1
|
Hong SG, Park SM, Kwon S, Sakthivel H, Nagappa SP, Leem JW, Steinhubl SR, Ngiruwonsanga P, Mangara JLN, Twizere C, Kim YL. Smartphone conjunctiva photography for malaria risk stratification in asymptomatic school age children. NPJ Digit Med 2025; 8:151. [PMID: 40065117 PMCID: PMC11893748 DOI: 10.1038/s41746-025-01548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
Malaria remains a major global health challenge. Although effective control relies on testing all suspected cases, asymptomatic infections in school-age children are frequently overlooked. Advances in retinal imaging and computer vision have enhanced malaria detection. However, noninvasive, point-of-care malaria detection remains unrealized, partly because of the need for specialized equipment. Here we report radiomic analyses of 4302 photographs of the palpebral conjunctiva captured using unmodified smartphone cameras from asymptomatic 405 participants aged 5 to 15 years to predict malaria risk. Our neural network classification model of radiomic features achieves an area under the receiver operating characteristic curve of 0.76 with 95% confidence intervals from 0.68 to 0.84 in distinguishing between malaria-infected and non-infected cases in endemic regions. Photographing the inner eyelid provides the advantages of easy accessibility and direct exposure to the microvasculature. This mobile health approach has the potential for malaria prescreening and managing febrile illness in resource-limited settings.
Collapse
Affiliation(s)
- Shaun G Hong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Sang Mok Park
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Semin Kwon
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Haripriya Sakthivel
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Sreeram P Nagappa
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jung Woo Leem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Steven R Steinhubl
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN, USA
| | | | - Jean-Louis N Mangara
- Malaria, Neglected Tropical Diseases and Other Parasitic Diseases Division, Rwanda Biomedical Center, Kigali, Rwanda
| | - Célestin Twizere
- Center of Excellence in Biomedical Engineering and eHealth, University of Rwanda, Kigali, Rwanda
| | - Young L Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN, USA.
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA.
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
2
|
Baker DV, Bernal-Escalante J, Traaseth C, Wang Y, Tran MV, Keenan S, Algar WR. Smartphones as a platform for molecular analysis: concepts, methods, devices and future potential. LAB ON A CHIP 2025; 25:884-955. [PMID: 39918205 DOI: 10.1039/d4lc00966e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Over the past 15 years, smartphones have had a transformative effect on everyday life. These devices also have the potential to transform molecular analysis over the next 15 years. The cameras of a smartphone, and its many additional onboard features, support optical detection and other aspects of engineering an analytical device. This article reviews the development of smartphones as platforms for portable chemical and biological analysis. It is equal parts conceptual overview, technical tutorial, critical summary of the state of the art, and outlook on how to advance smartphones as a tool for analysis. It further discusses the motivations for adopting smartphones as a portable platform, summarizes their enabling features and relevant optical detection methods, then highlights complementary technologies and materials such as 3D printing, microfluidics, optoelectronics, microelectronics, and nanoparticles. The broad scope of research and key advances from the past 7 years are reviewed as a prelude to a perspective on the challenges and opportunities for translating smartphone-based lab-on-a-chip devices from prototypes to authentic applications in health, food and water safety, environmental monitoring, and beyond. The convergence of smartphones with smart assays and smart apps powered by machine learning and artificial intelligence holds immense promise for realizing a future for molecular analysis that is powerful, versatile, democratized, and no longer just the stuff of science fiction.
Collapse
Affiliation(s)
- Daina V Baker
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Jasmine Bernal-Escalante
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Christine Traaseth
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Yihao Wang
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Seth Keenan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| |
Collapse
|
3
|
Ali DS, Othman HO, Hassan RO. Green Microextraction, Paper-Based Technique, and Smartphone Sensing for Sustainable Determination of Nicotinamide in Pharmaceuticals and Blood Samples. Chem Biodivers 2025:e202403248. [PMID: 39933015 DOI: 10.1002/cbdv.202403248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/13/2025]
Abstract
This study presents the development of two simple, sensitive, and selective microextraction and preconcentration procedures for determining nicotinamide (NAM) in pharmaceutical formulations and blood samples. The methods utilize the König reaction, where cyanogen chloride, formed by reacting potassium thiocyanate with sodium hypochlorite in an acidic medium, interacts with NAM and couples with buffered barbituric acid at pH 3.5 to form a pink polymethine dye. This dye is extracted into an isobutanol layer using tetrabutylammonium bromide and exhibits maximum absorption at 560 nm for spectrophotometric quantification. In the smartphone paper-based (SPB) method, the dye is applied to a paper strip, captured by a smartphone, and analyzed for red, green, and blue components. Both methods were thoroughly evaluated for key parameters, demonstrating adherence to Beer's law over a NAM concentration range of 1.0-7.8 µg/mL, with limits of detection of 0.76 µg/mL for the spectrophotometric method and 0.91 µg/mL for the SPB method. Our SPB combines paper-based analysis, smartphone detection, and microextraction for the first time, offering a cost-effective, portable, and sensitive solution for NAM assay in plasma. A comparison with the established high-performance liquid chromatography method, using statistical tests, showed no significant differences, confirming the reliability of these novel methods.
Collapse
Affiliation(s)
- Diyar Salahuddin Ali
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Department of Pharmacy, College of Pharmacy, Knowledge University, Erbil, Iraq
| | - Hazha Omar Othman
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Pharmacy Department, Tishk International University, Erbil, Iraq
| | - Rebwar Omar Hassan
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Department of Radiological Imaging Technology, College of Health Technology, Cihan University-Erbil, Erbil, Iraq
| |
Collapse
|
4
|
Rayhan MSA, Talukder A, Rani S, Easin KB, Hossain MA, Biswas PC. Visible diffuse reflectance smartphone spectrometer with high spectral accuracy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125240. [PMID: 39378831 DOI: 10.1016/j.saa.2024.125240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
A smartphone-based spectrometer employing principle of diffuse reflection is reported for the surface analysis of solid samples. The instrument utilizes a thin-film grating to diffract incoming light, while a diffuse reflecting surface projects the image of this diffracted light onto the detector plane. The CMOS camera of smartphone camera directly captures the diffusely reflected photons within its limited field-of-view thus eliminating the need for collection, conditioning and converging optics. The optical setup of the instrument provides facility to calibrate the spectral response considering the nonlinear distribution of the wavelength across the diffraction direction. Additional correction in the detector response at different light intensity results a reduced spectral error with a maximum wavelength resolution of δλ=0.08 nm/pixel in the camera within the spectral range Δλ = (400 - 700) nm. As a proof of the concept, the instrument demonstrates successful detection of color pigments in food samples by absorption measurement of the samples at an average spectral error < 6 %. The distinct absorption peak associated with standard food colors are compared against the absorption profile of unknown food colors used in pastry cake. This field-functional smart analysis with internet connectivity opens opportunity of identifying food adulteration by using toxic chemical colors at the point-of-test and immediate reporting to others. The overall instrument is fabricated by utilizing low-cost and light weight plastic wood to make compact (110 mm × 105 mm × 125 mm), robust, inexpensive (∼$ 50) and suitable for field-portable (∼145 gm) hand-held operation.
