1
|
Draxinger W, Detrez N, Strenge P, Danicke V, Theisen-Kunde D, Schützeck L, Spahr-Hess S, Kuppler P, Kren J, Wieser W, Mario Bonsanto M, Brinkmann R, Huber R. Microscope integrated MHz optical coherence tomography system for neurosurgery: development and clinical in-vivo imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:5960-5979. [PMID: 39421776 PMCID: PMC11482179 DOI: 10.1364/boe.530976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 10/19/2024]
Abstract
Neurosurgical interventions on the brain are impeded by the requirement to keep damages to healthy tissue at a minimum. A new contrast channel enhancing the visual separation of malign tissue should be created. A commercially available surgical microscope was modified with adaptation optics adapting the MHz speed optical coherence tomography (OCT) imaging system developed in our group. This required the design of a scanner optics and beam delivery system overcoming constraints posed by the mechanical and optical parameters of the microscope. High quality volumetric OCT C-scans with dense sample spacing can be acquired in-vivo as part of surgical procedures within seconds and are immediately available for post-processing.
Collapse
Affiliation(s)
- Wolfgang Draxinger
- Universität zu Lübeck, Institut für Biomedizinische Optik (BMO), Peter-Monnik-Weg 4, 23562 Lübeck, Germany
- Optores GmbH, Gollierstr. 70, 80339 Munich, Germany
| | - Nicolas Detrez
- Medizinisches Laserzentrum Lübeck GmbH (MLL), Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Paul Strenge
- Medizinisches Laserzentrum Lübeck GmbH (MLL), Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Veit Danicke
- Medizinisches Laserzentrum Lübeck GmbH (MLL), Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Dirk Theisen-Kunde
- Medizinisches Laserzentrum Lübeck GmbH (MLL), Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Lion Schützeck
- Medizinisches Laserzentrum Lübeck GmbH (MLL), Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Sonja Spahr-Hess
- Universitätsklinikum Schleswig-Holstein (UKSH), Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Patrick Kuppler
- Universitätsklinikum Schleswig-Holstein (UKSH), Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Jessica Kren
- Universitätsklinikum Schleswig-Holstein (UKSH), Ratzeburger Allee 160, 23538 Lübeck, Germany
| | | | - Matteo Mario Bonsanto
- Universitätsklinikum Schleswig-Holstein (UKSH), Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Ralf Brinkmann
- Universität zu Lübeck, Institut für Biomedizinische Optik (BMO), Peter-Monnik-Weg 4, 23562 Lübeck, Germany
- Medizinisches Laserzentrum Lübeck GmbH (MLL), Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Robert Huber
- Universität zu Lübeck, Institut für Biomedizinische Optik (BMO), Peter-Monnik-Weg 4, 23562 Lübeck, Germany
- Optores GmbH, Gollierstr. 70, 80339 Munich, Germany
| |
Collapse
|
2
|
Ke M, Kumar A, Ansbæk TE, Leitgeb RA. Wide Dynamic Range Digital Aberration Measurement and Fast Anterior-Segment OCT Imaging †. SENSORS (BASEL, SWITZERLAND) 2024; 24:5161. [PMID: 39204856 PMCID: PMC11359324 DOI: 10.3390/s24165161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Ocular aberrometry with a wide dynamic range for assessing vision performance and anterior segment imaging that provides anatomical details of the eye are both essential for vision research and clinical applications. Defocus error is a major limitation of digital wavefront aberrometry (DWA), as the blurring of the detected point spread function (PSF) significantly reduces the signal-to-noise ratio (SNR) beyond the ±3 D range. With the aid of Badal-like precompensation of defocus, the dynamic defocus range of the captured aberrated PSFs can be effectively extended. We demonstrate a dual-modality MHz VCSEL-based swept-source OCT (SS-OCT) system with easy switching between DWA and OCT imaging modes. The system is capable of measuring aberrations with defocus dynamic range of 20 D as well as providing fast anatomical imaging of the anterior segment at an A-scan rate of 1.6 MHz.
Collapse
Affiliation(s)
- Mengyuan Ke
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Wien, Austria;
| | | | | | - Rainer A. Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Wien, Austria;
| |
Collapse
|
3
|
Chen K, Swanson S, Bizheva K. Line-field dynamic optical coherence tomography platform for volumetric assessment of biological tissues. BIOMEDICAL OPTICS EXPRESS 2024; 15:4162-4175. [PMID: 39022542 PMCID: PMC11249681 DOI: 10.1364/boe.527797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
Dynamic optical coherence tomography (dOCT) utilizes time-dependent signal intensity fluctuations to enhance contrast in OCT images and indirectly probe physiological processes in cells. Majority of the dOCT studies published so far are based on acquisition of 2D images (B-scans or C-scans) by utilizing point-scanning Fourier domain (spectral or swept-source) OCT or full-field OCT respectively, primarily due to limitations in the image acquisition rate. Here we introduce a novel, high-speed spectral domain line-field dOCT (SD-LF-dOCT) system and image acquisition protocols designed for fast, volumetric dOCT imaging of biological tissues. The imaging probe is based on an exchangeable afocal lens pair that enables selection of combinations of transverse resolution (from 1.1 µm to 6.4 µm) and FOV (from 250 × 250 µm2 to 1.4 × 1.4 mm2), suitable for different biomedical applications. The system offers axial resolution of ∼ 1.9 µm in biological tissue, assuming an average refractive index of 1.38. Maximum sensitivity of 90.5 dB is achieved for 3.5 mW optical imaging power at the tissue surface and maximum camera acquisition rate of 2,000 fps. Volumetric dOCT images acquired with the SD-LF-dOCT system from plant tissue (cucumber), animal tissue (mouse liver) and human prostate carcinoma spheroids allow for volumetric visualization of the tissues' cellular and sub-cellular structures and assessment of cellular motility.
Collapse
Affiliation(s)
- Keyu Chen
- Department of Physics and Astronomy, University of Waterloo, Waterloo N2 L 3G1, ON, Canada
| | - Stephanie Swanson
- Department of Physics and Astronomy, University of Waterloo, Waterloo N2 L 3G1, ON, Canada
| | - Kostadinka Bizheva
- Department of Physics and Astronomy, University of Waterloo, Waterloo N2 L 3G1, ON, Canada
- School of Optometry and Vision Sciences, University of Waterloo, Waterloo, ON, Canada
- System Design Engineering Department, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
4
|
Tse T, Chen Y, Siadati M, Miao Y, Song J, Ma D, Mammo Z, Ju MJ. Generalized 3D registration algorithm for enhancing retinal optical coherence tomography images. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:066002. [PMID: 38745984 PMCID: PMC11091473 DOI: 10.1117/1.jbo.29.6.066002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
Significance Optical coherence tomography (OCT) has emerged as the standard of care for diagnosing and monitoring the treatment of various ocular disorders due to its noninvasive nature and in vivo volumetric acquisition capability. Despite its widespread applications in ophthalmology, motion artifacts remain a challenge in OCT imaging, adversely impacting image quality. While several multivolume registration algorithms have been developed to address this issue, they are often designed to cater to one specific OCT system or acquisition protocol. Aim We aim to generate an OCT volume free of motion artifacts using a system-agnostic registration algorithm that is independent of system specifications or protocol. Approach We developed a B-scan registration algorithm that removes motion and corrects for both translational eye movements and rotational angle differences between volumes. Tests were carried out on various datasets obtained from two different types of custom-built OCT systems and one commercially available system to determine the reliability of the proposed algorithm. Additionally, different system specifications were used, with variations in axial resolution, lateral resolution, signal-to-noise ratio, and real-time motion tracking. The accuracy of this method has further been evaluated through mean squared error (MSE) and multiscale structural similarity index measure (MS-SSIM). Results The results demonstrate improvements in the overall contrast of the images, facilitating detailed visualization of retinal vasculatures in both superficial and deep vasculature plexus. Finer features of the inner and outer retina, such as photoreceptors and other pathology-specific features, are discernible after multivolume registration and averaging. Quantitative analyses affirm that increasing the number of averaged registered volumes will decrease MSE and increase MS-SSIM as compared to the reference volume. Conclusions The multivolume registered data obtained from this algorithm offers significantly improved visualization of the retinal microvascular network as well as retinal morphological features. Furthermore, we have validated that the versatility of our methodology extends beyond specific OCT modalities, thereby enhancing the clinical utility of OCT for the diagnosis and monitoring of ocular pathologies.
Collapse
Affiliation(s)
- Tiffany Tse
- The University of British Columbia, School of Biomedical Engineering, Faculty of Medicine and Applied Science, Vancouver, British Columbia, Canada
| | - Yudan Chen
- The University of British Columbia, School of Biomedical Engineering, Faculty of Medicine and Applied Science, Vancouver, British Columbia, Canada
| | - Mahsa Siadati
- The University of British Columbia, School of Biomedical Engineering, Faculty of Medicine and Applied Science, Vancouver, British Columbia, Canada
| | - Yusi Miao
- The University of British Columbia, Department of Ophthalmology and Visual Sciences, Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Jun Song
- The University of British Columbia, School of Biomedical Engineering, Faculty of Medicine and Applied Science, Vancouver, British Columbia, Canada
| | - Da Ma
- Wake Forest University, School of Medicine, Winston-Salem, North Carolina, United States
| | - Zaid Mammo
- The University of British Columbia, Department of Ophthalmology and Visual Sciences, Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Myeong Jin Ju
- The University of British Columbia, School of Biomedical Engineering, Faculty of Medicine and Applied Science, Vancouver, British Columbia, Canada
- The University of British Columbia, Department of Ophthalmology and Visual Sciences, Faculty of Medicine, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Hu Y, Feng Y, Long X, Zheng D, Liu G, Lu Y, Ren Q, Huang Z. Megahertz multi-parametric ophthalmic OCT system for whole eye imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:3000-3017. [PMID: 38855668 PMCID: PMC11161356 DOI: 10.1364/boe.517757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 06/11/2024]
Abstract
An ultrahigh-speed, wide-field OCT system for the imaging of anterior, posterior, and ocular biometers is crucial for obtaining comprehensive ocular parameters and quantifying ocular pathology size. Here, we demonstrate a multi-parametric ophthalmic OCT system with a speed of up to 1 MHz for wide-field imaging of the retina and 50 kHz for anterior chamber and ocular biometric measurement. A spectrum correction algorithm is proposed to ensure the accurate pairing of adjacent A-lines and elevate the A-scan speed from 500 kHz to 1 MHz for retinal imaging. A registration method employing position feedback signals was introduced, reducing pixel offsets between forward and reverse galvanometer scanning by 2.3 times. Experimental validation on glass sheets and the human eye confirms feasibility and efficacy. Meanwhile, we propose a revised formula to determine the "true" fundus size using all-axial length parameters from different fields of view. The efficient algorithms and compact design enhance system compatibility with clinical requirements, showing promise for widespread commercialization.
