1
|
Alperi A, Antuna P, Almendárez M, Álvarez R, del Valle R, Pascual I, Hernández-Vaquero D, Avanzas P. Perspectives in the Diagnosis, Clinical Impact, and Management of the Vulnerable Plaque. J Clin Med 2025; 14:1539. [PMID: 40095464 PMCID: PMC11899957 DOI: 10.3390/jcm14051539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Coronary artery disease is a highly prevalent disease that constitutes the leading cause of mortality worldwide. Acute coronary syndromes are the most devastating form of presentation of coronary disease, involving the acute formation of a thrombus within the coronary vessel lumen, further leading to flow limitation and diminished myocardial perfusion. Vulnerable plaques, which are characterized by thin-cap fibroatheroma, a large lipid pool, and macrophage infiltration and spotty calcification of the cap, pose a higher risk of coronary events despite not being flow-limiting. Iterations in intravascular imaging and coronary computed tomography have largely increased the ability to detect and define vulnerable plaques, and its clinical impact in early- and mid-term outcomes has been confirmed in several studies. In this review, we aimed to revise the current concept of vulnerable coronary plaque and its repercussion, to summarize the main pharmacological approaches for its management, and to provide an updated overview of the available evidence on preventive percutaneous interventional strategies in this clinical setting.
Collapse
Affiliation(s)
- Alberto Alperi
- Hospital Universitario Central de Asturias, Oviedo, 33011 Asturias, Spain; (A.A.); (P.A.); (M.A.); (R.Á.); (I.P.); (D.H.-V.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Asturias, Spain
| | - Paula Antuna
- Hospital Universitario Central de Asturias, Oviedo, 33011 Asturias, Spain; (A.A.); (P.A.); (M.A.); (R.Á.); (I.P.); (D.H.-V.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Asturias, Spain
| | - Marcel Almendárez
- Hospital Universitario Central de Asturias, Oviedo, 33011 Asturias, Spain; (A.A.); (P.A.); (M.A.); (R.Á.); (I.P.); (D.H.-V.)
| | - Rut Álvarez
- Hospital Universitario Central de Asturias, Oviedo, 33011 Asturias, Spain; (A.A.); (P.A.); (M.A.); (R.Á.); (I.P.); (D.H.-V.)
| | - Raquel del Valle
- Hospital Universitario Central de Asturias, Oviedo, 33011 Asturias, Spain; (A.A.); (P.A.); (M.A.); (R.Á.); (I.P.); (D.H.-V.)
| | - Isaac Pascual
- Hospital Universitario Central de Asturias, Oviedo, 33011 Asturias, Spain; (A.A.); (P.A.); (M.A.); (R.Á.); (I.P.); (D.H.-V.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Asturias, Spain
- Faculty of Medicine, University of Oviedo, 33011 Asturias, Spain
| | - Daniel Hernández-Vaquero
- Hospital Universitario Central de Asturias, Oviedo, 33011 Asturias, Spain; (A.A.); (P.A.); (M.A.); (R.Á.); (I.P.); (D.H.-V.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Asturias, Spain
- Faculty of Medicine, University of Oviedo, 33011 Asturias, Spain
| | - Pablo Avanzas
- Hospital Universitario Central de Asturias, Oviedo, 33011 Asturias, Spain; (A.A.); (P.A.); (M.A.); (R.Á.); (I.P.); (D.H.-V.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Asturias, Spain
- Faculty of Medicine, University of Oviedo, 33011 Asturias, Spain
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28046 Madrid, Spain
| |
Collapse
|
2
|
Gurgoglione FL, Denegri A, Russo M, Calvieri C, Benatti G, Niccoli G. Intracoronary Imaging of Coronary Atherosclerotic Plaque: From Assessment of Pathophysiological Mechanisms to Therapeutic Implication. Int J Mol Sci 2023; 24:5155. [PMID: 36982230 PMCID: PMC10049285 DOI: 10.3390/ijms24065155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the leading cause of morbidity and mortality worldwide. Several cardiovascular risk factors are implicated in atherosclerotic plaque promotion and progression and are responsible for the clinical manifestations of coronary artery disease (CAD), ranging from chronic to acute coronary syndromes and sudden coronary death. The advent of intravascular imaging (IVI), including intravascular ultrasound, optical coherence tomography and near-infrared diffuse reflectance spectroscopy has significantly improved the comprehension of CAD pathophysiology and has strengthened the prognostic relevance of coronary plaque morphology assessment. Indeed, several atherosclerotic plaque phenotype and mechanisms of plaque destabilization have been recognized with different natural history and prognosis. Finally, IVI demonstrated benefits of secondary prevention therapies, such as lipid-lowering and anti-inflammatory agents. The purpose of this review is to shed light on the principles and properties of available IVI modalities along with their prognostic significance.
Collapse
Affiliation(s)
| | - Andrea Denegri
- Cardiology Department, Azienda Ospedaliero-Universitaria of Parma, 43126 Parma, Italy
| | - Michele Russo
- Department of Cardiology, S. Maria dei Battuti Hospital, AULSS 2 Veneto, 31015 Conegliano, Italy
| | - Camilla Calvieri
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, La Sapienza University, 00185 Rome, Italy
| | - Giorgio Benatti
- Cardiology Department, Azienda Ospedaliero-Universitaria of Parma, 43126 Parma, Italy
| | - Giampaolo Niccoli
- Cardiology Department, University of Parma, 43126 Parma, Italy
- Cardiology Department, Azienda Ospedaliero-Universitaria of Parma, 43126 Parma, Italy
| |
Collapse
|
3
|
Li J, Centurion F, Chen R, Gu Z. Intravascular Imaging of Atherosclerosis by Using Engineered Nanoparticles. BIOSENSORS 2023; 13:319. [PMID: 36979531 PMCID: PMC10046792 DOI: 10.3390/bios13030319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Atherosclerosis is a leading cause of morbidity and mortality, and high-risk atherosclerotic plaques can result in myocardial infarction, stroke, and/or sudden death. Various imaging and sensing techniques (e.g., ultrasound, optical coherence tomography, fluorescence, photoacoustic) have been developed for scanning inside blood vessels to provide accurate detection of high-risk atherosclerotic plaques. Nanoparticles have been utilized in intravascular imaging to enable targeted detection of high-risk plaques, to enhance image contrast, and in some applications to also provide therapeutic functions of atherosclerosis. In this paper, we review the recent progress on developing nanoparticles for intravascular imaging of atherosclerosis. We discuss the basic nanoparticle design principles, imaging modalities and instrumentations, and common targets for atherosclerosis. The review is concluded and highlighted with discussions on challenges and opportunities for bringing nanoparticles into in vivo (pre)clinical intravascular applications.
Collapse
Affiliation(s)
- Jiawen Li
- School of Electrical and Mechanical Engineering, University of Adelaide, Adelaide, SA 5005, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA 5005, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Franco Centurion
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Rouyan Chen
- School of Electrical and Mechanical Engineering, University of Adelaide, Adelaide, SA 5005, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Zi Gu
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW 2052, Australia
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Huang J, Tu S, Masuda S, Ninomiya K, Dijkstra J, Chu M, Ding D, Hynes SO, O'Leary N, Onuma Y, Serruys PW, Wijns W. Plaque burden estimated from optical coherence tomography with deep learning: In vivo validation using co-registered intravascular ultrasound. Catheter Cardiovasc Interv 2023; 101:287-296. [PMID: 36519717 DOI: 10.1002/ccd.30525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES The objective of the present study was to compare plaque burden (PB) calculated from optical coherence tomography (OCT) using deep learning (DL) with PB derived from co-registered intravascular ultrasound (IVUS). BACKGROUND A DL algorithm was developed for automated plaque characterization and PB quantification from OCT images. However, the performance of this algorithm for PB quantification has not been validated. METHODS Five-year follow-up OCT and IVUS images from 15 patients implanted with bioresorbable vascular scaffold (BVS) at baseline were analyzed. Precise co-registration for 72 anatomical slices was achieved utilizing unique BVS radiopaque markers. PB derived from OCT DL and IVUS were compared. OCT cross-sections were divided into four subgroups with different media visibility level. The impact of media visibility on the numerical difference between OCT-derived and IVUS-derived PB was investigated. The stent sizes selected by OCT DL and IVUS were compared. RESULTS Sixty-four paired OCT and IVUS cross-sections were compared. OCT DL showed good concordance with IVUS for PB assessment (ICC = 0.81, difference = -3.53 ± 6.17%, p < 0.001). The numerical difference between OCT DL-derived PB and IVUS-derived PB was not substantially impacted by missing segments of media visualization (p = 0.21). OCT DL showed a diagnostic accuracy of 92% in identifying PB > 65%. The stent sizes selected by OCT DL were smaller compared to the ones selected by IVUS (difference = 0.30 ± 0.34 mm, p < 0.001). CONCLUSIONS The DL algorithm provides a feasible and reliable method for automated PB estimation from OCT, irrespective of media visibility. OCT DL showed good diagnostic accuracy in identifying PB > 65%, revealing its potential to complement conventional OCT imaging.