Collapse
Affiliation(s)
- Md Sadik Al Rayhan
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
| | - Arnab Talukder
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
| | - Saptami Rani
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
| | - Khaled Bin Easin
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
| | - Md Arafat Hossain
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
| | - Protik Chandra Biswas
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh.
| |
Collapse
|
5
|
Yumnam M, Gopalakrishnan K, Dhua S, Srivastava Y, Mishra P. A Comprehensive Review on Smartphone-Based Sensor for Fish Spoilage Analysis: Applications and Limitations. FOOD BIOPROCESS TECH 2024; 17:4575-4597. [DOI: 10.1007/s11947-024-03391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/25/2024] [Indexed: 01/06/2025]
|
6
|
Zhang H, Zhang W, Zuo Z, Yang J. Towards ultra-low-cost smartphone microscopy. Microsc Res Tech 2024; 87:1521-1533. [PMID: 38419399 DOI: 10.1002/jemt.24535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/17/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
The outbreak of COVID-19 exposed the inadequacy of our technical tools for home health surveillance, and recent studies have shown the potential of smartphones as a universal optical microscopic imaging platform for such applications. However, most of them use laboratory-grade optomechanical components and transmitted illuminations to ensure focus tuning capability and imaging quality, which keeps the cost of the equipment high. Here, we propose an ultra-low-cost solution for smartphone microscopy. To realize focus tunability, we designed a seesaw-like structure capable of converting large displacements on one side into small displacements on the other (reduced to ∼9.1%), which leverages the intrinsic flexibility of 3D printing materials. We achieved a focus-tuning accuracy of ∼5 𝜇m, which is 40 times higher than the machining accuracy of the 3D-printed lens holder itself. For microscopic imaging, we used an off-the-shelf smartphone camera lens as the objective and the built-in flashlight as the illumination. To compensate for the resulting image quality degradation, we developed a learning-based image enhancement method. We used the CycleGAN architecture to establish the mapping from smartphone microscope images to benchtop microscope images without pairing. We verified the imaging performance on different biomedical samples. Except for the smartphone, we kept the full costs of the device under 4 USD. We think these efforts to lower the costs of smartphone microscopes will benefit their applications in various scenarios, such as point-of-care testing, on-site diagnosis, and home health surveillance. RESEARCH HIGHLIGHTS: We propose a solution for ultra-low-cost smartphone microscopy. Utilizing the flexibility of 3D-printed material, we can achieve focusing accuracy of ∼5 𝜇m. Such a low-cost device will benefit point-of-care diagnosis and home health surveillance.
Collapse
Affiliation(s)
- Haoran Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Weiyi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zirui Zuo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jianlong Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Hussain I, Rial C, Boza J, Tompkins S, Branen J, Giordano J, Erickson D. Design of a handheld and portable fluorescence imaging system for quantitative detection of pregnancy-specific biomarkers in cattle. Anal Bioanal Chem 2024; 416:4101-4109. [PMID: 38744719 DOI: 10.1007/s00216-024-05333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Reproductive management significantly impacts dairy farm productivity, necessitating accurate timely pregnancy detection in cattle. This paper presents a novel handheld and portable fluorescence imaging system designed for quantitative assessment of pregnancy-specific biomarkers, addressing the limitations of current detection methods. The objective was to develop a cost-effective, at-farm solution for detecting pregnancy-specific protein B (PSPB) in bovine plasma samples. The system integrates an imaging module and a custom software application, enabling image capture, data processing, and PSPB concentration determination. Calibration utilizing known PSPB concentrations achieved a 0.6 ng/mL limit of detection. Validation encompassed a comparison with a standard ELISA method using 100 bovine plasma samples; minimal bias and good agreement were observed within the linear range of the calibration curve for both methods. The system offers portability, user-friendliness, and potential for multiplex detection, promising real-time, at-farm reproductive management. This study demonstrates the successful development and validation of a portable fluorescence imaging system, offering an efficient and accurate approach to detecting pregnancy-specific biomarkers in cattle. Its implications extend to improving dairy farm productivity by enabling timely and reliable reproductive management practices.
Collapse
Affiliation(s)
- Iftak Hussain
- Sibley School of Mechanical and Aerospace Engineering Cornell University, Ithaca, NY, 14850, USA
| | - Clara Rial
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Juan Boza
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Sheridan Tompkins
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | | | - Julio Giordano
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - David Erickson
- Sibley School of Mechanical and Aerospace Engineering Cornell University, Ithaca, NY, 14850, USA.
- Cornell University, 124 Hoy Road, 369 Upson Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
8
|
Yun P, Jinorose M, Devahastin S. Rapid smartphone-based assays for pesticides inspection in foods: current status, limitations, and future directions. Crit Rev Food Sci Nutr 2024; 64:6251-6271. [PMID: 36779284 DOI: 10.1080/10408398.2023.2166897] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Smartphone-based assays to inspect pesticides in foods have attracted much attention as such assays can transform tedious laboratory-based assays into real-time, on-site, or even home-based assay and hence overcoming the limitations of conventional assays. Although an array of smartphone-based assays is available, information on the use of these assays for pesticides inspection is scattered. The purposes of this review are therefore to compile, summarize and discuss state-of-the-art as well as advantages and limitations of the relevant technologies. Suggestions are provided for further development of smartphone-based assays for rapid inspection of pesticides in foods. Smartphone-based assays relying on enzyme inhibitions are noted to be nonselective qualitative, capable of reporting results in a quantitative manner only when a sample contains an individual pesticide. Smartphone-based assays relying on chemical reactions also target only individual pesticides. Smartphone-based visible spectroscopy can, on the other hand, inspect individual and multiple pesticides with the aid of appropriate colorimetry-, luminescence-, or fluorescence-based assay. Smartphone-based visible-near infrared and Raman spectroscopies are suitable for simultaneous multiple pesticides inspection. Raman spectroscopy is of particular interest as it can detect pesticides even at lower concentrations. This spectroscopic technique can also serve as a real-time assay with the aid of cloud network computations.
Collapse
Affiliation(s)
- Pheakdey Yun
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Maturada Jinorose
- Department of Food Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
9
|
Yang C, Wang Z, Xiao K, Ushakov N, Kumar S, Li X, Min R. Portable optical fiber biosensors integrated with smartphone: technologies, applications, and challenges [Invited]. BIOMEDICAL OPTICS EXPRESS 2024; 15:1630-1650. [PMID: 38495719 PMCID: PMC10942678 DOI: 10.1364/boe.517534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/04/2024] [Accepted: 02/04/2024] [Indexed: 03/19/2024]
Abstract
The increasing demand for individualized health monitoring and diagnostics has prompted considerable research into the integration of portable optical fiber biosensors integrated with smartphones. By capitalizing on the benefits offered by optical fibers, these biosensors enable qualitative and quantitative biosensing across a wide range of applications. The integration of these sensors with smartphones, which possess advanced computational power and versatile sensing capabilities, addresses the increasing need for portable and rapid sensing solutions. This extensive evaluation thoroughly examines the domain of optical fiber biosensors in conjunction with smartphones, including hardware complexities, sensing approaches, and integration methods. Additionally, it explores a wide range of applications, including physiological and chemical biosensing. Furthermore, the review provides an analysis of the challenges that have been identified in this rapidly evolving area of research and concludes with relevant suggestions for the progression of the field.
