1
|
Różanowska MB. Lipofuscin, Its Origin, Properties, and Contribution to Retinal Fluorescence as a Potential Biomarker of Oxidative Damage to the Retina. Antioxidants (Basel) 2023; 12:2111. [PMID: 38136230 PMCID: PMC10740933 DOI: 10.3390/antiox12122111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| |
Collapse
|
2
|
Zhang Q, Yang Y, Cao KJ, Chen W, Paidi S, Xia CH, Kramer RH, Gong X, Ji N. Retinal microvascular and neuronal pathologies probed in vivo by adaptive optical two-photon fluorescence microscopy. eLife 2023; 12:84853. [PMID: 37039777 PMCID: PMC10089658 DOI: 10.7554/elife.84853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/19/2023] [Indexed: 04/12/2023] Open
Abstract
The retina, behind the transparent optics of the eye, is the only neural tissue whose physiology and pathology can be non-invasively probed by optical microscopy. The aberrations intrinsic to the mouse eye, however, prevent high-resolution investigation of retinal structure and function in vivo. Optimizing the design of a two-photon fluorescence microscope (2PFM) and sample preparation procedure, we found that adaptive optics (AO), by measuring and correcting ocular aberrations, is essential for resolving putative synaptic structures and achieving three-dimensional cellular resolution in the mouse retina in vivo. Applying AO-2PFM to longitudinal retinal imaging in transgenic models of retinal pathology, we characterized microvascular lesions with sub-capillary details in a proliferative vascular retinopathy model, and found Lidocaine to effectively suppress retinal ganglion cell hyperactivity in a retinal degeneration model. Tracking structural and functional changes at high-resolution longitudinally, AO-2PFM enables microscopic investigations of retinal pathology and pharmacology for disease diagnosis and treatment in vivo.
Collapse
Affiliation(s)
- Qinrong Zhang
- Department of Physics, University of California, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Yuhan Yang
- Department of Physics, University of California, Berkeley, United States
| | - Kevin J Cao
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States
| | - Wei Chen
- Department of Physics, University of California, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Santosh Paidi
- School of Optometry, University of California, Berkeley, United States
| | - Chun-Hong Xia
- School of Optometry, University of California, Berkeley, United States
- Vision Science Program, University of California, Berkeley, United States
| | - Richard H Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States
- Vision Science Program, University of California, Berkeley, United States
| | - Xiaohua Gong
- School of Optometry, University of California, Berkeley, United States
- Vision Science Program, University of California, Berkeley, United States
| | - Na Ji
- Department of Physics, University of California, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States
- Vision Science Program, University of California, Berkeley, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
3
|
Williams DR, Burns SA, Miller DT, Roorda A. Evolution of adaptive optics retinal imaging [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:1307-1338. [PMID: 36950228 PMCID: PMC10026580 DOI: 10.1364/boe.485371] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 05/02/2023]
Abstract
This review describes the progress that has been achieved since adaptive optics (AO) was incorporated into the ophthalmoscope a quarter of a century ago, transforming our ability to image the retina at a cellular spatial scale inside the living eye. The review starts with a comprehensive tabulation of AO papers in the field and then describes the technological advances that have occurred, notably through combining AO with other imaging modalities including confocal, fluorescence, phase contrast, and optical coherence tomography. These advances have made possible many scientific discoveries from the first maps of the topography of the trichromatic cone mosaic to exquisitely sensitive measures of optical and structural changes in photoreceptors in response to light. The future evolution of this technology is poised to offer an increasing array of tools to measure and monitor in vivo retinal structure and function with improved resolution and control.
Collapse
Affiliation(s)
- David R. Williams
- The Institute of Optics and the Center for
Visual Science, University of Rochester,
Rochester NY, USA
| | - Stephen A. Burns
- School of Optometry, Indiana
University at Bloomington, Bloomington IN, USA
| | - Donald T. Miller
- School of Optometry, Indiana
University at Bloomington, Bloomington IN, USA
| | - Austin Roorda
- Herbert Wertheim School of Optometry and
Vision Science, University of California at Berkeley, Berkeley CA, USA
| |
Collapse
|
4
|
Fluorescence Angiography with Dual Fluorescence for the Early Detection and Longitudinal Quantitation of Vascular Leakage in Retinopathy. Biomedicines 2023; 11:biomedicines11020293. [PMID: 36830829 PMCID: PMC9953145 DOI: 10.3390/biomedicines11020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) afflicts more than 93 million people worldwide and is a leading cause of vision loss in working adults. While DR therapies are available, early DR development may go undetected without treatment due to the lack of sufficiently sensitive tools. Therefore, early detection is critically important to enable efficient treatment before progression to vision-threatening complications. A major clinical manifestation of early DR is retinal vascular leakage that may progress from diffuse to more localized focal leakage, leading to increased retinal thickness and diabetic macular edema (DME). In preclinical research, a hallmark of DR in mouse models is diffuse retinal leakage without increased thickness or DME, which limits the utility of optical coherence tomography and fluorescein angiography (FA) for early detection. The Evans blue assay detects diffuse leakage but requires euthanasia, which precludes longitudinal studies in the same animals. METHODS We developed a new modality of ratiometric fluorescence angiography with dual fluorescence (FA-DF) to reliably detect and longitudinally quantify diffuse retinal vascular leakage in mouse models of induced and spontaneous DR. RESULTS These studies demonstrated the feasibility and sensitivity of FA-DF in detecting and quantifying retinal vascular leakage in the same mice over time during DR progression in association with chronic hyperglycemia and age. CONCLUSIONS These proof-of-concept studies demonstrated the promise of FA-DF as a minimally invasive method to quantify DR leakage in preclinical mouse models longitudinally.
Collapse
|
5
|
Li L, Feng X, Fang F, Miller DA, Zhang S, Zhuang P, Huang H, Liu P, Liu J, Sredar N, Liu L, Sun Y, Duan X, Goldberg JL, Zhang HF, Hu Y. Longitudinal in vivo Ca 2+ imaging reveals dynamic activity changes of diseased retinal ganglion cells at the single-cell level. Proc Natl Acad Sci U S A 2022; 119:e2206829119. [PMID: 36409915 PMCID: PMC9889883 DOI: 10.1073/pnas.2206829119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Retinal ganglion cells (RGCs) are heterogeneous projection neurons that convey distinct visual features from the retina to brain. Here, we present a high-throughput in vivo RGC activity assay in response to light stimulation using noninvasive Ca2+ imaging of thousands of RGCs simultaneously in living mice. Population and single-cell analyses of longitudinal RGC Ca2+ imaging reveal distinct functional responses of RGCs and unprecedented individual RGC activity conversions during traumatic and glaucomatous degeneration. This study establishes a foundation for future in vivo RGC function classifications and longitudinal activity evaluations using more advanced imaging techniques and visual stimuli under normal, disease, and neural repair conditions. These analyses can be performed at both the population and single-cell levels using temporal and spatial information, which will be invaluable for understanding RGC pathophysiology and identifying functional biomarkers for diverse optic neuropathies.
Collapse
Affiliation(s)
- Liang Li
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA94304
| | - Xue Feng
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA94304
| | - Fang Fang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA94304
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha410011, China
| | - David A. Miller
- Department of Biomedical Engineering, Northwestern University, Evanston, IL60208
| | - Shaobo Zhang
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA94143
| | - Pei Zhuang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA94304
| | - Haoliang Huang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA94304
| | - Pingting Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA94304
| | - Junting Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA94304
| | - Nripun Sredar
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA94304
| | - Liang Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA94304
| | - Yang Sun
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA94304
| | - Xin Duan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA94143
| | - Jeffrey L. Goldberg
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA94304
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL60208
| | - Yang Hu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA94304
| |
Collapse
|
6
|
Ringel MJ, Tang EM, Tao YK. Advances in multimodal imaging in ophthalmology. Ther Adv Ophthalmol 2021; 13:25158414211002400. [PMID: 35187398 PMCID: PMC8855415 DOI: 10.1177/25158414211002400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Multimodality ophthalmic imaging systems aim to enhance the contrast, resolution, and functionality of existing technologies to improve disease diagnostics and therapeutic guidance. These systems include advanced acquisition and post-processing methods using optical coherence tomography (OCT), combined scanning laser ophthalmoscopy and OCT systems, adaptive optics, surgical guidance, and photoacoustic technologies. Here, we provide an overview of these ophthalmic imaging systems and their clinical and basic science applications.
