1
|
Tong S, Liu H, Huang J, Zhong J, Yan J, Wang H, Zhang X, Qiu P, Wang K. In vivo three-photon fluorescence imaging of mouse brain vasculature labeled by Evans blue excited at the NIR-III window. BIOMEDICAL OPTICS EXPRESS 2025; 16:257-266. [PMID: 39816156 PMCID: PMC11729278 DOI: 10.1364/boe.545987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 01/18/2025]
Abstract
Multiphoton fluorescence microscopy (MFM), renowned for its noninvasiveness and high spatiotemporal resolution, is extensively applied in brain structure imaging in vivo. Three-photon fluorescence (3PF) imaging, excited at the NIR-III window, can penetrate the deepest mouse cerebrovascular. Evans blue, a substance known for its low toxicity, high water solubility, and resistance to metabolism, is frequently employed to assess blood-brain barrier (BBB) permeability. However, its suitability for multiphoton fluorescence imaging of mouse cerebrovascular at the NIR-III window in vivo remains unexplored. In this paper, we conduct a comprehensive analysis of the multiphoton excitation and emission characterization of Evans blue when excited at the NIR-III window. Our findings indicate that 1) Evans blue can generate 3PF signals; 2) it exhibits a substantial three-photon action cross-section (ησ3 ) in plasma; 3) its three-photon emission spectrum measured in vivo agrees with that measured in plasma ex vivo. Drawing upon these findings, we successfully demonstrated the application of 3PF imaging of mouse brain vasculature labeled with Evans blue. Notably, the maximum depth of cerebrovascular is 1550 μm beneath the brain surface, spanning the entire gray matter layer and white matter layer and extending into the hippocampus. Evans blue is thus highly ideal for brain cerebrovascular 3PF imaging in vivo.
Collapse
Affiliation(s)
- Shen Tong
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongji Liu
- Shenzhen City Polytechnic, Shenzhen, China
| | - Jie Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Jincheng Zhong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Jiemei Yan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Heng Wang
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao Zhang
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ping Qiu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Ke Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Turrini L, Ricci P, Sorelli M, de Vito G, Marchetti M, Vanzi F, Pavone FS. Two-photon all-optical neurophysiology for the dissection of larval zebrafish brain functional and effective connectivity. Commun Biol 2024; 7:1261. [PMID: 39367042 PMCID: PMC11452506 DOI: 10.1038/s42003-024-06731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/13/2024] [Indexed: 10/06/2024] Open
Abstract
One of the most audacious goals of modern neuroscience is unraveling the complex web of causal relations underlying the activity of neuronal populations on a whole-brain scale. This endeavor, which was prohibitive only a couple of decades ago, has recently become within reach owing to the advancements in optical methods and the advent of genetically encoded indicators/actuators. These techniques, applied to the translucent larval zebrafish have enabled recording and manipulation of the activity of extensive neuronal populations spanning the entire vertebrate brain. Here, we present a custom two-photon optical system that couples light-sheet imaging and 3D excitation with acousto-optic deflectors for simultaneous high-speed volumetric recording and optogenetic stimulation. By employing a zebrafish line with pan-neuronal expression of both the calcium reporter GCaMP6s and the red-shifted opsin ReaChR, we implemented a crosstalk-free, noninvasive all-optical approach and applied it to reconstruct the functional and effective connectivity of the left habenula.
Collapse
Affiliation(s)
- Lapo Turrini
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy.
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy.
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy.
| | - Pietro Ricci
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- Department of Applied Physics, University of Barcelona, Barcelona, Spain
| | - Michele Sorelli
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - Giuseppe de Vito
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | | | - Francesco Vanzi
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy.
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy.