Collapse
Affiliation(s)
- Chengwei Yang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
| | - Zhuo Wang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
| | - Kun Xiao
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Nikolai Ushakov
- Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Santosh Kumar
- Department of Electronics and Communication Engineering, K L Deemed to be University, Guntur, Andhra Pradesh 522302, India
| | - Xiaoli Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou 510335, China
| | - Rui Min
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
10
|
Xu N, Xiao M, Yu Z, Jin B, Yang M, Yi C. On-site quantitation of xanthine in fish and serum using a smartphone-based spectrophotometer integrated with a dual-readout nanosensing assay. Food Chem 2024; 431:137107. [PMID: 37562333 DOI: 10.1016/j.foodchem.2023.137107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Rapid and quantitative biochemical analysis at points-of-need is imperative for food safety inspection. This work reports on: 1) a stand-alone smartphone-based "two-in-one" spectrophotometer (the SAFS) installed with a self-developed application (the SAFS-App) which can precisely collect both absorption spectra and fluorescence spectra in a reproducible manner within 5 s; and 2) a straightforward protocol for xanthine detection using fluorescent carbon nanodots and silver nanoparticles. The assay performed with the SAFS demonstrates high specificity towards xanthine, and a linear range of 1-60 μM with LODs of 0.38 and 0.58 μM for colorimetric and fluorometric readouts, respectively. The reliability and robustness of the SAFS are validated by on-site quantitation of xanthine in fish and serum samples, with comparable accuracy to HPLC method. More importantly, the SAFS presents itself as an appealing device which is accessible to everyone through the Internet of Things and can be tailored for diverse point-of-care testing applications.
Collapse
Affiliation(s)
- Ningxia Xu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments, Sun Yat-Sen University, Guangzhou 510275, China; Department of Medical Equipment, Hospital of Jiangxi University of Traditional Chinese Medicine (Jiangxi Provincial Hospital of Traditional Chinese Medicine), Nanchang, Jiangxi 330000, China
| | - Meng Xiao
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments, Sun Yat-Sen University, Guangzhou 510275, China; Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Zipei Yu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments, Sun Yat-Sen University, Guangzhou 510275, China
| | - Baohui Jin
- Food Inspection and Quarantine Center, Shenzhen Customs, Shenzhen 518033, China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Changqing Yi
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments, Sun Yat-Sen University, Guangzhou 510275, China; Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen 518057, China.
| |
Collapse
|
11
|
Bachir W. Diffuse transmittance visible spectroscopy using smartphone flashlight for photoplethysmography and vital signs measurements. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123181. [PMID: 37506454 DOI: 10.1016/j.saa.2023.123181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Photoplethysmography (PPG), with its wide range of applications, has become one of the most promising modalities for healthcare monitoring technology. In this work, we present a new PPG measurement technique based on diffuse transmittance spectroscopy (DTS) with the help of a smartphone built-in flashlight as an alternative broadband light source. The blood Volume Pulse (BVP) signal was extracted from recorded transmittance spectra at 620 nm. The results were compared with the ground truth and conventional contact finger PPG sensors. A very high correlation was found between the diffuse transmittance signal and the reference PPG signals (r = 0.997, p < 0.0001). The accuracy and root mean square error (RMSE) were 99.23% and 0.8 bpm, respectively. In addition, a Bland-Altman analysis showed a good agreement between both techniques, with a very small bias between mean paired differences of heart rate observations. A simple forward model for diffuse transmittance spectra for different levels of blood oxygen saturation is developed and supported by experimental measurements. It was also found that blood oxygen saturation (SpO2) can be estimated with the aid of DTS based smartphone flash by tracking the wavelength corresponding to the oxygenation level in the visible range between orange and red regions of the visible spectrum particularly in the range between 610 and 635 nm for 26 healthy subjects. 624 nm on average seems to be the wavelength that corresponds with the normal blood oxygenation level. These findings show the potential of DTS PPG to reliably extract cardiac frequency and estimate SpO2 with adequate accuracy. The results also demonstrate the capability of smartphone flash as a miniature visible light source for recording multispectral PPG signals and quantifying vital signs in the transmission mode at the fingertip with acceptable signal quality over a wide range of wavelengths from 550 nm to 650 nm.
Collapse
Affiliation(s)
- Wesam Bachir
- Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, Św. A. Boboli 8 St., Warsaw 02-525, Poland; Biomedical Photonics Laboratory, Higher Institute for Laser Research and Applications, Damascus University, Damascus, Syria
| |
Collapse
|
12
|
Soliman C, Faircloth J, Tu D, Mabbott S, Maitland K, Coté G. Exploring the Clinical Utility of Raman Spectroscopy for Point-of-Care Cardiovascular Disease Biomarker Detection. APPLIED SPECTROSCOPY 2023; 77:1181-1193. [PMID: 37487187 DOI: 10.1177/00037028231187963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
A variety of innovative point-of-care (POC) solutions using Raman systems have been explored. However, the vast effort is in assay development, while studies of the characteristics required for Raman spectrometers to function in POC applications are lacking. In this study, we tested and compared the performance of eight commercial Raman spectrometers ranging in size from benchtop Raman microscopes to portable and handheld Raman spectrometers using paper fluidic cartridges, including their ability to detect cardiac troponin I and heart fatty acid binding protein, both of which are well-established biomarkers for evaluating cardiovascular health. Each spectrometer was evaluated in terms of excitation wavelength, laser characteristics, and ease of use to investigate POC utility. We found that the Raman spectrometers equipped with 780 and 785 nm laser sources exhibited a reduced background signal and provided higher sensitivity compared to those with 633 and 638 nm laser sources. Furthermore, the spectrometer equipped with the single acquisition line readout functionality showed improved performance when compared to the point scan spectrometers and allowed measurements to be made faster and easier. The portable and handheld spectrometers also showed similar detection sensitivity to the gold standard instrument. Lastly, we reduced the laser power for the spectrometer with single acquisition line readout capability to explore the system performance at a laser power that change the classification from a Class 3B laser device to a Class 3R device and found that it showed comparable performance. Overall, these findings show that portable Raman spectrometers have the potential to be used in POC settings with accuracy comparable to laboratory-grade instruments, are relatively low-cost, provide fast signal readout, are easy to use, and can facilitate access for underserved communities.