Collapse
Affiliation(s)
- Jiayue Huang
- The Lambe Institute for Translational Medicine, Smart Sensors Laboratory and CÚRAM, University of Galway, Galway, Ireland
| | - Shengxian Tu
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | | | - Kai Ninomiya
- Department of Cardiology, University of Galway, Galway, Ireland
| | - Jouke Dijkstra
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Miao Chu
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Daixin Ding
- The Lambe Institute for Translational Medicine, Smart Sensors Laboratory and CÚRAM, University of Galway, Galway, Ireland
| | - Sean O Hynes
- Department of Histopathology, University Hospital Galway and University of Galway, Galway, Ireland
| | - Neil O'Leary
- Department of Cardiology, University of Galway, Galway, Ireland
| | - Yoshinobu Onuma
- Department of Cardiology, University of Galway, Galway, Ireland
| | - Patrick W Serruys
- Department of Cardiology, University of Galway, Galway, Ireland
- Cardiovascular Science Division, National Heart and Lung Institute, Imperial College London, London, UK
| | - William Wijns
- The Lambe Institute for Translational Medicine, Smart Sensors Laboratory and CÚRAM, University of Galway, Galway, Ireland
| |
Collapse
|
5
|
Seguchi M, Aytekin A, Lenz T, Nicol P, Klosterman GR, Beele A, Sabic E, Utsch L, Alyaqoob A, Gorpas D, Ntziachristos V, Jaffer FA, Rauschendorfer P, Joner M. Intravascular molecular imaging: translating pathophysiology of atherosclerosis into human disease conditions. Eur Heart J Cardiovasc Imaging 2022; 24:e1-e16. [PMID: 36002376 DOI: 10.1093/ehjci/jeac163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/31/2022] [Indexed: 12/25/2022] Open
Abstract
Progression of atherosclerotic plaque in coronary arteries is characterized by complex cellular and non-cellular molecular interactions. Within recent years, atherosclerosis has been recognized as inflammation-driven disease condition, where progressive stages are characterized by morphological changes in plaque composition but also relevant molecular processes resulting in increased plaque vulnerability. While existing intravascular imaging modalities are able to resolve key morphological features during plaque progression, they lack capability to characterize the molecular profile of advanced atherosclerotic plaque. Because hybrid imaging modalities may provide incremental information related to plaque biology, they are expected to provide synergistic effects in detecting high risk patients and lesions. The aim of this article is to review existing literature on intravascular molecular imaging approaches, and to provide clinically oriented proposals of their application. In addition, we assembled an overview of future developments in this field geared towards detection of patients at risk for cardiovascular events.
Collapse
Affiliation(s)
- Masaru Seguchi
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich 80636, Germany
| | - Alp Aytekin
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich 80636, Germany
| | - Tobias Lenz
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich 80636, Germany
| | - Philipp Nicol
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich 80636, Germany
| | - Grace R Klosterman
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich 80636, Germany
| | - Alicia Beele
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich 80636, Germany
| | - Emina Sabic
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich 80636, Germany
| | - Léa Utsch
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich 80636, Germany
| | - Aseel Alyaqoob
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich 80636, Germany
| | - Dimitris Gorpas
- Chair of Biological Imaging and TranslaTUM, Technical University of Munich, Munich 80333, Germany.,Institute of Biological and Medical Imaging, Helmholtz Zentrum München GmbH, Neuherberg 85764, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging and TranslaTUM, Technical University of Munich, Munich 80333, Germany.,Institute of Biological and Medical Imaging, Helmholtz Zentrum München GmbH, Neuherberg 85764, Germany.,Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich 80336, Germany
| | - Farouc A Jaffer
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Philipp Rauschendorfer
- Chair of Biological Imaging and TranslaTUM, Technical University of Munich, Munich 80333, Germany.,Institute of Biological and Medical Imaging, Helmholtz Zentrum München GmbH, Neuherberg 85764, Germany.,Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich 80336, Germany
| | - Michael Joner
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich 80636, Germany.,Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich 80336, Germany
| |
Collapse
|
6
|
Legutko J, Bryniarski KL, Kaluza GL, Roleder T, Pociask E, Kedhi E, Wojakowski W, Jang IK, Kleczynski P. Intracoronary Imaging of Vulnerable Plaque-From Clinical Research to Everyday Practice. J Clin Med 2022; 11:jcm11226639. [PMID: 36431116 PMCID: PMC9699515 DOI: 10.3390/jcm11226639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The introduction into clinical practice of intravascular imaging, including intravascular ultrasound (IVUS), optical coherence tomography (OCT) and their derivatives, allowed for the in vivo assessment of coronary atherosclerosis in humans, including insights into plaque evolution and progression process. Intravascular ultrasound, the most commonly used intravascular modality in many countries, due to its low resolution cannot assess many features of vulnerable plaque such as lipid plaque or thin-cap fibroatheroma. Thus, novel methods were introduced to facilitate this problem including virtual histology intravascular ultrasound and later on near-infrared spectroscopy and OCT. Howbeit, none of the currently used modalities can assess all known characteristics of plaque vulnerability; hence, the idea of combining different intravascular imaging methods has emerged including NIRS-IVUS or OCT-IVUS imaging. All of those described methods may allow us to identify the most vulnerable plaques, which are prone to cause acute coronary syndrome, and thus they may allow us to introduce proper treatment before plaque destabilization.
Collapse
Affiliation(s)
- Jacek Legutko
- Department of Interventional Cardiology, Faculty of Medicine, Institute of Cardiology, Jagiellonian University Medical College, 31-202 Kraków, Poland
- Clinical Department of Interventional Cardiology, John Paul II Hospital, 31-202 Kraków, Poland
| | - Krzysztof L. Bryniarski
- Department of Interventional Cardiology, Faculty of Medicine, Institute of Cardiology, Jagiellonian University Medical College, 31-202 Kraków, Poland
- Clinical Department of Interventional Cardiology, John Paul II Hospital, 31-202 Kraków, Poland
| | - Grzegorz L. Kaluza
- Skirball Center for Innovation, Cardiovascular Research Foundation, Orangeburg, NY 10019, USA
| | - Tomasz Roleder
- Department of Cardiology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Elzbieta Pociask
- Department of Biocybernetics and Biomedical Engineering, AGH University of Science and Technology, 30-059 Kraków, Poland
| | - Elvin Kedhi
- Clinique Hopitaliere Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Wojciech Wojakowski
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, 40-635 Katowice, Poland
| | - Ik-Kyung Jang
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, GRB 800, Boston, MA 02115, USA
- Division of Cardiology, Kyung Hee University Hospital, Seoul 02447, Korea
| | - Pawel Kleczynski
- Department of Interventional Cardiology, Faculty of Medicine, Institute of Cardiology, Jagiellonian University Medical College, 31-202 Kraków, Poland
- Clinical Department of Interventional Cardiology, John Paul II Hospital, 31-202 Kraków, Poland
- Correspondence: ; Tel.: +48-12-614-35-01
| |
Collapse
|
7
|
Zhou C, Lin Z, Huang S, Li B, Gao A. Progress in Probe-Based Sensing Techniques for In Vivo Diagnosis. BIOSENSORS 2022; 12:943. [PMID: 36354452 PMCID: PMC9688418 DOI: 10.3390/bios12110943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Advancements in robotic surgery help to improve the endoluminal diagnosis and treatment with minimally invasive or non-invasive intervention in a precise and safe manner. Miniaturized probe-based sensors can be used to obtain information about endoluminal anatomy, and they can be integrated with medical robots to augment the convenience of robotic operations. The tremendous benefit of having this physiological information during the intervention has led to the development of a variety of in vivo sensing technologies over the past decades. In this paper, we review the probe-based sensing techniques for the in vivo physical and biochemical sensing in China in recent years, especially on in vivo force sensing, temperature sensing, optical coherence tomography/photoacoustic/ultrasound imaging, chemical sensing, and biomarker sensing.
Collapse
Affiliation(s)
- Cheng Zhou
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zecai Lin
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaoping Huang
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bing Li
- Institute for Materials Discovery, University College London, London WC1E 7JE, UK
| | - Anzhu Gao
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Kong R, Dai C, Zhang Q, Gao L, Chen Z, Song Y, Wu Z, Wang J, Wang S, Zheng H, Ma T. Integrated US-OCT-NIRF Tri-Modality Endoscopic Imaging System for Pancreaticobiliary Duct Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1970-1979. [PMID: 35377846 DOI: 10.1109/tuffc.2022.3164777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pancreaticobiliary carcinomas is a highly malignant gastrointestinal tumor. Most pancreaticobiliary cancers arise from epithelial proliferation within the pancreaticobiliary ducts, referred to as pancreatic intraepithelial neoplasias (PanINs). Some PanINs are benign metaplasia, while others progress to invasive duct adenocarcinoma (IDAC). However, there is no standard program to diagnose the progression from PanINs to IDAC. In this study, we present a tri-modality imaging system, which integrates ultrasound (US), optical coherence tomography (OCT), and near-infrared fluorescence (NIRF) for pancreaticobiliary duct imaging. This system can obtain OCT, US, and NIRF images in real-time with a frame rate of 30 frames per second. For the endoscopy probe with an outer diameter of 0.9 mm, the US transducer and fiber ball lens were placed back to back. In vivo experiments were performed on the rectums of Sprague-Dawley rats to demonstrate the imaging performance of US, OCT, and fluorescence angiography. An ex vivo experiment on a human pancreatic duct was performed for a more accurate assessment of the pancreaticobiliary duct. The tomography images of rat rectums and human pancreatic ducts were correlated with hematoxylin and eosin (H&E) histology to check the measurement accuracy. The integrated tri-modality system has great clinical potential in mechanism studies, early diagnosis, and prognosis evaluation of malignant pancreaticobiliary carcinomas.
Collapse
|
9
|
Zhang R, Fan Y, Qi W, Wang A, Tang X, Gao T. Current research and future prospects of IVOCT imaging-based detection of the vascular lumen and vulnerable plaque. JOURNAL OF BIOPHOTONICS 2022; 15:e202100376. [PMID: 35139263 DOI: 10.1002/jbio.202100376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/17/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Intravascular optical coherence tomography (IVOCT) is an imaging method that has developed rapidly in recent years and is useful in coronary atherosclerosis diagnosis. It is widely used in the assessment of vulnerable plaque. This review summarizes the main research methods used in recent years for blood vessel lumen boundary detection and segmentation and vulnerable plaque segmentation and classification. This article aims to comprehensively and systematically introduce the research progress on internal tissues of blood vessels based on IVOCT images. The characteristics and advantages of various methods have been summarized to provide theoretical ideas and methods for the reference of relevant researchers and scholars.
Collapse
Affiliation(s)
- Ruolin Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yingwei Fan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Wenliu Qi
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ancong Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xiaoying Tang
- School of Life Science, Beijing Institute of Technology, Beijing, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Tianxin Gao
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
10
|
Li Y, Moon S, Jiang Y, Qiu S, Chen Z. Intravascular polarization-sensitive optical coherence tomography based on polarization mode delay. Sci Rep 2022; 12:6831. [PMID: 35477738 PMCID: PMC9046432 DOI: 10.1038/s41598-022-10709-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 04/11/2022] [Indexed: 01/13/2023] Open
Abstract
Intravascular polarization-sensitive optical coherence tomography (IV-PSOCT) provides depth-resolved tissue birefringence which can be used to evaluate the mechanical stability of a plaque. In our previous study, we reported a new strategy to construct polarization-sensitive optical coherence tomography in a microscope platform. Here, we demonstrated that this technology can be implemented in an endoscope platform, which has many clinical applications. A conventional intravascular OCT system can be modified for IV-PSOCT by introducing a 12-m polarization-maintaining fiber-based imaging probe. Its two polarization modes separately produce OCT images of polarization detection channels spatially distinguished by an image separation of 2.7 mm. We experimentally validated our IV-PSOCT with chicken tendon, chicken breast, and coronary artery as the image samples. We found that the birefringent properties can be successfully visualized by our IV-PSOCT.