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
3
|
Pesce L, Ricci P, Sportelli G, Belcari N, Sancataldo G. Expansion and Light-Sheet Microscopy for Nanoscale 3D Imaging. SMALL METHODS 2024; 8:e2301715. [PMID: 38461540 DOI: 10.1002/smtd.202301715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/10/2024] [Indexed: 03/12/2024]
Abstract
Expansion Microscopy (ExM) and Light-Sheet Fluorescence Microscopy (LSFM) are forefront imaging techniques that enable high-resolution visualization of biological specimens. ExM enhances nanoscale investigation using conventional fluorescence microscopes, while LSFM offers rapid, minimally invasive imaging over large volumes. This review explores the joint advancements of ExM and LSFM, focusing on the excellent performance of the integrated modality obtained from the combination of the two, which is refer to as ExLSFM. In doing so, the chemical processes required for ExM, the tailored optical setup of LSFM for examining expanded samples, and the adjustments in sample preparation for accurate data collection are emphasized. It is delve into various specimen types studied using this integrated method and assess its potential for future applications. The goal of this literature review is to enrich the comprehension of ExM and LSFM, encouraging their wider use and ongoing development, looking forward to the upcoming challenges, and anticipating innovations in these imaging techniques.
Collapse
Affiliation(s)
- Luca Pesce
- Department of Physics - Enrico Fermi, University of Pisa, Largo Pontecorvo, 3, Pisa, 56127, Italy
| | - Pietro Ricci
- Department of Applied Physics, University of Barcelona, C/Martí i Franquès, 1, Barcelona, 08028, Spain
| | - Giancarlo Sportelli
- Department of Physics - Enrico Fermi, University of Pisa, Largo Pontecorvo, 3, Pisa, 56127, Italy
| | - Nicola Belcari
- Department of Physics - Enrico Fermi, University of Pisa, Largo Pontecorvo, 3, Pisa, 56127, Italy
| | - Giuseppe Sancataldo
- Department of Physics - Emilio Segrè, University of Palermo, Viale delle Scienze, 18, Palermo, 90128, Italy
| |
Collapse
|
4
|
Luu P, Nadtochiy A, Zanon M, Moreno N, Messina A, Petrazzini MEM, Torres Perez JV, Keomanee-Dizon K, Jones M, Brennan CH, Vallortigara G, Fraser SE, Truong TV. Neural Basis of Number Sense in Larval Zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610552. [PMID: 39290349 PMCID: PMC11406567 DOI: 10.1101/2024.08.30.610552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Number sense, the ability to discriminate the quantity of objects, is crucial for survival. To understand how neurons work together and develop to mediate number sense, we used two-photon fluorescence light sheet microscopy to capture the activity of individual neurons throughout the brain of larval Danio rerio, while displaying a visual number stimulus to the animal. We identified number-selective neurons as early as 3 days post-fertilization and found a proportional increase of neurons tuned to larger quantities after 3 days. We used machine learning to predict the stimulus from the neuronal activity and observed that the prediction accuracy improves with age. We further tested ethanol's effect on number sense and found a decrease in number-selective neurons in the forebrain, suggesting cognitive impairment. These findings are a significant step towards understanding neural circuits devoted to discrete magnitudes and our methodology to track single-neuron activity across the whole brain is broadly applicable to other fields in neuroscience.
Collapse
Affiliation(s)
- Peter Luu
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Anna Nadtochiy
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Mirko Zanon
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Noah Moreno
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Andrea Messina
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | | | - Jose Vicente Torres Perez
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, United Kingdom
| | - Kevin Keomanee-Dizon
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA
| | - Matthew Jones
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Caroline H Brennan
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, United Kingdom
| | | | - Scott E Fraser
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Thai V Truong
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Stern MA, Dingledine R, Gross RE, Berglund K. Epilepsy insights revealed by intravital functional optical imaging. Front Neurol 2024; 15:1465232. [PMID: 39268067 PMCID: PMC11390408 DOI: 10.3389/fneur.2024.1465232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Despite an abundance of pharmacologic and surgical epilepsy treatments, there remain millions of patients suffering from poorly controlled seizures. One approach to closing this treatment gap may be found through a deeper mechanistic understanding of the network alterations that underly this aberrant activity. Functional optical imaging in vertebrate models provides powerful advantages to this end, enabling the spatiotemporal acquisition of individual neuron activity patterns across multiple seizures. This coupled with the advent of genetically encoded indicators, be them for specific ions, neurotransmitters or voltage, grants researchers unparalleled access to the intact nervous system. Here, we will review how in vivo functional optical imaging in various vertebrate seizure models has advanced our knowledge of seizure dynamics, principally seizure initiation, propagation and termination.
