1
|
Ping A, Haque R, Li NC, Eskandari R, Diop M. Minimum spectral resolution for continuous-wave hyperspectral near-infrared tissue spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:047002. [PMID: 40276012 PMCID: PMC12018911 DOI: 10.1117/1.jbo.30.4.047002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025]
Abstract
Significance Continuous-wave hyperspectral near-infrared spectroscopy (h-NIRS) is a reliable and cost-effective technique for noninvasive monitoring of tissue blood content and oxygenation at the point-of-care; however, most h-NIRS devices are based on expensive custom-built spectrometers. For widespread adoption, low-cost, miniature, off-the-shelf spectrometers are needed. To guide the development of such spectrometers, a standard for spectral resolution must first be defined. Aim We aim to identify the minimum spectral resolution needed for h-NIRS devices to accurately measure oxy- and deoxy-hemoglobin (HbO and Hb) concentrations in tissue. Approach h-NIRS measurements were acquired from fully oxygenated and deoxygenated blood-lipid phantoms at 13 spectral resolutions. Data for other oxygenation levels were simulated using NIRFAST. HbO and Hb concentrations were estimated at each resolution and compared with the ground truth hemoglobin concentration. Results The concentration of Hb was estimated with high accuracy for resolutions up to 10 nm, whereas HbO estimates were more variable. For both chromophores, the accuracy of the estimation gradually decreased with resolutions beyond 10 nm. Conclusions Spectral resolutions up to 10 nm can be used for h-NIRS without compromising the accuracy of estimating tissue blood content and oxygenation.
Collapse
Affiliation(s)
- Ann Ping
- University of Toronto, Department of Mechanical and Industrial Engineering, Toronto, Ontario, Canada
| | - Redwan Haque
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Natalie C. Li
- Western University, School of Biomedical Engineering, London, Ontario, Canada
| | - Rasa Eskandari
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Imaging Program, Lawson Research Institute, London, Ontario, Canada
| | - Mamadou Diop
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Western University, School of Biomedical Engineering, London, Ontario, Canada
- Imaging Program, Lawson Research Institute, London, Ontario, Canada
| |
Collapse
|
2
|
Nakano W, Yokoyama S, Sato H. Brain Abnormalities During Self-Referential Task in Subthreshold Depression: A Near-Infrared Spectroscopy Study. Cureus 2024; 16:e75351. [PMID: 39781147 PMCID: PMC11707451 DOI: 10.7759/cureus.75351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2024] [Indexed: 01/12/2025] Open
Abstract
Background and aim Subthreshold depression is a potential risk factor for major depressive disorder. Although the neurobiological mechanism underlying major depressive disorder is well-established, the mechanism underlying subthreshold depression has not yet been fully elucidated. We investigated the characteristics of brain abnormalities in participants with subthreshold depression using near-infrared spectroscopy (NIRS) owing to its portability. Methods A total of 53 college students were recruited, and all participants performed three tasks: self-referential task (SRT), verbal fluency task (VFT), and category fluency task (CFT). Hemodynamic changes in the prefrontal cortex (PFC) during the tasks were also measured using NIRS. A generalized linear model was employed for the NIRS data analysis. Subsequently, we evaluated the relationship between depressive severity and NIRS data during task performance. Results Our analysis revealed a positive correlation between hemodynamic changes in the right PFC during the SRT and depression severity (SRTL_coeff: 0.12), suggesting that increased activation in this region may be associated with higher levels of depressive severity. In contrast, hemodynamic changes in the left PFC during the SRT did not significantly influence the severity of depression. Additionally, hemodynamic changes during the VFT and CFT did not significantly influence the severity of depression. Conclusions Hyperactivation of the right PFC, which is a characteristic of subthreshold depression, may cause a negative bias, leading to high sensitivity to negative stimuli. These results provide novel insights into the neural mechanism of subthreshold depression and highlight the utility of NIRS for evaluating brain function related to negative bias in the right PFC.
