - Joshua A. Hutcheson
- Department of Biomedical Engineering, University of Arkansas, 1 University of Arkansas, Fayetteville, AR 72701,
USA
| | - Mary K. Dierks
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR 72701,
USA
| | - Narasimhan Rajaram
- Department of Biomedical Engineering, University of Arkansas, 1 University of Arkansas, Fayetteville, AR 72701,
USA
| | - Timothy J. Muldoon
- Department of Biomedical Engineering, University of Arkansas, 1 University of Arkansas, Fayetteville, AR 72701,
USA
| |
Collapse
|
42
|
Sircan-Kuçuksayan A, Denkceken T, Canpolat M. Differentiating cancerous tissues from noncancerous tissues using single-fiber reflectance spectroscopy with different fiber diameters. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:115007. [PMID: 26590218 DOI: 10.1117/1.jbo.20.11.115007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 10/21/2015] [Indexed: 05/04/2023]
Abstract
Elastic light-scattering spectra acquired with single-fiber optical probes with diameters of 100, 200, 400, 600, 800, 1000, 1200, and 1500 μm were used to differentiate cancerous from noncancerous prostate tissues. The spectra were acquired ex vivo on 24 excised prostate tissue samples collected from four patients. For each probe, the spectra and histopathology results were compared in order to investigate the correlation between the core diameters of the single-fiber optical probe and successful differentiation between cancerous and noncancerous prostate tissues. The spectra acquired using probes with a fiber core diameter of 400 μm or smaller successfully differentiated cancerous from noncancerous prostate tissues. Next, the spectra were acquired from monosized polystyrene microspheres with a diameter of 5.00±0.01 μm to investigate the correlation between the core diameters of the probes and the Mie oscillations on the spectra. Monte Carlo simulations of the light distribution of the tissue phantoms were run to interrogate whether the light detected by the probes with different fiber core diameters was in the ballistic or diffusive regime. If the single-fiber optical probes detect light in the ballistic regime, the spectra can be used to differentiate between cancerous and noncancerous tissues.
Collapse
Affiliation(s)
- Aslinur Sircan-Kuçuksayan
- Akdeniz University, Department of Biophysics, Biomedical Optics Research Unit, Faculty of Medicine, Dumlupinar Bulvari, Antalya 07058, Turkey
| | - Tuba Denkceken
- Sanko University, Department of Biophysics, Faculty of Medicine, Incilipinar Mah. Gazi Muhtar Pasa Bulvari, No. 36, Gaziantep 27090, Turkey
| | - Murat Canpolat
- Akdeniz University, Department of Biophysics, Biomedical Optics Research Unit, Faculty of Medicine, Dumlupinar Bulvari, Antalya 07058, Turkey
| |
Collapse
|
43
|
Piao D, Sultana N, Holyoak GR, Ritchey JW, Wall CR, Murray JK, Bartels KE. In vivo assessment of diet-induced rat hepatic steatosis development by percutaneous single-fiber spectroscopy detects scattering spectral changes due to fatty infiltration. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:117002. [PMID: 26538183 DOI: 10.1117/1.jbo.20.11.117002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/09/2015] [Indexed: 06/05/2023]
Abstract
This study explores percutaneous single-fiber spectroscopy (SfS) of rat livers undergoing fatty infiltration. Eight test rats were fed a methionine-choline-deficient (MCD) diet, and four control rats were fed a normal diet. Two test rats and one control rat were euthanized on days 12, 28, 49, and 77 following initiation of the diet, after percutaneous SfS of the liver under transabdominal ultrasound guidance. Histology of each set of the two euthanized test rats showed mild and mild hepatic lipid accumulations on day 12, moderate and severe on day 28, severe and mild on day 49, and moderate and mild on day 77. Livers with moderate or higher lipid accumulation generally presented higher spectral reflectance intensity when compared to lean livers. Livers of the eight test rats on day 12, two of which had mild lipid accumulation, revealed an average scattering power of 0.37±0.14 in comparison to 0.07±0.14 for the four control rats (p<0.01 ). When livers of the test rats with various levels of fatty infiltration were combined, the average scattering power was 0.36±0.15 0.36±0.15 in comparison to 0.14±0.24 of the control rats (0.05<p<0.1). Increasing lipid accumulation in concentration and size seemed to cause an increase of the scattering power prior to increasing total spectral reflectance.