Collapse
Affiliation(s)
- Yicheng Hu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518071, China
| | - Yutao Feng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- The College of Biochemical Engineering, Beijing Union University, Beijing 100021, China
| | - Xing Long
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Dongye Zheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518071, China
| | - Gangjun Liu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518071, China
| | - Yanye Lu
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Qiushi Ren
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518071, China
| | - Zhiyu Huang
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518071, China
| |
Collapse
|
6
|
Wu R, Huang S, Zhong J, Zheng F, Li M, Ge X, Zhong J, Liu L, Ni G, Liu Y. Unsupervised OCT image despeckling with ground-truth- and repeated-scanning-free features. OPTICS EXPRESS 2024; 32:11934-11951. [PMID: 38571030 DOI: 10.1364/oe.510696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
Optical coherence tomography (OCT) can resolve biological three-dimensional tissue structures, but it is inevitably plagued by speckle noise that degrades image quality and obscures biological structure. Recently unsupervised deep learning methods are becoming more popular in OCT despeckling but they still have to use unpaired noisy-clean images or paired noisy-noisy images. To address the above problem, we propose what we believe to be a novel unsupervised deep learning method for OCT despeckling, termed Double-free Net, which eliminates the need for ground truth data and repeated scanning by sub-sampling noisy images and synthesizing noisier images. In comparison to existing unsupervised methods, Double-free Net obtains superior denoising performance when trained on datasets comprising retinal and human tissue images without clean images. The efficacy of Double-free Net in denoising holds significant promise for diagnostic applications in retinal pathologies and enhances the accuracy of retinal layer segmentation. Results demonstrate that Double-free Net outperforms state-of-the-art methods and exhibits strong convenience and adaptability across different OCT images.
Collapse
|
7
|
Klufts M, Jiménez AM, Lotz S, Bashir MA, Pfeiffer T, Mlynek A, Wieser W, Chamorovskiy A, Bradu A, Podoleanu A, Huber R. 828 kHz retinal imaging with an 840 nm Fourier domain mode locked laser. BIOMEDICAL OPTICS EXPRESS 2023; 14:6493-6508. [PMID: 38420314 PMCID: PMC10898573 DOI: 10.1364/boe.504302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 03/02/2024]
Abstract
This paper presents a Fourier domain mode locked (FDML) laser centered around 840 nm. It features a bidirectional sweep repetition rate of 828 kHz and a spectral bandwidth of 40 nm. An axial resolution of ∼9.9 µm in water and a 1.4 cm sensitivity roll-off are achieved. Utilizing a complex master-slave (CMS) recalibration method and due to a sufficiently high sensitivity of 84.6 dB, retinal layers of the human eye in-vivo can be resolved during optical coherence tomography (OCT) examination. The developed FDML laser enables acquisition rates of 3D-volumes with a size of 200 × 100 × 256 voxels in under 100 milliseconds. Detailed information on the FDML implementation, its challenging design tasks, and OCT images obtained with the laser are presented in this paper.
Collapse
Affiliation(s)
- Marie Klufts
- Institute of Biomedical Optics, University of Lübeck, Lübeck 23562, Germany
| | | | - Simon Lotz
- Institute of Biomedical Optics, University of Lübeck, Lübeck 23562, Germany
| | | | | | | | | | | | - Adrian Bradu
- School of Physical Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom
| | - Adrian Podoleanu
- School of Physical Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom
| | - Robert Huber
- Institute of Biomedical Optics, University of Lübeck, Lübeck 23562, Germany
| |
Collapse
|
8
|
Dolz-Marco R, Muñoz-Solano J, Dechent JF, Gallego-Pinazo R. THE EFFECT OF INCREASING ACQUISITION SPEED ON OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY IMAGES: A Qualitative and Quantitative Analysis. Retina 2023; 43:1653-1661. [PMID: 37721724 DOI: 10.1097/iae.0000000000003867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
PURPOSE To evaluate the effect of two different A-scan rates on qualitative and quantitative parameters on optical coherence tomography angiography images in a clinical setting. METHODS Subjects undergoing a comprehensive ophthalmic examination were scheduled for optical coherence tomography angiography imaging using a new SPECTRALIS device allowing for 85 and 125 kHz scan rate. Consecutive registered 20° × 20° optical coherence tomography angiography images using both speeds were acquired using the follow-up tool. The acquisition time and the quality values of each scan were extracted and analyzed. The image quality was also graded in pairs by two independent graders. RESULTS Two-hundred and one eyes of 128 consecutive patients (67 males, 52.3%) were included. Mean acquisition time significantly decreased from 56.92 ± 24.6 seconds on the 85 kHz images to 39.39 ± 15.5 seconds on the 125 kHz images (P < 0.001). The percentage change in acquisition time showed a mean decrease of 28.47%. Mean Q value significantly decreased from 32.97 ± 2.8 dB on the 85 kHz images to 31.43 ± 2.6 dB on the 125 kHz images (P < 0.001). Overall, 92.5% of images were graded as equal or better at 125 kHz A-scan rate. CONCLUSION The use of optical coherence tomography angiography in daily clinical practice may require higher A-scan rates for an optimal workflow. Increased speed may also reduce image sensitivity and thus image quality could be compromised. In this study, 125 kHz scan rate using SPECTRALIS showed significant benefit with reduction on the acquisition time and no clinically significant differences on image quality analysis. Further studies evaluating qualitative and quantitative data in specific retinal conditions and using other devices are required to confirm these results.
Collapse
Affiliation(s)
| | - Javier Muñoz-Solano
- Department of Ophthalmology, Galdakao-Usansolo University Hospital, Galdakao, Spain; and
| | | | | |
Collapse
|
9
|
Zhu L, Makita S, Tamaoki J, Lichtenegger A, Lim Y, Zhu Y, Kobayashi M, Yasuno Y. Multi-focus averaging for multiple scattering suppression in optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:4828-4844. [PMID: 37791259 PMCID: PMC10545188 DOI: 10.1364/boe.493706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 10/05/2023]
Abstract
Multiple scattering is one of the main factors that limits the penetration depth of optical coherence tomography (OCT) in scattering samples. We propose a method termed multi-focus averaging (MFA) to suppress the multiple-scattering signals and improve the image contrast of OCT in deep regions. The MFA method captures multiple OCT volumes with various focal positions and averages them in complex form after correcting the varying defocus through computational refocusing. Because the multiple-scattering takes different trajectories among the different focal position configurations, this averaging suppresses the multiple-scattering signal. Meanwhile, the single-scattering takes a consistent trajectory regardless of the focal position configuration and is not suppressed. Hence, the MFA method improves the ratio between the single-scattering signal and multiple-scattering signal, resulting in an enhancement in the image contrast. A scattering phantom and a postmortem zebrafish were measured to validate the proposed method. The results showed that the contrast of intensity images of both the phantom and zebrafish were improved using the MFA method, such that they were better than the contrast provided by the standard single focus averaging method. The MFA method provides a cost-effective solution for contrast enhancement through multiple-scattering reduction in tissue imaging using OCT systems.
Collapse
Affiliation(s)
- Lida Zhu
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Junya Tamaoki
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Japan
| | - Antonia Lichtenegger
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Yiheng Lim
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yiqiang Zhu
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Pan M, Wang Y, Gong P, Wang Q, Cense B. Feasibility of deep learning-based polarization-sensitive optical coherence tomography angiography for imaging cutaneous microvasculature. BIOMEDICAL OPTICS EXPRESS 2023; 14:3856-3870. [PMID: 37799704 PMCID: PMC10549757 DOI: 10.1364/boe.488822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 10/07/2023]
Abstract
Polarization-sensitive optical coherence tomography (PS-OCT) measures the polarization states of the backscattered light from tissue that can improve angiography based on conventional optical coherence tomography (OCT). We present a feasibility study on PS-OCT integrated with deep learning for PS-OCT angiography (PS-OCTA) imaging of human cutaneous microvasculature. Two neural networks were assessed for PS-OCTA, including the residual dense network (RDN), which previously showed superior performance for angiography with conventional OCT and the upgraded grouped RDN (GRDN). We also investigated different protocols to process the multiple signal channels provided by the Jones matrices from the PS-OCT system to achieve optimal PS-OCTA performance. The training and testing of the deep learning-based PS-OCTA were performed using PS-OCT scans collected from 18 skin locations comprising 16,600 B-scan pairs. The results demonstrated a moderately improved performance of GRDN over RDN, and of the use of the combined signal from the Jones matrix elements over the separate use of the elements, as well as a similar image quality to that provided by speckle decorrelation angiography. GRDN-based PS-OCTA also showed ∼2-3 times faster processing and improved mitigation of tissue motion as compared to speckle decorrelation angiography, and enabled fully automatic processing. Deep learning-based PS-OCTA can be used for imaging cutaneous microvasculature, which may enable easy adoption of PS-OCTA for preclinical and clinical applications.
Collapse
Affiliation(s)
- Moning Pan
- Key Laboratory for Biomedical Engineering of Ministry of Education, Embedded System Engineering Research Center of Ministry of Education and Zhejiang Provincial Key Laboratory for Network Multimedia Technologies, Zhejiang University, Hangzhou, 310027, China
| | - Yuxing Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Embedded System Engineering Research Center of Ministry of Education and Zhejiang Provincial Key Laboratory for Network Multimedia Technologies, Zhejiang University, Hangzhou, 310027, China
| | - Peijun Gong
- Key Laboratory for Biomedical Engineering of Ministry of Education, Embedded System Engineering Research Center of Ministry of Education and Zhejiang Provincial Key Laboratory for Network Multimedia Technologies, Zhejiang University, Hangzhou, 310027, China
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research,
The University of Western Australia, Perth, WA 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Qiang Wang
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Barry Cense
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
11
|
Wu R, Huang S, Zhong J, Li M, Zheng F, Bo E, Liu L, Liu Y, Ge X, Ni G. MAS-Net OCT: a deep-learning-based speckle-free multiple aperture synthetic optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:2591-2607. [PMID: 37342716 PMCID: PMC10278634 DOI: 10.1364/boe.483740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/26/2023] [Accepted: 04/28/2023] [Indexed: 06/23/2023]
Abstract
High-resolution spectral domain optical coherence tomography (SD-OCT) is a vital clinical technique that suffers from the inherent compromise between transverse resolution and depth of focus (DOF). Meanwhile, speckle noise worsens OCT imaging resolving power and restricts potential resolution-enhancement techniques. Multiple aperture synthetic (MAS) OCT transmits light signals and records sample echoes along a synthetic aperture to extend DOF, acquired by time-encoding or optical path length encoding. In this work, a deep-learning-based multiple aperture synthetic OCT termed MAS-Net OCT, which integrated a speckle-free model based on self-supervised learning, was proposed. MAS-Net was trained on datasets generated by the MAS OCT system. Here we performed experiments on homemade microparticle samples and various biological tissues. Results demonstrated that the proposed MAS-Net OCT could effectively improve the transverse resolution in a large imaging depth as well as reduced most speckle noise.