Collapse
Affiliation(s)
- Waka Nakano
- Division of Humanities and Social Sciences, Graduate School of Humanities and Social Sciences, Hiroshima University, Higashihiroshima, JPN
| | - Satoshi Yokoyama
- Department of Humanities, Faculty of Humanities, Niigata University, Niigata, JPN
| | - Hiroshi Sato
- Department of Integrated Psychological Sciences, School of Humanities, Kwansei Gakuin University, Nishinomiya, JPN
| |
Collapse
|
3
|
Shin YS, Hung KS, Tsai CT, Wu MH, Lin CL, Hsueh YY. Validation of multispectral imaging-based tissue oxygen saturation detecting system for wound healing recognition on open wounds. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:086004. [PMID: 39139703 PMCID: PMC11321076 DOI: 10.1117/1.jbo.29.8.086004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
Significance The multispectral imaging-based tissue oxygen saturation detecting (TOSD) system offers deeper penetration ( ∼ 2 to 3 mm) and comprehensive tissue oxygen saturation (StO 2 ) assessment and recognizes the wound healing phase at a low cost and computational requirement. The potential for miniaturization and integration of TOSD into telemedicine platforms could revolutionize wound care in the challenging pandemic era. Aim We aim to validate TOSD's application in detectingStO 2 by comparing it with wound closure rates and laser speckle contrast imaging (LSCI), demonstrating TOSD's ability to recognize the wound healing process. Approach Utilizing a murine model, we compared TOSD with digital photography and LSCI for comprehensive wound observation in five mice with 6-mm back wounds. Sequential biochemical analysis of wound discharge was investigated for the translational relevance of TOSD. Results TOSD demonstrated constant signals on unwounded skin with differential changes on open wounds. Compared with LSCI, TOSD provides indicative recognition of the proliferative phase during wound healing, with a higher correlation coefficient to wound closure rate (TOSD: 0.58; LSCI: 0.44).StO 2 detected by TOSD was further correlated with proliferative phase angiogenesis markers. Conclusions Our findings suggest TOSD's enhanced utility in wound management protocols, evaluating clinical staging and therapeutic outcomes. By offering a noncontact, convenient monitoring tool, TOSD can be applied to telemedicine, aiming to advance wound care and regeneration, potentially improving patient outcomes and reducing healthcare costs associated with chronic wounds.
Collapse
Affiliation(s)
- Yi-Syuan Shin
- National Cheng Kung University, College of Medicine, National Cheng Kung University Hospital, Department of Surgery, Division of Plastic and Reconstructive Surgery, Tainan, Taiwan
| | - Kuo-Shu Hung
- National Cheng Kung University, College of Medicine, National Cheng Kung University Hospital, Department of Surgery, Division of Plastic and Reconstructive Surgery, Tainan, Taiwan
- National Cheng Kung University, College of Medicine, Institute of Clinical Medicine, Tainan, Taiwan
| | - Chung-Te Tsai
- National Cheng Kung University, College of Medicine, National Cheng Kung University Hospital, Department of Surgery, Division of Plastic and Reconstructive Surgery, Tainan, Taiwan
| | - Meng-Hsuan Wu
- National Cheng Kung University, Department of Electrical Engineering, Tainan, Taiwan
| | - Chih-Lung Lin
- National Cheng Kung University, Department of Electrical Engineering, Tainan, Taiwan
| | - Yuan-Yu Hsueh
- National Cheng Kung University, College of Medicine, National Cheng Kung University Hospital, Department of Surgery, Division of Plastic and Reconstructive Surgery, Tainan, Taiwan
- National Cheng Kung University, College of Medicine, Institute of Clinical Medicine, Tainan, Taiwan
- National Cheng Kung University, College of Medicine, Department of Physiology, Tainan, Taiwan
| |
Collapse
|
4
|
Liao W, Zhang C, Alić B, Wildenauer A, Dietz-Terjung S, Ortiz Sucre JG, Sutharsan S, Schöbel C, Seidl K, Notni G. Leveraging 3D convolutional neural network and 3D visible-near-infrared multimodal imaging for enhanced contactless oximetry. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S33309. [PMID: 39170819 PMCID: PMC11338290 DOI: 10.1117/1.jbo.29.s3.s33309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024]
Abstract
