1
|
RoaFiore L, Meyer T, Peixoto T, Irazoqui P. Label-free functional imaging of vagus nerve stimulation-evoked potentials at the cortical surface. NPJ BIOSENSING 2024; 1:11. [PMID: 39286049 PMCID: PMC11404031 DOI: 10.1038/s44328-024-00012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/17/2024] [Indexed: 09/19/2024]
Abstract
Vagus nerve stimulation (VNS) is an FDA-approved stimulation therapy to treat patients with refractory epilepsy. In this work, we use a coherent holographic imaging system to characterize vagus nerve-evoked potentials (VEPs) in the cortex in response to VNS stimulation paradigms without electrode placement or any genetic, structural, or functional labels. We analyze stimulation amplitude up to saturation, pulse width up to 800 μs, and frequency from 10 Hz to 30 Hz, finding that stimulation amplitude strongly modulates VEPs response magnitude (effect size 0.401), while pulse width has a moderate modulatory effect (effect size 0.127) and frequency has almost no modulatory effect (effect size 0.009) on the evoked potential magnitude. We find mild interactions between pulse width and frequency. This non-contact label-free functional imaging technique may serve as a non-invasive rapid-feedback tool to characterize VEPs and may increase the efficacy of VNS in patients with refractory epilepsy.
Collapse
Affiliation(s)
- Laura RoaFiore
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD USA
| | - Trevor Meyer
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD USA
| | - Thaissa Peixoto
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD USA
| | - Pedro Irazoqui
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD USA
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
2
|
RoaFiore L, Meyer T, Peixoto T, Irazoqui P. Label-Free Functional Imaging of Vagus Nerve Stimulation-Evoked Potentials at the Cortical Surface. RESEARCH SQUARE 2024:rs.3.rs-4295137. [PMID: 38746403 PMCID: PMC11092866 DOI: 10.21203/rs.3.rs-4295137/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Vagus Nerve Stimulation (VNS) was the first FDA-approved stimulation therapy to treat patients with refractory epilepsy and remains widely used. The mechanisms behind the therapeutic effect of VNS remain unknown but are thought to involve afferent-mediated modulation to cortical circuits 1. In this work, we use a coherent holographic imaging system to characterize vagus nerve evoked potentials (VEPs) in the cortex in response to typical VNS stimulation paradigms, which does not require electrode placement nor any genetic, structural, or functional labels. We find that stimulation amplitude strongly modulates VEPs response magnitude (effect size 0.401), while pulse width has a moderate modulatory effect (effect size 0.127) and frequency has almost no modulatory effect (effect size 0.009) on the evoked potential magnitude. We find mild interaction between pulse width and frequency. This non-contact label-free functional imaging technique could serve as a non-invasive rapid feedback tool to quantify VEPs and could increase the efficacy of VNS in patients with refractory epilepsy.
Collapse
Affiliation(s)
- Laura RoaFiore
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Trevor Meyer
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Thaissa Peixoto
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Pedro Irazoqui
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Zhang Y, Shen B, Wu T, Zhao J, Jing JC, Wang P, Sasaki-Capela K, Dunphy WG, Garrett D, Maslov K, Wang W, Wang LV. Ultrafast and hypersensitive phase imaging of propagating internodal current flows in myelinated axons and electromagnetic pulses in dielectrics. Nat Commun 2022; 13:5247. [PMID: 36068212 PMCID: PMC9448739 DOI: 10.1038/s41467-022-33002-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/25/2022] [Indexed: 12/30/2022] Open
Abstract
Many ultrafast phenomena in biology and physics are fundamental to our scientific understanding but have not yet been visualized owing to the extreme speed and sensitivity requirements in imaging modalities. Two examples are the propagation of passive current flows through myelinated axons and electromagnetic pulses through dielectrics, which are both key to information processing in living organisms and electronic devices. Here, we demonstrate differentially enhanced compressed ultrafast photography (Diff-CUP) to directly visualize propagations of passive current flows at approximately 100 m/s along internodes, i.e., continuous myelinated axons between nodes of Ranvier, from Xenopus laevis sciatic nerves and of electromagnetic pulses at approximately 5 × 107 m/s through lithium niobate. The spatiotemporal dynamics of both propagation processes are consistent with the results from computational models, demonstrating that Diff-CUP can span these two extreme timescales while maintaining high phase sensitivity. With its ultrahigh speed (picosecond resolution), high sensitivity, and noninvasiveness, Diff-CUP provides a powerful tool for investigating ultrafast biological and physical phenomena.