Collapse
Affiliation(s)
- Morgan J. Ringel
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Eric M. Tang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yuankai K. Tao
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
7
|
Sadasivam R, Packirisamy G, Shakya S, Goswami M. Non-invasive multimodal imaging of Diabetic Retinopathy: A survey on treatment methods and Nanotheranostics. Nanotheranostics 2021; 5:166-181. [PMID: 33564616 PMCID: PMC7868006 DOI: 10.7150/ntno.56015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetes Retinopathy (DR) is one of the most prominent microvascular complications of diabetes. It is one of the pre-eminent causes for vision impairment followed by blindness among the working-age population worldwide. The de facto cause for DR remains challenging, despite several efforts made to unveil the mechanism underlying the pathology of DR. There is quite less availability of the low cost pre-emptive theranostic imaging tools in terms of in-depth resolution, due to the multiple factors involved in the etiology of DR. This review work comprehensively explores the various reports and research works on all perspectives of diabetic retinopathy (DR), and its mechanism. It also discusses various advanced non-destructive imaging modalities, current, and future treatment approaches. Further, the application of various nanoparticle-based drug delivery strategies used for the treatment of DR are also discussed. In a nutshell, the present review work bolsters the pursuit of the development of an advanced non-invasive optical imaging modal with a nano-theranostic approach for the future diagnosis and treatment of DR and its associated ocular complications.
Collapse
Affiliation(s)
- Rajkumar Sadasivam
- Divyadrishti Imaging Laboratory, Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand-247667, India
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand-247667, India
| | - Snehlata Shakya
- Department of clinical physiology, Lund University, Skåne University Hospital, Skåne, Sweden
| | - Mayank Goswami
- Divyadrishti Imaging Laboratory, Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand-247667, India
| |
Collapse
|
8
|
Bueno JM, Cruz-Castillo R, Avilés-Trigueros M, Bautista-Elivar N. Arrangement of the photoreceptor mosaic in a diabetic rat model imaged with multiphoton microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:4901-4914. [PMID: 33014589 PMCID: PMC7510868 DOI: 10.1364/boe.399835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Diabetic retinopathy (DR) is defined as a microvascular pathology. However, some data have suggested that the retinal photoreceptors (PRs) might be important in the pathogenesis of this ocular disease. In this study the organization of the PRs in control and diabetic-induced rats was compared using multiphoton microscopy. The PR mosaic was imaged at different locations in non-stained retinas. The density of PRs was directly quantified from cell counting. The spatially resolved density presents a double-slope pattern (from the central retina towards the periphery) in both healthy and pathological samples, although the values for the latter were significantly lower all across the retina. Moreover, Voronoi analysis was performed to explore changes in PR topography. In control specimens a hexagonally packed structure was dominant. However, despite the non-controlled effects of the disease in retinal structures, this PR regularity was fairly maintained in diabetic retinas.
Collapse
Affiliation(s)
- Juan M. Bueno
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, Murcia, Spain
| | - Ricardo Cruz-Castillo
- Área Académica de Matemáticas y Física, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Hidalgo, Mexico
| | - Marcelino Avilés-Trigueros
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, “Campus Mare Nostrum” de Excelencia International, Murcia, Spain
| | - Nazario Bautista-Elivar
- Departamento de Ingeniería Eléctrica, Tecnológico Nacional de México, Instituto Tecnológico de Pachuca, Hidalgo, Mexico
| |
Collapse
|
9
|
Qin Z, He S, Yang C, Yung JSY, Chen C, Leung CKS, Liu K, Qu JY. Adaptive optics two-photon microscopy enables near-diffraction-limited and functional retinal imaging in vivo. LIGHT, SCIENCE & APPLICATIONS 2020; 9:79. [PMID: 32411364 PMCID: PMC7203252 DOI: 10.1038/s41377-020-0317-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 05/08/2023]
Abstract
In vivo fundus imaging offers non-invasive access to neuron structures and biochemical processes in the retina. However, optical aberrations of the eye degrade the imaging resolution and prevent visualization of subcellular retinal structures. We developed an adaptive optics two-photon excitation fluorescence microscopy (AO-TPEFM) system to correct ocular aberrations based on a nonlinear fluorescent guide star and achieved subcellular resolution for in vivo fluorescence imaging of the mouse retina. With accurate wavefront sensing and rapid aberration correction, AO-TPEFM permits structural and functional imaging of the mouse retina with submicron resolution. Specifically, simultaneous functional calcium imaging of neuronal somas and dendrites was demonstrated. Moreover, the time-lapse morphological alteration and dynamics of microglia were characterized in a mouse model of retinal disorder. In addition, precise laser axotomy was achieved, and degeneration of retinal nerve fibres was studied. This high-resolution AO-TPEFM is a promising tool for non-invasive retinal imaging and can facilitate the understanding of a variety of eye diseases as well as neurodegenerative disorders in the central nervous system.
Collapse
Affiliation(s)
- Zhongya Qin
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Sicong He
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chao Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jasmine Sum-Yee Yung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Congping Chen
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | - Kai Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jianan Y. Qu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
10
|
Wahl DJ, Ju MJ, Jian Y, Sarunic MV. Non-invasive cellular-resolution retinal imaging with two-photon excited fluorescence. BIOMEDICAL OPTICS EXPRESS 2019; 10:4859-4873. [PMID: 31565530 PMCID: PMC6757458 DOI: 10.1364/boe.10.004859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 05/02/2023]
Abstract
Two-photon excited fluorescence (TPEF) imaging of the retina is a developing technique that provides non-invasive compound-specific measurements from the retina. In this report, we demonstrate high-resolution TPEF imaging of the mouse retina using sensorless adaptive optics (SAO) and optical coherence tomography (OCT). A single near-infrared light source was used for simultaneous multi-modal imaging with OCT and TPEF. The image-based SAO could be performed using the en face OCT or the TPEF for aberration correction. Our results demonstrate OCT and TPEF for angiography. Also, we demonstrate non-invasive cellular-resolution imaging of fluorescently labelled cells and the Retinal Pigment Epithelium (RPE) mosaic.
Collapse
Affiliation(s)
- Daniel J. Wahl
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Myeong Jin Ju
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Yifan Jian
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | | |
Collapse
|
11
|
Wahl DJ, Zhang P, Mocci J, Quintavalla M, Muradore R, Jian Y, Bonora S, Sarunic MV, Zawadzki RJ. Adaptive optics in the mouse eye: wavefront sensing based vs. image-guided aberration correction. BIOMEDICAL OPTICS EXPRESS 2019; 10:4757-4774. [PMID: 31565523 PMCID: PMC6757457 DOI: 10.1364/boe.10.004757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 05/18/2023]
Abstract
Adaptive Optics (AO) is required to achieve diffraction limited resolution in many real-life imaging applications in biology and medicine. AO is essential to guarantee high fidelity visualization of cellular structures for retinal imaging by correcting ocular aberrations. Aberration correction for mouse retinal imaging by direct wavefront measurement has been demonstrated with great success. However, for mouse eyes, the performance of the wavefront sensor (WFS) based AO can be limited by several factors including non-common path errors, wavefront reconstruction errors, and an ill-defined reference plane. Image-based AO can avoid these issues at the cost of algorithmic execution time. Furthermore, image-based approaches can provide improvements to compactness, accessibility, and even the performance of AO systems. Here, we demonstrate the ability of image-based AO to provide comparable aberration correction and image resolution to the conventional Shack-Hartmann WFS-based AO approach. The residual wavefront error of the mouse eye was monitored during a wavefront sensorless optimization to allow comparison with classical AO. This also allowed us to improve the performance of our AO system for small animal retinal imaging.
Collapse
Affiliation(s)
- Daniel J Wahl
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
- These authors contributed equally
| | - Pengfei Zhang
- Eye-Pod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, USA
- These authors contributed equally
| | - Jacopo Mocci
- Department of Computer Science, University of Verona, Italy
| | | | | | - Yifan Jian
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Stefano Bonora
- CNR-Institute for Photonics and Nanotechnology, Padova, Italy
| | | | - Robert J Zawadzki
- Eye-Pod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, USA
- UC Davis Eye Center, Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
12
|
Abstract
In vivo imaging of mouse retinas using two-photon or confocal laser scanning fluorescence microscopy is a powerful tool for time-lapse analyses of the dynamic movements of cell populations. However, acute and reversible opacification of the crystalline lenses of mouse eyes under anesthesia decreases the visibility of the ocular fundus. Therefore, we developed a customized contact lens for preventing cataract during continuous retinal imaging in anesthetized mice. This experimental approach will aid in the elucidation of cellular and molecular dynamics in the CNS under physiological and pathological conditions.