Significance Monitoring oxygen saturation (SpO 2 ) is important in healthcare, especially for diagnosing and managing pulmonary diseases. Non-contact approaches broaden the potential applications ofSpO 2 measurement by better hygiene, comfort, and capability for long-term monitoring. However, existing studies often encounter challenges such as lower signal-to-noise ratios and stringent environmental conditions. Aim We aim to develop and validate a contactlessSpO 2 measurement approach using 3D convolutional neural networks (3D CNN) and 3D visible-near-infrared (VIS-NIR) multimodal imaging, to offer a convenient, accurate, and robust alternative forSpO 2 monitoring. Approach We propose an approach that utilizes a 3D VIS-NIR multimodal camera system to capture facial videos, in whichSpO 2 is estimated through 3D CNN by simultaneously extracting spatial and temporal features. Our approach includes registration of multimodal images, tracking of the 3D region of interest, spatial and temporal preprocessing, and 3D CNN-based feature extraction andSpO 2 regression. Results In a breath-holding experiment involving 23 healthy participants, we obtained multimodal video data with referenceSpO 2 values ranging from 80% to 99% measured by pulse oximeter on the fingertip. The approach achieved a mean absolute error (MAE) of 2.31% and a Pearson correlation coefficient of 0.64 in the experiment, demonstrating good agreement with traditional pulse oximetry. The discrepancy of estimatedSpO 2 values was within 3% of the referenceSpO 2 for ∼ 80 % of all 1-s time points. Besides, in clinical trials involving patients with sleep apnea syndrome, our approach demonstrated robust performance, with an MAE of less than 2% inSpO 2 estimations compared to gold-standard polysomnography. Conclusions The proposed approach offers a promising alternative for non-contact oxygen saturation measurement with good sensitivity to desaturation, showing potential for applications in clinical settings.
Collapse
Affiliation(s)
- Wang Liao
- Ilmenau University of Technology, Department of Mechanical Engineering, Ilmenau, Germany
| | - Chen Zhang
- Ilmenau University of Technology, Department of Mechanical Engineering, Ilmenau, Germany
| | - Belmin Alić
- University of Duisburg-Essen, Chair of Electronic Components and Circuits, Duisburg, Germany
| | - Alina Wildenauer
- University Medicine Essen, Ruhrlandklinik, Chair of Sleep and Telemedicine, Essen, Germany
| | - Sarah Dietz-Terjung
- University Medicine Essen, Ruhrlandklinik, Chair of Sleep and Telemedicine, Essen, Germany
| | | | | | - Christoph Schöbel
- University Medicine Essen, Ruhrlandklinik, Chair of Sleep and Telemedicine, Essen, Germany
| | - Karsten Seidl
- University of Duisburg-Essen, Chair of Electronic Components and Circuits, Duisburg, Germany
| | - Gunther Notni
- Ilmenau University of Technology, Department of Mechanical Engineering, Ilmenau, Germany
- Fraunhofer Institute for Applied Optics and Precision Engineering, Jena, Germany
| |
Collapse
|
5
|
Tao R, Gröhl J, Hacker L, Pifferi A, Roblyer D, Bohndiek SE. Tutorial on methods for estimation of optical absorption and scattering properties of tissue. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:060801. [PMID: 38864093 PMCID: PMC11166171 DOI: 10.1117/1.jbo.29.6.060801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
Significance The estimation of tissue optical properties using diffuse optics has found a range of applications in disease detection, therapy monitoring, and general health care. Biomarkers derived from the estimated optical absorption and scattering coefficients can reflect the underlying progression of many biological processes in tissues. Aim Complex light-tissue interactions make it challenging to disentangle the absorption and scattering coefficients, so dedicated measurement systems are required. We aim to help readers understand the measurement principles and practical considerations needed when choosing between different estimation methods based on diffuse optics. Approach The estimation methods can be categorized as: steady state, time domain, time frequency domain (FD), spatial domain, and spatial FD. The experimental measurements are coupled with models of light-tissue interactions, which enable inverse solutions for the absorption and scattering coefficients from the measured tissue reflectance and/or transmittance. Results The estimation of tissue optical properties has been applied to characterize a variety of ex vivo and in vivo tissues, as well as tissue-mimicking phantoms. Choosing a specific estimation method for a certain application has to trade-off its advantages and limitations. Conclusion Optical absorption and scattering property estimation is an increasingly important and accessible approach for medical diagnosis and health monitoring.