Collapse
Affiliation(s)
- Renxiong Wu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shaoyan Huang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Junming Zhong
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Meixuan Li
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Fei Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - En Bo
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Linbo Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yong Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xin Ge
- School of Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen 510275, China
| | - Guangming Ni
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
12
|
Niederleithner M, de Sisternes L, Stino H, Sedova A, Schlegl T, Bagherinia H, Britten A, Matten P, Schmidt-Erfurth U, Pollreisz A, Drexler W, Leitgeb RA, Schmoll T. Ultra-Widefield OCT Angiography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:1009-1020. [PMID: 36383595 DOI: 10.1109/tmi.2022.3222638] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Optical Coherence Tomography Angiography (OCTA), a functional extension of OCT, has the potential to replace most invasive fluorescein angiography (FA) exams in ophthalmology. So far, OCTA's field of view is however still lacking behind fluorescence fundus photography techniques. This is problematic, because many retinal diseases manifest at an early stage by changes of the peripheral retinal capillary network. It is therefore desirable to expand OCTA's field of view to match that of ultra-widefield fundus cameras. We present a custom developed clinical high-speed swept-source OCT (SS-OCT) system operating at an acquisition rate 8-16 times faster than today's state-of-the-art commercially available OCTA devices. Its speed allows us to capture ultra-wide fields of view of up to 90 degrees with an unprecedented sampling density and hence extraordinary resolution by merging two single shot scans with 60 degrees in diameter. To further enhance the visual appearance of the angiograms, we developed for the first time a three-dimensional deep learning based algorithm for denoising volumetric OCTA data sets. We showcase its imaging performance and clinical usability by presenting images of patients suffering from diabetic retinopathy.
Collapse
|
13
|
Lee B, Jeong S, Lee J, Kim TS, Braaf B, Vakoc BJ, Oh WY. Wide-Field Three-Dimensional Depth-Invariant Cellular-Resolution Imaging of the Human Retina. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2203357. [PMID: 36642824 PMCID: PMC10023497 DOI: 10.1002/smll.202203357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Three-dimensional (3D) cellular-resolution imaging of the living human retina over a large field of view will bring a great impact in clinical ophthalmology, potentially finding new biomarkers for early diagnosis and improving the pathophysiological understanding of ocular diseases. While hardware-based and computational adaptive optics (AO) optical coherence tomography (OCT) have been developed to achieve cellular-resolution retinal imaging, these approaches support limited 3D imaging fields, and their high cost and intrinsic hardware complexity limit their practical utility. Here, this work demonstrates 3D depth-invariant cellular-resolution imaging of the living human retina over a 3 × 3 mm field of view using the first intrinsically phase-stable multi-MHz retinal swept-source OCT and novel computational defocus and aberration correction methods. Single-acquisition imaging of photoreceptor cells, retinal nerve fiber layer, and retinal capillaries is presented across unprecedented imaging fields. By providing wide-field 3D cellular-resolution imaging in the human retina using a standard point-scan architecture routinely used in the clinic, this platform proposes a strategy for expanded utilization of high-resolution retinal imaging in both research and clinical settings.
Collapse
Affiliation(s)
- ByungKun Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sunhong Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Joosung Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Tae Shik Kim
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston 02140, USA
| | - Boy Braaf
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston 02140, USA
| | - Benjamin J. Vakoc
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston 02140, USA
| | - Wang-Yuhl Oh
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
14
|
Lichtenegger A, Baumann B, Yasuno Y. Optical Coherence Tomography Is a Promising Tool for Zebrafish-Based Research-A Review. Bioengineering (Basel) 2022; 10:5. [PMID: 36671577 PMCID: PMC9854701 DOI: 10.3390/bioengineering10010005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
The zebrafish is an established vertebrae model in the field of biomedical research. With its small size, rapid maturation time and semi-transparency at early development stages, it has proven to be an important animal model, especially for high-throughput studies. Three-dimensional, high-resolution, non-destructive and label-free imaging techniques are perfectly suited to investigate these animals over various development stages. Optical coherence tomography (OCT) is an interferometric-based optical imaging technique that has revolutionized the diagnostic possibilities in the field of ophthalmology and has proven to be a powerful tool for many microscopic applications. Recently, OCT found its way into state-of-the-art zebrafish-based research. This review article gives an overview and a discussion of the relevant literature and an outlook for this emerging field.
Collapse
Affiliation(s)
- Antonia Lichtenegger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
- Computational Optics Group, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba 305-8573, Japan
| |
Collapse
|
15
|
Koutsiaris AG, Batis V, Liakopoulou G, Tachmitzi SV, Detorakis ET, Tsironi EE. Optical Coherence Tomography Angiography (OCTA) of the eye: A review on basic principles, advantages, disadvantages and device specifications. Clin Hemorheol Microcirc 2022; 83:247-271. [PMID: 36502308 DOI: 10.3233/ch-221634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Optical Coherence Tomography Angiography (OCTA) is a relatively new imaging technique in ophthalmology for the visualization of the retinal microcirculation and other tissues of the human eye. This review paper aims to describe the basic definitions and principles of OCT and OCTA in the most straightforward possible language without complex mathematical and engineering analysis. This is done to help health professionals of various disciplines improve their understanding of OCTA and design further clinical research more efficiently. First, the basic technical principles of OCT and OCTA and related terminology are described. Then, a list of OCTA advantages and disadvantages, with a special reference to blood flow quantification limitations. Finally, an updated list of the basic hardware and software specifications of some of the commercially available OCTA devices is presented.
Collapse
Affiliation(s)
- Aristotle G. Koutsiaris
- Medical Informatics Laboratory, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece
| | - Vasilios Batis
- Jules Gonin Eye Hospital Lausanne, Switzerland
- Department of Ophthalmology, University Hospital of Heraklion, Crete, Greece
| | - Georgia Liakopoulou
- Medical Informatics Laboratory, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece
| | | | | | - Evangelia E. Tsironi
- Department of Ophthalmology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
16
|
Liu Z, Zhang F, Zucca K, Agrawal A, Hammer DX. Ultrahigh-speed multimodal adaptive optics system for microscopic structural and functional imaging of the human retina. BIOMEDICAL OPTICS EXPRESS 2022; 13:5860-5878. [PMID: 36733751 PMCID: PMC9872887 DOI: 10.1364/boe.462594] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 05/02/2023]
Abstract
We describe the design and performance of a multimodal and multifunctional adaptive optics (AO) system that combines scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) for simultaneous retinal imaging at 13.4 Hz. The high-speed AO-OCT channel uses a 3.4 MHz Fourier-domain mode-locked (FDML) swept source. The system achieves exquisite resolution and sensitivity for pan-macular and transretinal visualization of retinal cells and structures while providing a functional assessment of the cone photoreceptors. The ultra-high speed also enables wide-field scans for clinical usability and angiography for vascular visualization. The FDA FDML-AO system is a powerful platform for studying various retinal and neurological diseases for vision science research, retina physiology investigation, and biomarker development.
Collapse
Affiliation(s)
- Zhuolin Liu
- Center for Devices and Radiological Health
(CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Furu Zhang
- Center for Devices and Radiological Health
(CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
- Co-first author
| | - Kelvy Zucca
- Center for Devices and Radiological Health
(CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Anant Agrawal
- Center for Devices and Radiological Health
(CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Daniel X. Hammer
- Center for Devices and Radiological Health
(CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| |
Collapse
|
17
|
Makita S, Azuma S, Mino T, Yamaguchi T, Miura M, Yasuno Y. Extending field-of-view of retinal imaging by optical coherence tomography using convolutional Lissajous and slow scan patterns. BIOMEDICAL OPTICS EXPRESS 2022; 13:5212-5230. [PMID: 36425618 PMCID: PMC9664899 DOI: 10.1364/boe.467563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Optical coherence tomography (OCT) is a high-speed non-invasive cross-sectional imaging technique. Although its imaging speed is high, three-dimensional high-spatial-sampling-density imaging of in vivo tissues with a wide field-of-view (FOV) is challenging. We employed convolved Lissajous and slow circular scanning patterns to extend the FOV of retinal OCT imaging with a 1-µm, 100-kHz-sweep-rate swept-source OCT prototype system. Displacements of sampling points due to eye movements are corrected by post-processing based on a Lissajous scan. Wide FOV three-dimensional retinal imaging with high sampling density and motion correction is achieved. Three-dimensional structures obtained using repeated imaging sessions of a healthy volunteer and two patients showed good agreement. The demonstrated technique will extend the FOV of simple point-scanning OCT, such as commercial ophthalmic OCT devices, without sacrificing sampling density.
Collapse
Affiliation(s)
- Shuichi Makita
- Computational Optics Group,
University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8573, Japan
| | - Shinnosuke Azuma
- Topcon Corporation, 75–1 Hasunumacho, Itabashi, Tokyo 174–8580, Japan
| | - Toshihiro Mino
- Topcon Corporation, 75–1 Hasunumacho, Itabashi, Tokyo 174–8580, Japan
| | - Tatsuo Yamaguchi
- Topcon Corporation, 75–1 Hasunumacho, Itabashi, Tokyo 174–8580, Japan
| | - Masahiro Miura
- Department of Ophthalmology, Tokyo Medical University Ibaraki Medical Center, 3–20–1 Chuo, Ami, Ibaraki 300–0395, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group,
University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8573, Japan
| |
Collapse
|
18
|
Ripa M, Motta L, Florit T, Sahyoun JY, Matello V, Parolini B. The Role of Widefield and Ultra Widefield Optical Coherence Tomography in the Diagnosis and Management of Vitreoretinal Diseases. Diagnostics (Basel) 2022; 12:diagnostics12092247. [PMID: 36140648 PMCID: PMC9497586 DOI: 10.3390/diagnostics12092247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background: This study reports on the advantages of wide-field (WF)- and ultra-widefield (UWF)- optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) in managing different vitreoretinal diseases in a real-life setting using the new WF—Swept Source (SS)—OCT Xephilio S1 (Canon, Tokyo, Japan). Methods: We conducted an observational retrospective case series study involving 1472 eyes that underwent retinal scans with Canon Xephilio® OCT-S1 between 1 March 2021 and 1 December 2021 at Eyecare Clinic (Brescia, Italy). All patients underwent routine ophthalmologic examinations along with WF and UWF color fundus retinography with Clarus 500™ (Carl Zeiss Meditec, Inc., Dublin, CA, USA) and Xephilio® OCT-S1. WF SS-OCT, UWF-OCT, WF-OCTA, and UWF-OCTA were taken by using Xephilio® OCT-S1. Results: We analyzed 122 peripheral retinal lesions, 144 retinal detachment, 329 high myopic eyes, 37 pediatric cases, 60 vascular retinopathies, 15 choroidal lesions, and 90 eyes as follow-up post vitreoretinal surgery. The OCT-S1 was the only reliable and diagnostic exam for peripheral lesions, pediatric and high myopic cases, and significantly influenced the management in 10% of cases and the postoperative follow-up. Conclusions: WF and UWF OCT and OCTA imaging may help in the management of several vitreoretinal diseases, becoming an indispensable tool for the high-quality management of patients.