Collapse
Affiliation(s)
- Yide Zhang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Binglin Shen
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tong Wu
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Key Laboratory of Space Photoelectric Detection and Perception, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jerry Zhao
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Joseph C Jing
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Peng Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Kanomi Sasaki-Capela
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - William G Dunphy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - David Garrett
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Konstantin Maslov
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Weiwei Wang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
4
|
Iyer RR, Liu YZ, Renteria CA, Tibble BE, Choi H, Žurauskas M, Boppart SA. Ultra-parallel label-free optophysiology of neural activity. iScience 2022; 25:104307. [PMID: 35602935 PMCID: PMC9114528 DOI: 10.1016/j.isci.2022.104307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/18/2022] [Accepted: 04/22/2022] [Indexed: 01/21/2023] Open
Abstract
The electrical activity of neurons has a spatiotemporal footprint that spans three orders of magnitude. Traditional electrophysiology lacks the spatial throughput to image the activity of an entire neural network; besides, labeled optical imaging using voltage-sensitive dyes and tracking Ca2+ ion dynamics lack the versatility and speed to capture fast-spiking activity, respectively. We present a label-free optical imaging technique to image the changes to the optical path length and the local birefringence caused by neural activity, at 4,000 Hz, across a 200 × 200 μm2 region, and with micron-scale spatial resolution and 300-pm displacement sensitivity using Superfast Polarization-sensitive Off-axis Full-field Optical Coherence Microscopy (SPoOF OCM). The undulations in the optical responses from mammalian neuronal activity were matched with field-potential electrophysiology measurements and validated with channel blockers. By directly tracking the widefield neural activity at millisecond timescales and micrometer resolution, SPoOF OCM provides a framework to progress from low-throughput electrophysiology to high-throughput ultra-parallel label-free optophysiology.
Collapse
Affiliation(s)
- Rishyashring R. Iyer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yuan-Zhi Liu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Carlos A. Renteria
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Brian E. Tibble
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Honggu Choi
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mantas Žurauskas
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Corresponding author
| |
Collapse
|
5
|
Halevi A, Farah N, Ozana N, Cohen S, Shoval A, Shefi O, Mandel Y, Zalevsky Z. Remote photonic sensing of action potential in mammalian nerve cells via histogram-based analysis of temporal spatial acoustic vibrations. OPTICS EXPRESS 2022; 30:15512-15523. [PMID: 35473269 DOI: 10.1364/oe.449006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Label free and remote action potential detection in neurons can be of great importance in the neuroscience research field. This paper presents a novel label free imaging modality based on the detection of temporal vibrations of speckle patterns illuminating the sample. We demonstrated the feasibility of detecting action potentials originating from spontaneous and stimulated activity in cortical cell culture. The spatiotemporal vibrations of isolated cortical cells were extracted by illuminating the culture with a laser beam while the vibrations of the random back scattered secondary speckle patterns are captured by a camera. The postulated action potentials were estimated following correlation-based analysis on the captured vibrations, where the variance deviation of the signal from a Gaussian distribution is directly associated with the action potential events. The technique was validated in a series of experiments in which the optical signals were acquired concurrently with microelectrode array (MEA) recordings. Our results demonstrate the ability of detecting action potential events in mammalian cells remotely via extraction of acoustic vibrations.
Collapse
|
6
|
Winlow W, Johnson AS. Nerve Impulses Have Three Interdependent Functions: Communication, Modulation, and Computation. Bioelectricity 2021. [DOI: 10.1089/bioe.2021.0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- William Winlow
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, Napoli, Italia
- Institute of Ageing and Chronic Diseases, University of Liverpool, Liverpool, United Kingdom
| | - Andrew S. Johnson
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, Napoli, Italia
| |
Collapse
|
7
|
Zhou Y, Liu E, Müller H, Cui B. Optical Electrophysiology: Toward the Goal of Label-Free Voltage Imaging. J Am Chem Soc 2021; 143:10482-10499. [PMID: 34191488 PMCID: PMC8514153 DOI: 10.1021/jacs.1c02960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Measuring and monitoring the electrical signals transmitted between neurons is key to understanding the communication between neurons that underlies human perception, information processing, and decision-making. While electrode-based electrophysiology has been the gold standard, optical electrophysiology has opened up a new area in the past decade. Voltage-dependent fluorescent reporters enable voltage imaging with high spatial resolution and flexibility to choose recording locations. However, they exhibit photobleaching as well as phototoxicity and may perturb the physiology of the cell. Label-free optical electrophysiology seeks to overcome these hurdles by detecting electrical activities optically, without the incorporation of exogenous fluorophores in cells. For example, electrochromic optical recording detects neuroelectrical signals via a voltage-dependent color change of extracellular materials, and interferometric optical recording monitors membrane deformations that accompany electrical activities. Label-free optical electrophysiology, however, is in an early stage, and often has limited sensitivity and temporal resolution. In this Perspective, we review the recent progress to overcome these hurdles. We hope this Perspective will inspire developments of label-free optical electrophysiology techniques with high recording sensitivity and temporal resolution in the near future.