Collapse
Affiliation(s)
- Ran Tao
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Janek Gröhl
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Lina Hacker
- University of Oxford, Department of Oncology, Oxford, United Kingdom
| | | | - Darren Roblyer
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Sarah E. Bohndiek
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| |
Collapse
|
6
|
Chen Z, Cao X, Li X, Pan B, Wang P, Li T. A Novel Approach to Evaluating Crosstalk for Near-Infrared Spectrometers. SENSORS (BASEL, SWITZERLAND) 2024; 24:990. [PMID: 38339709 PMCID: PMC10857642 DOI: 10.3390/s24030990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Multi-channel and multi-parameter near-infrared spectroscopy (NIRS) has gradually become a new research direction and hot spot due to its ability to provide real-time, continuous, comprehensive indicators of multiple parameters. However, multi-channel and multi-parameter detection may lead to crosstalk between signals. There is still a lack of benchmarks for the evaluation of the reliability, sensitivity, stability and response consistency of the NIRS instruments. In this study, a set of test methods (a human blood model test, ink drop test, multi-channel crosstalk test and multi-parameter crosstalk test) for analyzing crosstalk and verifying the reliability of NIRS was conducted to test experimental verification on a multi-channel (8-channel), multi-parameter (4-parameter) NIRS instrument independently developed by our team. Results show that these tests can be used to analyze the signal crosstalk and verify the reliability, sensitivity, stability and response consistency of the NIRS instrument. This study contributes to the establishment of benchmarks for the NIRS instrument crosstalk and reliability testing. These novel tests have the potential to become the benchmark for NIRS instrument reliability testing.
Collapse
Affiliation(s)
- Zemeng Chen
- Biomedical Engineering Institute, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China; (Z.C.)
| | - Xinliang Cao
- Biomedical Engineering Institute, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China; (Z.C.)
- School of Electromechanical and Architectural Engineering, Jianghan University, Wuhan 430056, China
| | - Xianglin Li
- State Key Laboratory of Electronic Thin Films & Integrated Devices, University of Electronic Science & Technology of China, Chengdu 611731, China
| | - Boan Pan
- State Key Laboratory of Electronic Thin Films & Integrated Devices, University of Electronic Science & Technology of China, Chengdu 611731, China
| | - Pengbo Wang
- State Key Laboratory of Electronic Thin Films & Integrated Devices, University of Electronic Science & Technology of China, Chengdu 611731, China
| | - Ting Li
- Biomedical Engineering Institute, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China; (Z.C.)