Collapse
Affiliation(s)
- Yan Li
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92617, USA
| | - Sucbei Moon
- Department of Physics, Kookmin University, Seoul, 02707, South Korea
| | - Yuchen Jiang
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92617, USA.,Department of Physics, Kookmin University, Seoul, 02707, South Korea
| | - Saijun Qiu
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92617, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92617, USA. .,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA. .,The Cardiovascular Innovation and Research Center, University of California, Irvine, , Irvine, CA, 92617, USA.
| |
Collapse
|
11
|
Abstract
Photoacoustic (PA) imaging is able to provide extremely high molecular
contrast while maintaining the superior imaging depth of ultrasound (US)
imaging. Conventional microscopic PA imaging has limited access to deeper tissue
due to strong light scattering and attenuation. Endoscopic PA technology enables
direct delivery of excitation light into the interior of a hollow organ or
cavity of the body for functional and molecular PA imaging of target tissue.
Various endoscopic PA probes have been developed for different applications,
including the intravascular imaging of lipids in atherosclerotic plaque and
endoscopic imaging of colon cancer. In this paper, the authors review
representative probe configurations and corresponding preclinical applications.
In addition, the potential challenges and future directions of endoscopic PA
imaging are discussed.
Collapse
Affiliation(s)
- Yan Li
- Beckman Laser Institute, University of California Irvine,
Irvine, CA 92617, USA
| | - Gengxi Lu
- Roski Eye Institute, Keck School of Medicine, University of
Southern California, Los Angeles, CA 90033, USA
| | - Qifa Zhou
- Roski Eye Institute, Keck School of Medicine, University of
Southern California, Los Angeles, CA 90033, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California Irvine,
Irvine, CA 92617, USA
- The Edwards Lifesciences Center for Cardiovascular
Technology, University of California Irvine, Irvine, CA 92617, USA
- Department of Biomedical Engineering, University of
California Irvine, Irvine, CA 92697, USA
- Correspondence:
| |
Collapse
|
12
|
Li J, Shang C, Rong Y, Sun J, Cheng Y, He B, Wang Z, Li M, Ma J, Fu B, Ji X. Review on Laser Technology in Intravascular Imaging and Treatment. Aging Dis 2022; 13:246-266. [PMID: 35111372 PMCID: PMC8782552 DOI: 10.14336/ad.2021.0711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/11/2021] [Indexed: 12/14/2022] Open
Abstract
Blood vessels are one of the most essential organs, which nourish all tissues in our body. Once there are intravascular plaques or vascular occlusion, other organs and circulatory systems will not work properly. Therefore, it is necessary to detect abnormal blood vessels by intravascular imaging technologies for subsequent vascular treatment. The emergence of lasers and fiber optics promotes the development of intravascular imaging and treatment. Laser imaging techniques can obtain deep vascular images owing to light scattering and absorption properties. Moreover, photothermal and photomechanical effects of laser make it possible to treat vascular diseases accurately. In this review, we present the research progress and applications of laser techniques in intravascular imaging and treatment. Firstly, we introduce intravascular optical coherent tomography and intravascular photoacoustic imaging, which can obtain various information of plaques. Multimodal intravascular imaging techniques provide more information about intravascular plaques, which have an essential influence on intravascular imaging. Secondly, two laser techniques including laser angioplasty and endovenous laser ablation are discussed for the treatment of arterial and venous diseases, respectively. Finally, the outlook of laser techniques in blood vessels, as well as the integration of laser imaging and treatment are prospected in the section of discussions.
Collapse
Affiliation(s)
- Jing Li
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Ce Shang
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Yao Rong
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
- Medical Engineering Devices of Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jingxuan Sun
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
| | - Yuan Cheng
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
| | - Boqu He
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
| | - Zihao Wang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
| | - Ming Li
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jianguo Ma
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
| | - Bo Fu
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
- Key Laboratory of Big Data-Based Precision Medicine Ministry of Industry and Information Technology, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China.
| | - Xunming Ji
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Neurosurgery Department of Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
Kim S, Nam HS, Lee MW, Kim HJ, Kang WJ, Song JW, Han J, Kang DO, Oh WY, Yoo H, Kim JW. Comprehensive Assessment of High-Risk Plaques by Dual-Modal Imaging Catheter in Coronary Artery. JACC Basic Transl Sci 2021; 6:948-960. [PMID: 35024500 PMCID: PMC8733747 DOI: 10.1016/j.jacbts.2021.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 01/22/2023]
Abstract
Fluorescence lifetime imaging (FLIm) allows label-free biochemical visualization of atheromas; however, it remains unknown whether FLIm can characterize high-risk plaque features in coronary arteries in a beating heart. Also, implementation of a novel analytic methodology is required for multispectral FLIm because it yields massive biochemical readouts. This study first demonstrated a simultaneous structural and biochemical assessment of high-risk plaques in the beating swine coronary arteries using a fully integrated optical coherence tomography-FLIm and a 2.9-F low-profile dual-modal catheter. Biochemical components of atherosclerotic plaques, including lipids, macrophages, lipids+macrophages, and fibrotic tissues, had unique fluorescence lifetime signatures that were clearly distinguishable using multispectral FLIm. Machine learning framework was successfully integrated with multispectral FLIm and enabled an automated, quantitative imaging of multiple key components associated with plaque destabilization.
Coronary plaque destabilization involves alterations in microstructure and biochemical composition; however, no imaging approach allows such comprehensive characterization. Herein, the authors demonstrated a simultaneous microstructural and biochemical assessment of high-risk plaques in the coronary arteries in a beating heart using a fully integrated optical coherence tomography and fluorescence lifetime imaging (FLIm). It was found that plaque components such as lipids, macrophages, lipids+macrophages, and fibrotic tissues had unique fluorescence lifetime signatures that were distinguishable using multispectral FLIm. Because FLIm yielded massive biochemical readouts, the authors incorporated machine learning framework into FLIm, and ultimately, their approach enabled an automated, quantitative imaging of multiple key components relevant for plaque destabilization.
Collapse
Affiliation(s)
- Sunwon Kim
- Multimodal Imaging and Theranostic Lab, Cardiovascular Center, Korea University Guro Hospital, Seoul, South Korea
- Department of Cardiology, Korea University Ansan Hospital, Ansan-si, South Korea
| | - Hyeong Soo Nam
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Min Woo Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Hyun Jung Kim
- Multimodal Imaging and Theranostic Lab, Cardiovascular Center, Korea University Guro Hospital, Seoul, South Korea
| | - Woo Jae Kang
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Joon Woo Song
- Multimodal Imaging and Theranostic Lab, Cardiovascular Center, Korea University Guro Hospital, Seoul, South Korea
| | - Jeongmoo Han
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Dong Oh Kang
- Multimodal Imaging and Theranostic Lab, Cardiovascular Center, Korea University Guro Hospital, Seoul, South Korea
| | - Wang-Yuhl Oh
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hongki Yoo
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Dr Hongki Yoo, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea.
| | - Jin Won Kim
- Multimodal Imaging and Theranostic Lab, Cardiovascular Center, Korea University Guro Hospital, Seoul, South Korea
- Address for correspondence: Dr Jin Won Kim, Multimodal Imaging and Theranostic Lab, Cardiovascular Center, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul 08308, South Korea.
| |
Collapse
|
14
|
Kellnberger S, Wissmeyer G, Albaghdadi M, Piao Z, Li W, Mauskapf A, Rauschendorfer P, Tearney GJ, Ntziachristos V, Jaffer FA. Intravascular molecular-structural imaging with a miniaturized integrated near-infrared fluorescence and ultrasound catheter. JOURNAL OF BIOPHOTONICS 2021; 14:e202100048. [PMID: 34164943 PMCID: PMC8492488 DOI: 10.1002/jbio.202100048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 05/29/2023]
Abstract
Coronary artery disease (CAD) remains a leading cause of mortality and warrants new imaging approaches to better guide clinical care. We report on a miniaturized, hybrid intravascular catheter and imaging system for comprehensive coronary artery imaging in vivo. Our catheter exhibits a total diameter of 1.0 mm (3.0 French), equivalent to standalone clinical intravascular ultrasound (IVUS) catheters but enables simultaneous near-infrared fluorescence (NIRF) and IVUS molecular-structural imaging. We demonstrate NIRF-IVUS imaging in vitro in coronary stents using NIR fluorophores, and compare NIRF signal strengths for prism and ball lens sensor designs in both low and high scattering media. Next, in vivo intravascular imaging in pig coronary arteries demonstrates simultaneous, co-registered molecular-structural imaging of experimental CAD inflammation on IVUS and distance-corrected NIRF images. The obtained results suggest substantial potential for the NIRF-IVUS catheter to advance standalone IVUS, and enable comprehensive phenotyping of vascular disease to better assess and treat patients with CAD.