Collapse
Affiliation(s)
- Matteo Ripa
- Ophthalmology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Ophthalmology Unit, Catholic University “Sacro Cuore”, 00168 Rome, Italy
| | - Lorenzo Motta
- Department of Ophthalmology, William Harvey Hospital, East Kent Hospitals University NHS Foundation Trust, Ashford TN24 0LZ, UK
- Correspondence:
| | - Teresa Florit
- Department of Ophthalmology, Eyecare Clinic, 25124 Brescia, Italy
| | - Jean-Yves Sahyoun
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Department of Ophthalmology, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC H2X 3E4, Canada
| | - Veronika Matello
- Department of Ophthalmology, Eyecare Clinic, 25124 Brescia, Italy
| | - Barbara Parolini
- Department of Ophthalmology, Eyecare Clinic, 25124 Brescia, Italy
| |
Collapse
|
19
|
Wang L, Chen Z, Zhu Z, Yu X, Mo J. Compressive-sensing swept-source optical coherence tomography angiography with reduced noise. JOURNAL OF BIOPHOTONICS 2022; 15:e202200087. [PMID: 35488181 DOI: 10.1002/jbio.202200087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Optical coherence tomography angiography (OCTA), as a functional extension of optical coherence tomography (OCT), has exhibited a great potential to aid in clinical diagnostics. Currently, OCTA still suffers from motion artifact and noise. Therefore, in this article, we propose to implement compressive sensing (CS) on B-scans to reduce motion artifact by increasing B-scan rate. Meanwhile, a noise reduction filter is specially designed by combining CS, Gaussian filter and median filter. Specially, CS filtering is realized by averaging multiple CS repetitions on en-face OCTA images with varied sampling functions. The method is evaluated on in vivo OCTA images of human skin. The results show that vasculature structures can be reconstructed well through CS on B-scans with a sampling rate of 70%. Moreover, the noise can be significantly eliminated by the developed filter. This implies that our method has a good potential to expedite OCTA imaging and improve the image quality.
Collapse
Affiliation(s)
- Lingyun Wang
- School of Electronics and Information Engineering, Soochow University, Suzhou, China
| | - Ziye Chen
- School of Electronics and Information Engineering, Soochow University, Suzhou, China
| | - Zhanyu Zhu
- School of Electronics and Information Engineering, Soochow University, Suzhou, China
| | - Xiaojun Yu
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Jianhua Mo
- School of Electronics and Information Engineering, Soochow University, Suzhou, China
| |
Collapse
|
20
|
Alexopoulos P, Madu C, Wollstein G, Schuman JS. The Development and Clinical Application of Innovative Optical Ophthalmic Imaging Techniques. Front Med (Lausanne) 2022; 9:891369. [PMID: 35847772 PMCID: PMC9279625 DOI: 10.3389/fmed.2022.891369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
The field of ophthalmic imaging has grown substantially over the last years. Massive improvements in image processing and computer hardware have allowed the emergence of multiple imaging techniques of the eye that can transform patient care. The purpose of this review is to describe the most recent advances in eye imaging and explain how new technologies and imaging methods can be utilized in a clinical setting. The introduction of optical coherence tomography (OCT) was a revolution in eye imaging and has since become the standard of care for a plethora of conditions. Its most recent iterations, OCT angiography, and visible light OCT, as well as imaging modalities, such as fluorescent lifetime imaging ophthalmoscopy, would allow a more thorough evaluation of patients and provide additional information on disease processes. Toward that goal, the application of adaptive optics (AO) and full-field scanning to a variety of eye imaging techniques has further allowed the histologic study of single cells in the retina and anterior segment. Toward the goal of remote eye care and more accessible eye imaging, methods such as handheld OCT devices and imaging through smartphones, have emerged. Finally, incorporating artificial intelligence (AI) in eye images has the potential to become a new milestone for eye imaging while also contributing in social aspects of eye care.
Collapse
Affiliation(s)
- Palaiologos Alexopoulos
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Chisom Madu
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Gadi Wollstein
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
- Center for Neural Science, College of Arts & Science, New York University, New York, NY, United States
| | - Joel S. Schuman
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
- Center for Neural Science, College of Arts & Science, New York University, New York, NY, United States
- Department of Electrical and Computer Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
| |
Collapse
|
21
|
Ni G, Wu R, Zhong J, Chen Y, Wan L, Xie Y, Mei J, Liu Y. Hybrid-structure network and network comparative study for deep-learning-based speckle-modulating optical coherence tomography. OPTICS EXPRESS 2022; 30:18919-18938. [PMID: 36221682 DOI: 10.1364/oe.454504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/26/2022] [Indexed: 06/16/2023]
Abstract
Optical coherence tomography (OCT), a promising noninvasive bioimaging technique, can resolve sample three-dimensional microstructures. However, speckle noise imposes obvious limitations on OCT resolving capabilities. Here we proposed a deep-learning-based speckle-modulating OCT based on a hybrid-structure network, residual-dense-block U-Net generative adversarial network (RDBU-Net GAN), and further conducted a comprehensively comparative study to explore multi-type deep-learning architectures' abilities to extract speckle pattern characteristics and remove speckle, and resolve microstructures. This is the first time that network comparative study has been performed on a customized dataset containing mass more-general speckle patterns obtained from a custom-built speckle-modulating OCT, but not on retinal OCT datasets with limited speckle patterns. Results demonstrated that the proposed RDBU-Net GAN has a more excellent ability to extract speckle pattern characteristics and remove speckle, and resolve microstructures. This work will be useful for future studies on OCT speckle removing and deep-learning-based speckle-modulating OCT.
Collapse
|
22
|
Huang D, Shi Y, Li F, Wai PKA. Fourier Domain Mode Locked Laser and Its Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:3145. [PMID: 35590839 PMCID: PMC9105910 DOI: 10.3390/s22093145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
The sweep rate of conventional short-cavity lasers with an intracavity-swept filter is limited by the buildup time of laser signals from spontaneous emissions. The Fourier domain mode-locked (FDML) laser was proposed to overcome the limitations of buildup time by inserting a long fiber delay in the cavity to store the whole swept signal and has attracted much interest in both theoretical and experimental studies. In this review, the theoretical models to understand the dynamics of the FDML laser and the experimental techniques to realize high speed, wide sweep range, long coherence length, high output power and highly stable swept signals in FDML lasers will be discussed. We will then discuss the applications of FDML lasers in optical coherence tomography (OCT), fiber sensing, precision measurement, microwave generation and nonlinear microscopy.
Collapse
Affiliation(s)
- Dongmei Huang
- Photonics Research Institute, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (D.H.); (Y.S.)
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China;
| | - Yihuan Shi
- Photonics Research Institute, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (D.H.); (Y.S.)
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China;
| | - Feng Li
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China;
- Photonics Research Institute, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - P. K. A. Wai
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China;
- Photonics Research Institute, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Physics, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
23
|
Tang EM, El-Haddad MT, Patel SN, Tao YK. Automated instrument-tracking for 4D video-rate imaging of ophthalmic surgical maneuvers. BIOMEDICAL OPTICS EXPRESS 2022; 13:1471-1484. [PMID: 35414968 PMCID: PMC8973184 DOI: 10.1364/boe.450814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 05/11/2023]
Abstract
Intraoperative image-guidance provides enhanced feedback that facilitates surgical decision-making in a wide variety of medical fields and is especially useful when haptic feedback is limited. In these cases, automated instrument-tracking and localization are essential to guide surgical maneuvers and prevent damage to underlying tissue. However, instrument-tracking is challenging and often confounded by variations in the surgical environment, resulting in a trade-off between accuracy and speed. Ophthalmic microsurgery presents additional challenges due to the nonrigid relationship between instrument motion and instrument deformation inside the eye, image field distortion, image artifacts, and bulk motion due to patient movement and physiological tremor. We present an automated instrument-tracking method by leveraging multimodal imaging and deep-learning to dynamically detect surgical instrument positions and re-center imaging fields for 4D video-rate visualization of ophthalmic surgical maneuvers. We are able to achieve resolution-limited tracking accuracy at varying instrument orientations as well as at extreme instrument speeds and image defocus beyond typical use cases. As proof-of-concept, we perform automated instrument-tracking and 4D imaging of a mock surgical task. Here, we apply our methods for specific applications in ophthalmic microsurgery, but the proposed technologies are broadly applicable for intraoperative image-guidance with high speed and accuracy.
Collapse
Affiliation(s)
- Eric M. Tang
- Vanderbilt University, Department of Biomedical Engineering, Nashville, TN 37232, USA
| | - Mohamed T. El-Haddad
- Vanderbilt University, Department of Biomedical Engineering, Nashville, TN 37232, USA
| | - Shriji N. Patel
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yuankai K. Tao
- Vanderbilt University, Department of Biomedical Engineering, Nashville, TN 37232, USA
| |
Collapse
|
24
|
Mazlin V, Xiao P, Irsch K, Scholler J, Groux K, Grieve K, Fink M, Boccara AC. Optical phase modulation by natural eye movements: application to time-domain FF-OCT image retrieval. BIOMEDICAL OPTICS EXPRESS 2022; 13:902-920. [PMID: 35284184 PMCID: PMC8884228 DOI: 10.1364/boe.445393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 05/24/2023]
Abstract
Eye movements are commonly seen as an obstacle to high-resolution ophthalmic imaging. In this context we study the natural axial movements of the in vivo human eye and show that they can be used to modulate the optical phase and retrieve tomographic images via time-domain full-field optical coherence tomography (TD-FF-OCT). This approach opens a path to a simplified ophthalmic TD-FF-OCT device, operating without the usual piezo motor-camera synchronization. The device demonstrates in vivo human corneal images under the different image retrieval schemes (2-phase and 4-phase) and different exposure times (3.5 ms, 10 ms, 20 ms). Data on eye movements, acquired with a spectral-domain OCT with axial eye tracking (180 B-scans/s), are used to study the influence of ocular motion on the probability of capturing high-signal tomographic images without phase washout. The optimal combinations of camera acquisition speed and amplitude of piezo modulation are proposed and discussed.