| |
Collapse
|
7
|
Li NC, Ioussoufovitch S, Diop M. HyperTRCSS: A hyperspectral time-resolved compressive sensing spectrometer for depth-sensitive monitoring of cytochrome-c-oxidase and blood oxygenation. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:015002. [PMID: 38269084 PMCID: PMC10807872 DOI: 10.1117/1.jbo.29.1.015002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Significance Hyperspectral time-resolved (TR) near-infrared spectroscopy offers the potential to monitor cytochrome-c-oxidase (oxCCO) and blood oxygenation in the adult brain with minimal scalp/skull contamination. We introduce a hyperspectral TR spectrometer that uses compressive sensing to minimize acquisition time without compromising spectral range or resolution and demonstrate oxCCO and blood oxygenation monitoring in deep tissue. Aim Develop a hyperspectral TR compressive sensing spectrometer and use it to monitor oxCCO and blood oxygenation in deep tissue. Approach Homogeneous tissue-mimicking phantom experiments were conducted to confirm the spectrometer's sensitivity to oxCCO and blood oxygenation. Two-layer phantoms were used to evaluate the spectrometer's sensitivity to oxCCO and blood oxygenation in the bottom layer through a 10 mm thick static top layer. Results The spectrometer was sensitive to oxCCO and blood oxygenation changes in the bottom layer of the two-layer phantoms, as confirmed by concomitant measurements acquired directly from the bottom layer. Measures of oxCCO and blood oxygenation by the spectrometer were highly correlated with "gold standard" measures in the homogeneous and two-layer phantom experiments. Conclusions The results show that the hyperspectral TR compressive sensing spectrometer is sensitive to changes in oxCCO and blood oxygenation in deep tissue through a thick static top layer.
Collapse
Affiliation(s)
- Natalie C. Li
- Western University, School of Biomedical Engineering, Faculty of Engineering, London, Ontario, Canada
| | - Seva Ioussoufovitch
- Western University, School of Biomedical Engineering, Faculty of Engineering, London, Ontario, Canada
| | - Mamadou Diop
- Western University, School of Biomedical Engineering, Faculty of Engineering, London, Ontario, Canada
- Western University, Schulich School of Medicine and Dentistry, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| |
Collapse
|
8
|
Sudakou A, Wabnitz H, Liemert A, Wolf M, Liebert A. Two-layered blood-lipid phantom and method to determine absorption and oxygenation employing changes in moments of DTOFs. BIOMEDICAL OPTICS EXPRESS 2023; 14:3506-3531. [PMID: 37497481 PMCID: PMC10368065 DOI: 10.1364/boe.492168] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 07/28/2023]
Abstract
Near-infrared spectroscopy (NIRS) is an established technique for measuring tissue oxygen saturation (StO2), which is of high clinical value. For tissues that have layered structures, it is challenging but clinically relevant to obtain StO2 of the different layers, e.g. brain and scalp. For this aim, we present a new method of data analysis for time-domain NIRS (TD-NIRS) and a new two-layered blood-lipid phantom. The new analysis method enables accurate determination of even large changes of the absorption coefficient (Δµa) in multiple layers. By adding Δµa to the baseline µa, this method provides absolute µa and hence StO2 in multiple layers. The method utilizes (i) changes in statistical moments of the distributions of times of flight of photons (DTOFs), (ii) an analytical solution of the diffusion equation for an N-layered medium, (iii) and the Levenberg-Marquardt algorithm (LMA) to determine Δµa in multiple layers from the changes in moments. The method is suitable for NIRS tissue oximetry (relying on µa) as well as functional NIRS (fNIRS) applications (relying on Δµa). Experiments were conducted on a new phantom, which enabled us to simulate dynamic StO2 changes in two layers for the first time. Two separate compartments, which mimic superficial and deep layers, hold blood-lipid mixtures that can be deoxygenated (using yeast) and oxygenated (by bubbling oxygen) independently. Simultaneous NIRS measurements can be performed on the two-layered medium (variable superficial layer thickness, L), the deep (homogeneous), and/or the superficial (homogeneous). In two experiments involving ink, we increased the nominal µa in one of two compartments from 0.05 to 0.25 cm-1, L set to 14.5 mm. In three experiments involving blood (L set to 12, 15, or 17 mm), we used a protocol consisting of six deoxygenation cycles. A state-of-the-art multi-wavelength TD-NIRS system measured simultaneously on the two-layered medium, as well as on the deep compartment for a reference. The new method accurately determined µa (and hence StO2) in both compartments. The method is a significant progress in overcoming the contamination from the superficial layer, which is beneficial for NIRS and fNIRS applications, and may improve the determination of StO2 in the brain from measurements on the head. The advanced phantom may assist in the ongoing effort towards more realistic standardized performance tests in NIRS tissue oximetry. Data and MATLAB codes used in this study were made publicly available.