Collapse
Affiliation(s)
- Daqing Piao
- Oklahoma State University, School of Electrical and Computer Engineering, 202 Engineering South, Stillwater, Oklahoma 74078, United States
| | - Nigar Sultana
- Oklahoma State University, Graduate Program on Interdisciplinary Sciences, Stillwater, Oklahoma 74078, United States
| | - G Reed Holyoak
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Clinical Sciences, 002 VTH, Stillwater, Oklahoma 74078, United States
| | - Jerry W Ritchey
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, 250 McElroy Hall, Stillwater, Oklahoma 74078, United States
| | - Corey R Wall
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Clinical Sciences, 002 VTH, Stillwater, Oklahoma 74078, United States
| | - Jill K Murray
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Clinical Sciences, 002 VTH, Stillwater, Oklahoma 74078, United States
| | - Kenneth E Bartels
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Clinical Sciences, 002 VTH, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
44
|
Bodenschatz N, Krauter P, Nothelfer S, Foschum F, Bergmann F, Liemert A, Kienle A. Detecting structural information of scatterers using spatial frequency domain imaging. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:116006. [PMID: 26590206 DOI: 10.1117/1.jbo.20.11.116006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/16/2015] [Indexed: 05/23/2023]
Abstract
We demonstrate optical phantom experiments on the phase function parameter γ using spatial frequency domain imaging. The incorporation of two different types of scattering particles allows for control of the optical phantoms’ microscopic scattering properties. By laterally structuring areas with either TiO2 or Al2O3 scattering particles, we were able to obtain almost pure subdiffusive scattering contrast in a single optical phantom. Optical parameter mapping was then achieved using an analytical radiative transfer model revealing the microscopic structural contrast on a macroscopic field of view. As part of our study, we explain several correction and referencing techniques for high spatial frequency analysis and experimentally study the sampling depth of the subdiffusive parameter γ.
Collapse
|
45
|
Bodenschatz N, Krauter P, Liemert A, Wiest J, Kienle A. Model-based analysis on the influence of spatial frequency selection in spatial frequency domain imaging. APPLIED OPTICS 2015; 54:6725-31. [PMID: 26368086 DOI: 10.1364/ao.54.006725] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Frequency variation in spatial frequency domain imaging is a powerful tool for adjusting the penetration depth of the imaging signal and the parameter sensitivity toward absorption and diffusive and subdiffusive scattering. Through our computational analysis, using an analytical solution of the radiative transfer equation, we add quantitation to this tool by linking the different spatial frequency regimes to their relative information content and to their absolute depth sensitivity. Special focus is placed on high spatial frequencies by analysis of the phase function parameter γ and its significance and ambiguity in describing subdiffusive scattering.
Collapse
|
46
|
Correction for tissue optical properties enables quantitative skin fluorescence measurements using multi-diameter single fiber reflectance spectroscopy. J Dermatol Sci 2015; 79:64-73. [PMID: 25911633 DOI: 10.1016/j.jdermsci.2015.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 02/18/2015] [Accepted: 03/23/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND OBJECTIVE Fluorescence measurements in the skin are very much affected by absorption and scattering but existing methods to correct for this are not applicable to superficial skin measurements. STUDY DESIGN/MATERIALS AND METHODS The first use of multiple-diameter single fiber reflectance (MDSFR) and single fiber fluorescence (SFF) spectroscopy in human skin was investigated. MDSFR spectroscopy allows a quantification of the full optical properties in superficial skin (μa, μs' and γ), which can next be used to retrieve the corrected - intrinsic - fluorescence of a fluorophore Qμa,x(f). Our goal was to investigate the importance of such correction for individual patients. We studied this in 22 patients undergoing photodynamic therapy (PDT) for actinic keratosis. RESULTS The magnitude of correction of fluorescence was around 4 (for both autofluorescence and protoporphyrin IX). Moreover, it was variable between patients, but also within patients over the course of fractionated aminolevulinic acid PDT (range 2.7-7.5). Patients also varied in the amount of protoporphyrin IX synthesis, photobleaching percentages and resynthesis (>100× difference between the lowest and highest PpIX synthesis). The autofluorescence was lower in actinic keratosis than contralateral normal skin (0.0032 versus 0.0052; P<0.0005). CONCLUSIONS Our results clearly demonstrate the importance of correcting the measured fluorescence for optical properties, because these vary considerably between individual patients and also during PDT. Protoporphyrin IX synthesis and photobleaching kinetics allow monitoring clinical PDT which facilitates individual-based PDT dosing and improvement of clinical treatment protocols. Furthermore, the skin autofluorescence can be relevant for diagnostic use in the skin, but it may also be interesting because of its association with several internal diseases.