Collapse
Affiliation(s)
- Viacheslav Mazlin
- ESPCI Paris, PSL University, CNRS, Langevin Institute, 1 Rue Jussieu, 75005 Paris, France
| | - Peng Xiao
- ESPCI Paris, PSL University, CNRS, Langevin Institute, 1 Rue Jussieu, 75005 Paris, France
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Kristina Irsch
- Vision Institute, Sorbonne University, CNRS, INSERM, 17 Rue Moreau, 75012 Paris, France
- Quinze-Vingts National Ophthalmology Hospital, 28 Rue de Charenton, 75012 Paris, France
| | - Jules Scholler
- ESPCI Paris, PSL University, CNRS, Langevin Institute, 1 Rue Jussieu, 75005 Paris, France
- Wyss Center for Bio and Neuroengineering, Chem. des Mines 9, 1202 Geneva, Switzerland
| | - Kassandra Groux
- ESPCI Paris, PSL University, CNRS, Langevin Institute, 1 Rue Jussieu, 75005 Paris, France
| | - Kate Grieve
- Vision Institute, Sorbonne University, CNRS, INSERM, 17 Rue Moreau, 75012 Paris, France
- Quinze-Vingts National Ophthalmology Hospital, 28 Rue de Charenton, 75012 Paris, France
| | - Mathias Fink
- ESPCI Paris, PSL University, CNRS, Langevin Institute, 1 Rue Jussieu, 75005 Paris, France
| | - A. Claude Boccara
- ESPCI Paris, PSL University, CNRS, Langevin Institute, 1 Rue Jussieu, 75005 Paris, France
| |
Collapse
|
25
|
Kim G, Kim J, Choi WJ, Kim C, Lee S. Integrated deep learning framework for accelerated optical coherence tomography angiography. Sci Rep 2022; 12:1289. [PMID: 35079046 PMCID: PMC8789830 DOI: 10.1038/s41598-022-05281-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/10/2022] [Indexed: 11/26/2022] Open
Abstract
Label-free optical coherence tomography angiography (OCTA) has become a premium imaging tool in clinics to obtain structural and functional information of microvasculatures. One primary technical drawback for OCTA, however, is its imaging speed. The current protocols require high sampling density and multiple acquisitions of cross-sectional B-scans to form one image frame, resulting in low acquisition speed. Recently, deep learning (DL)-based methods have gained attention in accelerating the OCTA acquisition process. They achieve faster acquisition using two independent reconstructing approaches: high-quality angiograms from a few repeated B-scans and high-resolution angiograms from undersampled data. While these approaches have shown promising results, they provide limited solutions that only partially account for the OCTA scanning mechanism. Herein, we propose an integrated DL method to simultaneously tackle both factors and further enhance the reconstruction performance in speed and quality. We designed an end-to-end deep neural network (DNN) framework with a two-staged adversarial training scheme to reconstruct fully-sampled, high-quality (8 repeated B-scans) angiograms from their corresponding undersampled, low-quality (2 repeated B-scans) counterparts by successively enhancing the pixel resolution and the image quality. Using an in-vivo mouse brain vasculature dataset, we evaluate our proposed framework through quantitative and qualitative assessments and demonstrate that our method can achieve superior reconstruction performance compared to the conventional means. Our DL-based framework can accelerate the OCTA imaging speed from 16 to 256[Formula: see text] while preserving the image quality, thus enabling a convenient software-only solution to enhance preclinical and clinical studies.
Collapse
Affiliation(s)
- Gyuwon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jongbeom Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Departments of Electrical Engineering and Convergence I.T. Engineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Woo June Choi
- School of Electrical and Electronics Engineering, College of ICT Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Chulhong Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Departments of Electrical Engineering and Convergence I.T. Engineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Seungchul Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
26
|
Wu M, Liu S, Leartprapun N, Adie S. Investigation of multiple scattering in space and spatial-frequency domains: with application to the analysis of aberration-diverse optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:7478-7499. [PMID: 35003847 PMCID: PMC8713691 DOI: 10.1364/boe.439395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 05/12/2023]
Abstract
Optical microscopy suffers from multiple scattering (MS), which limits the optical imaging depth into scattering media. We previously demonstrated aberration-diverse optical coherence tomography (AD-OCT) for MS suppression, based on the principle that for datasets acquired with different aberration states of the imaging beam, MS backgrounds become decorrelated while single scattering (SS) signals remain correlated, so that a simple coherent average can be used to enhance the SS signal over the MS background. Here, we propose a space/spatial-frequency domain analysis framework for the investigation of MS in OCT, and apply the framework to compare AD-OCT (using astigmatic beams) to standard Gaussian-beam OCT via experiments in scattering tissue phantoms. Utilizing this framework, we found that increasing the astigmatic magnitude produced a large drop in both MS background and SS signal, but the decay experienced by the MS background was larger than the SS signal. Accounting for the decay in both SS signal and MS background, the overall signal-to-background ratio (SBR) of AD-OCT was similar to the Gaussian control after about 10 coherent averages, when deeper line foci was positioned at the plane-of-interest and the line foci spacing was smaller than or equal to 80 µm. For an even larger line foci spacing of 160 µm, AD-OCT resulted in a lower SBR than the Gaussian-beam control. This work provides an analysis framework to gain deeper levels of understanding and insights for the future study of MS and MS suppression in both the space and spatial-frequency domains.
Collapse
Affiliation(s)
- Meiqi Wu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Siyang Liu
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Nichaluk Leartprapun
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Steven Adie
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
27
|
Leitgeb R, Placzek F, Rank E, Krainz L, Haindl R, Li Q, Liu M, Andreana M, Unterhuber A, Schmoll T, Drexler W. Enhanced medical diagnosis for dOCTors: a perspective of optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210150-PER. [PMID: 34672145 PMCID: PMC8528212 DOI: 10.1117/1.jbo.26.10.100601] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/23/2021] [Indexed: 05/17/2023]
Abstract
SIGNIFICANCE After three decades, more than 75,000 publications, tens of companies being involved in its commercialization, and a global market perspective of about USD 1.5 billion in 2023, optical coherence tomography (OCT) has become one of the fastest successfully translated imaging techniques with substantial clinical and economic impacts and acceptance. AIM Our perspective focuses on disruptive forward-looking innovations and key technologies to further boost OCT performance and therefore enable significantly enhanced medical diagnosis. APPROACH A comprehensive review of state-of-the-art accomplishments in OCT has been performed. RESULTS The most disruptive future OCT innovations include imaging resolution and speed (single-beam raster scanning versus parallelization) improvement, new implementations for dual modality or even multimodality systems, and using endogenous or exogenous contrast in these hybrid OCT systems targeting molecular and metabolic imaging. Aside from OCT angiography, no other functional or contrast enhancing OCT extension has accomplished comparable clinical and commercial impacts. Some more recently developed extensions, e.g., optical coherence elastography, dynamic contrast OCT, optoretinography, and artificial intelligence enhanced OCT are also considered with high potential for the future. In addition, OCT miniaturization for portable, compact, handheld, and/or cost-effective capsule-based OCT applications, home-OCT, and self-OCT systems based on micro-optic assemblies or photonic integrated circuits will revolutionize new applications and availability in the near future. Finally, clinical translation of OCT including medical device regulatory challenges will continue to be absolutely essential. CONCLUSIONS With its exquisite non-invasive, micrometer resolution depth sectioning capability, OCT has especially revolutionized ophthalmic diagnosis and hence is the fastest adopted imaging technology in the history of ophthalmology. Nonetheless, OCT has not been completely exploited and has substantial growth potential-in academics as well as in industry. This applies not only to the ophthalmic application field, but also especially to the original motivation of OCT to enable optical biopsy, i.e., the in situ imaging of tissue microstructure with a resolution approaching that of histology but without the need for tissue excision.
Collapse
Affiliation(s)
- Rainer Leitgeb
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Medical University of Vienna, Christian Doppler Laboratory OPTRAMED, Vienna, Austria
| | - Fabian Placzek
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Elisabet Rank
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Lisa Krainz
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Richard Haindl
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Qian Li
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Mengyang Liu
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Marco Andreana
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Angelika Unterhuber
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Tilman Schmoll
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Carl Zeiss Meditec, Inc., Dublin, California, United States
| | - Wolfgang Drexler
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Address all correspondence to Wolfgang Drexler,
| |
Collapse
|
28
|
Tan B, McNabb RP, Zheng F, Sim YC, Yao X, Chua J, Ang M, Hoang QV, Kuo AN, Schmetterer L. Ultrawide field, distortion-corrected ocular shape estimation with MHz optical coherence tomography (OCT). BIOMEDICAL OPTICS EXPRESS 2021; 12:5770-5781. [PMID: 34692214 PMCID: PMC8515957 DOI: 10.1364/boe.428430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 05/06/2023]
Abstract
Ocular deformation may be associated with biomechanical alterations in the structures of the eye, especially the cornea and sclera in conditions such as keratoconus, congenital glaucoma, and pathological myopia. Here, we propose a method to estimate ocular shape using an ultra-wide field MHz swept-source optical coherence tomography (SS-OCT) with a Fourier Domain Mode-Locked (FDML) laser and distortion correction of the images. The ocular biometrics for distortion correction was collected by an IOLMaster 700, and localized Gaussian curvature was proposed to quantify the ocular curvature covering a field-of-view up to 65°×62°. We achieved repeatable curvature shape measurements (intraclass coefficient = 0.88 ± 0.06) and demonstrated its applicability in a pilot study with individuals (N = 11) with various degrees of myopia.
Collapse
Affiliation(s)
- Bingyao Tan
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- Authors contributed equally to the study
| | - Ryan P McNabb
- Duke University Medical Center, Durham, NC 27607, USA
- Authors contributed equally to the study
| | - Feihui Zheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Yin Ci Sim
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Xinwen Yao
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jacqueline Chua
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Duke-NUS Medical School, Singapore
| | - Marcus Ang
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Duke-NUS Medical School, Singapore
| | - Quan V Hoang
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Duke-NUS Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia College of Physicians and Surgeons, New York, NY 10032, USA
| | - Anthony N Kuo
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke University Medical Center, Durham, NC 27607, USA
| | - Leopold Schmetterer
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- Department of Ophthalmology, Duke-NUS Medical School, Singapore
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| |
Collapse
|
29
|
Joo J, Kim TS, Vakoc BJ, Oh WY. Robust and easy-to-operate stretched-pulse mode-locked wavelength-swept laser with an all-polarization-maintaining fiber cavity for 10 MHz A-line rate optical coherence tomography. OPTICS LETTERS 2021; 46:3857-3860. [PMID: 34388759 PMCID: PMC8455078 DOI: 10.1364/ol.424835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/01/2021] [Indexed: 05/18/2023]
Abstract
We demonstrate robust and easy-to-operate stretched-pulse mode-locked laser (SPML) architectures using all-polarization-maintaining fiber laser cavities. Because of the polarization-maintaining construction, the laser performance is unaffected by mechanical perturbation on the cavity fibers. The lasers automatically initiate linear-in-wavenumber sweeps across 100 nm centered at 1290 nm with a 10 MHz repetition rate. OCT imaging with a sensitivity of 98 dB and a single-sided 6 dB coherence length of 2.5 mm is demonstrated. OCT angiography of a mouse brain that visualized three-dimensional cerebral microvasculature over a field of 1.5mm×1.5mm (398 A-lines × 380 B-scans) at a rate of 5.26 volumes per second is also presented. The robust all-PMF SPML lasers are a turnkey, high-performance source for ultrahigh-speed OCT imaging.
Collapse
Affiliation(s)
- JongYoon Joo
- Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KI for Health Science and Technology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Tae Shik Kim
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Benjamin J. Vakoc
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Wang-Yuhl Oh
- Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KI for Health Science and Technology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
30
|
Miao Y, Siadati M, Song J, Ma D, Jian Y, Beg MF, Sarunic MV, Ju MJ. Phase-corrected buffer averaging for enhanced OCT angiography using FDML laser. OPTICS LETTERS 2021; 46:3833-3836. [PMID: 34388753 DOI: 10.1364/ol.430915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/07/2021] [Indexed: 05/18/2023]
Abstract
Megahertz-rate optical coherence tomography angiography (OCTA) is highly anticipated as an ultrafast imaging tool in clinical settings. However, shot-noise-limited sensitivity is inevitably reduced in high-speed imaging systems. In this Letter, we present a coherent buffer averaging technique for use with a Fourier-domain mode-locked (FDML) laser to improve OCTA contrast at 1060 nm MHz-rate retinal imaging. Full characterization of spectral variations among the FDML buffers and a numerical correction method are also presented, with the results demonstrating a 10-fold increase in the phase alignment among buffers. Coherent buffer averaging provided better OCTA contrast than the conventional multi-frame averaging approach with a faster acquisition time.