Collapse
Affiliation(s)
- Aleh Sudakou
- Nałęcz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - André Liemert
- Institut für Lasertechnologien in der Medizin und Meßtechnik an der Universität Ulm, Germany
| | - Martin Wolf
- Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Adam Liebert
- Nałęcz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
9
|
Xu L, Liu J, Wang C, Li Z, Zhang D. Rapid determination of the main components of corn based on near-infrared spectroscopy and a BiPLS-PCA-ELM model. APPLIED OPTICS 2023; 62:2756-2765. [PMID: 37133116 DOI: 10.1364/ao.485099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To evaluate corn quality quickly, the feasibility of near-infrared spectroscopy (NIRS) coupled with chemometrics was analyzed to detect the moisture, oil, protein, and starch content in corn. A backward interval partial least squares (BiPLS)-principal component analysis (PCA)-extreme learning machine (ELM) quantitative analysis model was constructed based on BiPLS in conjunction with PCA and the ELM. The selection of characteristic spectral intervals was accomplished by BiPLS. The best principal components were determined by the prediction residual error sum of squares of Monte Carlo cross validation. In addition, a genetic simulated annealing algorithm was utilized to optimize the parameters of the ELM regression model. The established regression models for moisture, oil, protein, and starch can meet the demand for corn component detection with the prediction determination coefficients of 0.996, 0.990, 0.974, and 0.976; the prediction root means square errors of 0.018, 0.016, 0.067, and 0.109; and the residual prediction deviations of 15.704, 9.741, 6.330, and 6.236, respectively. The results show that the NIRS rapid detection model has higher robustness and accuracy based on the selection of characteristic spectral intervals in conjunction with spectral data dimensionality reduction and nonlinear modeling and can be used as an alternative strategy to detect multiple components in corn rapidly.
Collapse
|
10
|
Samaei S, Nowacka K, Gerega A, Pastuszak Ż, Borycki D. Continuous-wave parallel interferometric near-infrared spectroscopy (CW πNIRS) with a fast two-dimensional camera. BIOMEDICAL OPTICS EXPRESS 2022; 13:5753-5774. [PMID: 36733725 PMCID: PMC9872890 DOI: 10.1364/boe.472643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/16/2022] [Accepted: 10/01/2022] [Indexed: 06/02/2023]
Abstract
Interferometric near-infrared spectroscopy (iNIRS) is an optical method that noninvasively measures the optical and dynamic properties of the human brain in vivo. However, the original iNIRS technique uses single-mode fibers for light collection, which reduces the detected light throughput. The reduced light throughput is compensated by the relatively long measurement or integration times (∼1 sec), which preclude monitoring of rapid blood flow changes that could be linked to neural activation. Here, we propose parallel interferometric near-infrared spectroscopy (πNIRS) to overcome this limitation. In πNIRS we use multi-mode fibers for light collection and a high-speed, two-dimensional camera for light detection. Each camera pixel acts effectively as a single iNIRS channel. So, the processed signals from each pixel are spatially averaged to reduce the overall integration time. Moreover, interferometric detection provides us with the unique capability of accessing complex information (amplitude and phase) about the light remitted from the sample, which with more than 8000 parallel channels, enabled us to sense the cerebral blood flow with only a 10 msec integration time (∼100x faster than conventional iNIRS). In this report, we have described the theoretical foundations and possible ways to implement πNIRS. Then, we developed a prototype continuous wave (CW) πNIRS system and validated it in liquid phantoms. We used our CW πNIRS to monitor the pulsatile blood flow in a human forearm in vivo. Finally, we demonstrated that CW πNIRS could monitor activation of the prefrontal cortex by recording the change in blood flow in the forehead of the subject while he was reading an unknown text.