Collapse
|
47
|
Single-Fiber Reflectance Spectroscopy of Isotropic-Scattering Medium: An Analytic Perspective to the Ratio-of-Remission in Steady-State Measurements. PHOTONICS 2014. [DOI: 10.3390/photonics1040565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Kanick SC, McClatchy DM, Krishnaswamy V, Elliott JT, Paulsen KD, Pogue BW. Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging. BIOMEDICAL OPTICS EXPRESS 2014; 5:3376-90. [PMID: 25360357 PMCID: PMC4206309 DOI: 10.1364/boe.5.003376] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 05/03/2023]
Abstract
This study investigates the hypothesis that structured light reflectance imaging with high spatial frequency patterns [Formula: see text] can be used to quantitatively map the anisotropic scattering phase function distribution [Formula: see text] in turbid media. Monte Carlo simulations were used in part to establish a semi-empirical model of demodulated reflectance ([Formula: see text]) in terms of dimensionless scattering [Formula: see text] and [Formula: see text], a metric of the first two moments of the [Formula: see text] distribution. Experiments completed in tissue-simulating phantoms showed that simultaneous analysis of [Formula: see text] spectra sampled at multiple [Formula: see text] in the frequency range [0.05-0.5] [Formula: see text] allowed accurate estimation of both [Formula: see text] in the relevant tissue range [0.4-1.8] [Formula: see text], and [Formula: see text] in the range [1.4-1.75]. Pilot measurements of a healthy volunteer exhibited [Formula: see text]-based contrast between scar tissue and surrounding normal skin, which was not as apparent in wide field diffuse imaging. These results represent the first wide-field maps to quantify sub-diffuse scattering parameters, which are sensitive to sub-microscopic tissue structures and composition, and therefore, offer potential for fast diagnostic imaging of ultrastructure on a size scale that is relevant to surgical applications.
Collapse
|
49
|
Keereweer S, Van Driel PBAA, Robinson DJ, Lowik CWGM. Shifting focus in optical image-guided cancer therapy. Mol Imaging Biol 2014; 16:1-9. [PMID: 24037176 DOI: 10.1007/s11307-013-0688-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer patients could benefit from a surgical procedure that helps the surgeon to determine adequate tumor resection margins. Systemic injection of tumor-specific fluorescence agents with subsequent intraoperative optical imaging can guide the surgeon in this process. However, tumor heterogeneity hampers tumor-specific targeting. In addition, determination of adequate resection margins can be very challenging due to invasive tumor strands that are difficult to resolve and because of the confounding effect of variations in tissue optical properties in the surgical margin. We provide an overview of the "classic approach" of imaging tumor-specific targets or tumor-associated pathophysiological processes, and explain the limitations of these targeting strategies. It is proposed that problems of tumor heterogeneity can theoretically be circumvented by shifting focus of tumor targeting towards the follicle-stimulating hormone receptor (FSHR). Furthermore, we discuss why objective determination of resection margins is required to improve resection of the invasive strands, a goal that may be achieved by targeting the FSHR. When invasive strands would nevertheless extend beyond such a standardized resection margin, we suggest that adjuvant photodynamic therapy would be a very suitable therapeutic regimen. Finally, we describe how point optical spectroscopy can be used to scrutinize suspect tissue that is difficult to differentiate from normal tissue by measuring the local tissue optical properties to recover a local intrinsic fluorescence measurement.
Collapse
Affiliation(s)
- Stijn Keereweer
- Department of Molecular Imaging, Leiden University Medical Center, Leiden, The Netherlands,
| | | | | | | |
Collapse
|
50
|
Zonios G. Investigation of reflectance sampling depth in biological tissues for various common illumination/collection configurations. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:97001. [PMID: 25200393 DOI: 10.1117/1.jbo.19.9.097001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/12/2014] [Indexed: 05/03/2023]
Abstract
Knowledge of light penetration characteristics is very important in almost all studies in biomedical optics. In this work, the reflectance sampling depth in biological tissues was investigated using Monte Carlo simulations for various common illumination/collection configurations. The analysis shows that the average sampling depth can be described by two simple empirical analytical expressions over the entire typical ranges of absorption and scattering properties relevant to in vivo biological tissue, regardless of the specific illumination/collection configuration details. These results are promising and helpful for the quick, efficient, and accurate design of reflectance studies for various biological tissue applications.
Collapse
|