Collapse
Affiliation(s)
- Cyril Soliman
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | | | - Dandan Tu
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Samuel Mabbott
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
- Texas A&M Engineering Experiment Station, Center for Remote Health Technologies and Systems, College Station, Texas, USA
| | - Kristen Maitland
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
- Texas A&M Engineering Experiment Station, Center for Remote Health Technologies and Systems, College Station, Texas, USA
- Imaging Program, Chan Zuckerberg Initiative, Redwood City, California, USA
| | - Gerard Coté
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
- Texas A&M Engineering Experiment Station, Center for Remote Health Technologies and Systems, College Station, Texas, USA
| |
Collapse
|
13
|
Malone JD, Hussain I, Bowden AK. SmartOCT: smartphone-integrated optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:3138-3151. [PMID: 37497502 PMCID: PMC10368059 DOI: 10.1364/boe.492439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 07/28/2023]
Abstract
Smartphone devices have seen unprecedented technical innovation in computational power and optical imaging capabilities, making them potentially invaluable tools in scientific imaging applications. The smartphone's compact form-factor and broad accessibility has motivated researchers to develop smartphone-integrated imaging systems for a wide array of applications. Optical coherence tomography (OCT) is one such technique that could benefit from smartphone-integration. Here, we demonstrate smartOCT, a smartphone-integrated OCT system that leverages built-in components of a smartphone for detection, processing and display of OCT data. SmartOCT uses a broadband visible-light source and line-field OCT design that enables snapshot 2D cross-sectional imaging. Furthermore, we describe methods for processing smartphone data acquired in a RAW data format for scientific applications that improves the quality of OCT images. The results presented here demonstrate the potential of smartphone-integrated OCT systems for low-resource environments.
Collapse
Affiliation(s)
- Joseph D. Malone
- Vanderbilt University, Dept. of Biomedical Engineering, Nashville, TN
37235, USA
- Vanderbilt University, Vanderbilt Biophotonics Center, Nashville, TN
37235, USA
| | - Iftak Hussain
- Vanderbilt University, Dept. of Biomedical Engineering, Nashville, TN
37235, USA
- Vanderbilt University, Vanderbilt Biophotonics Center, Nashville, TN
37235, USA
| | - Audrey K. Bowden
- Vanderbilt University, Dept. of Biomedical Engineering, Nashville, TN
37235, USA
- Vanderbilt University, Vanderbilt Biophotonics Center, Nashville, TN
37235, USA
- Vanderbilt University, Dept. of Electrical and Computer Engineering,
Nashville, TN 37235, USA
- Vanderbilt University, Vanderbilt Institute of Global Health, Nashville,
TN 37235, USA
| |
Collapse
|
14
|
Peng Z, Zhang Y, Choi CLR, Zhang P, Wu T, Chan YK. Continuous roller nanoimprinting: next generation lithography. NANOSCALE 2023. [PMID: 37376894 DOI: 10.1039/d2nr06380h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Nanoimprint lithography (NIL) is a cost-effective and high-throughput technique for replicating nanoscale structures that does not require expensive light sources for advanced photolithography equipment. NIL overcomes the limitations of light diffraction or beam scattering in traditional photolithography and is suitable for replicating nanoscale structures with high resolution. Roller nanoimprint lithography (R-NIL) is the most common NIL technique benefiting large-scale, continuous, and efficient industrial production. In the past two decades, a range of R-NIL equipment has emerged to meet the industrial needs for applications including biomedical devices, semiconductors, flexible electronics, optical films, and interface functional materials. R-NIL equipment has a simple and compact design, which allows multiple units to be clustered together for increased productivity. These units include transmission control, resist coating, resist curing, and imprinting. This critical review summarizes the hitherto R-NIL processes, their typical technical problems, and corresponding solutions and gives guidelines for developing advanced R-NIL equipment.
Collapse
Affiliation(s)
- Zhiting Peng
- Department of Ophthalmology, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Yage Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chin Long Ronald Choi
- Department of Ophthalmology, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Pengcheng Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China.
| | - Tianzhun Wu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China.
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
15
|
Ji Y, Park SM, Kwon S, Leem JW, Nair VV, Tong Y, Kim YL. mHealth hyperspectral learning for instantaneous spatiospectral imaging of hemodynamics. PNAS NEXUS 2023; 2:pgad111. [PMID: 37113981 PMCID: PMC10129064 DOI: 10.1093/pnasnexus/pgad111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/23/2023] [Indexed: 04/29/2023]
Abstract
Hyperspectral imaging acquires data in both the spatial and frequency domains to offer abundant physical or biological information. However, conventional hyperspectral imaging has intrinsic limitations of bulky instruments, slow data acquisition rate, and spatiospectral trade-off. Here we introduce hyperspectral learning for snapshot hyperspectral imaging in which sampled hyperspectral data in a small subarea are incorporated into a learning algorithm to recover the hypercube. Hyperspectral learning exploits the idea that a photograph is more than merely a picture and contains detailed spectral information. A small sampling of hyperspectral data enables spectrally informed learning to recover a hypercube from a red-green-blue (RGB) image without complete hyperspectral measurements. Hyperspectral learning is capable of recovering full spectroscopic resolution in the hypercube, comparable to high spectral resolutions of scientific spectrometers. Hyperspectral learning also enables ultrafast dynamic imaging, leveraging ultraslow video recording in an off-the-shelf smartphone, given that a video comprises a time series of multiple RGB images. To demonstrate its versatility, an experimental model of vascular development is used to extract hemodynamic parameters via statistical and deep learning approaches. Subsequently, the hemodynamics of peripheral microcirculation is assessed at an ultrafast temporal resolution up to a millisecond, using a conventional smartphone camera. This spectrally informed learning method is analogous to compressed sensing; however, it further allows for reliable hypercube recovery and key feature extractions with a transparent learning algorithm. This learning-powered snapshot hyperspectral imaging method yields high spectral and temporal resolutions and eliminates the spatiospectral trade-off, offering simple hardware requirements and potential applications of various machine learning techniques.
Collapse
Affiliation(s)
- Yuhyun Ji
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Sang Mok Park
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Semin Kwon
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jung Woo Leem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | - Yunjie Tong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Young L Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47906, USA
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN 47907, USA
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
16
|
Holman JB, Shi Z, Fadahunsi AA, Li C, Ding W. Advances on microfluidic paper-based electroanalytical devices. Biotechnol Adv 2023; 63:108093. [PMID: 36603801 DOI: 10.1016/j.biotechadv.2022.108093] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Since the inception of the first electrochemical devices on paper substrates, many different reports of microfluidic paper-based electroanalytical devices (μPEDs), innovative hydrophobic barriers and electrode fabrication processes have allowed the incorporation of diverse materials, resulting in different applications and a boost in performance. These advancements have led to the creation of paper-based devices with comparable performance to many standard conventional devices, with the added benefits of pumpless fluidic transport, component separation and reagent storage that can be exploited to automate and handle sample preprocessing. Herein, we review μPEDs, summarize the characteristics and functionalities of μPEDs, such as separation, fluid flow control and storage, and outline the conventional and emerging fabrication and modification approaches for μPEDs. We also examine the recent application of μPEDs in biomedicine, the environment, and food and water safety, as well as some limitations and challenges that must be addressed.