Collapse
Affiliation(s)
- Saeed Samaei
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Klaudia Nowacka
- International Centre for Translational Eye Research, Skierniewicka 10A, 01-230 Warsaw, Poland
| | - Anna Gerega
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Żanna Pastuszak
- Department of Neurosurgery, Mossakowski Medical Research Center Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Dawid Borycki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- International Centre for Translational Eye Research, Skierniewicka 10A, 01-230 Warsaw, Poland
| |
Collapse
|
11
|
Lanka P, Yang L, Orive-Miguel D, Veesa JD, Tagliabue S, Sudakou A, Samaei S, Forcione M, Kovacsova Z, Behera A, Gladytz T, Grosenick D, Hervé L, Durduran T, Bejm K, Morawiec M, Kacprzak M, Sawosz P, Gerega A, Liebert A, Belli A, Tachtsidis I, Lange F, Bale G, Baratelli L, Gioux S, Alexander K, Wolf M, Sekar SKV, Zanoletti M, Pirovano I, Lacerenza M, Qiu L, Ferocino E, Maffeis G, Amendola C, Colombo L, Frabasile L, Levoni P, Buttafava M, Renna M, Di Sieno L, Re R, Farina A, Spinelli L, Dalla Mora A, Contini D, Taroni P, Tosi A, Torricelli A, Dehghani H, Wabnitz H, Pifferi A. Multi-laboratory performance assessment of diffuse optics instruments: the BitMap exercise. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210373SSR. [PMID: 35701869 PMCID: PMC9199954 DOI: 10.1117/1.jbo.27.7.074716] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/05/2022] [Indexed: 05/06/2023]
Abstract
SIGNIFICANCE Multi-laboratory initiatives are essential in performance assessment and standardization-crucial for bringing biophotonics to mature clinical use-to establish protocols and develop reference tissue phantoms that all will allow universal instrument comparison. AIM The largest multi-laboratory comparison of performance assessment in near-infrared diffuse optics is presented, involving 28 instruments and 12 institutions on a total of eight experiments based on three consolidated protocols (BIP, MEDPHOT, and NEUROPT) as implemented on three kits of tissue phantoms. A total of 20 synthetic indicators were extracted from the dataset, some of them defined here anew. APPROACH The exercise stems from the Innovative Training Network BitMap funded by the European Commission and expanded to include other European laboratories. A large variety of diffuse optics instruments were considered, based on different approaches (time domain/frequency domain/continuous wave), at various stages of maturity and designed for different applications (e.g., oximetry, spectroscopy, and imaging). RESULTS This study highlights a substantial difference in hardware performances (e.g., nine decades in responsivity, four decades in dark count rate, and one decade in temporal resolution). Agreement in the estimates of homogeneous optical properties was within 12% of the median value for half of the systems, with a temporal stability of <5 % over 1 h, and day-to-day reproducibility of <3 % . Other tests encompassed linearity, crosstalk, uncertainty, and detection of optical inhomogeneities. CONCLUSIONS This extensive multi-laboratory exercise provides a detailed assessment of near-infrared Diffuse optical instruments and can be used for reference grading. The dataset-available soon in an open data repository-can be evaluated in multiple ways, for instance, to compare different analysis tools or study the impact of hardware implementations.