Collapse
|
31
|
Lotz S, Grill C, Göb M, Draxinger W, Kolb JP, Huber R. Cavity length control for Fourier domain mode locked (FDML) lasers with µm precision. BIOMEDICAL OPTICS EXPRESS 2021; 12:2604-2616. [PMID: 34123491 PMCID: PMC8176810 DOI: 10.1364/boe.422898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
In highly dispersion compensated Fourier domain mode locked (FDML) lasers, an ultra-low noise operation can only be achieved by extremely precise and stable matching of the filter tuning period and light circulation time in the cavity. We present a robust and high precision closed-loop control algorithm and an actively cavity length controlled FDML laser. The cavity length control achieves a stability of ∼0.18 mHz at a sweep repetition rate of ∼418 kHz which corresponds to a ratio of 4×10-10. Furthermore, we prove that the rapid change of the cavity length has no negative impact on the quality of optical coherence tomography using the FDML laser as light source.
Collapse
Affiliation(s)
- Simon Lotz
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
- Medizinisches Laserzentrum Lübeck GmbH, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Christin Grill
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Madita Göb
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Wolfgang Draxinger
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Jan Philip Kolb
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Robert Huber
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| |
Collapse
|
32
|
Agour M, Fallorf C, Bergmann RB. Fast 3D form measurement using a tunable lens profiler based on imaging with LED illumination. OPTICS EXPRESS 2021; 29:385-399. [PMID: 33362124 DOI: 10.1364/oe.413182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
We present a fast shape measurement of micro-parts based on depth discrimination in imaging with LED illumination. It is based on a 4f-setup with an electrically adjusted tunable lens at the common Fourier plane. Using such a configuration, the opportunity to implement a fast depth scan by means of a tunable lens without the requirement of mechanically moving parts and depth discrimination using the limited spatial coherence of LED illumination is investigated. The technique allows the use of limited spatially partially coherent illumination which can be easily adapted to the test object by selecting the geometrical parameters of the system accordingly. Using this approach, we demonstrate the approach by measuring the 3D form of a tilted optically rough surface and a cold-formed micro-cup. The approach is robust, fast since required images are captured in less than a second, and eye-safe and offers an extended depth of focus in the range of few millimetres. Using a step height standard, we determine a height error of ±1.75 μm (1σ). This value may be further decreased by lowering the spatial coherence length of the illumination or by increasing the numerical aperture of the imaging system.
Collapse
|
33
|
Imaging Motion: A Comprehensive Review of Optical Coherence Tomography Angiography. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1310:343-365. [PMID: 33834441 DOI: 10.1007/978-981-33-6064-8_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Optical coherence tomography (OCT) is a three-dimensional (3-D) optical imaging technology that provides noninvasive, micrometer resolution images of structural interiors within biological samples with an approximately 1 ~ 2 mm penetration depth. Over the last decades, advances in OCT have revolutionized biomedical imaging by demonstrating a potential of optical biopsy in preclinical and clinical settings. Recently, functional OCT imaging has shown a promise as angiography to visualize cell-perfused vasculatures in the tissue bed in vivo without requiring any exogenous contrast agents. This new technology termed OCT angiography (OCTA) possesses a unique imaging capability of delineating tissue morphology and blood or lymphatic vessels down to capillaries at real-time acquisition rates. For the past 10 years since 2007, OCTA has been proven to be a useful tool to identify disorder or dysfunction in tissue microcirculation from both experimental animal studies and clinical studies in ophthalmology and dermatology. In this section, we overview about OCTA including a basic principle of OCTA explained with simple optical physics, and its scan protocols and post-processing algorithms for acquisition of angiography. Then, potential and challenge of OCTA for clinical settings are shown with outcomes of human studies.
Collapse
|
34
|
Butler SM, Singaravelu PKJ, O'Faolain L, Hegarty SP. Long cavity photonic crystal laser in FDML operation using an akinetic reflective filter. OPTICS EXPRESS 2020; 28:38813-38821. [PMID: 33379441 DOI: 10.1364/oe.410525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
A novel configuration of a Fourier domain mode locked (FDML) laser based on silicon photonics platform is presented in this work that exploits the narrowband reflection spectrum of a photonic crystal (PhC) cavity resonator. Configured as a linear Fabry-Perot laser, forward biasing of a p-n junction on the PhC cavity allowed for thermal tuning of the spectrum. The modulation frequency applied to the reflector equalled the inverse roundtrip time of the long cavity resulting in stable FDML operation over the swept wavelength range. An interferometric phase measurement measured the sweeping instantaneous frequency of the laser. The silicon photonics platform has potential for very compact implementation, and the electro-optic modulation method opens the possibility of modulation speeds far beyond those of mechanical filters.
Collapse
|
35
|
Huang D, Li F, He Z, Cheng Z, Shang C, Wai PKA. 400 MHz ultrafast optical coherence tomography. OPTICS LETTERS 2020; 45:6675-6678. [PMID: 33325868 DOI: 10.1364/ol.409607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/06/2020] [Indexed: 05/18/2023]
Abstract
An ultrafast time-stretched swept source with a sweep rate of 400 MHz is demonstrated based on the buffering of a 100 MHz femtosecond laser pulse train. To the best of our knowledge, this is the highest sweep rate of swept sources for optical coherence tomography (OCT) that has been reported. With a 10 dB sweep range of ∼100nm, an axial resolution of 19 µm is obtained in the OCT. OCT imaging of high-speed rotating disks is demonstrated. A composite complex apodization method is proposed and demonstrated to enhance the signal to noise ratio in the OCT imaging.
Collapse
|
36
|
Pfeiffer T, Göb M, Draxinger W, Karpf S, Kolb JP, Huber R. Flexible A-scan rate MHz-OCT: efficient computational downscaling by coherent averaging. BIOMEDICAL OPTICS EXPRESS 2020; 11:6799-6811. [PMID: 33282524 PMCID: PMC7687947 DOI: 10.1364/boe.402477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 05/29/2023]
Abstract
In order to realize adjustable A-scan rates of fast optical coherence tomography (OCT) systems, we investigate averaging of OCT image data acquired with a MHz-OCT system based on a Fourier Domain Mode Locked (FDML) laser. Increased system sensitivity and image quality can be achieved with the same system at the cost of lower imaging speed. Effectively, the A-scan rate can be reduced in software by a freely selectable factor. We demonstrate a detailed technical layout of the strategies necessary to achieve efficient coherent averaging. Since there are many new challenges specific to coherent averaging in swept source MHz-OCT, we analyze them point by point and describe the appropriate solutions. We prove that coherent averaging is possible at MHz OCT-speed without special interferometer designs or digital phase stabilization. We find, that in our system up to ∼100x coherent averaging is possible while achieving a sensitivity increase close to the ideal values. This corresponds to a speed reduction from 3.3 MHz to 33 kHz and a sensitivity gain of 20 dB. We show an imaging comparison between coherent and magnitude averaging of a human finger knuckle joint in vivo with 121 dB sensitivity for the coherent case. Further, the benefits of computational downscaling in low sensitivity MHz-OCT systems are analyzed.
Collapse
Affiliation(s)
- Tom Pfeiffer
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
- Optores GmbH, Gollierstr. 70, 80339 Munich, Germany
| | - Madita Göb
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Wolfgang Draxinger
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Sebastian Karpf
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Jan Philip Kolb
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
- Medizinisches Laserzentrum Lübeck GmbH, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Robert Huber
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| |
Collapse
|
37
|
Tan B, Sim R, Chua J, Wong DWK, Yao X, Garhöfer G, Schmidl D, Werkmeister RM, Schmetterer L. Approaches to quantify optical coherence tomography angiography metrics. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1205. [PMID: 33241054 PMCID: PMC7576021 DOI: 10.21037/atm-20-3246] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022]
Abstract
Optical coherence tomography (OCT) has revolutionized the field of ophthalmology in the last three decades. As an OCT extension, OCT angiography (OCTA) utilizes a fast OCT system to detect motion contrast in ocular tissue and provides a three-dimensional representation of the ocular vasculature in a non-invasive, dye-free manner. The first OCT machine equipped with OCTA function was approved by U.S. Food and Drug Administration in 2016 and now it is widely applied in clinics. To date, numerous methods have been developed to aid OCTA interpretation and quantification. In this review, we focused on the workflow of OCTA-based interpretation, beginning from the generation of the OCTA images using signal decorrelation, which we divided into intensity-based, phase-based and phasor-based methods. We further discussed methods used to address image artifacts that are commonly observed in clinical settings, to the algorithms for image enhancement, binarization, and OCTA metrics extraction. We believe a better grasp of these technical aspects of OCTA will enhance the understanding of the technology and its potential application in disease diagnosis and management. Moreover, future studies will also explore the use of ocular OCTA as a window to link ocular vasculature to the function of other organs such as the kidney and brain.
Collapse
Affiliation(s)
- Bingyao Tan
- Institute for Health Technologies, Nanyang Technological University, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE) Program, Nanyang Technological University, Singapore, Singapore
| | - Ralene Sim
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Jacqueline Chua
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Damon W. K. Wong
- Institute for Health Technologies, Nanyang Technological University, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE) Program, Nanyang Technological University, Singapore, Singapore
| | - Xinwen Yao
- Institute for Health Technologies, Nanyang Technological University, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE) Program, Nanyang Technological University, Singapore, Singapore
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - René M. Werkmeister
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE) Program, Nanyang Technological University, Singapore, Singapore
- Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Ophthalmology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| |
Collapse
|
38
|
Shirazi MF, Brunner E, Laslandes M, Pollreisz A, Hitzenberger CK, Pircher M. Visualizing human photoreceptor and retinal pigment epithelium cell mosaics in a single volume scan over an extended field of view with adaptive optics optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2020; 11:4520-4535. [PMID: 32923061 PMCID: PMC7449740 DOI: 10.1364/boe.393906] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 05/18/2023]
Abstract
Using adaptive optics optical coherence tomography, human photoreceptors and retinal pigment epithelium (RPE) cells are typically visualized on a small field of view of ∼1° to 2°. In addition, volume averaging is required for visualizing the RPE cell mosaic. To increase the imaging area, we introduce a lens based spectral domain AO-OCT system that shows low aberrations within an extended imaging area of 4°×4° while maintaining a high (theoretical) transverse resolution (at >7 mm pupil diameter) in the order of 2 µm. A new concept for wavefront sensing is introduced that uses light mainly originating from the RPE layer and yields images of the RPE cell mosaic in a single volume acquisition. The capability of the instrument for in vivo imaging is demonstrated by visualizing various cell structures within the posterior retinal layers over an extended field of view.