Collapse
Affiliation(s)
- Stephan Kellnberger
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Boston, MA 02114
| | - Georg Wissmeyer
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Boston, MA 02114
| | - Mazen Albaghdadi
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Boston, MA 02114
| | - Zhonglie Piao
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Wenzhu Li
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Boston, MA 02114
| | - Adam Mauskapf
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Boston, MA 02114
| | - Philipp Rauschendorfer
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Germany
| | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Germany
| | - Farouc A. Jaffer
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Boston, MA 02114
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| |
Collapse
|
15
|
Noothalapati H, Iwasaki K, Yamamoto T. Non-invasive diagnosis of colorectal cancer by Raman spectroscopy: Recent developments in liquid biopsy and endoscopy approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119818. [PMID: 33957445 DOI: 10.1016/j.saa.2021.119818] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer diagnosed globally and is also one of the leading causes of cancer deaths in both men and women. The progression of CRC is slow and is often contained in colon but the risk increases with age. Based on the high certainty that the net benefit of screening in an age group is substantial, screening for CRC is recommended beginning at the age of 50. Currently, most of the incidence is concentrated in developed countries but the rate is increasing rapidly in developing geographies. Detecting CRC at an early stage is critical to reduce morbidity and mortality. Colonoscopy is the most preferred screening method but not very widely implemented due to practical considerations such as cost involved, lack of personnel and facility. To address these concerns, Raman spectroscopy (RS) has been suggested as a viable alternative due to its potential as a rapid non-invasive diagnostic tool. Recently, several studies have been reported but many variations of RS applications in CRC exists and are not well understood by non-specialists. This review focuses particularly on developments of Raman based liquid biopsy and endoscopic studies in order to throw light on each of their significance and limitations. Necessary developments in the future to translate RS into a clinical tool for screening and diagnosis of CRC are also briefly presented.
Collapse
Affiliation(s)
- Hemanth Noothalapati
- Raman Project Center for Medical and Biological Applications, Shimane University, Matsue, Japan; Research Administration Office, Shimane University, Matsue, Japan; Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan.
| | - Keita Iwasaki
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Tatsuyuki Yamamoto
- Raman Project Center for Medical and Biological Applications, Shimane University, Matsue, Japan; Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan.
| |
Collapse
|
16
|
Peng C, Wu H, Kim S, Dai X, Jiang X. Recent Advances in Transducers for Intravascular Ultrasound (IVUS) Imaging. SENSORS (BASEL, SWITZERLAND) 2021; 21:3540. [PMID: 34069613 PMCID: PMC8160965 DOI: 10.3390/s21103540] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022]
Abstract
As a well-known medical imaging methodology, intravascular ultrasound (IVUS) imaging plays a critical role in diagnosis, treatment guidance and post-treatment assessment of coronary artery diseases. By cannulating a miniature ultrasound transducer mounted catheter into an artery, the vessel lumen opening, vessel wall morphology and other associated blood and vessel properties can be precisely assessed in IVUS imaging. Ultrasound transducer, as the key component of an IVUS system, is critical in determining the IVUS imaging performance. In recent years, a wide range of achievements in ultrasound transducers have been reported for IVUS imaging applications. Herein, a comprehensive review is given on recent advances in ultrasound transducers for IVUS imaging. Firstly, a fundamental understanding of IVUS imaging principle, evaluation parameters and IVUS catheter are summarized. Secondly, three different types of ultrasound transducers (piezoelectric ultrasound transducer, piezoelectric micromachined ultrasound transducer and capacitive micromachined ultrasound transducer) for IVUS imaging are presented. Particularly, the recent advances in piezoelectric ultrasound transducer for IVUS imaging are extensively examined according to their different working mechanisms, configurations and materials adopted. Thirdly, IVUS-based multimodality intravascular imaging of atherosclerotic plaque is discussed. Finally, summary and perspectives on the future studies are highlighted for IVUS imaging applications.
Collapse
Affiliation(s)
- Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (C.P.); (H.W.)
| | - Huaiyu Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (C.P.); (H.W.)
| | | | - Xuming Dai
- Department of Cardiology, New York-Presbyterian Queens Hospital, Flushing, NY 11355, USA;
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (C.P.); (H.W.)
| |
Collapse
|
17
|
Li J, Montarello NJ, Hoogendoorn A, Verjans JW, Bursill CA, Peter K, Nicholls SJ, McLaughlin RA, Psaltis PJ. Multimodality Intravascular Imaging of High-Risk Coronary Plaque. JACC Cardiovasc Imaging 2021; 15:145-159. [PMID: 34023267 DOI: 10.1016/j.jcmg.2021.03.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 01/13/2023]
Abstract
The majority of coronary atherothrombotic events presenting as myocardial infarction (MI) occur as a result of plaque rupture or erosion. Understanding the evolution from a stable plaque into a life-threatening, high-risk plaque is required for advancing clinical approaches to predict atherothrombotic events, and better treat coronary atherosclerosis. Unfortunately, none of the coronary imaging approaches used in clinical practice can reliably predict which plaques will cause an MI. Currently used imaging techniques mostly identify morphological features of plaques, but are not capable of detecting essential molecular characteristics known to be important drivers of future risk. To address this challenge, engineers, scientists, and clinicians have been working hand-in-hand to advance a variety of multimodality intravascular imaging techniques, whereby 2 or more complementary modalities are integrated into the same imaging catheter. Some of these have already been tested in early clinical studies, with other next-generation techniques also in development. This review examines these emerging hybrid intracoronary imaging techniques and discusses their strengths, limitations, and potential for clinical translation from both an engineering and clinical perspective.
Collapse
Affiliation(s)
- Jiawen Li
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, Australia; Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
| | - Nicholas J Montarello
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, Australia
| | - Ayla Hoogendoorn
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, Australia; Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia; Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Johan W Verjans
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, Australia; Department of Cardiology, Central Adelaide Local Health Network, Adelaide, Australia; Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Christina A Bursill
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, Australia; Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia; Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | | | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Robert A McLaughlin
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, Australia; Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
| | - Peter J Psaltis
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; Department of Cardiology, Central Adelaide Local Health Network, Adelaide, Australia; Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.
| |
Collapse
|
18
|
Park J, Park B, Kim TY, Jung S, Choi WJ, Ahn J, Yoon DH, Kim J, Jeon S, Lee D, Yong U, Jang J, Kim WJ, Kim HK, Jeong U, Kim HH, Kim C. Quadruple ultrasound, photoacoustic, optical coherence, and fluorescence fusion imaging with a transparent ultrasound transducer. Proc Natl Acad Sci U S A 2021; 118:e1920879118. [PMID: 33836558 PMCID: PMC7980418 DOI: 10.1073/pnas.1920879118] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ultrasound and optical imagers are used widely in a variety of biological and medical applications. In particular, multimodal implementations combining light and sound have been actively investigated to improve imaging quality. However, the integration of optical sensors with opaque ultrasound transducers suffers from low signal-to-noise ratios, high complexity, and bulky form factors, significantly limiting its applications. Here, we demonstrate a quadruple fusion imaging system using a spherically focused transparent ultrasound transducer that enables seamless integration of ultrasound imaging with photoacoustic imaging, optical coherence tomography, and fluorescence imaging. As a first application, we comprehensively monitored multiparametric responses to chemical and suture injuries in rats' eyes in vivo, such as corneal neovascularization, structural changes, cataracts, and inflammation. As a second application, we successfully performed multimodal imaging of tumors in vivo, visualizing melanomas without using labels and visualizing 4T1 mammary carcinomas using PEGylated gold nanorods. We strongly believe that the seamlessly integrated multimodal system can be used not only in ophthalmology and oncology but also in other healthcare applications with broad impact and interest.
Collapse
Affiliation(s)
- Jeongwoo Park
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Byullee Park
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Tae Yeong Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Sungjin Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Woo June Choi
- School of Electrical and Electronics Engineering, Chung-Ang University, 06974 Seoul, Republic of Korea
| | - Joongho Ahn
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Dong Hee Yoon
- Department of Ophthalmology, School of Medicine, Kyungpook National University, 41944 Daegu, Republic of Korea
| | - Jeongho Kim
- Department of Ophthalmology, School of Medicine, Kyungpook National University, 41944 Daegu, Republic of Korea
| | - Seungwan Jeon
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Donghyun Lee
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Uijung Yong
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Jinah Jang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Won Jong Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Hong Kyun Kim
- Department of Ophthalmology, School of Medicine, Kyungpook National University, 41944 Daegu, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea;
| | - Hyung Ham Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea;
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Chulhong Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea;
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| |
Collapse
|
19
|
Chen M, Wang J, Tan W, Feng Y, Zheng G. Miniaturized all fiber probe for optical coherence tomography and pH detection of biological tissue. JOURNAL OF BIOPHOTONICS 2021; 14:e202000239. [PMID: 33048463 DOI: 10.1002/jbio.202000239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/16/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
We present a novel all-fiber probe with 710-μm outside diameter for combined optical coherence tomography and pH detection. In cancer surgery, a significant challenge is how to completely remove the malignant tumor without cutting too much normal tissue. The difference between cancer tissue and normal tissue not only lies in morphology and structure but also in tissue pH, where malignant tissue has a lower pH. This dual-modality probe combined optical coherence tomography and pH detection of biological tissue, is expected to determine whether the tissue is cancerous quickly and accurately. The probe utilizes a typical three-segment structure (double-clad fiber - no-core fiber - graded-index fiber). We obtained a lateral resolution of ~10.6 μm, a working distance of ~506 μm and a pH measurement accuracy of 0.01 pH unit for the probe. The performance of the all-fiber probe was verified through an ex vivo experiment using the porcine brain specimen.
Collapse
Affiliation(s)
- Minghui Chen
- Shanghai Institute for Interventional Medical Devices, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianping Wang
- Shanghai Institute for Interventional Medical Devices, University of Shanghai for Science and Technology, Shanghai, China
| | - Weijie Tan
- Shanghai Institute for Interventional Medical Devices, University of Shanghai for Science and Technology, Shanghai, China
| | - Yuanyuan Feng
- Shanghai Institute for Interventional Medical Devices, University of Shanghai for Science and Technology, Shanghai, China
| | - Gang Zheng
- Shanghai Institute for Interventional Medical Devices, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
20
|
Khraishah H, Jaffer FA. Intravascular Molecular Imaging: Near-Infrared Fluorescence as a New Frontier. Front Cardiovasc Med 2020; 7:587100. [PMID: 33330648 PMCID: PMC7719823 DOI: 10.3389/fcvm.2020.587100] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/30/2020] [Indexed: 11/13/2022] Open
Abstract
Despite exciting advances in structural intravascular imaging [intravascular ultrasound (IVUS) and optical coherence tomography (OCT)] that have enabled partial assessment of atheroma burden and high-risk features associated with acute coronary syndromes, structural-based imaging modalities alone do not comprehensively phenotype the complex pathobiology of atherosclerosis. Near-infrared fluorescence (NIRF) is an emerging molecular intravascular imaging modality that allows for in vivo visualization of pathobiological and cellular processes at atheroma plaque level, including inflammation, oxidative stress, and abnormal endothelial permeability. Established intravascular NIRF imaging targets include macrophages, cathepsin protease activity, oxidized low-density lipoprotein and abnormal endothelial permeability. Structural and molecular intravascular imaging provide complementary information about plaque microstructure and biology. For this reason, integrated hybrid catheters that combine NIRF-IVUS or NIRF-OCT have been developed to allow co-registration of morphological and molecular processes with a single pullback, as performed for standalone IVUS or OCT. NIRF imaging is approaching application in clinical practice. This will be accelerated by the use of FDA-approved indocyanine green (ICG), which illuminates lipid- and macrophage-rich zones of permeable atheroma. The ability to comprehensively phenotype coronary pathobiology in patients will enable a deeper understanding of plaque pathobiology, improve local and patient-based risk prediction, and usher in a new era of personalized therapy.