Collapse
Affiliation(s)
- Pranav Lanka
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
- Address all correspondence to Pranav Lanka, ; Heidrun Wabnitz,
| | - Lin Yang
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | | | - Joshua Deepak Veesa
- University of Birmingham, School of Computer Science, Birmingham, United Kingdom
| | | | - Aleh Sudakou
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Saeed Samaei
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Mario Forcione
- University Hospitals Birmingham, National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Birmingham, United Kingdom
| | - Zuzana Kovacsova
- UCL, Department of Medical Physics & Biomedical Engineering, London, United Kingdom
| | - Anurag Behera
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | - Thomas Gladytz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Dirk Grosenick
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Lionel Hervé
- Université Grenoble Alpes, CEA, LETI, DTBS, Grenoble, France
| | - Turgut Durduran
- The Institute of Photonic Sciences (ICFO), Castelldefels, Spain
| | - Karolina Bejm
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Magdalena Morawiec
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Michał Kacprzak
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Piotr Sawosz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Anna Gerega
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Adam Liebert
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Antonio Belli
- University Hospitals Birmingham, National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Birmingham, United Kingdom
| | - Ilias Tachtsidis
- UCL, Department of Medical Physics & Biomedical Engineering, London, United Kingdom
| | - Frédéric Lange
- UCL, Department of Medical Physics & Biomedical Engineering, London, United Kingdom
| | - Gemma Bale
- University of Cambridge, Department of Engineering and Department of Physics, Cambridge, United Kingdom
| | - Luca Baratelli
- University of Strasbourg, ICube Laboratory, Strasbourg, France
| | - Sylvain Gioux
- University of Strasbourg, ICube Laboratory, Strasbourg, France
| | - Kalyanov Alexander
- University Hospital Zurich, Biomedical Optics Research Laboratory, Department of Neonatology, Zurich, Switzerland
| | - Martin Wolf
- University Hospital Zurich, Biomedical Optics Research Laboratory, Department of Neonatology, Zurich, Switzerland
| | | | - Marta Zanoletti
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | - Ileana Pirovano
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | | | - Lina Qiu
- South China Normal University, School of Software, Guangzhou, China
| | | | - Giulia Maffeis
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | | | - Lorenzo Colombo
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | | | - Pietro Levoni
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | | | - Marco Renna
- Istituto di Fotonica e Nanotecnologie, Milano, Italy
| | - Laura Di Sieno
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | - Rebecca Re
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milano, Italy
| | - Andrea Farina
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milano, Italy
| | - Lorenzo Spinelli
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milano, Italy
| | | | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | - Paola Taroni
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | - Alberto Tosi
- Istituto di Fotonica e Nanotecnologie, Milano, Italy
| | | | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Birmingham, United Kingdom
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
- Address all correspondence to Pranav Lanka, ; Heidrun Wabnitz,
| | - Antonio Pifferi
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| |
Collapse
|
12
|
Kirchner T, Jaeger M, Frenz M. Machine learning enabled multiple illumination quantitative optoacoustic oximetry imaging in humans. BIOMEDICAL OPTICS EXPRESS 2022; 13:2655-2667. [PMID: 35774340 PMCID: PMC9203099 DOI: 10.1364/boe.455514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 06/15/2023]
Abstract
Optoacoustic (OA) imaging is a promising modality for quantifying blood oxygen saturation (sO2) in various biomedical applications - in diagnosis, monitoring of organ function, or even tumor treatment planning. We present an accurate and practically feasible real-time capable method for quantitative imaging of sO2 based on combining multispectral (MS) and multiple illumination (MI) OA imaging with learned spectral decoloring (LSD). For this purpose we developed a hybrid real-time MI MS OA imaging setup with ultrasound (US) imaging capability; we trained gradient boosting machines on MI spectrally colored absorbed energy spectra generated by generic Monte Carlo simulations and used the trained models to estimate sO2 on real OA measurements. We validated MI-LSD in silico and on in vivo image sequences of radial arteries and accompanying veins of five healthy human volunteers. We compared the performance of the method to prior LSD work and conventional linear unmixing. MI-LSD provided highly accurate results in silico and consistently plausible results in vivo. This preliminary study shows a potentially high applicability of quantitative OA oximetry imaging, using our method.
Collapse
Affiliation(s)
- Thomas Kirchner
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
- Biomedical Photonics, Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Michael Jaeger
- Biomedical Photonics, Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Martin Frenz
- Biomedical Photonics, Institute of Applied Physics, University of Bern, Bern, Switzerland
| |
Collapse
|