Collapse
Affiliation(s)
- Joseph Benjamin Holman
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhengdi Shi
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Adeola A Fadahunsi
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chengpan Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Weiping Ding
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
17
|
Salam MA, Al-Amin MY, Pawar JS, Akhter N, Lucy IB. Conventional methods and future trends in antimicrobial susceptibility testing. Saudi J Biol Sci 2023; 30:103582. [PMID: 36852413 PMCID: PMC9958398 DOI: 10.1016/j.sjbs.2023.103582] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/07/2023] [Accepted: 01/29/2023] [Indexed: 02/12/2023] Open
Abstract
Antimicrobial susceptibility testing is an essential task for selecting appropriate antimicrobial agents to treat infectious diseases. Constant evolution has been observed in methods used in the diagnostic microbiology laboratories. Disc diffusion or broth microdilution are classical and conventional phenotypic methods with long turnaround time and labour-intensive but still widely practiced as gold-standard. Scientists are striving to develop innovative, novel and faster methods of antimicrobial susceptibility testing to be applicable for routine microbiological laboratory practice and research. To meet the requirements, there is an increasing trend towards automation, genotypic and micro/nano technology-based innovations. Automation in detection systems and integration of computers for online data analysis and data sharing are giant leaps towards versatile nature of automated methods currently in use. Genotypic methods detect a specific genetic marker associated with resistant phenotypes using molecular amplification techniques and genome sequencing. Microfluidics and microdroplets are recent addition in the continuous advancement of methods that show great promises with regards to safety and speed and have the prospect to identify and monitor resistance mechanisms. Although genotypic and microfluidics methods have many exciting features, however, their applications into routine clinical laboratory practice warrant extensive validation. The main impetus behind the evolution of methods in antimicrobial susceptibility testing is to shorten the overall turnaround time in obtaining the results and to enhance the ease of sample processing. This comprehensive narrative review summarises major conventional phenotypic methods and automated systems currently in use, and highlights principles of some of the emerging genotypic and micro/nanotechnology-based methods in antimicrobial susceptibility testing.
Collapse
Key Words
- ADR, Adverse drug reaction
- AMR, Antimicrobial resistance
- AST, Antimicrobial susceptibility testing
- ATCC, American Type Culture Collection
- Advantages and disadvantages
- Antimicrobial susceptibility testing
- Automations
- CFU, Colony forming units
- CLSI, Clinical & Laboratory Standards Institute
- Conventional methods
- DOT-MGA, Direct-On-Target Microdroplet Growth Assay
- EUCAST, European Committee on Antimicrobial Susceptibility Testing
- Etest, Epsilometer testing
- Genotypic methods
- ID, Identification
- MALDI-TOF MS, Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry
- MBC, Minimum bactericidal concentration
- MDR, Multi drug resistant
- MHA, Muller Hinton Agar
- MIC, Minimum inhibitory concentration
- Micro/nanotechnology-based techniques
- NAAT, Nucleic Acid Amplification Test
- PCR, Polymerase chain reaction
- PMF, Peptide mass fingerprint
- POC, Point of care
- WGS, Whole Genome Sequencing
- ZOI, Zone of inhibition
Collapse
Affiliation(s)
- Md. Abdus Salam
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Malaysia
| | - Md. Yusuf Al-Amin
- Purdue University Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, IN, USA,Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Jogendra Singh Pawar
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Naseem Akhter
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Irine Banu Lucy
- Department of Physics, University of Rajshahi, Rajshahi 6205, Bangladesh,Corresponding author at: Department of Physics, University of Rajshahi, Rajshahi 6205, Bangladesh.
| |
Collapse
|
18
|
Chabi M, Vu B, Brosamer K, Smith M, Chavan D, Conrad JC, Willson RC, Kourentzi K. Smartphone-read phage lateral flow assay for point-of-care detection of infection. Analyst 2023; 148:839-848. [PMID: 36645184 PMCID: PMC10503656 DOI: 10.1039/d2an01499h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The COVID-19 pandemic has highlighted the urgent need for sensitive, affordable, and widely accessible testing at the point of care. Here we demonstrate a new, universal LFA platform technology using M13 phage conjugated with antibodies and HRP enzymes that offers high analytical sensitivity and excellent performance in a complex clinical matrix. We also report its complete integration into a sensitive chemiluminescence-based smartphone-readable lateral flow assay for the detection of SARS-CoV-2 nucleoprotein. We screened 84 anti-nucleoprotein monoclonal antibody pairs in phage LFA and identified an antibody pair that gave an LoD of 25 pg mL-1 nucleoprotein in nasal swab extract using a FluorChem gel documentation system and 100 pg mL-1 when the test was imaged and analyzed by an in-house-developed smartphone reader. The smartphone-read LFA signals for positive clinical samples tested (N = 15, with known Ct) were statistically different (p < 0.001) from signals for negative clinical samples (N = 11). The phage LFA technology combined with smartphone chemiluminescence imaging can enable the timely development of ultrasensitive, affordable point-of-care testing platforms for SARS-CoV-2 and beyond.
Collapse
Affiliation(s)
- Maede Chabi
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA.
| | - Binh Vu
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA.
| | - Kristen Brosamer
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA.
| | - Maxwell Smith
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA.
| | - Dimple Chavan
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA.
| | - Richard C Willson
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA.
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA.
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
- Escuela de Medicina y Ciencias de Salud, Tecnológico de Monterrey, Monterrey, Nuevo León 64710, Mexico
| | - Katerina Kourentzi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA.
| |
Collapse
|
19
|
Ross G, Zhao Y, Bosman A, Geballa-Koukoula A, Zhou H, Elliott C, Nielen M, Rafferty K, Salentijn G. Data handling and ethics of emerging smartphone-based (bio)sensors – Part 1: Best practices and current implementation. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
20
|
Computational Portable Microscopes for Point-of-Care-Test and Tele-Diagnosis. Cells 2022; 11:cells11223670. [PMID: 36429102 PMCID: PMC9688637 DOI: 10.3390/cells11223670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
In bio-medical mobile workstations, e.g., the prevention of epidemic viruses/bacteria, outdoor field medical treatment and bio-chemical pollution monitoring, the conventional bench-top microscopic imaging equipment is limited. The comprehensive multi-mode (bright/dark field imaging, fluorescence excitation imaging, polarized light imaging, and differential interference microscopy imaging, etc.) biomedical microscopy imaging systems are generally large in size and expensive. They also require professional operation, which means high labor-cost, money-cost and time-cost. These characteristics prevent them from being applied in bio-medical mobile workstations. The bio-medical mobile workstations need microscopy systems which are inexpensive and able to handle fast, timely and large-scale deployment. The development of lightweight, low-cost and portable microscopic imaging devices can meet these demands. Presently, for the increasing needs of point-of-care-test and tele-diagnosis, high-performance computational portable microscopes are widely developed. Bluetooth modules, WLAN modules and 3G/4G/5G modules generally feature very small sizes and low prices. And industrial imaging lens, microscopy objective lens, and CMOS/CCD photoelectric image sensors are also available in small sizes and at low prices. Here we review and discuss these typical computational, portable and low-cost microscopes by refined specifications and schematics, from the aspect of optics, electronic, algorithms principle and typical bio-medical applications.