Collapse
|
13
|
AbdelAl O, Ashraf M, Sampani K, Sun JK. "For Mass Eye and Ear Special Issue" Adaptive Optics in the Evaluation of Diabetic Retinopathy. Semin Ophthalmol 2019; 34:189-197. [PMID: 31188056 DOI: 10.1080/08820538.2019.1620794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Retinal imaging is a fundamental tool for clinical and research efforts in the evaluation and management of diabetic retinopathy. Adaptive optics (AO) is an imaging technique that enables correction of over 90% of the optical aberrations of an individual eye induced primarily by the tear film, cornea and lens. The two major tasks of any AO system are to measure the optical imperfections of the eye and to then compensate for these aberrations to generate a corrected wavefront of reflected light from the eye. AO scanning laser ophthalmoscopy (AOSLO) provides a theoretical lateral resolution limit of 1.4 μm, allowing the study of microscopic features of the retinal vascular and neural tissue. AOSLO studies have revealed irregularities of the photoreceptor mosaic, vascular loss, and details of vascular lesions in diabetic eyes that may provide new insight into development, regression, and response to therapy of diabetic eye disease.
Collapse
Affiliation(s)
- Omar AbdelAl
- a Beetham Eye Institute , Joslin Diabetes Center , Boston , MA , USA.,b Department of Ophthalmology , Harvard Medical School , Boston , MA , USA
| | - Mohammed Ashraf
- a Beetham Eye Institute , Joslin Diabetes Center , Boston , MA , USA.,b Department of Ophthalmology , Harvard Medical School , Boston , MA , USA
| | - Konstantina Sampani
- a Beetham Eye Institute , Joslin Diabetes Center , Boston , MA , USA.,c Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Jennifer K Sun
- a Beetham Eye Institute , Joslin Diabetes Center , Boston , MA , USA.,b Department of Ophthalmology , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
14
|
Noninvasive Two-Photon Microscopy Imaging of Mouse Retina and Retinal Pigment Epithelium. Methods Mol Biol 2019; 1834:333-343. [PMID: 30324453 DOI: 10.1007/978-1-4939-8669-9_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Two-photon excitation microscopy is perfectly suited for imaging deep into the retina due to its use of infrared (IR) wavelengths to excite endogenous fluorophores such as vitamin A-derived retinoids present in this tissue. Furthermore, two-photon excitation occurs only around a small focal volume, and scattered IR photons cannot excite retinal chromophores. These characteristics contribute to subcellular resolution and low noise of images obtained from deep within retinal layers. Here we describe how to customize a two-photon microscope for noninvasive imaging of the retina and retinal pigment epithelium (RPE) in the mouse eye, along with detailed instructions for mouse handling and retinal imaging, and we provide examples of mouse retinal two-photon microscopy data.
Collapse
|
15
|
Cheong SK, Strazzeri JM, Williams DR, Merigan WH. All-optical recording and stimulation of retinal neurons in vivo in retinal degeneration mice. PLoS One 2018; 13:e0194947. [PMID: 29596518 PMCID: PMC5875792 DOI: 10.1371/journal.pone.0194947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/13/2018] [Indexed: 12/05/2022] Open
Abstract
Here we demonstrate the application of a method that could accelerate the development of novel therapies by allowing direct and repeatable visualization of cellular function in the living eye, to study loss of vision in animal models of retinal disease, as well as evaluate the time course of retinal function following therapeutic intervention. We use high-resolution adaptive optics scanning light ophthalmoscopy to image fluorescence from the calcium sensor GCaMP6s. In mice with photoreceptor degeneration (rd10), we measured restored visual responses in ganglion cell layer neurons expressing the red-shifted channelrhodopsin ChrimsonR over a six-week period following significant loss of visual responses. Combining a fluorescent calcium sensor, a channelrhodopsin, and adaptive optics enables all-optical stimulation and recording of retinal neurons in the living eye. Because the retina is an accessible portal to the central nervous system, our method also provides a novel non-invasive method of dissecting neuronal processing in the brain.
Collapse
Affiliation(s)
- Soon Keen Cheong
- Center for Visual Science, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| | - Jennifer M. Strazzeri
- Center for Visual Science, University of Rochester, Rochester, New York, United States of America
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States of America
| | - David R. Williams
- Center for Visual Science, University of Rochester, Rochester, New York, United States of America
- Institute of Optics, University of Rochester, Rochester, New York, United States of America
| | - William H. Merigan
- Center for Visual Science, University of Rochester, Rochester, New York, United States of America
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
16
|
Raman Microscopy: A Noninvasive Method to Visualize the Localizations of Biomolecules in the Cornea. Cornea 2018; 36 Suppl 1:S67-S71. [PMID: 28902016 DOI: 10.1097/ico.0000000000001369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE In vivo and in situ visualization of biomolecules without pretreatment will be important for diagnosis and treatment of ocular disorders in the future. Recently, multiphoton microscopy, based on the nonlinear interactions between molecules and photons, has been applied to reveal the localizations of various molecules in tissues. We aimed to use multimodal multiphoton microscopy to visualize the localizations of specific biomolecules in rat corneas. METHODS Multiphoton images of the corneas were obtained from nonlinear signals of coherent anti-Stokes Raman scattering, third-order sum frequency generation, and second-harmonic generation. RESULTS The localizations of the adhesion complex-containing basement membrane and Bowman layer were clearly visible in the third-order sum frequency generation images. The fine structure of type I collagen was observed in the corneal stroma in the second-harmonic generation images. The localizations of lipids, proteins, and nucleic acids (DNA/RNA) was obtained in the coherent anti-Stokes Raman scattering images. CONCLUSIONS Imaging technologies have progressed significantly and been applied in medical fields. Optical coherence tomography and confocal microscopy are widely used but do not provide information on the molecular structure of the cornea. By contrast, multiphoton microscopy provides information on the molecular structure of living tissues. Using this technique, we successfully visualized the localizations of various biomolecules including lipids, proteins, and nucleic acids in the cornea. We speculate that multiphoton microscopy will provide essential information on the physiological and pathological conditions of the cornea, as well as molecular localizations in tissues without pretreatment.
Collapse
|
17
|
In vivo two-photon imaging of retina in rabbits and rats. Exp Eye Res 2018; 166:40-48. [DOI: 10.1016/j.exer.2017.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 11/21/2022]
|
18
|
Dysli C, Wolf S, Berezin MY, Sauer L, Hammer M, Zinkernagel MS. Fluorescence lifetime imaging ophthalmoscopy. Prog Retin Eye Res 2017; 60:120-143. [PMID: 28673870 PMCID: PMC7396320 DOI: 10.1016/j.preteyeres.2017.06.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/19/2017] [Accepted: 06/29/2017] [Indexed: 12/17/2022]
Abstract
Imaging techniques based on retinal autofluorescence have found broad applications in ophthalmology because they are extremely sensitive and noninvasive. Conventional fundus autofluorescence imaging measures fluorescence intensity of endogenous retinal fluorophores. It mainly derives its signal from lipofuscin at the level of the retinal pigment epithelium. Fundus autofluorescence, however, can not only be characterized by the spatial distribution of the fluorescence intensity or emission spectrum, but also by a characteristic fluorescence lifetime function. The fluorescence lifetime is the average amount of time a fluorophore remains in the excited state following excitation. Fluorescence lifetime imaging ophthalmoscopy (FLIO) is an emerging imaging modality for in vivo measurement of lifetimes of endogenous retinal fluorophores. Recent reports in this field have contributed to our understanding of the pathophysiology of various macular and retinal diseases. Within this review, the basic concept of fluorescence lifetime imaging is provided. It includes technical background information and correlation with in vitro measurements of individual retinal metabolites. In a second part, clinical applications of fluorescence lifetime imaging and fluorescence lifetime features of selected retinal diseases such as Stargardt disease, age-related macular degeneration, choroideremia, central serous chorioretinopathy, macular holes, diabetic retinopathy, and retinal artery occlusion are discussed. Potential areas of use for fluorescence lifetime imaging ophthalmoscopy will be outlined at the end of this review.