Collapse
Affiliation(s)
- Haitham Khraishah
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States.,Division of Cardiology, Cardiovascular Research Center and Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Farouc A Jaffer
- Division of Cardiology, Cardiovascular Research Center and Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States.,Wellman Center for Photomedicine and Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
21
|
Pinkert MA, Cox BL, Dai B, Hall TJ, Eliceiri KW. 3-D-Printed Registration Phantom for Combined Ultrasound and Optical Imaging of Biological Tissues. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1808-1814. [PMID: 32340797 PMCID: PMC7293928 DOI: 10.1016/j.ultrasmedbio.2020.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 05/04/2023]
Abstract
Efforts to develop quantitative ultrasound biomarkers would benefit from comparisons between ultrasound data and higher-resolution images of the tissue microstructure, such as from optical microscopy. However, only a few studies have used these methods for multiscale imaging because it is difficult to register low-resolution (>100 μm) ultrasound images to high-resolution microscopy images. To address this need, we have designed a 3-D-printed registration phantom that is made of a hard fluorescent resin, fits into a glass-bottom dish and can be used to calculate a coordinate system transform between ultrasound and optical microscopy. We report the phantom design, a registration protocol and an example registration using 18.5-MHz ultrasound and second harmonic generation microscopy. We evaluate the registration precision, achieving standard deviations smaller than the ultrasound resolution across all axes, and illustrate on a mouse mammary gland that this method yields results superior to those of manual landmark registration.
Collapse
Affiliation(s)
- Michael A Pinkert
- Morgridge Institute for Research, 330 N Orchard St, Madison, WI, United States of America, 53715
- University of Wisconsin Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, WI, United States of America, 53706
- University of Wisconsin Madison, Department of Medical Physics, 1111 Highland Ave, Madison, WI, United States of America, 53705
| | - Benjamin L Cox
- University of Wisconsin Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, WI, United States of America, 53706
- University of Wisconsin Madison, Department of Medical Physics, 1111 Highland Ave, Madison, WI, United States of America, 53705
| | - Bing Dai
- University of Wisconsin Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, WI, United States of America, 53706
| | - Timothy J Hall
- University of Wisconsin Madison, Department of Medical Physics, 1111 Highland Ave, Madison, WI, United States of America, 53705
- Co-corresponding Author: Timothy J. Hall, , Phone: +1 608-265-9459
| | - Kevin W Eliceiri
- Morgridge Institute for Research, 330 N Orchard St, Madison, WI, United States of America, 53715
- University of Wisconsin Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, WI, United States of America, 53706
- University of Wisconsin Madison, Department of Medical Physics, 1111 Highland Ave, Madison, WI, United States of America, 53705
- University of Wisconsin Madison, Department of Biomedical Engineering, 1550 Engineering Dr, Madison, WI 53706
- Co-corresponding Author: Kevin W. Eliceiri, , Phone: +1 608-263-6288
| |
Collapse
|
22
|
Wang P, Chen Z, Xing D. Multi-parameter characterization of atherosclerotic plaques based on optical coherence tomography, photoacoustic and viscoelasticity imaging. OPTICS EXPRESS 2020; 28:13761-13774. [PMID: 32403844 DOI: 10.1364/oe.390874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Detection of atherosclerotic plaque vulnerability is the critical step in prevention of acute coronary events. Fibrous cap thickness, lipid core size, and inflammation extent are three key parameters for assessing plaque vulnerability. Here, we report on multimodality imaging of mice aortic plaques using a system that integrates optical coherence tomography (OCT), photoacoustic imaging (PAI), and photoacoustic viscoelasticity imaging (PAVEI). The thickness of fibrous cap is accurately evaluated by OCT, and PAI helps to determine the distribution and size of lipid core. The mechanical properties of plaques are closely related to the plaque compositions and the content and distribution of macrophages, while PAVEI can characterize the plaque viscoelasticity through the phase delay of photoacoustic signal. Experimental results demonstrate that the OCT-PAI-PAVEI system can comprehensively characterize the three traits of atherosclerotic plaques, thereby identifying high-risk lesions.
Collapse
|
23
|
Pinkert MA, Simmons ZJ, Niemeier RC, Dai B, Woods LB, Hall TJ, Campagnola PJ, Rogers JD, Eliceiri KW. Platform for quantitative multiscale imaging of tissue composition. BIOMEDICAL OPTICS EXPRESS 2020; 11:1927-1946. [PMID: 32341858 PMCID: PMC7173879 DOI: 10.1364/boe.383248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 05/14/2023]
Abstract
Changes in the multi-level physical structure of biological features going from cellular to tissue level composition is a key factor in many major diseases. However, we are only beginning to understand the role of these structural changes because there are few dedicated multiscale imaging platforms with sensitivity at both the cellular and macrostructural spatial scale. A single platform reduces bias and complications from multiple sample preparation methods and can ease image registration. In order to address these needs, we have developed a multiscale imaging system using a range of imaging modalities sensitive to tissue composition: Ultrasound, Second Harmonic Generation Microscopy, Multiphoton Microscopy, Optical Coherence Tomography, and Enhanced Backscattering. This paper details the system design, the calibration for each modality, and a demonstration experiment imaging a rabbit eye.
Collapse
Affiliation(s)
- Michael A Pinkert
- Morgridge Institute for Research, 330 N Orchard St, Madison, WI 53715, USA
- University of Wisconsin Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, WI 53706, USA
- University of Wisconsin Madison, Department of Medical Physics, 1111 Highland Ave, Madison, WI 53705, USA
| | - Zachary J Simmons
- University of Wisconsin Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, WI 53706, USA
- University of Wisconsin Madison, Department of Biomedical Engineering, 1550 Engineering Dr, Madison, WI 53706, USA
| | - Ryan C Niemeier
- University of Wisconsin Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, WI 53706, USA
- University of Wisconsin Madison, Department of Biomedical Engineering, 1550 Engineering Dr, Madison, WI 53706, USA
| | - Bing Dai
- University of Wisconsin Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, WI 53706, USA
| | - Lauren B Woods
- University of Wisconsin Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, WI 53706, USA
- University of Wisconsin Madison, Department of Biomedical Engineering, 1550 Engineering Dr, Madison, WI 53706, USA
| | - Timothy J Hall
- University of Wisconsin Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, WI 53706, USA
- University of Wisconsin Madison, Department of Medical Physics, 1111 Highland Ave, Madison, WI 53705, USA
- University of Wisconsin Madison, Department of Biomedical Engineering, 1550 Engineering Dr, Madison, WI 53706, USA
| | - Paul J Campagnola
- University of Wisconsin Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, WI 53706, USA
- University of Wisconsin Madison, Department of Medical Physics, 1111 Highland Ave, Madison, WI 53705, USA
- University of Wisconsin Madison, Department of Biomedical Engineering, 1550 Engineering Dr, Madison, WI 53706, USA
| | - Jeremy D Rogers
- University of Wisconsin Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, WI 53706, USA
- University of Wisconsin Madison, Department of Medical Physics, 1111 Highland Ave, Madison, WI 53705, USA
- University of Wisconsin Madison, Department of Biomedical Engineering, 1550 Engineering Dr, Madison, WI 53706, USA
| | - Kevin W Eliceiri
- Morgridge Institute for Research, 330 N Orchard St, Madison, WI 53715, USA
- University of Wisconsin Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, WI 53706, USA
- University of Wisconsin Madison, Department of Medical Physics, 1111 Highland Ave, Madison, WI 53705, USA
- University of Wisconsin Madison, Department of Biomedical Engineering, 1550 Engineering Dr, Madison, WI 53706, USA
| |
Collapse
|
24
|
Khraishah H, Jaffer FA. Intravascular Molecular Imaging to Detect High-Risk Vulnerable Plaques: Current Knowledge and Future Perspectives. CURRENT CARDIOVASCULAR IMAGING REPORTS 2020. [DOI: 10.1007/s12410-020-9527-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Li Y, Chen J, Chen Z. Multimodal intravascular imaging technology for characterization of atherosclerosis. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2020; 13:2030001. [PMID: 32308744 PMCID: PMC7164814 DOI: 10.1142/s1793545820300013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Early detection of vulnerable plaques is the critical step in the prevention of acute coronary events. Morphology, composition, and mechanical property of a coronary artery have been demonstrated to be the key characteristics for the identification of vulnerable plaques. Several intravascular multimodal imaging technologies providing co-registered simultaneous images have been developed and applied in clinical studies to improve the characterization of atherosclerosis. In this paper, the authors review the present system and probe designs of representative intravascular multimodal techniques. In addition, the scientific innovations, potential limitations, and future directions of these technologies are also discussed.
Collapse
Affiliation(s)
- Yan Li
- Beckman Laser Institute, University of California, Irvine 1002 Health Sciences Road, Irvine, CA 92617 USA
| | - Jason Chen
- Beckman Laser Institute, University of California, Irvine 1002 Health Sciences Road, Irvine, CA 92617 USA
| | - Zhongping Chen
- Department of Biomedical Engineering University of California, Irvine, CA 92697-2700 USA
| |
Collapse
|
26
|
Li Y, Chen J, Chen Z. Advances in Doppler optical coherence tomography and angiography. TRANSLATIONAL BIOPHOTONICS 2019; 1:e201900005. [PMID: 33005888 PMCID: PMC7523705 DOI: 10.1002/tbio.201900005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022] Open
Abstract
Since the first demonstration of Doppler optical coherence tomography (OCT) in 1997, several functional extensions of Doppler OCT have been developed, including velocimetry, angiogram, and optical coherence elastography. These functional techniques have been widely used in research and clinical applications, particularly in ophthalmology. Here, we review the principles, representative methods, and applications of different Doppler OCT techniques, followed by discussion on the innovations, limitations, and future directions of each of these techniques.