Collapse
|
21
|
Liu D, Wu X, Liang J, Wang T, Wan X. An improved spectral estimation method based on color perception features of mobile phone camera. Front Neurosci 2022; 16:1031505. [PMID: 36340788 PMCID: PMC9626758 DOI: 10.3389/fnins.2022.1031505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
We use the mobile phone camera as a new spectral imaging device to obtain raw responses of samples for spectral estimation and propose an improved sequential adaptive weighted spectral estimation method. First, we verify the linearity of the raw response of the cell phone camera and investigate its feasibility for spectral estimation experiments. Then, we propose a sequential adaptive spectral estimation method based on the CIE1976 L*a*b* (CIELAB) uniform color space color perception feature. The first stage of the method is to weight the training samples and perform the first spectral reflectance estimation by considering the Lab color space color perception features differences between samples, and the second stage is to adaptively select the locally optimal training samples and weight them by the first estimated root mean square error (RMSE), and perform the second spectral reconstruction. The novelty of the method is to weight the samples by using the sample in CIELAB uniform color space perception features to more accurately characterize the color difference. By comparing with several existing methods, the results show that the method has the best performance in both spectral error and chromaticity error. Finally, we apply this weighting strategy based on the CIELAB color space color perception feature to the existing method, and the spectral estimation performance is greatly improved compared with that before the application, which proves the effectiveness of this weighting method.
Collapse
Affiliation(s)
- Duan Liu
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, China
| | - Xinwei Wu
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, China
| | - Jinxing Liang
- School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, China
| | - Tengfeng Wang
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, China
| | - Xiaoxia Wan
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, China
- Hubei Province Engineering Technical Center for Digitization and Virtual Reproduction of Color Information of Cultural Relics, Wuhan, China
- *Correspondence: Xiaoxia Wan,
| |
Collapse
|
22
|
Hao S, Xiong Y, Zheng M, Wang J. Bimodal polarization-sensitive imaging and diffuse reflectance spectroscopy facilitated rapid augmented reality for tissue stratification. JOURNAL OF BIOPHOTONICS 2022; 15:e202200101. [PMID: 35852139 DOI: 10.1002/jbio.202200101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
We reported the development of a bimodal large field of view (~95 cm2 ) polarization-sensitive (PS) imaging and point-wise diffuse reflectance (DR) spectroscopy platform synergising the advantages of the two modalities. PS-DR spectroscopy allows simultaneous label-free biochemical and structural analysis of the investigated tissue. For real applications, the PS imaging first grossly stratified tissue into different categories, followed by high information dimension PS-DR spectroscopy ascertaining ambiguous tissue regions identified by the PS imaging. Tested on a tissue phantom consisting of porcine esophagus muscularis propria and submucosa, it has demonstrated the system developed could complete tissue interrogation within 0.6 minutes and with separation accuracy of 95.87%. Further test on tissue phantom consisting of natural and crushed bovine tendon mimicking normal and cancerous breast tissues validated the potential of system developed to effectively and rapidly investigate large tissue area, facilitating augmented tissue boundary demarcation.
Collapse
Affiliation(s)
- Shicheng Hao
- Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China, School of Optics and Photonics, Beijing Institute of Technology, Beijing, China
| | - Ying Xiong
- Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China, School of Optics and Photonics, Beijing Institute of Technology, Beijing, China
| | - Meng Zheng
- Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China, School of Optics and Photonics, Beijing Institute of Technology, Beijing, China
| | - Jianfeng Wang
- Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China, School of Optics and Photonics, Beijing Institute of Technology, Beijing, China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
23
|
Shukla S, Sah AN, Hatiboruah D, Ahirwar S, Nath P, Pradhan A. Design, fabrication and testing of 3D printed smartphone-based device for collection of intrinsic fluorescence from human cervix. Sci Rep 2022; 12:11192. [PMID: 35778460 PMCID: PMC9249735 DOI: 10.1038/s41598-022-15007-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022] Open
Abstract
Fluorescence spectroscopy has the potential to identify discriminatory signatures, crucial for early diagnosis of cervical cancer. We demonstrate here the design, fabrication and testing of a 3D printed smartphone based spectroscopic device. Polarized fluorescence and elastic scattering spectra are captured through the device using a 405 nm laser and a white LED source respectively. The device has been calibrated by comparison of spectra of standard fluorophores (Flavin adenine dinucleotide, fluorescein, rhodamine, and porphyrin) with the corresponding spectra collected from a commercial spectrometer. A few cervical tissue spectra have also been captured for proof of its applicability as a portable, standalone device for the collection of intrinsic fluorescence spectra from human cervix.
Collapse
Affiliation(s)
- Shivam Shukla
- Center for Lasers and Photonics, IIT Kanpur, Kanpur, 208016, India
| | - Amar Nath Sah
- Department of Biological sciences and Bioengineering, IIT Kanpur, Kanpur, 208016, India
| | | | - Shikha Ahirwar
- PhotoSpIMeDx Pvt. Ltd., SIIC, IIT Kanpur, Kanpur, 208016, India
| | - Pabitra Nath
- Department of Physics, Tezpur University, Tezpur, 784028, India
| | - Asima Pradhan
- Center for Lasers and Photonics, IIT Kanpur, Kanpur, 208016, India. .,Department of Physics, IIT Kanpur, Kanpur, 208016, India.
| |
Collapse
|
24
|
Tominaga S, Nishi S, Ohtera R, Sakai H. Improved method for spectral reflectance estimation and application to mobile phone cameras. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:494-508. [PMID: 35297433 DOI: 10.1364/josaa.449347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
We propose an improved method for estimating surface-spectral reflectance from the image data acquired by an RGB digital camera. We suppose a multispectral image acquisition system in the visible range, where a camera captures multiple images for the scene of an object under multiple light sources. First, the observed image data are described using the camera spectral sensitivities, the surface-spectral reflectance, the illuminant spectral power distributions, an additive noise term, and a gain parameter. Then, the optimal reflectance estimate is determined to minimize the mean-square error between the estimate and the original surface-spectral reflectance. We attempt to further improve the estimation accuracy and develop a novel linear estimator in a more general form than the Wiener estimator. Furthermore, we calibrate the imaging system using a reference standard sample. Finally, experiments are performed to validate the proposed method for estimating the surface-spectral reflectance using different mobile phone cameras.
Collapse
|
25
|
Gomez-Gonzalez E, Barriga-Rivera A, Fernandez-Muñoz B, Navas-Garcia JM, Fernandez-Lizaranzu I, Munoz-Gonzalez FJ, Parrilla-Giraldez R, Requena-Lancharro D, Gil-Gamboa P, Rosell-Valle C, Gomez-Gonzalez C, Mayorga-Buiza MJ, Martin-Lopez M, Muñoz O, Gomez-Martin JC, Relimpio-Lopez MI, Aceituno-Castro J, Perales-Esteve MA, Puppo-Moreno A, Garcia-Cozar FJ, Olvera-Collantes L, Gomez-Diaz R, de Los Santos-Trigo S, Huguet-Carrasco M, Rey M, Gomez E, Sanchez-Pernaute R, Padillo-Ruiz J, Marquez-Rivas J. Optical imaging spectroscopy for rapid, primary screening of SARS-CoV-2: a proof of concept. Sci Rep 2022; 12:2356. [PMID: 35181702 PMCID: PMC8857323 DOI: 10.1038/s41598-022-06393-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Effective testing is essential to control the coronavirus disease 2019 (COVID-19) transmission. Here we report a-proof-of-concept study on hyperspectral image analysis in the visible and near-infrared range for primary screening at the point-of-care of SARS-CoV-2. We apply spectral feature descriptors, partial least square-discriminant analysis, and artificial intelligence to extract information from optical diffuse reflectance measurements from 5 µL fluid samples at pixel, droplet, and patient levels. We discern preparations of engineered lentiviral particles pseudotyped with the spike protein of the SARS-CoV-2 from those with the G protein of the vesicular stomatitis virus in saline solution and artificial saliva. We report a quantitative analysis of 72 samples of nasopharyngeal exudate in a range of SARS-CoV-2 viral loads, and a descriptive study of another 32 fresh human saliva samples. Sensitivity for classification of exudates was 100% with peak specificity of 87.5% for discernment from PCR-negative but symptomatic cases. Proposed technology is reagent-free, fast, and scalable, and could substantially reduce the number of molecular tests currently required for COVID-19 mass screening strategies even in resource-limited settings.