Collapse
Affiliation(s)
- Chantal Dysli
- Department of Ophthalmology and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Sebastian Wolf
- Department of Ophthalmology and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Mikhail Y Berezin
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Lydia Sauer
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Martin Hammer
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Martin S Zinkernagel
- Department of Ophthalmology and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
19
|
Winter S, Sabesan R, Tiruveedhula P, Privitera C, Unsbo P, Lundström L, Roorda A. Transverse chromatic aberration across the visual field of the human eye. J Vis 2017; 16:9. [PMID: 27832270 PMCID: PMC5109981 DOI: 10.1167/16.14.9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to measure the transverse chromatic aberration (TCA) across the visual field of the human eye objectively. TCA was measured at horizontal and vertical field angles out to ±15° from foveal fixation in the right eye of four subjects. Interleaved retinal images were taken at wavelengths 543 nm and 842 nm in an adaptive optics scanning laser ophthalmoscope (AOSLO). To obtain true measures of the human eye's TCA, the contributions of the AOSLO system's TCA were measured using an on-axis aligned model eye and subtracted from the ocular data. The increase in TCA was found to be linear with eccentricity, with an average slope of 0.21 arcmin/degree of visual field angle (corresponding to 0.41 arcmin/degree for 430 nm to 770 nm). The absolute magnitude of ocular TCA varied between subjects, but was similar to the resolution acuity at 10° in the nasal visual field, encompassing three to four cones. Therefore, TCA can be visually significant. Furthermore, for high-resolution imaging applications, whether visualizing or stimulating cellular features in the retina, it is important to consider the lateral displacements between wavelengths and the variation in blur over the visual field.
Collapse
Affiliation(s)
- Simon Winter
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, Stockholm,
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | | | | | - Peter Unsbo
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Linda Lundström
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Austin Roorda
- School of Optometry, University of California, Berkeley, CA, USAVision Science Graduate Group, University of California, Berkeley, CA, USA
| |
Collapse
|
20
|
Feeks JA, Hunter JJ. Adaptive optics two-photon excited fluorescence lifetime imaging ophthalmoscopy of exogenous fluorophores in mice. BIOMEDICAL OPTICS EXPRESS 2017; 8:2483-2495. [PMID: 28663886 PMCID: PMC5480493 DOI: 10.1364/boe.8.002483] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 05/05/2023]
Abstract
In vivo cellular scale fluorescence lifetime imaging of the mouse retina has the potential to be a sensitive marker of retinal cell health. In this study, we demonstrate fluorescence lifetime imaging of extrinsic fluorophores using adaptive optics fluorescence lifetime imaging ophthalmoscopy (AOFLIO). We recorded AOFLIO images of inner retinal cells labeled with enhanced green fluorescent protein (EGFP) and capillaries labeled with fluorescein. We demonstrate that AOFLIO can be used to differentiate spectrally overlapping fluorophores in the retina. With further refinements, AOFLIO could be used to assess retinal health in early stages of degeneration by utilizing lifetime-based sensors or even fluorophores native to the retina.
Collapse
Affiliation(s)
- James A. Feeks
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- The Institute of Optics, University of Rochester, Rochester, NY 14620, USA
| | - Jennifer J. Hunter
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Flaum Eye Institute, University of Rochester, NY 14642, USA
- Department of Biomedical Engineering, University of Rochester, NY 14627, USA
| |
Collapse
|
21
|
Marcos S, Werner JS, Burns SA, Merigan WH, Artal P, Atchison DA, Hampson KM, Legras R, Lundstrom L, Yoon G, Carroll J, Choi SS, Doble N, Dubis AM, Dubra A, Elsner A, Jonnal R, Miller DT, Paques M, Smithson HE, Young LK, Zhang Y, Campbell M, Hunter J, Metha A, Palczewska G, Schallek J, Sincich LC. Vision science and adaptive optics, the state of the field. Vision Res 2017; 132:3-33. [PMID: 28212982 PMCID: PMC5437977 DOI: 10.1016/j.visres.2017.01.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/27/2022]
Abstract
Adaptive optics is a relatively new field, yet it is spreading rapidly and allows new questions to be asked about how the visual system is organized. The editors of this feature issue have posed a series of question to scientists involved in using adaptive optics in vision science. The questions are focused on three main areas. In the first we investigate the use of adaptive optics for psychophysical measurements of visual system function and for improving the optics of the eye. In the second, we look at the applications and impact of adaptive optics on retinal imaging and its promise for basic and applied research. In the third, we explore how adaptive optics is being used to improve our understanding of the neurophysiology of the visual system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yuhua Zhang
- University of Alabama at Birmingham, Birmingham, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Bremer D, Pache F, Günther R, Hornow J, Andresen V, Leben R, Mothes R, Zimmermann H, Brandt AU, Paul F, Hauser AE, Radbruch H, Niesner R. Longitudinal Intravital Imaging of the Retina Reveals Long-term Dynamics of Immune Infiltration and Its Effects on the Glial Network in Experimental Autoimmune Uveoretinitis, without Evident Signs of Neuronal Dysfunction in the Ganglion Cell Layer. Front Immunol 2016; 7:642. [PMID: 28066446 PMCID: PMC5179567 DOI: 10.3389/fimmu.2016.00642] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022] Open
Abstract
A hallmark of autoimmune retinal inflammation is the infiltration of the retina with cells of the innate and adaptive immune system, leading to detachment of the retinal layers and even to complete loss of the retinal photoreceptor layer. As the only optical system in the organism, the eye enables non-invasive longitudinal imaging studies of these local autoimmune processes and of their effects on the target tissue. Moreover, as a window to the central nervous system (CNS), the eye also reflects general neuroinflammatory processes taking place at various sites within the CNS. Histological studies in murine neuroinflammatory models, such as experimental autoimmune uveoretinitis (EAU) and experimental autoimmune encephalomyelitis, indicate that immune infiltration is initialized by effector CD4+ T cells, with the innate compartment (neutrophils, macrophages, and monocytes) contributing crucially to tissue degeneration that occurs at later phases of the disease. However, how the immune attack is orchestrated by various immune cell subsets in the retina and how the latter interact with the target tissue under in vivo conditions is still poorly understood. Our study addresses this gap with a novel approach for intravital two-photon microscopy, which enabled us to repeatedly track CD4+ T cells and LysM phagocytes during the entire course of EAU and to identify a specific radial infiltration pattern of these cells within the inflamed retina, starting from the optic nerve head. In contrast, highly motile CX3CR1+ cells display an opposite radial motility pattern, toward the optic nerve head. These inflammatory processes induce modifications of the microglial network toward an activated morphology, especially around the optic nerve head and main retinal blood vessels, but do not affect the neurons within the ganglion cell layer. Thanks to the new technology, non-invasive correlation of clinical scores of CNS-related pathologies with immune infiltrate behavior and subsequent tissue dysfunction is now possible. Hence, the new approach paves the way for deeper insights into the pathology of neuroinflammatory processes on a cellular basis, over the entire disease course.
Collapse
Affiliation(s)
- Daniel Bremer
- German Rheumatism Research Center , Berlin , Germany
| | - Florence Pache
- German Rheumatism Research Center, Berlin, Germany; NeuroCure Clinical Research Center, Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | - Ruth Leben
- German Rheumatism Research Center , Berlin , Germany
| | - Ronja Mothes
- German Rheumatism Research Center, Berlin, Germany; Department of Neuropathology, Charité - Universitätsmedizin, Berlin, Germany
| | - Hanna Zimmermann
- NeuroCure Clinical Research Center, Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Alexander U Brandt
- NeuroCure Clinical Research Center, Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Anja E Hauser
- German Rheumatism Research Center, Berlin, Germany; Immundynamics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin , Berlin , Germany
| | | |
Collapse
|
23
|
Two-Photon Microscopy of the Mouse Peripheral Cornea Ex Vivo. Cornea 2016; 35 Suppl 1:S31-S37. [PMID: 27631351 DOI: 10.1097/ico.0000000000001006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To investigate the 3-dimensional (3D) cell and extracellular matrix (ECM) structure of mouse peripheral corneas in normal and corneal neovascularization tissues using 2-photon microscopy (TPM) based on both intrinsic and extrinsic moxifloxacin contrasts. METHODS Peripheral corneas in freshly enucleated mouse eyes were imaged by TPM based on both intrinsic and extrinsic contrasts. Intrinsic autofluorescence and second harmonic generation were used to image cells and ECM collagen, respectively. Moxifloxacin ophthalmic solution was applied to image cells. The peripheral cornea, limbus, and sclera were imaged in 3D. In addition to normal mice, mouse models of suture-induced corneal neovascularization were imaged to visualize changes in the microstructure. RESULTS Complex 3D cell and ECM structures in the cornea, limbus, and sclera were visualized by TPM. TPM images based on intrinsic contrasts visualized both cell and ECM structures, and TPM images based on moxifloxacin visualized cell structures with enhanced contrast. On the limbus side of the mouse peripheral cornea, TPM images visualized the vasculature in the limbus, the trabecular meshwork/Schlemm canal, iris, and ciliary body. On the scleral side, TPM images visualized cell and ECM structures in the sclera and multiple cell layers below the sclera. TPM images of the peripheral cornea in the corneal neovascularization condition visualized the extension of vasculature from the limbus to the cornea. CONCLUSIONS TPM imaging based on both intrinsic and external moxifloxacin contrasts visualized detailed 3D cell and ECM microstructures in the mouse peripheral cornea. TPM based on moxifloxacin might be advantageous for studying cell structures by enhancing image contrast.