Collapse
Affiliation(s)
- Yan Li
- Beckman Laser Institute, University of California, Irvine, California
- Department of Biomedical Engineering, University of California, Irvine, California
| | - Jason Chen
- Beckman Laser Institute, University of California, Irvine, California
- Department of Biomedical Engineering, University of California, Irvine, California
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, California
- Department of Biomedical Engineering, University of California, Irvine, California
| |
Collapse
|
27
|
Li Y, Zhu Z, Chen JJ, Jing JC, Sun CH, Kim S, Chung PS, Chen Z. Multimodal endoscopy for colorectal cancer detection by optical coherence tomography and near-infrared fluorescence imaging. BIOMEDICAL OPTICS EXPRESS 2019; 10:2419-2429. [PMID: 31143497 PMCID: PMC6524571 DOI: 10.1364/boe.10.002419] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/20/2019] [Accepted: 04/01/2019] [Indexed: 05/07/2023]
Abstract
While colonoscopy is the gold standard for diagnosis and classification of colorectal cancer (CRC), its sensitivity and specificity are operator-dependent and are especially poor for small and flat lesions. Contemporary imaging modalities, such as optical coherence tomography (OCT) and near-infrared (NIR) fluorescence, have been investigated to visualize microvasculature and morphological changes for detecting early stage CRC in the gastrointestinal (GI) tract. In our study, we developed a multimodal endoscopic system with simultaneous co-registered OCT and NIR fluorescence imaging. By introducing a contrast agent into the vascular network, NIR fluorescence is able to highlight the cancer-suspected area based on significant change of tumor vascular density and morphology caused by angiogenesis. With the addition of co-registered OCT images to reveal subsurface tissue layer architecture, the suspected regions can be further investigated by the altered light scattering resulting from the morphological abnormality. Using this multimodal imaging system, an in vivo animal study was performed using a F344-ApcPircUwm rat, in which the layered architecture and microvasculature of the colorectal wall at different time points were demonstrated. The co-registered OCT and NIR fluorescence images allowed the identification and differentiation of normal colon, hyperplastic polyp, adenomatous polyp, and adenocarcinoma. This multimodal imaging strategy using a single imaging probe has demonstrated the enhanced capability of identification and classification of CRC compared to using any of these technologies alone, thus has the potential to provide a new clinical tool to advance gastroenterology practice.
Collapse
Affiliation(s)
- Yan Li
- Beckman Laser Institute, University of California, Irvine, Irvine, CA 92617, USA
- Department of Biomedical Engineering, University of California, Irvine, 5200 Engineering Hall, Irvine, CA 92697, USA
- Co-first authors with equal contribution
| | - Zhikai Zhu
- Beckman Laser Institute, University of California, Irvine, Irvine, CA 92617, USA
- Department of Biomedical Engineering, University of California, Irvine, 5200 Engineering Hall, Irvine, CA 92697, USA
- Co-first authors with equal contribution
| | - Jason J. Chen
- Beckman Laser Institute, University of California, Irvine, Irvine, CA 92617, USA
- Department of Biomedical Engineering, University of California, Irvine, 5200 Engineering Hall, Irvine, CA 92697, USA
| | - Joseph C. Jing
- Beckman Laser Institute, University of California, Irvine, Irvine, CA 92617, USA
- Department of Biomedical Engineering, University of California, Irvine, 5200 Engineering Hall, Irvine, CA 92697, USA
| | - Chung-Ho Sun
- Beckman Laser Institute, University of California, Irvine, Irvine, CA 92617, USA
| | - Sehwan Kim
- Department of Biomedical Engineering, College of Medicine, Dankook University, Cheonan 31116, South Korea
| | - Phil-Sang Chung
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, South Korea
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, Irvine, CA 92617, USA
- Department of Biomedical Engineering, University of California, Irvine, 5200 Engineering Hall, Irvine, CA 92697, USA
| |
Collapse
|
28
|
Bertrand MJ, Abran M, Maafi F, Busseuil D, Merlet N, Mihalache-Avram T, Geoffroy P, Tardif PL, Abulrob A, Arbabi-Ghahroudi M, Ni F, Sirois M, L'Allier PL, Rhéaume É, Lesage F, Tardif JC. In Vivo Near-Infrared Fluorescence Imaging of Atherosclerosis Using Local Delivery of Novel Targeted Molecular Probes. Sci Rep 2019; 9:2670. [PMID: 30804367 PMCID: PMC6389905 DOI: 10.1038/s41598-019-38970-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 01/08/2019] [Indexed: 01/04/2023] Open
Abstract
This study aimed to evaluate the feasibility and accuracy of a technique for atherosclerosis imaging using local delivery of relatively small quantities (0.04-0.4 mg/kg) of labeled-specific imaging tracers targeting ICAM-1 and unpolymerized type I collagen or negative controls in 13 rabbits with atheroma induced by balloon injury in the abdominal aorta and a 12-week high-cholesterol diet. Immediately after local infusion, in vivo intravascular ultrasonography (IVUS)-NIRF imaging was performed at different time-points over a 40-minute period. The in vivo peak NIRF signal was significantly higher in the molecular tracer-injected rabbits than in the control-injected animals (P < 0.05). Ex vivo peak NIRF signal was significantly higher in the ICAM-1 probe-injected rabbits than in controls (P = 0.04), but not in the collagen probe-injected group (P = 0.29). NIRF signal discrimination following dual-probe delivery was also shown to be feasible in a single animal and thus offers the possibility of combining several distinct biological imaging agents in future studies. This innovative imaging strategy using in vivo local delivery of low concentrations of labeled molecular tracers followed by IVUS-NIRF catheter-based imaging holds potential for detection of vulnerable human coronary artery plaques.
Collapse
Affiliation(s)
- Marie-Jeanne Bertrand
- Montreal Heart Institute, 5000 Belanger street, Montreal, Quebec, H1T 1C8, Canada
- Department of medicine, Université de Montréal, 2900 Édouard-Montpetit, Montreal, Quebec, H3T 1J4, Canada
| | - Maxime Abran
- Montreal Heart Institute, 5000 Belanger street, Montreal, Quebec, H1T 1C8, Canada
- Département de Génie Électrique et Institut de Génie Biomédical, École Polytechnique de Montréal, 2900 Édouard-Montpetit, Montreal, Quebec, H3T 1J4, Canada
| | - Foued Maafi
- Montreal Heart Institute, 5000 Belanger street, Montreal, Quebec, H1T 1C8, Canada
| | - David Busseuil
- Montreal Heart Institute, 5000 Belanger street, Montreal, Quebec, H1T 1C8, Canada
| | - Nolwenn Merlet
- Montreal Heart Institute, 5000 Belanger street, Montreal, Quebec, H1T 1C8, Canada
| | | | - Pascale Geoffroy
- Montreal Heart Institute, 5000 Belanger street, Montreal, Quebec, H1T 1C8, Canada
| | - Pier-Luc Tardif
- Montreal Heart Institute, 5000 Belanger street, Montreal, Quebec, H1T 1C8, Canada
- Département de Génie Électrique et Institut de Génie Biomédical, École Polytechnique de Montréal, 2900 Édouard-Montpetit, Montreal, Quebec, H3T 1J4, Canada
| | - Abedelnasser Abulrob
- Department of Translational Biosciences, Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 chemin de Montréal, Ottawa, Ontario, K1A 0R6, Canada
| | - Mehdi Arbabi-Ghahroudi
- Department of Translational Biosciences, Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 chemin de Montréal, Ottawa, Ontario, K1A 0R6, Canada
| | - Feng Ni
- Department of Downstream Processing and Analytics, Human Health Therapeutics Research Centre, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada
| | - Martin Sirois
- Montreal Heart Institute, 5000 Belanger street, Montreal, Quebec, H1T 1C8, Canada
| | - Philippe L L'Allier
- Montreal Heart Institute, 5000 Belanger street, Montreal, Quebec, H1T 1C8, Canada
- Department of medicine, Université de Montréal, 2900 Édouard-Montpetit, Montreal, Quebec, H3T 1J4, Canada
| | - Éric Rhéaume
- Montreal Heart Institute, 5000 Belanger street, Montreal, Quebec, H1T 1C8, Canada
- Department of medicine, Université de Montréal, 2900 Édouard-Montpetit, Montreal, Quebec, H3T 1J4, Canada
| | - Frédéric Lesage
- Montreal Heart Institute, 5000 Belanger street, Montreal, Quebec, H1T 1C8, Canada
- Département de Génie Électrique et Institut de Génie Biomédical, École Polytechnique de Montréal, 2900 Édouard-Montpetit, Montreal, Quebec, H3T 1J4, Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute, 5000 Belanger street, Montreal, Quebec, H1T 1C8, Canada.
- Department of medicine, Université de Montréal, 2900 Édouard-Montpetit, Montreal, Quebec, H3T 1J4, Canada.
| |
Collapse
|
29
|
Li Y, Zhu Z, Jing JC, Chen JJ, Heidari E, He Y, Zhu J, Ma T, Yu M, Zhou Q, Chen Z. High-Speed Integrated Endoscopic Photoacoustic and Ultrasound Imaging System. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2019; 25:7102005. [PMID: 31447542 PMCID: PMC6707714 DOI: 10.1109/jstqe.2018.2869614] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Endoscopic integrated photoacoustic and ultrasound imaging has the potential for early detection of the cancer in the gastrointestinal tract. Currently, slow imaging speed is one of the limitations for clinical translation. Here, we developed a high speed integrated endoscopic PA and US imaging system, which is able to perform PA and US imaging simultaneously up to 50 frames per second. Using this system, the architectural morphology and vasculature of the rectum wall were visualized from a Sprague Dawley rat in-vivo.