Collapse
Affiliation(s)
- Emilio Gomez-Gonzalez
- Department of Applied Physics III, ETSI School of Engineering, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092, Sevilla, Spain. .,Institute of Biomedicine of Seville (IBIS), 41013, Sevilla, Spain.
| | - Alejandro Barriga-Rivera
- Department of Applied Physics III, ETSI School of Engineering, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092, Sevilla, Spain.,School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Beatriz Fernandez-Muñoz
- Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas, Consejería de Salud y Familias, Junta de Andalucía, 41092, Sevilla, Spain
| | | | - Isabel Fernandez-Lizaranzu
- Department of Applied Physics III, ETSI School of Engineering, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092, Sevilla, Spain.,Institute of Biomedicine of Seville (IBIS), 41013, Sevilla, Spain
| | - Francisco Javier Munoz-Gonzalez
- Department of Applied Physics III, ETSI School of Engineering, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092, Sevilla, Spain
| | | | - Desiree Requena-Lancharro
- Department of Applied Physics III, ETSI School of Engineering, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092, Sevilla, Spain
| | - Pedro Gil-Gamboa
- Department of Applied Physics III, ETSI School of Engineering, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092, Sevilla, Spain
| | - Cristina Rosell-Valle
- Institute of Biomedicine of Seville (IBIS), 41013, Sevilla, Spain.,Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas, Consejería de Salud y Familias, Junta de Andalucía, 41092, Sevilla, Spain
| | - Carmen Gomez-Gonzalez
- Service of Intensive Care, University Hospital 'Virgen del Rocio', 41013, Sevilla, Spain.,Department of Medicine, College of Medicine, Universidad de Sevilla, 41009, Seville, Spain
| | - Maria Jose Mayorga-Buiza
- Institute of Biomedicine of Seville (IBIS), 41013, Sevilla, Spain.,Service of Anesthesiology, University Hospital 'Virgen del Rocio', 41013, Sevilla, Spain.,Department of Surgery, College of Medicine, Universidad de Sevilla, 41009, Seville, Spain
| | - Maria Martin-Lopez
- Institute of Biomedicine of Seville (IBIS), 41013, Sevilla, Spain.,Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas, Consejería de Salud y Familias, Junta de Andalucía, 41092, Sevilla, Spain
| | - Olga Muñoz
- Instituto de Astrofísica de Andalucía, CSIC, 18008, Granada, Spain
| | | | - Maria Isabel Relimpio-Lopez
- Department of Surgery, College of Medicine, Universidad de Sevilla, 41009, Seville, Spain.,Department of Ophthalmology, University Hospital 'Virgen Macarena', 41009, Sevilla, Spain.,OftaRed, Institute of Health 'Carlos III', 28029, Madrid, Spain
| | - Jesus Aceituno-Castro
- Instituto de Astrofísica de Andalucía, CSIC, 18008, Granada, Spain.,Centro Astronomico Hispano Alemán, 04550, Almeria, Spain
| | - Manuel A Perales-Esteve
- Department of Electronic Engineering, ETSI School of Engineering, Universidad de Sevilla, 41092, Sevilla, Spain
| | - Antonio Puppo-Moreno
- Service of Intensive Care, University Hospital 'Virgen del Rocio', 41013, Sevilla, Spain.,Department of Medicine, College of Medicine, Universidad de Sevilla, 41009, Seville, Spain
| | | | - Lucia Olvera-Collantes
- Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), 11009, Cadiz, Spain
| | | | | | | | | | - Emilia Gomez
- Joint Research Centre, European Commission, 41092, Sevilla, Spain
| | - Rosario Sanchez-Pernaute
- Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas, Consejería de Salud y Familias, Junta de Andalucía, 41092, Sevilla, Spain
| | - Javier Padillo-Ruiz
- Institute of Biomedicine of Seville (IBIS), 41013, Sevilla, Spain.,Department of Surgery, College of Medicine, Universidad de Sevilla, 41009, Seville, Spain.,Department of General Surgery, University Hospital 'Virgen del Rocío', 41013, Sevilla, Spain
| | - Javier Marquez-Rivas
- Institute of Biomedicine of Seville (IBIS), 41013, Sevilla, Spain.,Department of Surgery, College of Medicine, Universidad de Sevilla, 41009, Seville, Spain.,Service of Neurosurgery, University Hospital 'Virgen del Rocío', 41013, Sevilla, Spain.,Centre for Advanced Neurology, 41013, Sevilla, Spain
| |
Collapse
|
26
|
Angulo Barrios C. Smartphone-Based Refractive Index Optosensing Platform Using a DVD Grating. SENSORS 2022; 22:s22030903. [PMID: 35161649 PMCID: PMC8839442 DOI: 10.3390/s22030903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 01/07/2023]
Abstract
A low-cost, smartphone-based optical diffraction grating refractometer is demonstrated. Its principle of operation is based on the dependence of the diffraction efficiency of a DVD grating on the surrounding refractive index. The studied configuration uses the built-in LED flashlight and camera of a smartphone as a light source and a detector, respectively, to image the DVD grating diffraction pattern. No additional optical accessories, such as lenses, fibers, filters, or pinholes, are employed. The refractive index sensor exhibits a linear response in the refractive index range of 1.333–1.358 RIU (refractive index unit), with a sensitivity of 32.4 RIU−1 and a resolution of 2 × 10−3 RIU at the refractive index of water. This performance makes the proposed scheme suitable for affinity-based biosensing and a promising optosensing refractometric platform for point-of-need applications.
Collapse
Affiliation(s)
- Carlos Angulo Barrios
- Department of Photonics and Bioengineering, CEMDATIC, ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| |
Collapse
|
27
|
Hussain I, Locke A, Kight E, Malone JD, Haselton F, Bowden AK. A multi-channel smartphone-based spectroscopic system for high-throughput biosensing in low-resource settings. Analyst 2022; 147:3007-3016. [DOI: 10.1039/d2an00597b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Simultaneous detection of multiple samples can improve the effectiveness of the point-of-care strategies. We have demonstrated a novel optical system that allows detection of multiple analytes at the same time using a smartphone spectrometer.