Collapse
|
24
|
Abstract
Ground squirrels are an increasingly important model for studying visual processing, retinal circuitry, and cone photoreceptor function. Here, we demonstrate that the photoreceptor mosaic can be longitudinally imaged noninvasively in the 13-lined ground squirrel (Ictidomys tridecemlineatus) using confocal and nonconfocal split-detection adaptive optics scanning ophthalmoscopy using 790 nm light. Photoreceptor density, spacing, and Voronoi analysis are consistent with that of the human cone mosaic. The high imaging success rate and consistent image quality in this study reinforce the ground squirrel as a practical model to aid drug discovery and testing through longitudinal imaging on the cellular scale.
Collapse
|
25
|
Cua M, Wahl DJ, Zhao Y, Lee S, Bonora S, Zawadzki RJ, Jian Y, Sarunic MV. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging. Sci Rep 2016; 6:32223. [PMID: 27599635 PMCID: PMC5013266 DOI: 10.1038/srep32223] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/04/2016] [Indexed: 11/09/2022] Open
Abstract
Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.
Collapse
Affiliation(s)
- Michelle Cua
- School of Engineering Science, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| | - Daniel J Wahl
- School of Engineering Science, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| | - Yuan Zhao
- School of Engineering Science, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| | - Sujin Lee
- School of Engineering Science, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| | - Stefano Bonora
- CNR-Institute for Photonics and Nanotechnology, Via Trasea 7, 35131, Padova, Italy
| | - Robert J Zawadzki
- UC Davis RISE Small Animal Ocular Imaging Facility, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA.,Vision Science and Advanced Retinal Imaging laboratory (VSRI), Department of Ophthalmology &Vision Science, University of California Davis, Sacramento, CA 95817 USA
| | - Yifan Jian
- School of Engineering Science, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| | - Marinko V Sarunic
- School of Engineering Science, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| |
Collapse
|
26
|
Alexander NS, Palczewska G, Stremplewski P, Wojtkowski M, Kern TS, Palczewski K. Image registration and averaging of low laser power two-photon fluorescence images of mouse retina. BIOMEDICAL OPTICS EXPRESS 2016; 7:2671-91. [PMID: 27446697 PMCID: PMC4948621 DOI: 10.1364/boe.7.002671] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/11/2016] [Accepted: 06/11/2016] [Indexed: 05/18/2023]
Abstract
Two-photon fluorescence microscopy (TPM) is now being used routinely to image live cells for extended periods deep within tissues, including the retina and other structures within the eye . However, very low laser power is a requirement to obtain TPM images of the retina safely. Unfortunately, a reduction in laser power also reduces the signal-to-noise ratio of collected images, making it difficult to visualize structural details. Here, image registration and averaging methods applied to TPM images of the eye in living animals (without the need for auxiliary hardware) demonstrate the structural information obtained with laser power down to 1 mW. Image registration provided between 1.4% and 13.0% improvement in image quality compared to averaging images without registrations when using a high-fluorescence template, and between 0.2% and 12.0% when employing the average of collected images as the template. Also, a diminishing return on image quality when more images were used to obtain the averaged image is shown. This work provides a foundation for obtaining informative TPM images with laser powers of 1 mW, compared to previous levels for imaging mice ranging between 6.3 mW [Palczewska G., Nat Med.20, 785 (2014) Sharma R., Biomed. Opt. Express4, 1285 (2013)].
Collapse
Affiliation(s)
- Nathan S Alexander
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | | | - Patrycjusz Stremplewski
- Faculty of Physics, Astronomy and Informatics, Institute of Physics, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Maciej Wojtkowski
- Faculty of Physics, Astronomy and Informatics, Institute of Physics, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Timothy S Kern
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Polgenix Inc., 11000 Cedar Ave, Cleveland, Ohio 44106, USA;
| |
Collapse
|
27
|
Merino D, Loza-Alvarez P. Adaptive optics scanning laser ophthalmoscope imaging: technology update. Clin Ophthalmol 2016; 10:743-55. [PMID: 27175057 PMCID: PMC4854423 DOI: 10.2147/opth.s64458] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adaptive optics (AO) retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it.
Collapse
Affiliation(s)
- David Merino
- The Institute of Photonic Sciences (ICFO), The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Pablo Loza-Alvarez
- The Institute of Photonic Sciences (ICFO), The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| |
Collapse
|
28
|
Lee JH, Lee S, Yoon CJ, Park JH, Tchah H, Kim MJ, Kim KH. Comparison of reflectance confocal microscopy and two-photon second harmonic generation microscopy in fungal keratitis rabbit model ex vivo. BIOMEDICAL OPTICS EXPRESS 2016; 7:677-687. [PMID: 26977371 PMCID: PMC4771480 DOI: 10.1364/boe.7.000677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 06/05/2023]
Abstract
Fungal keratitis is an infection of the cornea by fungal pathogens. Diagnosis methods based on optical microscopy could be beneficial over the conventional microbiology method by allowing rapid and non-invasive examination. Reflectance confocal microscopy (RCM) and two-photon second harmonic generation microscopy (TPSHGM) have been applied to pre-clinical or clinical studies of fungal keratitis. In this report, RCM and TPSHGM were characterized and compared in the imaging of a fungal keratitis rabbit model ex vivo. Fungal infection was induced by using two strains of fungi: aspergillus fumigatus and candida albicans. The infected corneas were imaged in fresh condition by both modalities sequentially and their images were analyzed. Both RCM and TPSHGM could detect both fungal strains within the cornea based on morphology: aspergillus fumigatus had distinctive filamentous structures, and candida albicans had round structures superficially and elongated structures in the corneal stroma. These imaging results were confirmed by histology. Comparison between RCM and TPSHGM showed several characteristics. Although RCM and TPSHGM images had good correlation each other, their images were slightly different due to difference in contrast mechanism. RCM had relatively low image contrast with the infected turbid corneas due to high background signal. TPSHGM visualized cells and collagen in the cornea clearly compared to RCM, but used higher laser power to compensate low autofluorescence. Since these two modalities provide complementary information, combination of RCM and TPSHGM would be useful for fungal keratitis detection by compensating their weaknesses each other.
Collapse
Affiliation(s)
- Jun Ho Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Seunghun Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Calvin J Yoon
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Jin Hyoung Park
- Department Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 05535, South Korea
| | - Hungwon Tchah
- Department Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 05535, South Korea
| | - Myoung Joon Kim
- Department Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 05535, South Korea;
| | - Ki Hean Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea; Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea;
| |
Collapse
|
29
|
Sharma R, Williams DR, Palczewska G, Palczewski K, Hunter JJ. Two-Photon Autofluorescence Imaging Reveals Cellular Structures Throughout the Retina of the Living Primate Eye. Invest Ophthalmol Vis Sci 2016; 57:632-46. [PMID: 26903224 PMCID: PMC4771181 DOI: 10.1167/iovs.15-17961] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 12/30/2015] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Although extrinsic fluorophores can be introduced to label specific cell types in the retina, endogenous fluorophores, such as NAD(P)H, FAD, collagen, and others, are present in all retinal layers. These molecules are a potential source of optical contrast and can enable noninvasive visualization of all cellular layers. We used a two-photon fluorescence adaptive optics scanning light ophthalmoscope (TPF-AOSLO) to explore the native autofluorescence of various cell classes spanning several layers in the unlabeled retina of a living primate eye. METHODS Three macaques were imaged on separate occasions using a custom TPF-AOSLO. Two-photon fluorescence was evoked by pulsed light at 730 and 920 nm excitation wavelengths, while fluorescence emission was collected in the visible range from several retinal layers and different locations. Backscattered light was recorded simultaneously in confocal modality and images were postprocessed to remove eye motion. RESULTS All retinal layers yielded two-photon signals and the heterogeneous distribution of fluorophores provided optical contrast. Several structural features were observed, such as autofluorescence from vessel walls, Müller cell processes in the nerve fibers, mosaics of cells in the ganglion cell and other nuclear layers of the inner retina, as well as photoreceptor and RPE layers in the outer retina. CONCLUSIONS This in vivo survey of two-photon autofluorescence throughout the primate retina demonstrates a wider variety of structural detail in the living eye than is available through conventional imaging methods, and broadens the use of two-photon imaging of normal and diseased eyes.