Collapse
Affiliation(s)
- Yuecheng Zhou
- Department of Chemistry, Stanford University, S285 ChEM-H/Wu Tsai Neuroscience Research Complex, Stanford, California 94305, United States
| | - Erica Liu
- Department of Chemistry, Stanford University, S285 ChEM-H/Wu Tsai Neuroscience Research Complex, Stanford, California 94305, United States
| | - Holger Müller
- Department of Physics, University of California, 366 LeConte Hall, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, S285 ChEM-H/Wu Tsai Neuroscience Research Complex, Stanford, California 94305, United States
| |
Collapse
|
8
|
Rinner S, Trentino A, Url H, Burger F, von Lautz J, Wolfrum B, Reinhard F. Detection of cellular micromotion by advanced signal processing. Sci Rep 2020; 10:20078. [PMID: 33208817 PMCID: PMC7675976 DOI: 10.1038/s41598-020-77015-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/29/2020] [Indexed: 11/30/2022] Open
Abstract
Cellular micromotion-a tiny movement of cell membranes on the nm-µm scale-has been proposed as a pathway for inter-cellular signal transduction and as a label-free proxy signal to neural activity. Here we harness several recent approaches of signal processing to detect such micromotion in video recordings of unlabeled cells. Our survey includes spectral filtering of the video signal, matched filtering, as well as 1D and 3D convolutional neural networks acting on pixel-wise time-domain data and a whole recording respectively.
Collapse
Affiliation(s)
- Stephan Rinner
- Walter Schottky Institut and Physik-Department, Technische Universität München, 85748, Garching, Germany
- Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799, München, Germany
| | - Alberto Trentino
- Walter Schottky Institut and Physik-Department, Technische Universität München, 85748, Garching, Germany
- Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799, München, Germany
| | - Heike Url
- Department of Electrical and Computer Engineering, Munich School of Bioengineering, Technische Universität München, Boltzmannstraße 11, 85748, Garching, Germany
| | - Florian Burger
- Walter Schottky Institut and Physik-Department, Technische Universität München, 85748, Garching, Germany
- Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799, München, Germany
| | | | - Bernhard Wolfrum
- Department of Electrical and Computer Engineering, Munich School of Bioengineering, Technische Universität München, Boltzmannstraße 11, 85748, Garching, Germany
| | - Friedemann Reinhard
- Walter Schottky Institut and Physik-Department, Technische Universität München, 85748, Garching, Germany.
- Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799, München, Germany.
| |
Collapse
|
9
|
Ghirga S, Pagani F, Rosito M, Di Angelantonio S, Ruocco G, Leonetti M. Optonongenetic enhancement of activity in primary cortical neurons. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2020; 37:643-652. [PMID: 32400549 DOI: 10.1364/josaa.385832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/22/2020] [Indexed: 06/11/2023]
Abstract
It has been recently demonstrated that the exposure of naive neuronal cells to light-at the basis of optogenetic techniques and calcium imaging measurements-may alter neuronal firing. Indeed, understanding the effect of light on nongenetically modified neurons is crucial for a correct interpretation of calcium imaging and optogenetic experiments. Here we investigated the effect of continuous visible LED light exposure (490 nm, $ 0.18 {-} 1.3\;{\rm mW}/{{\rm mm}^2} $0.18-1.3mW/mm2) on spontaneous activity of primary neuronal networks derived from the early postnatal mouse cortex. We demonstrated, by calcium imaging and patch clamp experiments, that illumination higher than $ 1.0\;{\rm mW}/{{\rm mm}^2} $1.0mW/mm2 causes an enhancement of network activity in cortical cultures. We investigated the possible origin of the phenomena by blocking the transient receptor potential vanilloid 4 (TRPV4) channel, demonstrating a complex connection between this temperature-dependent channel and the measured effect. The results presented here shed light on an exogenous artifact, potentially present in all calcium imaging experiments, that should be taken into account in the analysis of fluorescence data.