Collapse
Affiliation(s)
- Yan Li
- Y. L. , Z. Z. , J. J. , J. C., E. H., Y. H., J. Z., and Z. Chen are with the Department of Biomedical Engineering and the Beckman Laser Institute, University of California, Irvine, CA 92697, USA (; , ; ; ; ; ; ). T. M. , M. Y. and Q. Zhou are with Department of Ophthalmology and Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA (; ; )
| | - Zhikai Zhu
- Y. L. , Z. Z. , J. J. , J. C., E. H., Y. H., J. Z., and Z. Chen are with the Department of Biomedical Engineering and the Beckman Laser Institute, University of California, Irvine, CA 92697, USA (; , ; ; ; ; ; ). T. M. , M. Y. and Q. Zhou are with Department of Ophthalmology and Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA (; ; )
| | - Joseph C Jing
- Y. L. , Z. Z. , J. J. , J. C., E. H., Y. H., J. Z., and Z. Chen are with the Department of Biomedical Engineering and the Beckman Laser Institute, University of California, Irvine, CA 92697, USA (; , ; ; ; ; ; ). T. M. , M. Y. and Q. Zhou are with Department of Ophthalmology and Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA (; ; )
| | - Jason J Chen
- Y. L. , Z. Z. , J. J. , J. C., E. H., Y. H., J. Z., and Z. Chen are with the Department of Biomedical Engineering and the Beckman Laser Institute, University of California, Irvine, CA 92697, USA (; , ; ; ; ; ; ). T. M. , M. Y. and Q. Zhou are with Department of Ophthalmology and Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA (; ; )
| | - Emon Heidari
- Y. L. , Z. Z. , J. J. , J. C., E. H., Y. H., J. Z., and Z. Chen are with the Department of Biomedical Engineering and the Beckman Laser Institute, University of California, Irvine, CA 92697, USA (; , ; ; ; ; ; ). T. M. , M. Y. and Q. Zhou are with Department of Ophthalmology and Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA (; ; )
| | - Youmin He
- Y. L. , Z. Z. , J. J. , J. C., E. H., Y. H., J. Z., and Z. Chen are with the Department of Biomedical Engineering and the Beckman Laser Institute, University of California, Irvine, CA 92697, USA (; , ; ; ; ; ; ). T. M. , M. Y. and Q. Zhou are with Department of Ophthalmology and Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA (; ; )
| | - Jiang Zhu
- Y. L. , Z. Z. , J. J. , J. C., E. H., Y. H., J. Z., and Z. Chen are with the Department of Biomedical Engineering and the Beckman Laser Institute, University of California, Irvine, CA 92697, USA (; , ; ; ; ; ; ). T. M. , M. Y. and Q. Zhou are with Department of Ophthalmology and Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA (; ; )
| | - Teng Ma
- Y. L. , Z. Z. , J. J. , J. C., E. H., Y. H., J. Z., and Z. Chen are with the Department of Biomedical Engineering and the Beckman Laser Institute, University of California, Irvine, CA 92697, USA (; , ; ; ; ; ; ). T. M. , M. Y. and Q. Zhou are with Department of Ophthalmology and Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA (; ; )
| | - Mingyue Yu
- Y. L. , Z. Z. , J. J. , J. C., E. H., Y. H., J. Z., and Z. Chen are with the Department of Biomedical Engineering and the Beckman Laser Institute, University of California, Irvine, CA 92697, USA (; , ; ; ; ; ; ). T. M. , M. Y. and Q. Zhou are with Department of Ophthalmology and Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA (; ; )
| | - Qifa Zhou
- Y. L. , Z. Z. , J. J. , J. C., E. H., Y. H., J. Z., and Z. Chen are with the Department of Biomedical Engineering and the Beckman Laser Institute, University of California, Irvine, CA 92697, USA (; , ; ; ; ; ; ). T. M. , M. Y. and Q. Zhou are with Department of Ophthalmology and Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA (; ; )
| | - Zhongping Chen
- Y. L. , Z. Z. , J. J. , J. C., E. H., Y. H., J. Z., and Z. Chen are with the Department of Biomedical Engineering and the Beckman Laser Institute, University of California, Irvine, CA 92697, USA (; , ; ; ; ; ; ). T. M. , M. Y. and Q. Zhou are with Department of Ophthalmology and Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA (; ; )
| |
Collapse
|
30
|
Li Y, Lin R, Liu C, Chen J, Liu H, Zheng R, Gong X, Song L. In vivo photoacoustic/ultrasonic dual-modality endoscopy with a miniaturized full field-of-view catheter. JOURNAL OF BIOPHOTONICS 2018; 11:e201800034. [PMID: 29635741 DOI: 10.1002/jbio.201800034] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/04/2018] [Indexed: 05/21/2023]
Abstract
Endoscopy is an essential clinical tool for the diagnosis of gastrointestinal (GI) tract cancer. A photoacoustic system that elegantly combines optical and ultrasound endoscopy advantages by providing high-sensitivity functional information and large imaging depth is a potentially powerful tool for GI tract imaging. Recently, several photoacoustic endoscopic imaging systems have been proposed and developed. However, the relatively large size and rigid length of the catheter make it difficult to translate them into wide clinical applications; while the existing system of a relatively small catheter, capable of in vivo animal imaging, is unable to acquire full (360°) field-of-view cross-section images. In this study, we developed a photoacoustic/ultrasonic dual-modality endoscopic system and a corresponding miniaturized, encapsulated imaging catheter, which provides a full 360° field-of-view. The diameter of the catheter is 2.5 mm, which is compatible with the 2.8-mm instrumental channel of a conventional clinical optical endoscope. Using this system, we demonstrate in vivo 3-dimensional endoscopic photoacoustic/ultrasonic imaging of the colorectum of a healthy Sprague Dawley rat, by depicting vasculature and morphology of the GI tract. The significantly improved imaging field of view, reduced catheter size, high-quality imaging results suggest that the developed photoacoustic/ultrasonic dual-modality endoscopy has a great potential to be translated into a broad range of clinical applications in gastroenterology.
Collapse
Affiliation(s)
- Yan Li
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Riqiang Lin
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianhua Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huadong Liu
- Department of Cardiology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Rongqin Zheng
- Department of Medical Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaojing Gong
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
31
|
Li Y, Sudol NT, Miao Y, Jing JC, Zhu J, Lane F, Chen Z. 1.7 micron optical coherence tomography for vaginal tissue characterization in vivo. Lasers Surg Med 2018; 51:120-126. [PMID: 30058722 DOI: 10.1002/lsm.23003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Optical coherence tomography (OCT) can noninvasively visualize in vivo tissue microstructure with high spatial resolution that approaches the histologic level. Currently, OCT studies in gynecology are few and limited to a conventional 1.3 μm center wavelength swept light source which provides high spatial resolution but limited penetration depth. Here, we present a novel endoscopic OCT system with improved penetration depth and high resolution. METHODS A novel endoscopic OCT system was developed based on a 1.7 µm swept source laser, which is capable of deeper tissue penetration due to its longer wavelength. To evaluate the performance of system, we imaged the human vaginas in vivo with both conventional 1.3 and 1.7 μm endoscopic OCT systems. RESULTS With the 1.7 μm endoscopic OCT system, imaging depth was improved by more than 25%, allowing better visualization of the lamina propria and clear contrast of the epithelial layer from the surrounding tissues. CONCLUSION The significantly improved performance of the novel 1.7 μm OCT imaging system demonstrates its potential use as a minimally-invasive monitoring tool of vaginal health in gynecologic practice. Lasers Surg. Med. 51:120-126, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yan Li
- Beckman Laser Institute, University of California, Irvine, California, 92617.,Department of Biomedical Engineering, University of California, Irvine, California, 92697-2700
| | - Neha T Sudol
- Department of Obstetrics & Gynecology, University of California, Irvine, Medical Center, Irvine, California, 92617
| | - Yusi Miao
- Beckman Laser Institute, University of California, Irvine, California, 92617.,Department of Biomedical Engineering, University of California, Irvine, California, 92697-2700
| | - Joseph C Jing
- Beckman Laser Institute, University of California, Irvine, California, 92617.,Department of Biomedical Engineering, University of California, Irvine, California, 92697-2700
| | - Jiang Zhu
- Beckman Laser Institute, University of California, Irvine, California, 92617
| | - Felicia Lane
- Department of Obstetrics & Gynecology, University of California, Irvine, Medical Center, Irvine, California, 92617
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, California, 92617.,Department of Biomedical Engineering, University of California, Irvine, California, 92697-2700
| |
Collapse
|
32
|
Miao Y, Jing JC, Desai V, Mahon SB, Brenner M, Veress LA, White CW, Chen Z. Automated 3D segmentation of methyl isocyanate-exposed rat trachea using an ultra-thin, fully fiber optic optical coherence endoscopic probe. Sci Rep 2018; 8:8713. [PMID: 29880863 PMCID: PMC5992171 DOI: 10.1038/s41598-018-26389-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/03/2018] [Indexed: 02/06/2023] Open
Abstract
Development of effective rescue countermeasures for toxic inhalational industrial chemicals, such as methyl isocyanate (MIC), has been an emerging interest. Nonetheless, current methods for studying toxin-induced airway injuries are limited by cost, labor time, or accuracy, and only provide indirect or localized information. Optical Coherence Tomography (OCT) endoscopic probes have previously been used to visualize the 3-D airway structure. However, gathering such information in small animal models, such as rat airways after toxic gas exposure, remains a challenge due to the required probe size necessary for accessing the small, narrow, and partially obstructed tracheas. In this study, we have designed a 0.4 mm miniature endoscopic probe and investigated the structural changes in rat trachea after MIC inhalation. An automated 3D segmentation algorithm was implemented so that anatomical changes, such as tracheal lumen volume and cross-sectional areas, could be quantified. The tracheal region of rats exposed to MIC by inhalation showed significant airway narrowing, especially within the upper trachea, as a result of epithelial detachment and extravascular coagulation within the airway. This imaging and automated reconstruction technique is capable of rapid and minimally-invasive identification of airway obstruction. This method can be applied to large-scale quantitative analysis of in vivo animal models.