Collapse
Affiliation(s)
- Muhammad Faizan Shirazi
- Center for Medical Physics and Biomedical
Engineering, Medical University of Vienna, Waehringer Guertel 18-20,
A-1090 Vienna, Austria
| | - Elisabeth Brunner
- Center for Medical Physics and Biomedical
Engineering, Medical University of Vienna, Waehringer Guertel 18-20,
A-1090 Vienna, Austria
| | - Marie Laslandes
- ALPAO 727 rue Aristide Bergès 38330
Montbonnot-Saint-Martin, France
| | - Andreas Pollreisz
- Department of Ophthalmology and Optometry,
Medical University of Vienna, Vienna, Waehringer Guertel 18-20, A-1090
Vienna, Austria
| | - Christoph K. Hitzenberger
- Center for Medical Physics and Biomedical
Engineering, Medical University of Vienna, Waehringer Guertel 18-20,
A-1090 Vienna, Austria
| | - Michael Pircher
- Center for Medical Physics and Biomedical
Engineering, Medical University of Vienna, Waehringer Guertel 18-20,
A-1090 Vienna, Austria
| |
Collapse
|
39
|
Kim TS, Joo J, Shin I, Shin P, Kang WJ, Vakoc BJ, Oh WY. 9.4 MHz A-line rate optical coherence tomography at 1300 nm using a wavelength-swept laser based on stretched-pulse active mode-locking. Sci Rep 2020; 10:9328. [PMID: 32518256 PMCID: PMC7283258 DOI: 10.1038/s41598-020-66322-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 05/08/2020] [Indexed: 01/07/2023] Open
Abstract
In optical coherence tomography (OCT), high-speed systems based at 1300 nm are among the most broadly used. Here, we present 9.4 MHz A-line rate OCT system at 1300 nm. A wavelength-swept laser based on stretched-pulse active mode locking (SPML) provides a continuous and linear-in-wavenumber sweep from 1240 nm to 1340 nm, and the OCT system using this light source provides a sensitivity of 98 dB and a single-sided 6-dB roll-off depth of 2.5 mm. We present new capabilities of the 9.4 MHz SPML-OCT system in three microscopy applications. First, we demonstrate high quality OCTA imaging at a rate of 1.3 volumes/s. Second, by utilizing its inherent phase stable characteristics, we present wide dynamic range en face Doppler OCT imaging with multiple time intervals ranging from 0.25 ms to 2.0 ms at a rate of 0.53 volumes/s. Third, we demonstrate video-rate 4D microscopic imaging of a beating Xenopus embryo heart at a rate of 30 volumes/s. This high-speed and high-performance OCT system centered at 1300 nm suggests that it can be one of the most promising high-speed OCT platforms enabling a wide range of new scientific research, industrial, and clinical applications at speeds of 10 MHz.
Collapse
Affiliation(s)
- Tae Shik Kim
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea.,KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - JongYoon Joo
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea.,KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Inho Shin
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea.,KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Paul Shin
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea.,KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Woo Jae Kang
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea.,KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Benjamin J Vakoc
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Wang-Yuhl Oh
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea. .,KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
40
|
Spectral Domain Optical Coherence Tomography Imaging Performance Improvement Based on Field Curvature Aberration-Corrected Spectrometer. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We designed and fabricated a telecentric f-theta imaging lens (TFL) to improve the imaging performance of spectral domain optical coherence tomography (SD-OCT). By tailoring the field curvature aberration of the TFL, the flattened focal surface was well matched to the detector plane. Simulation results showed that the spot in the focal plane fitted well within a single pixel and the modulation transfer function at high spatial frequencies showed higher values compared with those of an achromatic doublet imaging lens, which are commonly used in SD-OCT spectrometers. The spectrometer using the TFL had an axial resolution of 7.8 μm, which was similar to the theoretical value of 6.2 μm. The spectrometer was constructed so that the achromatic doublet lens was replaced by the TFL. As a result, the SD-OCT imaging depth was improved by 13% (1.85 mm) on a 10 dB basis in the roll-off curve and showed better sensitivity at the same depth. The SD-OCT images of a multi-layered tape and a human palm proved that the TFL was able to achieve deeper imaging depth and better contrast. This feature was seen very clearly in the depth profile of the image. SD-OCT imaging performance can be improved simply by changing the spectrometer’s imaging lens. By optimizing the imaging lens, deeper SD-OCT imaging can be achieved with improved sensitivity.
Collapse
|
41
|
Riemensberger J, Lukashchuk A, Karpov M, Weng W, Lucas E, Liu J, Kippenberg TJ. Massively parallel coherent laser ranging using a soliton microcomb. Nature 2020; 581:164-170. [PMID: 32405018 DOI: 10.1038/s41586-020-2239-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/16/2020] [Indexed: 11/09/2022]
Abstract
Coherent ranging, also known as frequency-modulated continuous-wave (FMCW) laser-based light detection and ranging (lidar)1 is used for long-range three-dimensional distance and velocimetry in autonomous driving2,3. FMCW lidar maps distance to frequency4,5 using frequency-chirped waveforms and simultaneously measures the Doppler shift of the reflected laser light, similar to sonar or radar6,7 and coherent detection prevents interference from sunlight and other lidar systems. However, coherent ranging has a lower acquisition speed and requires precisely chirped8 and highly coherent5 laser sources, hindering widespread use of the lidar system and impeding parallelization, compared to modern time-of-flight ranging systems that use arrays of individual lasers. Here we demonstrate a massively parallel coherent lidar scheme using an ultra-low-loss photonic chip-based soliton microcomb9. By fast chirping of the pump laser in the soliton existence range10 of a microcomb with amplitudes of up to several gigahertz and a sweep rate of up to ten megahertz, a rapid frequency change occurs in the underlying carrier waveform of the soliton pulse stream, but the pulse-to-pulse repetition rate of the soliton pulse stream is retained. As a result, the chirp from a single narrow-linewidth pump laser is transferred to all spectral comb teeth of the soliton at once, thus enabling parallelism in the FMCW lidar. Using this approach we generate 30 distinct channels, demonstrating both parallel distance and velocity measurements at an equivalent rate of three megapixels per second, with the potential to improve sampling rates beyond 150 megapixels per second and to increase the image refresh rate of the FMCW lidar by up to two orders of magnitude without deterioration of eye safety. This approach, when combined with photonic phase arrays11 based on nanophotonic gratings12, provides a technological basis for compact, massively parallel and ultrahigh-frame-rate coherent lidar systems.
Collapse
Affiliation(s)
- Johann Riemensberger
- Laboratory of Photonics and Quantum Measurements (LPQM), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Anton Lukashchuk
- Laboratory of Photonics and Quantum Measurements (LPQM), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Maxim Karpov
- Laboratory of Photonics and Quantum Measurements (LPQM), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Wenle Weng
- Laboratory of Photonics and Quantum Measurements (LPQM), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Erwan Lucas
- Laboratory of Photonics and Quantum Measurements (LPQM), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Junqiu Liu
- Laboratory of Photonics and Quantum Measurements (LPQM), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Tobias J Kippenberg
- Laboratory of Photonics and Quantum Measurements (LPQM), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| |
Collapse
|
42
|
Jerwick J, Huang Y, Dong Z, Slaudades A, Brucker AJ, Zhou C. Wide-field Ophthalmic Space-Division Multiplexing Optical Coherence Tomography. PHOTONICS RESEARCH 2020; 8:539-547. [PMID: 34222553 PMCID: PMC8248931 DOI: 10.1364/prj.383034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
High-speed ophthalmic optical coherence tomography systems are of interest because they allow rapid, motion-free, and wide-field retinal imaging. Space-division multiplexing optical coherence tomography (SDM-OCT) is a high-speed imaging technology which takes advantage of the long coherence length of microelectromechanical vertical cavity surface emitting laser (MEMs VCSEL) sources to multiplex multiple images along a single imaging depth. We demonstrate wide-field retinal OCT imaging, acquired at an effective A-scan rate of 800,000 A-scans/sec with volumetric images covering up to 12.5 mm × 7.4 mm on the retina acquired in less than 1 second. A clinical feasibility study was conducted to compare the ophthalmic SDM-OCT with commercial OCT systems, illustrating the high-speed capability of SDM-OCT in a clinical setting.
Collapse
Affiliation(s)
- Jason Jerwick
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, 63130
| | - Yongyang Huang
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Zhao Dong
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, 63130
| | - Adrienne Slaudades
- Scheie Eye Institute, Penn Presbyterian Medical Center, University of Pennsylvania, Philadelphia PA, 19104
| | - Alexander J. Brucker
- Scheie Eye Institute, Penn Presbyterian Medical Center, University of Pennsylvania, Philadelphia PA, 19104
| | - Chao Zhou
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, 63130
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
- Corresponding author:
| |
Collapse
|
43
|
Dong Z, Liu G, Ni G, Jerwick J, Duan L, Zhou C. Optical coherence tomography image denoising using a generative adversarial network with speckle modulation. JOURNAL OF BIOPHOTONICS 2020; 13:e201960135. [PMID: 31970879 PMCID: PMC8258757 DOI: 10.1002/jbio.201960135] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/23/2019] [Accepted: 01/15/2020] [Indexed: 05/09/2023]
Abstract
Optical coherence tomography (OCT) is widely used for biomedical imaging and clinical diagnosis. However, speckle noise is a key factor affecting OCT image quality. Here, we developed a custom generative adversarial network (GAN) to denoise OCT images. A speckle-modulating OCT (SM-OCT) was built to generate low speckle images to be used as the ground truth. In total, 210 000 SM-OCT images were used for training and validating the neural network model, which we call SM-GAN. The performance of the SM-GAN method was further demonstrated using online benchmark retinal images, 3D OCT images acquired from human fingers and OCT videos of a beating fruit fly heart. The denoise performance of the SM-GAN model was compared to traditional OCT denoising methods and other state-of-the-art deep learning based denoise networks. We conclude that the SM-GAN model presented here can effectively reduce speckle noise in OCT images and videos while maintaining spatial and temporal resolutions.