Collapse
Affiliation(s)
- Matthew A Stern
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Raymond Dingledine
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurological Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
6
|
Sree Kumar H, Wisner AS, Schiefer IT, Alviter Plata A, Zubcevic J. Chronotropic and vasoactive properties of the gut bacterial short-chain fatty acids in larval zebrafish. Physiol Genomics 2024; 56:426-435. [PMID: 38557279 PMCID: PMC11368569 DOI: 10.1152/physiolgenomics.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Short-chain fatty acids (SCFAs) produced by the gut bacteria have been associated with cardiovascular dysfunction in humans and rodents. However, studies exploring effects of SCFAs on cardiovascular parameters in the zebrafish, an increasingly popular model in cardiovascular research, remain limited. Here, we performed fecal bacterial 16S sequencing and gas chromatography/mass spectrometry (GC-MS) to determine the composition and abundance of gut microbiota and SCFAs in adult zebrafish. Following this, the acute effects of major SCFAs on heart rate and vascular tone were measured in anesthetized zebrafish larvae using fecal concentrations of butyrate, acetate, and propionate. Finally, we investigated if coincubation with butyrate may lessen the effects of angiotensin II (ANG II) and phenylephrine (PE) on vascular tone in anesthetized zebrafish larvae. We found that the abundance in Proteobacteria, Firmicutes, and Fusobacteria phyla in the adult zebrafish resembled those reported in rodents and humans. SCFA levels with highest concentration of acetate (27.43 µM), followed by butyrate (2.19 µM) and propionate (1.65 µM) were observed in the fecal samples of adult zebrafish. Immersion in butyrate and acetate produced a ∼20% decrease in heart rate (HR), respectively, with no observed effects of propionate. Butyrate alone also produced an ∼25% decrease in the cross-sectional width of the dorsal aorta (DA) at 60 min (*P < 0.05), suggesting compensatory vasoconstriction, with no effects of either acetate or propionate. In addition, butyrate significantly alleviated the decrease in DA cross-sectional width produced by both ANG II and PE. We demonstrate the potential for zebrafish in investigation of host-microbiota interactions in cardiovascular health.NEW & NOTEWORTHY We highlight the presence of a core gut microbiota and demonstrate in vivo short-chain fatty acid production in adult zebrafish. In addition, we show cardio-beneficial vasoactive and chronotropic properties of butyrate, and chronotropic properties of acetate in anesthetized zebrafish larvae.
Collapse
Affiliation(s)
- Hemaa Sree Kumar
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States
| | - Alexander S Wisner
- Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio, United States
- Center for Drug Design and Development, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio, United States
| | - Isaac T Schiefer
- Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio, United States
- Center for Drug Design and Development, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio, United States
| | - Adriana Alviter Plata
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States
| | - Jasenka Zubcevic
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States
| |
Collapse
|
7
|
Bauer AQ, Gibson EA, Wang H, Srinivasan VJ. Introduction to the Optics and the Brain 2023 feature issue. BIOMEDICAL OPTICS EXPRESS 2024; 15:2110-2113. [PMID: 38633102 PMCID: PMC11019680 DOI: 10.1364/boe.517678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Indexed: 04/19/2024]
Abstract
A feature issue is being presented by a team of guest editors containing papers based on contributed submissions including studies presented at Optics and the Brain, held April 24-27, 2023 as part of Optica Biophotonics Congress: Optics in the Life Sciences, in Vancouver, Canada.