Collapse
Affiliation(s)
- Yusi Miao
- Beckman Laser Institute, University of California Irvine, Irvine, 92612, California, USA.,Department of Biomedical Engineering, University of California Irvine, Irvine, 92697, California, USA
| | - Joseph C Jing
- Beckman Laser Institute, University of California Irvine, Irvine, 92612, California, USA.,Department of Biomedical Engineering, University of California Irvine, Irvine, 92697, California, USA
| | - Vineet Desai
- Beckman Laser Institute, University of California Irvine, Irvine, 92612, California, USA
| | - Sari B Mahon
- Beckman Laser Institute, University of California Irvine, Irvine, 92612, California, USA
| | - Matthew Brenner
- Beckman Laser Institute, University of California Irvine, Irvine, 92612, California, USA
| | - Livia A Veress
- Department of Pediatrics, University of Colorado Denver, Denver, 80204, Colorado, USA
| | - Carl W White
- Department of Pediatrics, University of Colorado Denver, Denver, 80204, Colorado, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California Irvine, Irvine, 92612, California, USA. .,Department of Biomedical Engineering, University of California Irvine, Irvine, 92697, California, USA.
| |
Collapse
|
33
|
LI YAN, JING JOSEPH, YU JUNXIAO, ZHANG BUYUN, HUO TIANCHENG, YANG QIANG, CHEN ZHONGPING. Multimodality endoscopic optical coherence tomography and fluorescence imaging technology for visualization of layered architecture and subsurface microvasculature. OPTICS LETTERS 2018; 43:2074-2077. [PMID: 29714749 PMCID: PMC6443372 DOI: 10.1364/ol.43.002074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Endoscopic imaging technologies, such as endoscopic optical coherence tomography (OCT) and near-infrared fluorescence, have been used to investigate vascular and morphological changes as hallmarks of early cancer in the gastrointestinal tract. Here we developed a high-speed multimodality endoscopic OCT and fluorescence imaging system. Using this system, the architectural morphology and vasculature of the rectum wall were obtained simultaneously from a Sprague Dawley rat in vivo. This multimodality imaging strategy in a single imaging system permits the use of a single imaging probe, thereby improving prognosis by early detection and reducing costs.
Collapse
Affiliation(s)
- YAN LI
- Department of Biomedical Engineering and Beckman laser institute, University of California, Irvine, Irvine, California 92617, USA
- Department of Biomedical Engineering, University of California, 5200 Engineering Hall, Irvine, California 92697, USA
| | - JOSEPH JING
- Department of Biomedical Engineering and Beckman laser institute, University of California, Irvine, Irvine, California 92617, USA
- Department of Biomedical Engineering, University of California, 5200 Engineering Hall, Irvine, California 92697, USA
| | - JUNXIAO YU
- Department of Biomedical Engineering and Beckman laser institute, University of California, Irvine, Irvine, California 92617, USA
- Department of Biomedical Engineering, University of California, 5200 Engineering Hall, Irvine, California 92697, USA
| | - BUYUN ZHANG
- Department of Biomedical Engineering and Beckman laser institute, University of California, Irvine, Irvine, California 92617, USA
| | - TIANCHENG HUO
- Department of Biomedical Engineering and Beckman laser institute, University of California, Irvine, Irvine, California 92617, USA
| | - QIANG YANG
- Department of Biomedical Engineering and Beckman laser institute, University of California, Irvine, Irvine, California 92617, USA
| | - ZHONGPING CHEN
- Department of Biomedical Engineering and Beckman laser institute, University of California, Irvine, Irvine, California 92617, USA
- Department of Biomedical Engineering, University of California, 5200 Engineering Hall, Irvine, California 92697, USA
- Corresponding author:
| |
Collapse
|
34
|
Abstract
The rupture of atherosclerotic plaques is the leading cause of death in developed countries. Early identification of vulnerable plaque is the essential step in preventing acute coronary events. Intravascular photoacoustic (IVPA) technology is able to visualize chemical composition of atherosclerotic plaque with high specificity and sensitivity. Integrated with intravascular ultrasound (IVUS) imaging, this multimodal intravascular IVPA/IVUS imaging technology is able to provide both structural and chemical compositions of arterial walls for detecting and characterizing atherosclerotic plaques. In this paper, we present representative multimodal IVPA/IVUS imaging systems and discuss current scientific innovations, potential limitations, and prospective improvements for characterization of coronary atherosclerosis.
Collapse
Affiliation(s)
- Yan Li
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road, Irvine, CA 92617 USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road, Irvine, CA 92617 USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697-2700 USA
| |
Collapse
|
35
|
Tsai TH, Leggett CL, Trindade AJ, Sethi A, Swager AF, Joshi V, Bergman JJ, Mashimo H, Nishioka NS, Namati E. Optical coherence tomography in gastroenterology: a review and future outlook. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-17. [PMID: 29260538 DOI: 10.1117/1.jbo.22.12.121716] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/05/2017] [Indexed: 05/18/2023]
Abstract
Optical coherence tomography (OCT) is an imaging technique optically analogous to ultrasound that can generate depth-resolved images with micrometer-scale resolution. Advances in fiber optics and miniaturized actuation technologies allow OCT imaging of the human body and further expand OCT utilization in applications including but not limited to cardiology and gastroenterology. This review article provides an overview of current OCT development and its clinical utility in the gastrointestinal tract, including disease detection/differentiation and endoscopic therapy guidance, as well as a discussion of its future applications.
Collapse
Affiliation(s)
- Tsung-Han Tsai
- NinePoint Medical, Inc., Bedford, Massachusetts, United States
| | - Cadman L Leggett
- Mayo Clinics, Division of Gastroenterology and Hepatology, Rochester, Minnesota, United States
| | - Arvind J Trindade
- North Shore University Hospital and Hofstra Northwell School of Medicine, Division of Gastroenterolo, United States
| | - Amrita Sethi
- Columbia University Medical Center, Department of Gastroenterology, New York City, New York, United States
| | - Anne-Fré Swager
- Spaarne Gasthuis and Free University Medical Center, Amsterdam, The Netherlands
| | - Virendra Joshi
- Ochsner Clinic Foundation, Department of Gastroenterology, New Orleans, Louisiana, United States
| | - Jacques J Bergman
- Academic Medical Center, Department of Gastroenterology and Hepatology, Amsterdam, The Netherlands
| | - Hiroshi Mashimo
- Veterans Affairs Boston Healthcare System and Harvard Medical School, Department of Gastroenterology, United States
| | - Norman S Nishioka
- Massachusetts General Hospital, Gastrointestinal Unit, Boston, Massachusetts, United States
| | - Eman Namati
- NinePoint Medical, Inc., Bedford, Massachusetts, United States
| |
Collapse
|
36
|
Li Y, Jing J, Heidari E, Zhu J, Qu Y, Chen Z. Intravascular Optical Coherence Tomography for Characterization of Atherosclerosis with a 1.7 Micron Swept-Source Laser. Sci Rep 2017; 7:14525. [PMID: 29109462 PMCID: PMC5674044 DOI: 10.1038/s41598-017-15326-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 10/25/2017] [Indexed: 11/17/2022] Open
Abstract
The main cause of acute coronary events, such as thrombosis, is the rupture of atherosclerotic plaques. Typical intravascular optical coherence tomography (IVOCT) imaging systems that utilize a 1.3 μm swept source laser are often used for identifying fibrous cap thickness of plaques, yet cannot provide adequate depth penetration to resolve the size of the lipid pool. Here, we present a novel IVOCT system with a 1.7 μm center wavelength swept light source that can readily penetrate deeper into the tissue because of the longer wavelength and allows for better identification of plaques due to the lipid absorption spectrum at 1.7 μm. Using this system, we have imaged a human coronary artery to evaluate the performance of the novel OCT system and verified the results by hematoxylin and eosin (H&E) histology. The significantly improved imaging depth and better identification sensitivity suggest that the 1.7 μm OCT system holds great potential that can be further translated for in-vivo applications of atherosclerosis characterization.
Collapse
Affiliation(s)
- Yan Li
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road, Irvine, CA, 92617, USA.,Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697-2700, USA
| | - Joseph Jing
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road, Irvine, CA, 92617, USA.,Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697-2700, USA
| | - Emon Heidari
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road, Irvine, CA, 92617, USA.,Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697-2700, USA
| | - Jiang Zhu
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road, Irvine, CA, 92617, USA
| | - Yueqiao Qu
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road, Irvine, CA, 92617, USA.,Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697-2700, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road, Irvine, CA, 92617, USA. .,Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697-2700, USA.
| |
Collapse
|
37
|
Intravascular imaging for characterization of coronary atherosclerosis. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017. [DOI: 10.1016/j.cobme.2017.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
38
|
Qu Y, Ma T, He Y, Yu M, Zhu J, Miao Y, Dai C, Patel P, Shung KK, Zhou Q, Chen Z. Miniature probe for mapping mechanical properties of vascular lesions using acoustic radiation force optical coherence elastography. Sci Rep 2017; 7:4731. [PMID: 28680156 PMCID: PMC5498569 DOI: 10.1038/s41598-017-05077-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/24/2017] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases are the leading cause of fatalities in the United States. Atherosclerotic plaques are one of the primary complications that can lead to strokes and heart attacks if left untreated. It is essential to diagnose the disease early and distinguish vulnerable plaques from harmless ones. Many methods focus on the structural or molecular properties of plaques. Mechanical properties have been shown to change drastically when abnormalities develop in arterial tissue. We report the development of an acoustic radiation force optical coherence elastography (ARF-OCE) system that uses an integrated miniature ultrasound and optical coherence tomography (OCT) probe to map the relative elasticity of vascular tissues. We demonstrate the capability of the miniature probe to map the biomechanical properties in phantom and human cadaver carotid arteries.
Collapse
Affiliation(s)
- Yueqiao Qu
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Rd., Irvine, CA, 92617, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697-2700, USA
| | - Teng Ma
- NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Youmin He
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Rd., Irvine, CA, 92617, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697-2700, USA
| | - Mingyue Yu
- NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jiang Zhu
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Rd., Irvine, CA, 92617, USA
| | - Yusi Miao
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Rd., Irvine, CA, 92617, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697-2700, USA
| | - Cuixia Dai
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Rd., Irvine, CA, 92617, USA.,Shanghai Institute of Technology, 100 Haiquan Road, Fengxian, Shanghai, China
| | - Pranav Patel
- Division of Cardiology, Irvine Medical Center, University of California, Orange, CA, 92868, USA
| | - K Kirk Shung
- NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Qifa Zhou
- NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Rd., Irvine, CA, 92617, USA. .,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697-2700, USA.
| |
Collapse
|