Collapse
Affiliation(s)
- Robin Sharma
- The Institute of Optics, University of Rochester, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - David R. Williams
- The Institute of Optics, University of Rochester, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| | | | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Jennifer J. Hunter
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| |
Collapse
|
30
|
Wahl DJ, Jian Y, Bonora S, Zawadzki RJ, Sarunic MV. Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice. BIOMEDICAL OPTICS EXPRESS 2016; 7:1-12. [PMID: 26819812 PMCID: PMC4722895 DOI: 10.1364/boe.7.000001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/15/2015] [Accepted: 10/21/2015] [Indexed: 05/18/2023]
Abstract
Cellular-resolution in vivo fluorescence imaging is a valuable tool for longitudinal studies of retinal function in vision research. Wavefront sensorless adaptive optics (WSAO) is a developing technology that enables high-resolution imaging of the mouse retina. In place of the conventional method of using a Shack-Hartmann wavefront sensor to measure the aberrations directly, WSAO uses an image quality metric and a search algorithm to drive the shape of the adaptive element (i.e. deformable mirror). WSAO is a robust approach to AO and it is compatible with a compact, low-cost lens-based system. In this report, we demonstrated a hill-climbing algorithm for WSAO with a variable focus lens and deformable mirror for non-invasive in vivo imaging of EGFP (enhanced green fluorescent protein) labelled ganglion cells and microglia cells in the mouse retina.
Collapse
Affiliation(s)
- Daniel J. Wahl
- Engineering Science, Simon Fraser University, Burnaby BC, V5A 1S6 Canada
- These authors contributed equally to this work
| | - Yifan Jian
- Engineering Science, Simon Fraser University, Burnaby BC, V5A 1S6 Canada
- These authors contributed equally to this work
| | - Stefano Bonora
- CNR-Institute for Photonics and Nanotechnology, Via Trasea 7, 35131, Padova, Italy
- Hilase project, Institute of Physics AS CR v.v.i., Na Slovance 2, 18221, Prague, Czech Republic
| | - Robert J. Zawadzki
- UC Davis RISE Small Animal Ocular Imaging Facility, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616 USA
- Vision Science and Advanced Retinal Imaging Laboratory (VSRI), Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA 95817 USA
| | - Marinko V. Sarunic
- Engineering Science, Simon Fraser University, Burnaby BC, V5A 1S6 Canada
| |
Collapse
|
31
|
Bar-Noam AS, Farah N, Shoham S. Correction-free remotely scanned two-photon in vivo mouse retinal imaging. LIGHT, SCIENCE & APPLICATIONS 2016; 5:e16007. [PMID: 30167112 PMCID: PMC6059848 DOI: 10.1038/lsa.2016.7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 05/16/2023]
Abstract
Non-invasive fluorescence retinal imaging in small animals is an important requirement for an array of translational vision applications. The in vivo two-photon imaging of the mouse retina may enable the long-term investigation of the structure and function of healthy and diseased retinal tissue. However, to date, this has only been possible using relatively complex adaptive-optics systems. Here, the optical modeling of the murine eye and of the imaging system is used to achieve correction-free two-photon microscopy through the pupil of a mouse eye to yield high-quality, optically sectioned fundus images. By remotely scanning the focus using an electronically tunable lens, high-resolution three-dimensional fluorescein angiograms and cellular-scale images are acquired, thus introducing a correction-free baseline performance level for two-photon in vivo retinal imaging. Moreover, the system enables functional calcium imaging of repeated retinal responses to light stimulation using the genetically encoded indicator, GCaMP6s. These results and the simplicity of the new add-on optics are an important step toward several structural, functional, and multimodal imaging applications that will benefit from the tight optical sectioning and the use of near-infrared light.
Collapse
Affiliation(s)
- Adi Schejter Bar-Noam
- />Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Kiryat HaTechnion, Haifa 32000, Israel
| | - Nairouz Farah
- />Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Kiryat HaTechnion, Haifa 32000, Israel
| | - Shy Shoham
- />Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Kiryat HaTechnion, Haifa 32000, Israel
| |
Collapse
|
32
|
Abstract
This review starts with a brief history and description of adaptive optics (AO) technology, followed by a showcase of the latest capabilities of AO systems for imaging the human retina and an extensive review of the literature on where AO is being used clinically. The review concludes with a discussion on future directions and guidance on usage and interpretation of images from AO systems for the eye.
Collapse
|
33
|
Choi M, Kwok SJJ, Yun SH. In vivo fluorescence microscopy: lessons from observing cell behavior in their native environment. Physiology (Bethesda) 2015; 30:40-9. [PMID: 25559154 DOI: 10.1152/physiol.00019.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microscopic imaging techniques to visualize cellular behaviors in their natural environment play a pivotal role in biomedical research. Here, we review how recent technical advances in intravital microscopy have enabled unprecedented access to cellular physiology in various organs of mice in normal and diseased states.
Collapse
Affiliation(s)
- Myunghwan Choi
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts; and
| | - Sheldon J J Kwok
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts; and Harvard-MIT Health Sciences and Technology, Cambridge, Massachusetts
| | - Seok Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts; and Harvard-MIT Health Sciences and Technology, Cambridge, Massachusetts
| |
Collapse
|
34
|
Segawa H, Kaji Y, Leproux P, Couderc V, Ozawa T, Oshika T, Kano H. Multimodal and multiplex spectral imaging of rat cornea ex vivo using a white-light laser source. JOURNAL OF BIOPHOTONICS 2015; 8:705-13. [PMID: 25378211 DOI: 10.1002/jbio.201400059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/24/2014] [Accepted: 10/13/2014] [Indexed: 05/24/2023]
Abstract
We applied our multimodal nonlinear spectral imaging microscope to the measurement of rat cornea. We successfully obtained multiple nonlinear signals of coherent anti-Stokes Raman scattering (CARS), third-order sum frequency generation (TSFG), and second harmonic generation (SHG). Depending on the nonlinear optical processes, the cornea tissue was visualized with different image contrast mechanism simultaneously. Due to white-light laser excitation, multiplex CARS and TSFG spectra were obtained. Combined multimodal and spectral analysis clearly elucidated the layered structure of rat cornea with molecular structural information. This study indicates that our multimodal nonlinear spectral microscope is a promising bioimaging method for tissue study. Multimodal nonlinear spectral images of rat cornea at corneal epithelium and corneal stroma in the in-plane (XY) direction. With use of the combinational analysis of different nonlinear optical processes, detailed molecular structural information is available without staining or labelling.
Collapse
Affiliation(s)
- Hiroki Segawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Yuichi Kaji
- Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Philippe Leproux
- Xlim Research Institute, CNRS-University of Limoges, 123 Avenue Albert Thomas, 87060, Limoges cedex, France
| | - Vincent Couderc
- Xlim Research Institute, CNRS-University of Limoges, 123 Avenue Albert Thomas, 87060, Limoges cedex, France
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Tetsuro Oshika
- Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hideaki Kano
- Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
35
|
Stremplewski P, Komar K, Palczewski K, Wojtkowski M, Palczewska G. Periscope for noninvasive two-photon imaging of murine retina in vivo. BIOMEDICAL OPTICS EXPRESS 2015; 6:3352-61. [PMID: 26417507 PMCID: PMC4574663 DOI: 10.1364/boe.6.003352] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/01/2015] [Accepted: 08/02/2015] [Indexed: 05/18/2023]
Abstract
Two-photon microscopy allows visualization of subcellular structures in the living animal retina. In previously reported experiments it was necessary to apply a contact lens to each subject. Extending this technology to larger animals would require fitting a custom contact lens to each animal and cumbersome placement of the living animal head on microscope stage. Here we demonstrate a new device, periscope, for coupling light energy into mouse eye and capturing emitted fluorescence. Using this periscope we obtained images of the RPE and their subcellular organelles, retinosomes, with larger field of view than previously reported. This periscope provides an interface with a commercial microscope, does not require contact lens and its design could be modified to image retina in larger animals.