Collapse
Affiliation(s)
- Adam Q. Bauer
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Emily A. Gibson
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Hui Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Vivek J. Srinivasan
- Tech4Health Institute, NYU Langone Health, New York, New York 10010, USA
- Department of Ophthalmology, NYU Langone Health, New York, New York 10017, USA
| |
Collapse
|
8
|
Luu P, Fraser SE, Schneider F. More than double the fun with two-photon excitation microscopy. Commun Biol 2024; 7:364. [PMID: 38531976 PMCID: PMC10966063 DOI: 10.1038/s42003-024-06057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
For generations researchers have been observing the dynamic processes of life through the lens of a microscope. This has offered tremendous insights into biological phenomena that span multiple orders of time- and length-scales ranging from the pure magic of molecular reorganization at the membrane of immune cells, to cell migration and differentiation during development or wound healing. Standard fluorescence microscopy techniques offer glimpses at such processes in vitro, however, when applied in intact systems, they are challenged by reduced signal strengths and signal-to-noise ratios that result from deeper imaging. As a remedy, two-photon excitation (TPE) microscopy takes a special place, because it allows us to investigate processes in vivo, in their natural environment, even in a living animal. Here, we review the fundamental principles underlying TPE aimed at basic and advanced microscopy users interested in adopting TPE for intravital imaging. We focus on applications in neurobiology, present current trends towards faster, wider and deeper imaging, discuss the combination with photon counting technologies for metabolic imaging and spectroscopy, as well as highlight outstanding issues and drawbacks in development and application of these methodologies.
Collapse
Affiliation(s)
- Peter Luu
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Scott E Fraser
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
- Alfred Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Falk Schneider
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA.
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
9
|
Park WY, Yun J, Shin J, Oh BH, Yoon G, Hong SM, Kim KH. Open-top Bessel beam two-photon light sheet microscopy for three-dimensional pathology. eLife 2024; 12:RP92614. [PMID: 38488831 PMCID: PMC10942781 DOI: 10.7554/elife.92614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Nondestructive pathology based on three-dimensional (3D) optical microscopy holds promise as a complement to traditional destructive hematoxylin and eosin (H&E) stained slide-based pathology by providing cellular information in high throughput manner. However, conventional techniques provided superficial information only due to shallow imaging depths. Herein, we developed open-top two-photon light sheet microscopy (OT-TP-LSM) for intraoperative 3D pathology. An extended depth of field two-photon excitation light sheet was generated by scanning a nondiffractive Bessel beam, and selective planar imaging was conducted with cameras at 400 frames/s max during the lateral translation of tissue specimens. Intrinsic second harmonic generation was collected for additional extracellular matrix (ECM) visualization. OT-TP-LSM was tested in various human cancer specimens including skin, pancreas, and prostate. High imaging depths were achieved owing to long excitation wavelengths and long wavelength fluorophores. 3D visualization of both cells and ECM enhanced the ability of cancer detection. Furthermore, an unsupervised deep learning network was employed for the style transfer of OT-TP-LSM images to virtual H&E images. The virtual H&E images exhibited comparable histological characteristics to real ones. OT-TP-LSM may have the potential for histopathological examination in surgical and biopsy applications by rapidly providing 3D information.
Collapse
Affiliation(s)
- Won Yeong Park
- Department of Mechanical Engineering, Pohang University of Science and TechnologyPohangRepublic of Korea
| | - Jieun Yun
- Department of Mechanical Engineering, Pohang University of Science and TechnologyPohangRepublic of Korea
| | - Jinho Shin
- Department of Medicine, University of Ulsan College of Medicine, SeoulSeoulRepublic of Korea
| | - Byung Ho Oh
- Department of Dermatology, College of Medicine, Yonsei UniversitySeoulRepublic of Korea
| | - Gilsuk Yoon
- Department of Pathology, School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of MedicineSeoulRepublic of Korea
| | - Ki Hean Kim
- Department of Mechanical Engineering, Pohang University of Science and TechnologyPohangRepublic of Korea
- Medical Science and Engineering Program, School of Convergence Science and Technology, Pohang University of Science and TechnologyPohangRepublic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei UniversitySeoulRepublic of Korea
| |
Collapse
|
10
|
Turrini L, Roschi L, de Vito G, Pavone FS, Vanzi F. Imaging Approaches to Investigate Pathophysiological Mechanisms of Brain Disease in Zebrafish. Int J Mol Sci 2023; 24:9833. [PMID: 37372981 DOI: 10.3390/ijms24129833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Zebrafish has become an essential model organism in modern biomedical research. Owing to its distinctive features and high grade of genomic homology with humans, it is increasingly employed to model diverse neurological disorders, both through genetic and pharmacological intervention. The use of this vertebrate model has recently enhanced research efforts, both in the optical technology and in the bioengineering fields, aiming at developing novel tools for high spatiotemporal resolution imaging. Indeed, the ever-increasing use of imaging methods, often combined with fluorescent reporters or tags, enable a unique chance for translational neuroscience research at different levels, ranging from behavior (whole-organism) to functional aspects (whole-brain) and down to structural features (cellular and subcellular). In this work, we present a review of the imaging approaches employed to investigate pathophysiological mechanisms underlying functional, structural, and behavioral alterations of human neurological diseases modeled in zebrafish.