Collapse
Affiliation(s)
- Zhao Dong
- Department of Electrical and Computer Engineering, Lehigh University, 27 Memorial Drive W, Bethlehem, PA 18015, USA
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO 63130, USA
| | - Guoyan Liu
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, 261041, China
- Department of Bioengineering, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | - Guangming Ni
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO 63130, USA
| | - Jason Jerwick
- Department of Electrical and Computer Engineering, Lehigh University, 27 Memorial Drive W, Bethlehem, PA 18015, USA
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO 63130, USA
| | - Lian Duan
- Department of Electrical and Computer Engineering, Lehigh University, 27 Memorial Drive W, Bethlehem, PA 18015, USA
| | - Chao Zhou
- Department of Electrical and Computer Engineering, Lehigh University, 27 Memorial Drive W, Bethlehem, PA 18015, USA
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO 63130, USA
- Department of Bioengineering, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| |
Collapse
|
44
|
Dong Z, Men J, Yang Z, Jerwick J, Li A, Tanzi RE, Zhou C. FlyNet 2.0: drosophila heart 3D (2D + time) segmentation in optical coherence microscopy images using a convolutional long short-term memory neural network. BIOMEDICAL OPTICS EXPRESS 2020; 11:1568-1579. [PMID: 32206429 PMCID: PMC7075608 DOI: 10.1364/boe.385968] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 05/06/2023]
Abstract
A custom convolutional neural network (CNN) integrated with convolutional long short-term memory (LSTM) achieves accurate 3D (2D + time) segmentation in cross-sectional videos of the Drosophila heart acquired by an optical coherence microscopy (OCM) system. While our previous FlyNet 1.0 model utilized regular CNNs to extract 2D spatial information from individual video frames, convolutional LSTM, FlyNet 2.0, utilizes both spatial and temporal information to improve segmentation performance further. To train and test FlyNet 2.0, we used 100 datasets including 500,000 fly heart OCM images. OCM videos in three developmental stages and two heartbeat situations were segmented achieving an intersection over union (IOU) accuracy of 92%. This increased segmentation accuracy allows morphological and dynamic cardiac parameters to be better quantified.
Collapse
Affiliation(s)
- Zhao Dong
- Department of Electrical and Computer Engineering, Lehigh University, 27 Memorial Drive W, Bethlehem, PA 18015, USA
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO 63130, USA
| | - Jing Men
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO 63130, USA
- Department of Bioengineering, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | - Zhiwen Yang
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO 63130, USA
- ShenYuan Honors College, Beihang University, Beijing 100191, China
| | - Jason Jerwick
- Department of Electrical and Computer Engineering, Lehigh University, 27 Memorial Drive W, Bethlehem, PA 18015, USA
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO 63130, USA
| | - Airong Li
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA 02114, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA 02114, USA
| | - Chao Zhou
- Department of Electrical and Computer Engineering, Lehigh University, 27 Memorial Drive W, Bethlehem, PA 18015, USA
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO 63130, USA
- Department of Bioengineering, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| |
Collapse
|
45
|
Karpf S, Jalali B. Frequency-doubled FDML-MOPA laser in the visible. OPTICS LETTERS 2019; 44:5913-5916. [PMID: 32628184 DOI: 10.1364/ol.44.005913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Wavelength-swept lasers enable high-speed measurements in absorption spectroscopy, Raman spectroscopy, nonlinear Raman hyperspectral microscopy, rapid confocal microscopy, short impulse generation, and most importantly for high-speed optical coherence tomography, with speeds up to video-rate volumetric imaging. Recently, we introduced a pulsed wavelength-swept laser based on the Fourier domain mode-locked (FDML) laser principle combined with a master-oscillator power amplifier (MOPA) architecture. The high peak powers reached with this laser enabled rapid two-photon microscopy and two-photon fluorescence lifetime microscopy and high-speed light detection and ranging measurements. Here, we present the extension of this laser into the visible wavelength range by frequency doubling the output from 1064 nm to 532 nm via second harmonic generation in a deuterated potassium dihydrogen phosphate crystal. The result is a wavelength-swept laser source around 532 nm that outputs a pulse train of distinct, almost monochromatic wavelengths at an 88 MHz pulse repetition rate and 342 kHz sweep repetition rate. This swept-source laser in the visible can open up new research applications in spectroscopy, metrology, sensing, and high-speed imaging.
Collapse
|
46
|
Optical coherence tomography angiography in preclinical neuroimaging. Biomed Eng Lett 2019; 9:311-325. [PMID: 31456891 DOI: 10.1007/s13534-019-00118-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/29/2019] [Accepted: 06/27/2019] [Indexed: 01/22/2023] Open
Abstract
Preclinical neuroimaging allows for the assessment of brain anatomy, connectivity, and function in laboratory animals, such as mice and this imaging field has been a rapidly growing aimed at bridging the translation gap between animal and human research. The progress in the animal research could be accelerated by high-resolution in vivo optical imaging technologies. Optical coherence tomography-based angiography (OCTA) estimates the scattering from moving red blood cells, providing the visualization of functional micro-vessel networks within tissue beds in vivo without a need for exogenous contrast agents. Recent advancement of OCTA methods have expanded its application to neuroimaging of small animal models of brain disorders. In this paper, we overview the recent development of OCTA techniques for blood flow imaging and its preclinical applications in neuroimaging. In specific, a summary of preclinical OCTA studies for traumatic brain injury, cerebral stroke, and aging brain on mice is reviewed.
Collapse
|
47
|
Maddipatla R, Cervantes J, Otani Y, Cense B. Retinal imaging with optical coherence tomography and low-loss adaptive optics using a 2.8-mm beam size. JOURNAL OF BIOPHOTONICS 2019; 12:e201800192. [PMID: 30328279 DOI: 10.1002/jbio.201800192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/24/2018] [Accepted: 10/11/2018] [Indexed: 05/02/2023]
Abstract
As data acquisition for retinal imaging with optical coherence tomography (OCT) becomes faster, efficient collection of photons becomes more important to maintain image quality. One approach is to use a larger aperture at the eye's pupil to collect more photons that have been reflected from the retina. A 2.8-mm beam diameter system with only seven reflecting surfaces was developed for low-loss retinal imaging. The larger beam size requires defocus and astigmatism correction, which was done in a closed loop adaptive optics method using a Shack-Hartmann wavefront sensor and a deformable mirror (DM) with 140 actuators and a ±2.75 μm stroke. This DM facilitates defocus correction ranging from approximately -3 D to +3 D. Comparing the new system with a standard 1.2-mm system on a model eye, a signal-to-noise gain of 4.5 dB and a 2.3 times smaller speckle size were measured. Measurements on the retinas of five subjects showed even better results, with increases in dynamic range up to 13 dB. Note that the new sample arm only occupies 30 cm × 60 cm, which makes it highly suitable for imaging in a clinical environment. Figure: B-scan images obtained over a width of 8 deg from the right eye of a 31-year-old Caucasian male. While the left side was imaged with a standard 1.2-mm OCT system, the right side was imaged with the 2.8-mm system. Both images were collected with the same integration time and incident power, after correction of aberrations. Using the dynamic range within the images, which is determined by comparing the highest pixel value to the noise floor, a difference in dynamic range of 10.8 dB was measured between the two systems.
Collapse
Affiliation(s)
- Reddikumar Maddipatla
- Center for Optical Research and Education, Utsunomiya University, Utsunomiya, Japan
- School of Optometry, Indiana University, Bloomington, Indiana
| | - Joel Cervantes
- Center for Optical Research and Education, Utsunomiya University, Utsunomiya, Japan
- Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Guadalajara, Jal, Mexico
| | - Yukitoshi Otani
- Center for Optical Research and Education, Utsunomiya University, Utsunomiya, Japan
- Department of Optical Engineering, Utsunomiya University, Tochigi, Japan
| | - Barry Cense
- Optical+Biomedical Engineering Laboratory, Department of Electrical, Electronic and Computer Engineering, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
48
|
Leitgeb RA. En face optical coherence tomography: a technology review [Invited]. BIOMEDICAL OPTICS EXPRESS 2019; 10:2177-2201. [PMID: 31143489 PMCID: PMC6524600 DOI: 10.1364/boe.10.002177] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 05/20/2023]
Abstract
A review on the technological development of en face optical coherence tomography (OCT) and optical coherence microscopy (OCM) is provided. The terminology originally referred to time domain OCT, where the preferential scanning was performed in the en face plane. Potentially the fastest realization of en face image recording is full-field OCT, where the full en face plane is illuminated and recorded simultaneously. The term has nowadays been adopted for high-speed Fourier domain approaches, where the en face image is reconstructed from full 3D volumes either by direct slicing or through axial projection in post processing. The success of modern en face OCT lies in its immediate and easy image interpretation, which is in particular of advantage for OCM or OCT angiography. Applications of en face OCT with a focus on ophthalmology are presented. The review concludes by outlining exciting technological prospects of en face OCT based both on time as well as on Fourier domain OCT.
Collapse
Affiliation(s)
- R A Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Christian Doppler Laboratory for Innovative Optical Imaging and its Translation to Medicine, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
49
|
Karpf S, Jalali B. Fourier-domain mode-locked laser combined with a master-oscillator power amplifier architecture. OPTICS LETTERS 2019; 44:1952-1955. [PMID: 30985783 DOI: 10.1364/ol.44.001952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Originally introduced in 2005 for high-speed optical coherence tomography, the rapidly wavelength-swept Fourier-domain mode-locked (FDML) laser still, to this day, enables highest imaging speeds through a very high-speed spectral tuning capability. The FDML laser achieves a tuning bandwidth of over 1/10th of its center wavelength and can sweep this entire bandwidth in less than a microsecond. Interestingly, even though it covers a very broad spectral range, instantaneously it has a narrow spectral linewidth that puts it in a unique space compared to other high-speed broadband laser sources, e.g., mode-locked lasers or supercontinuum sources. Although it has been applied for nonlinear Raman spectroscopy and imaging, a current drawback of this continuous wave laser is the relatively low instantaneous power of 10-100 mW. Here, we report the combination of an FDML laser with a master oscillator power amplifier (MOPA) architecture to increase the instantaneous power of the FDML for nonlinear optical interactions. The output of an FDML laser around 1060 nm is modulated to short pulses by using an electro-optic amplitude modulator and subsequently amplified using ytterbium-doped fiber amplifiers (YDFAs). This generates a spectral rainbow of 65 picosecond pulses, where each pulse has a distinct, monochromatic wavelength. The instantaneous power can be adjusted by the YDFAs to reach nonlinear optical excitation regimes. This wavelength-swept FDML-MOPA laser will have a vast range of applications in, e.g., nonlinear optics, spectroscopy, imaging, and sensing.
Collapse
|
50
|
Miao Y, Brenner M, Chen Z. Endoscopic Optical Coherence Tomography for Assessing Inhalation Airway Injury: A Technical Review. OTOLARYNGOLOGY (SUNNYVALE, CALIF.) 2019; 9:366. [PMID: 31497378 PMCID: PMC6731096 DOI: 10.4172/2161-119x.1000366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Diagnosis of inhalation injury has been clinically challenging. Currently, assessment of inhalation injury relies on subjective clinical exams and bronchoscopy, which provides little understanding of tissue conditions and results in limited prognostics. Endoscopic Optical coherence tomography (OCT) technology has been recently utilized in the airway for direct assessment of respiratory tract disorders and injuries. Endoscopic OCT is capable of capturing high-resolution images of tissue morphology 1-3 mm beneath the surface as well as the complex 3D anatomical shape. Previous studies indicate that changes in airway histopathology can be found in the OCT image almost immediately after inhalation of smoke and other toxic chemicals, which correlates well with histology and pulmonary function tests. This review summarizes the recent development of endoscopic OCT technology for airway imaging, current uses of OCT for inhalation injury, and possible future directions.
Collapse
Affiliation(s)
- Yusi Miao
- Beckman Laser Institute, University of California, Irvine, CA, USA
| | - Matthew Brenner
- Beckman Laser Institute, University of California, Irvine, CA, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, CA, USA
| |
Collapse
|