Collapse
Affiliation(s)
- Patrycjusz Stremplewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland
| | - Katarzyna Komar
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Maciej Wojtkowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland
| | | |
Collapse
|
36
|
Zawadzki RJ, Zhang P, Zam A, Miller EB, Goswami M, Wang X, Jonnal RS, Lee SH, Kim DY, Flannery JG, Werner JS, Burns ME, Pugh EN. Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina. BIOMEDICAL OPTICS EXPRESS 2015; 6:2191-210. [PMID: 26114038 PMCID: PMC4473753 DOI: 10.1364/boe.6.002191] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 05/18/2023]
Abstract
Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has recently been used to achieve exquisite subcellular resolution imaging of the mouse retina. Wavefront sensing-based AO typically restricts the field of view to a few degrees of visual angle. As a consequence the relationship between AO-SLO data and larger scale retinal structures and cellular patterns can be difficult to assess. The retinal vasculature affords a large-scale 3D map on which cells and structures can be located during in vivo imaging. Phase-variance OCT (pv-OCT) can efficiently image the vasculature with near-infrared light in a label-free manner, allowing 3D vascular reconstruction with high precision. We combined widefield pv-OCT and SLO imaging with AO-SLO reflection and fluorescence imaging to localize two types of fluorescent cells within the retinal layers: GFP-expressing microglia, the resident macrophages of the retina, and GFP-expressing cone photoreceptor cells. We describe in detail a reflective afocal AO-SLO retinal imaging system designed for high resolution retinal imaging in mice. The optical performance of this instrument is compared to other state-of-the-art AO-based mouse retinal imaging systems. The spatial and temporal resolution of the new AO instrumentation was characterized with angiography of retinal capillaries, including blood-flow velocity analysis. Depth-resolved AO-SLO fluorescent images of microglia and cone photoreceptors are visualized in parallel with 469 nm and 663 nm reflectance images of the microvasculature and other structures. Additional applications of the new instrumentation are discussed.
Collapse
Affiliation(s)
- Robert J Zawadzki
- UC Davis RISE Eye-Pod Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, California 95616, USA ; Vision Science and Advanced Retinal Imaging Laboratory (VSRI) and Department of Ophthalmology & Vision Science, UC Davis, 4860 Y Street, Ste. 2400, Sacramento, CA 95817, USA ; Depts. of Ophthalmology & Vision Science and of Cell Biology & Human Anatomy 4303 Tupper Hall, Davis California 95616, USA ;
| | - Pengfei Zhang
- UC Davis RISE Eye-Pod Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, California 95616, USA
| | - Azhar Zam
- UC Davis RISE Eye-Pod Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, California 95616, USA
| | - Eric B Miller
- Center for Neuroscience, University of California, Davis Sacramento, CA 95817, USA
| | - Mayank Goswami
- UC Davis RISE Eye-Pod Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, California 95616, USA
| | - Xinlei Wang
- UC Davis RISE Eye-Pod Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, California 95616, USA
| | - Ravi S Jonnal
- Vision Science and Advanced Retinal Imaging Laboratory (VSRI) and Department of Ophthalmology & Vision Science, UC Davis, 4860 Y Street, Ste. 2400, Sacramento, CA 95817, USA
| | - Sang-Hyuck Lee
- Vision Science and Advanced Retinal Imaging Laboratory (VSRI) and Department of Ophthalmology & Vision Science, UC Davis, 4860 Y Street, Ste. 2400, Sacramento, CA 95817, USA
| | - Dae Yu Kim
- Beckman Laser Institute Korea & Biomed. Engineering, Dankook University, Cheonan, Chungnam 330-715, South Korea
| | - John G Flannery
- Dept. of Molecular and Cellular Biology, University of California, Berkeley 94720, USA
| | - John S Werner
- Vision Science and Advanced Retinal Imaging Laboratory (VSRI) and Department of Ophthalmology & Vision Science, UC Davis, 4860 Y Street, Ste. 2400, Sacramento, CA 95817, USA
| | - Marie E Burns
- Center for Neuroscience, University of California, Davis Sacramento, CA 95817, USA ; Depts. of Ophthalmology & Vision Science and of Cell Biology & Human Anatomy 4303 Tupper Hall, Davis California 95616, USA
| | - Edward N Pugh
- UC Davis RISE Eye-Pod Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, California 95616, USA ; Depts. of Cell Biology & Human Anatomy, and of Physiology & Membrane Biology 4303 Tupper Hall, Davis California 95616, USA ;
| |
Collapse
|
37
|
Comparison of confocal microscopy and two-photon microscopy in mouse cornea in vivo. Exp Eye Res 2015; 132:101-8. [DOI: 10.1016/j.exer.2015.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 01/17/2023]
|
38
|
He S, Ye C, Sun Q, Leung CK, Qu JY. Label-free nonlinear optical imaging of mouse retina. BIOMEDICAL OPTICS EXPRESS 2015; 6:1055-66. [PMID: 25798325 PMCID: PMC4361420 DOI: 10.1364/boe.6.001055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/14/2015] [Accepted: 02/16/2015] [Indexed: 05/18/2023]
Abstract
A nonlinear optical (NLO) microscopy system integrating stimulated Raman scattering (SRS), two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) was developed to image fresh mouse retinas. The morphological and functional details of various retinal layers were revealed by the endogenous NLO signals. Particularly, high resolution label-free imaging of retinal neurons and nerve fibers in the ganglion cell and nerve fiber layers was achieved by capturing endogenous SRS and TPEF signals. In addition, the spectral and temporal analysis of TPEF images allowed visualization of different fluorescent components in the retinal pigment epithelium (RPE). Fluorophores with short TPEF lifetime, such as A2E, can be differentiated from other long-lifetime components in the RPE. The NLO imaging method would provide important information for investigation of retinal ganglion cell degeneration and holds the potential to study the biochemical processes of visual cycle in the RPE.
Collapse
Affiliation(s)
- Sicong He
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong,
China
- Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR,
China
- These authors contributed equally to this work
| | - Cong Ye
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong,
China
- These authors contributed equally to this work
| | - Qiqi Sun
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong,
China
- Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR,
China
| | - Christopher K.S. Leung
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong,
China
| | - Jianan Y. Qu
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong,
China
- Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR,
China
| |
Collapse
|
39
|
Choe TE, Abbott CJ, Piper C, Wang L, Fortune B. Comparison of longitudinal in vivo measurements of retinal nerve fiber layer thickness and retinal ganglion cell density after optic nerve transection in rat. PLoS One 2014; 9:e113011. [PMID: 25393294 PMCID: PMC4231142 DOI: 10.1371/journal.pone.0113011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 10/23/2014] [Indexed: 11/23/2022] Open
Abstract
Purpose To determine the relationship between longitudinal in vivo measurements of retinal nerve fiber layer thickness (RNFLT) and retinal ganglion cell (RGC) density after unilateral optic nerve transection (ONT). Methods Nineteen adult Brown-Norway rats were studied; N = 10 ONT plus RGC label, N = 3 ONT plus vehicle only (sans label), N = 6 sham ONT plus RGC label. RNFLT was measured by spectral domain optical coherence tomography (SD-OCT) at baseline then weekly for 1 month. RGCs were labeled by retrograde transport of fluorescently conjugated cholera toxin B (CTB) from the superior colliculus 48 hours prior to ONT or sham surgery. RGC density measurements were obtained by confocal scanning laser ophthalmoscopy (CSLO) at baseline and weekly for 1 month. RGC density and reactivity of microglia (anti-Iba1) and astrocytes (anti-GFAP) were determined from post mortem fluorescence microscopy of whole-mount retinae. Results RNFLT decreased after ONT by 17% (p<0.05), 30% (p<0.0001) and 36% (p<0.0001) at weeks 2, 3 and 4. RGC density decreased after ONT by 18%, 69%, 85% and 92% at weeks 1, 2, 3 and 4 (p<0.0001 each). RGC density measured in vivo at week 4 and post mortem by microscopy were strongly correlated (R = 0.91, p<0.0001). In vivo measures of RNFLT and RGC density were strongly correlated (R = 0.81, p<0.0001). In ONT- CTB labeled fellow eyes, RNFLT increased by 18%, 52% and 36% at weeks 2, 3 and 4 (p<0.0001), but did not change in fellow ONT-eyes sans CTB. Microgliosis was evident in the RNFL of the ONT-CTB fellow eyes, exceeding that observed in other fellow eyes. Conclusions In vivo measurements of RNFLT and RGC density are strongly correlated and can be used to monitor longitudinal changes after optic nerve injury. The strong fellow eye effect observed in eyes contralateral to ONT, only in the presence of CTB label, consisted of a dramatic increase in RNFLT associated with retinal microgliosis.