Collapse
Affiliation(s)
- Lapo Turrini
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Roschi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Giuseppe de Vito
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy
- Interdepartmental Centre for the Study of Complex Dynamics, University of Florence, Via Giovanni Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Giovanni Sansone 1, 50019 Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Francesco Vanzi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
11
|
Sree Kumar H, Wisner AS, Refsnider JM, Martyniuk CJ, Zubcevic J. Small fish, big discoveries: zebrafish shed light on microbial biomarkers for neuro-immune-cardiovascular health. Front Physiol 2023; 14:1186645. [PMID: 37324381 PMCID: PMC10267477 DOI: 10.3389/fphys.2023.1186645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Zebrafish (Danio rerio) have emerged as a powerful model to study the gut microbiome in the context of human conditions, including hypertension, cardiovascular disease, neurological disorders, and immune dysfunction. Here, we highlight zebrafish as a tool to bridge the gap in knowledge in linking the gut microbiome and physiological homeostasis of cardiovascular, neural, and immune systems, both independently and as an integrated axis. Drawing on zebrafish studies to date, we discuss challenges in microbiota transplant techniques and gnotobiotic husbandry practices. We present advantages and current limitations in zebrafish microbiome research and discuss the use of zebrafish in identification of microbial enterotypes in health and disease. We also highlight the versatility of zebrafish studies to further explore the function of human conditions relevant to gut dysbiosis and reveal novel therapeutic targets.
Collapse
Affiliation(s)
- Hemaa Sree Kumar
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
- Department of Neuroscience and Neurological Disorders, University of Toledo, Toledo, OH, United States
| | - Alexander S. Wisner
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, OH, United States
- Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Jeanine M. Refsnider
- Department of Environmental Sciences, University of Toledo, Toledo, OH, United States
| | - Christopher J. Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, OH, United States
| | - Jasenka Zubcevic
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
| |
Collapse
|
12
|
D'Amora M, Galgani A, Marchese M, Tantussi F, Faraguna U, De Angelis F, Giorgi FS. Zebrafish as an Innovative Tool for Epilepsy Modeling: State of the Art and Potential Future Directions. Int J Mol Sci 2023; 24:ijms24097702. [PMID: 37175408 PMCID: PMC10177843 DOI: 10.3390/ijms24097702] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
This article discusses the potential of Zebrafish (ZF) (Danio Rerio), as a model for epilepsy research. Epilepsy is a neurological disorder affecting both children and adults, and many aspects of this disease are still poorly understood. In vivo and in vitro models derived from rodents are the most widely used for studying both epilepsy pathophysiology and novel drug treatments. However, researchers have recently obtained several valuable insights into these two fields of investigation by studying ZF. Despite the relatively simple brain structure of these animals, researchers can collect large amounts of data in a much shorter period and at lower costs compared to classical rodent models. This is particularly useful when a large number of candidate antiseizure drugs need to be screened, and ethical issues are minimized. In ZF, seizures have been induced through a variety of chemoconvulsants, primarily pentylenetetrazol (PTZ), kainic acid (KA), and pilocarpine. Furthermore, ZF can be easily genetically modified to test specific aspects of monogenic forms of human epilepsy, as well as to discover potential convulsive phenotypes in monogenic mutants. The article reports on the state-of-the-art and potential new fields of application of ZF research, including its potential role in revealing epileptogenic mechanisms, rather than merely assessing iatrogenic acute seizure modulation.