Collapse
Affiliation(s)
- Iftak Hussain
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Andrea Locke
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Emily Kight
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Joseph D. Malone
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Frederick Haselton
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Audrey K. Bowden
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
28
|
Hunt B, Streeter SS, Ruiz AJ, Chapman MS, Pogue BW. Ultracompact fluorescence smartphone attachment using built-in optics for protoporphyrin-IX quantification in skin. BIOMEDICAL OPTICS EXPRESS 2021; 12:6995-7008. [PMID: 34858694 PMCID: PMC8606126 DOI: 10.1364/boe.439342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 05/02/2023]
Abstract
Smartphone-based fluorescence imaging systems have the potential to provide convenient quantitative image guidance at the point of care. However, common approaches have required the addition of complex optical attachments, which reduce translation potential. In this study, a simple clip-on attachment appropriate for fluorescence imaging of protoporphyrin-IX (PpIX) in skin was designed using the built-in light source and ultrawide camera sensor of a smartphone. Software control for image acquisition and quantitative analysis was developed using the 10-bit video capability of the phone. Optical performance was characterized using PpIX in liquid tissue phantoms and endogenously produced PpIX in mice and human skin. The proposed system achieves a very compact form factor (<30 cm3) and can be readily fabricated using widely available low-cost materials. The limit of detection of PpIX in optical phantoms was <10 nM, with good signal linearity from 10 to 1000 nM (R2 >0.99). Both murine and human skin imaging verified that in vivo PpIX fluorescence was detected within 1 hour of applying aminolevulinic acid (ALA) gel. This ultracompact handheld system for quantification of PpIX in skin is well-suited for dermatology clinical workflows. Due to its simplicity and form factor, the proposed system can be readily adapted for use with other smartphone devices and fluorescence imaging applications. Hardware design and software for the system is made freely available on GitHub (https://github.com/optmed/CompactFluorescenceCam).
Collapse
Affiliation(s)
- Brady Hunt
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Samuel S. Streeter
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Alberto J. Ruiz
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - M. Shane Chapman
- Geisel School of Medicine, Department of Dermatology, Hanover, New Hampshire 03755, USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA
| |
Collapse
|
29
|
Gomez-Gonzalez E, Fernandez-Muñoz B, Barriga-Rivera A, Navas-Garcia JM, Fernandez-Lizaranzu I, Munoz-Gonzalez FJ, Parrilla-Giraldez R, Requena-Lancharro D, Guerrero-Claro M, Gil-Gamboa P, Rosell-Valle C, Gomez-Gonzalez C, Mayorga-Buiza MJ, Martin-Lopez M, Muñoz O, Martin JCG, Lopez MIR, Aceituno-Castro J, Perales-Esteve MA, Puppo-Moreno A, Cozar FJG, Olvera-Collantes L, de Los Santos-Trigo S, Gomez E, Pernaute RS, Padillo-Ruiz J, Marquez-Rivas J. Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples. Sci Rep 2021; 11:16201. [PMID: 34376765 PMCID: PMC8355230 DOI: 10.1038/s41598-021-95756-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Optical spectroscopic techniques have been commonly used to detect the presence of biofilm-forming pathogens (bacteria and fungi) in the agro-food industry. Recently, near-infrared (NIR) spectroscopy revealed that it is also possible to detect the presence of viruses in animal and vegetal tissues. Here we report a platform based on visible and NIR (VNIR) hyperspectral imaging for non-contact, reagent free detection and quantification of laboratory-engineered viral particles in fluid samples (liquid droplets and dry residue) using both partial least square-discriminant analysis and artificial feed-forward neural networks. The detection was successfully achieved in preparations of phosphate buffered solution and artificial saliva, with an equivalent pixel volume of 4 nL and lowest concentration of 800 TU·\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu$$\end{document}μL−1. This method constitutes an innovative approach that could be potentially used at point of care for rapid mass screening of viral infectious diseases and monitoring of the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Emilio Gomez-Gonzalez
- Department of Applied Physics III, School of Engineering, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092, Sevilla, Spain. .,Institute of Biomedicine of Seville, 41013, Sevilla, Spain.
| | - Beatriz Fernandez-Muñoz
- Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas, 41092, Sevilla, Spain
| | - Alejandro Barriga-Rivera
- Department of Applied Physics III, School of Engineering, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092, Sevilla, Spain.,School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | | | - Isabel Fernandez-Lizaranzu
- Department of Applied Physics III, School of Engineering, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092, Sevilla, Spain.,Institute of Biomedicine of Seville, 41013, Sevilla, Spain
| | - Francisco Javier Munoz-Gonzalez
- Department of Applied Physics III, School of Engineering, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092, Sevilla, Spain
| | | | - Desiree Requena-Lancharro
- Department of Applied Physics III, School of Engineering, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092, Sevilla, Spain
| | - Manuel Guerrero-Claro
- Department of Applied Physics III, School of Engineering, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092, Sevilla, Spain
| | - Pedro Gil-Gamboa
- Department of Applied Physics III, School of Engineering, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092, Sevilla, Spain
| | - Cristina Rosell-Valle
- Institute of Biomedicine of Seville, 41013, Sevilla, Spain.,Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas, 41092, Sevilla, Spain
| | - Carmen Gomez-Gonzalez
- Service of Intensive Care, University Hospital 'Virgen del Rocio', 41013, Sevilla, Spain
| | - Maria Jose Mayorga-Buiza
- Institute of Biomedicine of Seville, 41013, Sevilla, Spain.,Service of Anaesthesiology, University Hospital 'Virgen del Rocio', 41013, Sevilla, Spain
| | - Maria Martin-Lopez
- Institute of Biomedicine of Seville, 41013, Sevilla, Spain.,Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas, 41092, Sevilla, Spain
| | - Olga Muñoz
- Instituto de Astrofísica de Andalucía, CSIC, 18008, Granada, Spain
| | | | - Maria Isabel Relimpio Lopez
- Department of Ophthalmology, University Hospital 'Virgen Macarena', 41009, Sevilla, Spain.,OftaRed, Institute of Health 'Carlos III', 28029, Madrid, Spain
| | - Jesus Aceituno-Castro
- Instituto de Astrofísica de Andalucía, CSIC, 18008, Granada, Spain.,Centro Astronomico Hispano Alemán, 04550, Almeria, Spain
| | - Manuel A Perales-Esteve
- Department of Electronic Engineering, School of Engineering, Universidad de Sevilla, 41092, Sevilla, Spain
| | - Antonio Puppo-Moreno
- Service of Intensive Care, University Hospital 'Virgen del Rocio', 41013, Sevilla, Spain
| | | | - Lucia Olvera-Collantes
- Instituto de Investigación E Innovación Biomedica de Cádiz (INIBICA), 11009, Cadiz, Spain
| | | | - Emilia Gomez
- Joint Research Centre, European Commission, 41092, Sevilla, Spain
| | - Rosario Sanchez Pernaute
- Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas, 41092, Sevilla, Spain
| | - Javier Padillo-Ruiz
- Institute of Biomedicine of Seville, 41013, Sevilla, Spain.,Department of General Surgery, University Hospital 'Virgen del Rocío', 41013, Sevilla, Spain
| | - Javier Marquez-Rivas
- Institute of Biomedicine of Seville, 41013, Sevilla, Spain.,Service of Neurosurgery, University Hospital 'Virgen del Rocío', 41013, Sevilla, Spain.,Centre for Advanced Neurology, 41013, Sevilla, Spain
| |
Collapse
|