Collapse
Affiliation(s)
- Tiffany E. Choe
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, Oregon, United States of America
| | - Carla J. Abbott
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, Oregon, United States of America
| | - Chelsea Piper
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, Oregon, United States of America
| | - Lin Wang
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, Oregon, United States of America
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
40
|
Palczewski K. Chemistry and biology of the initial steps in vision: the Friedenwald lecture. Invest Ophthalmol Vis Sci 2014; 55:6651-72. [PMID: 25338686 DOI: 10.1167/iovs.14-15502] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Visual transduction is the process in the eye whereby absorption of light in the retina is translated into electrical signals that ultimately reach the brain. The first challenge presented by visual transduction is to understand its molecular basis. We know that maintenance of vision is a continuous process requiring the activation and subsequent restoration of a vitamin A-derived chromophore through a series of chemical reactions catalyzed by enzymes in the retina and retinal pigment epithelium (RPE). Diverse biochemical approaches that identified key proteins and reactions were essential to achieve a mechanistic understanding of these visual processes. The three-dimensional arrangements of these enzymes' polypeptide chains provide invaluable insights into their mechanisms of action. A wealth of information has already been obtained by solving high-resolution crystal structures of both rhodopsin and the retinoid isomerase from pigment RPE (RPE65). Rhodopsin, which is activated by photoisomerization of its 11-cis-retinylidene chromophore, is a prototypical member of a large family of membrane-bound proteins called G protein-coupled receptors (GPCRs). RPE65 is a retinoid isomerase critical for regeneration of the chromophore. Electron microscopy (EM) and atomic force microscopy have provided insights into how certain proteins are assembled to form much larger structures such as rod photoreceptor cell outer segment membranes. A second challenge of visual transduction is to use this knowledge to devise therapeutic approaches that can prevent or reverse conditions leading to blindness. Imaging modalities like optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) applied to appropriate animal models as well as human retinal imaging have been employed to characterize blinding diseases, monitor their progression, and evaluate the success of therapeutic agents. Lately two-photon (2-PO) imaging, together with biochemical assays, are revealing functional aspects of vision at a new molecular level. These multidisciplinary approaches combined with suitable animal models and inbred mutant species can be especially helpful in translating provocative cell and tissue culture findings into therapeutic options for further development in animals and eventually in humans. A host of different approaches and techniques is required for substantial progress in understanding fundamental properties of the visual system.
Collapse
Affiliation(s)
- Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
41
|
Palczewska G, Dong Z, Golczak M, Hunter JJ, Williams DR, Alexander NS, Palczewski K. Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye. Nat Med 2014; 20:785-9. [PMID: 24952647 PMCID: PMC4087080 DOI: 10.1038/nm.3590] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 11/12/2013] [Indexed: 12/11/2022]
Abstract
Two-photon excitation microscopy can image retinal molecular processes in vivo. Intrinsically fluorescent retinyl esters in subcellular structures called retinosomes are an integral part of the visual chromophore regeneration pathway. Fluorescent condensation products of all-trans-retinal accumulate in the eye with age and are also associated with age-related macular degeneration (AMD). Here, we report repetitive, dynamic imaging of these compounds in live mice through the pupil of the eye. By leveraging advanced adaptive optics, we developed a data acquisition algorithm that permitted the identification of retinosomes and condensation products in the retinal pigment epithelium by their characteristic localization, spectral properties and absence in genetically modified or drug-treated mice. This imaging approach has the potential to detect early molecular changes in retinoid metabolism that trigger light- and AMD-induced retinal defects and to assess the effectiveness of treatments for these conditions.
Collapse
Affiliation(s)
| | | | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jennifer J Hunter
- 1] Center for Visual Science, University of Rochester, Rochester, New York, USA. [2] Flaum Eye Institute, University of Rochester, Rochester, New York, USA. [3] Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - David R Williams
- 1] Center for Visual Science, University of Rochester, Rochester, New York, USA. [2] The Institute of Optics, University of Rochester, Rochester, New York, USA
| | - Nathan S Alexander
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Krzysztof Palczewski
- 1] Polgenix, Cleveland, Ohio, USA. [2] Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
42
|
Palczewska G, Golczak M, Williams DR, Hunter JJ, Palczewski K. Endogenous fluorophores enable two-photon imaging of the primate eye. Invest Ophthalmol Vis Sci 2014; 55:4438-47. [PMID: 24970255 DOI: 10.1167/iovs.14-14395] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Noninvasive two-photon imaging of a living mammalian eye can reveal details of molecular processes in the retina and RPE. Retinyl esters and all-trans-retinal condensation products are two types of retinoid fluorophores present in these tissues. We measured the content of these two types of retinoids in monkey and human eyes to validate the potential of two-photon imaging for monitoring retinoid changes in human eyes. METHODS Two-photon microscopy (TPM) was used to visualize excised retina from monkey eyes. Retinoid composition and content in human and monkey eyes were quantified by HPLC and mass spectrometry (MS). RESULTS Clear images of inner and outer segments of rods and cones were obtained in primate eyes at different eccentricities. Fluorescence spectra from outer segments revealed a maximum emission at 480 nm indicative of retinols and their esters. In cynomolgus monkey and human retinal extracts, retinyl esters existed predominantly in the 11-cis configuration along with notable levels of 11-cis-retinol, a characteristic of cone-enriched retinas. Average amounts of di-retinoid-pyridinium-ethanolamine (A2E) in primate and human eyes were 160 and 225 pmol/eye, respectively. CONCLUSIONS These data show that human retina contains sufficient amounts of retinoids for two-photon excitation imaging. Greater amounts of 11-cis-retinyl esters relative to rodent retinas contribute to the fluorescence signal from both monkey and human eyes. These observations indicate that TPM imaging found effective in mice could detect early age- and disease-related changes in human retina.
Collapse
Affiliation(s)
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| | - David R Williams
- Center for Visual Science, University of Rochester, Rochester, New York, United States The Institute of Optics, University of Rochester, Rochester, New York, United States
| | - Jennifer J Hunter
- Center for Visual Science, University of Rochester, Rochester, New York, United States Flaum Eye Institute, University of Rochester, Rochester, New York, United States Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
| | - Krzysztof Palczewski
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
43
|
Abstract
The fovea dominates primate vision, and its anatomy and perceptual abilities are well studied, but its physiology has been little explored because of limitations of current physiological methods. In this study, we adapted a novel in vivo imaging method, originally developed in mouse retina, to explore foveal physiology in the macaque, which permits the repeated imaging of the functional response of many retinal ganglion cells (RGCs) simultaneously. A genetically encoded calcium indicator, G-CaMP5, was inserted into foveal RGCs, followed by calcium imaging of the displacement of foveal RGCs from their receptive fields, and their intensity-response functions. The spatial offset of foveal RGCs from their cone inputs makes this method especially appropriate for fovea by permitting imaging of RGC responses without excessive light adaptation of cones. This new method will permit the tracking of visual development, progression of retinal disease, or therapeutic interventions, such as insertion of visual prostheses.
Collapse
|
44
|
Meyer T, Schmitt M, Dietzek B, Popp J. Accumulating advantages, reducing limitations: multimodal nonlinear imaging in biomedical sciences - the synergy of multiple contrast mechanisms. JOURNAL OF BIOPHOTONICS 2013; 6:887-904. [PMID: 24259267 DOI: 10.1002/jbio.201300176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 05/29/2023]
Abstract
Multimodal nonlinear microscopy has matured during the past decades to one of the key imaging modalities in life science and biomedicine due to its unique capabilities of label-free visualization of tissue structure and chemical composition, high depth penetration, intrinsic 3D sectioning, diffraction limited resolution and low phototoxicity. This review briefly summarizes first recent advances in the field regarding the methodology, e.g., contrast mechanisms and signal characteristics used for contrast generation as well as novel image processing approaches. The second part deals with technologic developments emphasizing improvements in penetration depth, imaging speed, spatial resolution and nonlinear labeling strategies. The third part focuses on recent applications in life science fundamental research and biomedical diagnostics as well as future clinical applications.
Collapse
Affiliation(s)
- Tobias Meyer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | | | | | | |
Collapse
|