Collapse
Affiliation(s)
- Marta D'Amora
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Department of Biology, University of Pisa, 56125 Pisa, Italy
| | - Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Maria Marchese
- Molecular Medicine and Neurobiology-ZebraLab, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | | | - Ugo Faraguna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | | | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
13
|
Liu Z, Zhu Y, Zhang L, Jiang W, Liu Y, Tang Q, Cai X, Li J, Wang L, Tao C, Yin X, Li X, Hou S, Jiang D, Liu K, Zhou X, Zhang H, Liu M, Fan C, Tian Y. Structural and functional imaging of brains. Sci China Chem 2022; 66:324-366. [PMID: 36536633 PMCID: PMC9753096 DOI: 10.1007/s11426-022-1408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/28/2022] [Indexed: 12/23/2022]
Abstract
Analyzing the complex structures and functions of brain is the key issue to understanding the physiological and pathological processes. Although neuronal morphology and local distribution of neurons/blood vessels in the brain have been known, the subcellular structures of cells remain challenging, especially in the live brain. In addition, the complicated brain functions involve numerous functional molecules, but the concentrations, distributions and interactions of these molecules in the brain are still poorly understood. In this review, frontier techniques available for multiscale structure imaging from organelles to the whole brain are first overviewed, including magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), serial-section electron microscopy (ssEM), light microscopy (LM) and synchrotron-based X-ray microscopy (XRM). Specially, XRM for three-dimensional (3D) imaging of large-scale brain tissue with high resolution and fast imaging speed is highlighted. Additionally, the development of elegant methods for acquisition of brain functions from electrical/chemical signals in the brain is outlined. In particular, the new electrophysiology technologies for neural recordings at the single-neuron level and in the brain are also summarized. We also focus on the construction of electrochemical probes based on dual-recognition strategy and surface/interface chemistry for determination of chemical species in the brain with high selectivity and long-term stability, as well as electrochemophysiological microarray for simultaneously recording of electrochemical and electrophysiological signals in the brain. Moreover, the recent development of brain MRI probes with high contrast-to-noise ratio (CNR) and sensitivity based on hyperpolarized techniques and multi-nuclear chemistry is introduced. Furthermore, multiple optical probes and instruments, especially the optophysiological Raman probes and fiber Raman photometry, for imaging and biosensing in live brain are emphasized. Finally, a brief perspective on existing challenges and further research development is provided.
Collapse
Affiliation(s)
- Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| | - Ying Zhu
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Liming Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| | - Weiping Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Qiaowei Tang
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Xiaoqing Cai
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Jiang Li
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Lihua Wang
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Changlu Tao
- Interdisciplinary Center for Brain Information, Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | | | - Xiaowei Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shangguo Hou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055 China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| |
Collapse
|
14
|
Keomanee-Dizon K, Jones M, Luu P, Fraser SE, Truong TV. Extended depth-of-field light-sheet microscopy improves imaging of large volumes at high numerical aperture. APPLIED PHYSICS LETTERS 2022; 121:163701. [PMID: 36276589 PMCID: PMC9586705 DOI: 10.1063/5.0101426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Light-sheet microscopes must compromise among field of view, optical sectioning, resolution, and detection efficiency. High-numerical-aperture (NA) detection objective lenses provide higher resolution, but their narrow depth of field inefficiently captures the fluorescence signal generated throughout the thickness of the illumination light sheet when imaging large volumes. Here, we present ExD-SPIM (extended depth-of-field selective-plane illumination microscopy), an improved light-sheet microscopy strategy that solves this limitation by extending the depth of field (DOF) of high-NA detection objectives to match the thickness of the illumination light sheet. This extension of the DOF uses a phase mask to axially stretch the point-spread function of the objective lens while largely preserving lateral resolution. This matching of the detection DOF to the illumination-sheet thickness increases the total fluorescence collection, reduces the background, and improves the overall signal-to-noise ratio (SNR), as shown by numerical simulations, imaging of bead phantoms, and imaging living animals. In comparison to conventional light sheet imaging with low-NA detection that yields equivalent DOF, the results show that ExD-SPIM increases the SNR by more than threefold and dramatically reduces the rate of photobleaching. Compared to conventional high-NA detection, ExD-SPIM improves the signal sensitivity and volumetric coverage of whole-brain activity imaging, increasing the number of detected neurons by over a third.
Collapse
Affiliation(s)
- Kevin Keomanee-Dizon
- Translational Imaging Center, University of Southern California, Los Angeles, California 90089, USA
| | - Matt Jones
- Translational Imaging Center, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|
15
|
Messina A, Potrich D, Perrino M, Sheardown E, Miletto Petrazzini ME, Luu P, Nadtochiy A, Truong TV, Sovrano VA, Fraser SE, Brennan CH, Vallortigara G. Quantity as a Fish Views It: Behavior and Neurobiology. Front Neuroanat 2022; 16:943504. [PMID: 35911657 PMCID: PMC9334151 DOI: 10.3389/fnana.2022.943504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
An ability to estimate quantities, such as the number of conspecifics or the size of a predator, has been reported in vertebrates. Fish, in particular zebrafish, may be instrumental in advancing the understanding of magnitude cognition. We review here the behavioral studies that have described the ecological relevance of quantity estimation in fish and the current status of the research aimed at investigating the neurobiological bases of these abilities. By combining behavioral methods with molecular genetics and calcium imaging, the involvement of the retina and the optic tectum has been documented for the estimation of continuous quantities in the larval and adult zebrafish brain, and the contributions of the thalamus and the dorsal-central pallium for discrete magnitude estimation in the adult zebrafish brain. Evidence for basic circuitry can now be complemented and extended to research that make use of transgenic lines to deepen our understanding of quantity cognition at genetic and molecular levels.
Collapse
Affiliation(s)
- Andrea Messina
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Davide Potrich
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Matilde Perrino
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Eva Sheardown
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, New Hunt’s House, Kings College London, London, United Kingdom
| | | | - Peter Luu
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Anna Nadtochiy
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Thai V. Truong
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Valeria Anna Sovrano
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Scott E. Fraser
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Caroline H. Brennan
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
16
|
Turrini L, Sorelli M, de Vito G, Credi C, Tiso N, Vanzi F, Pavone FS. Multimodal Characterization of Seizures in Zebrafish Larvae. Biomedicines 2022; 10:951. [PMID: 35625689 PMCID: PMC9139036 DOI: 10.3390/biomedicines10050951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Epilepsy accounts for a significant proportion of the world's disease burden. Indeed, many research efforts are produced both to investigate the basic mechanism ruling its genesis and to find more effective therapies. In this framework, the use of zebrafish larvae, owing to their peculiar features, offers a great opportunity. Here, we employ transgenic zebrafish larvae expressing GCaMP6s in all neurons to characterize functional alterations occurring during seizures induced by pentylenetetrazole. Using a custom two-photon light-sheet microscope, we perform fast volumetric functional imaging of the entire larval brain, investigating how different brain regions contribute to seizure onset and propagation. Moreover, employing a custom behavioral tracking system, we outline the progressive alteration of larval swim kinematics, resulting from different grades of seizures. Collectively, our results show that the epileptic larval brain undergoes transitions between diverse neuronal activity regimes. Moreover, we observe that different brain regions are progressively recruited into the generation of seizures of diverse severity. We demonstrate that midbrain regions exhibit highest susceptibility to the convulsant effects and that, during periods preceding abrupt hypersynchronous paroxysmal activity, they show a consistent increase in functional connectivity. These aspects, coupled with the hub-like role that these regions exert, represent important cues in their identification as epileptogenic hubs.
Collapse
Affiliation(s)
- Lapo Turrini
- Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy;
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; (G.d.V.); (C.C.); (F.V.)
| | - Michele Sorelli
- Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy;
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; (G.d.V.); (C.C.); (F.V.)
| | - Giuseppe de Vito
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; (G.d.V.); (C.C.); (F.V.)
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Caterina Credi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; (G.d.V.); (C.C.); (F.V.)
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy;
| | - Francesco Vanzi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; (G.d.V.); (C.C.); (F.V.)
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy;
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; (G.d.V.); (C.C.); (F.V.)
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| |
Collapse
|