Collapse
|
10
|
Kim T, Liang J, Zhu L, Wang LV. Picosecond-resolution phase-sensitive imaging of transparent objects in a single shot. SCIENCE ADVANCES 2020; 6:eaay6200. [PMID: 32010772 PMCID: PMC6968941 DOI: 10.1126/sciadv.aay6200] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/18/2019] [Indexed: 05/18/2023]
Abstract
With the growing interest in the optical imaging of ultrafast phenomena in transparent objects, from shock wave to neuronal action potentials, high contrast imaging at high frame rates has become desirable. While phase sensitivity provides the contrast, the frame rates and sequence depths are highly limited by the detectors. Here, we present phase-sensitive compressed ultrafast photography (pCUP) for single-shot real-time ultrafast imaging of transparent objects by combining the contrast of dark-field imaging with the speed and the sequence depth of CUP. By imaging the optical Kerr effect and shock wave propagation, we demonstrate that pCUP can image light-speed phase signals in a single shot with up to 350 frames captured at up to 1 trillion frames per second. We expect pCUP to be broadly used for a vast range of fundamental and applied sciences.
Collapse
Affiliation(s)
- Taewoo Kim
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Mail Code 138-78, Pasadena, CA 91125, USA
| | - Jinyang Liang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Mail Code 138-78, Pasadena, CA 91125, USA
| | - Liren Zhu
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Mail Code 138-78, Pasadena, CA 91125, USA
| | - Lihong V. Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Mail Code 138-78, Pasadena, CA 91125, USA
- Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Mail Code 138-78, Pasadena, CA 91125, USA
- Corresponding author.
| |
Collapse
|
11
|
Zhang Y, Yao L, Yang F, Yang S, Edathodathil A, Xi W, Roe AW, Li P. INS-fOCT: a label-free, all-optical method for simultaneously manipulating and mapping brain function. NEUROPHOTONICS 2020; 7:015014. [PMID: 32258220 PMCID: PMC7108754 DOI: 10.1117/1.nph.7.1.015014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Significance: Current approaches to stimulating and recording from the brain have combined electrical or optogenetic stimulation with recording approaches, such as two-photon, electrophysiology (EP), and optical intrinsic signal imaging (OISI). However, we lack a label-free, all-optical approach with high spatial and temporal resolution. Aim: To develop a label-free, all-optical method that simultaneously manipulates and images brain function using pulsed near-infrared light (INS) and functional optical coherence tomography (fOCT), respectively. Approach: We built a coregistered INS, fOCT, and OISI system. OISI and EP recordings were employed to validate the fOCT signals. Results: The fOCT signal was reliable and regional, and the area of fOCT signal corresponded with the INS-activated region. The fOCT signal was in synchrony with the INS onset time with a delay of ∼ 30 ms . The magnitude of fOCT signal exhibited a linear correlation with the INS radiant exposure. The significant correlation between the fOCT signal and INS was further supported by OISI and EP recordings. Conclusions: The proposed fiber-based, all-optical INS-fOCT method allows simultaneous stimulation and mapping without the risk of interchannel cross-talk and the requirement of contrast injection and viral transfection and offers a deep penetration depth and high resolution.
Collapse
Affiliation(s)
- Ying Zhang
- Zhejiang University, College of Optical Science and Engineering, State Key Lab of Modern Optical Instrumentation, Hangzhou, China
- Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, Zhejiang, China
| | - Lin Yao
- Zhejiang University, College of Optical Science and Engineering, State Key Lab of Modern Optical Instrumentation, Hangzhou, China
| | - Fen Yang
- Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, Zhejiang, China
| | - Shanshan Yang
- Zhejiang University, College of Optical Science and Engineering, State Key Lab of Modern Optical Instrumentation, Hangzhou, China
| | - Akshay Edathodathil
- Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, Zhejiang, China
| | - Wang Xi
- Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, Zhejiang, China
| | - Anna Wang Roe
- Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang University, Key Laboratory of Biomedical Engineering of Ministry of Education, Hangzhou, Zhejiang, China
- Oregon Health & Sciences University, Oregon National Primate Research Center, Division of Neuroscience, Beaverton, Oregon, United States
| | - Peng Li
- Zhejiang University, College of Optical Science and Engineering, State Key Lab of Modern Optical Instrumentation, Hangzhou, China
- Zhejiang University, International Research Center for Advanced Photonics, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Lee HJ, Jiang Y, Cheng JX. Label-free Optical Imaging of Membrane Potential. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019; 12:118-125. [PMID: 32864527 DOI: 10.1016/j.cobme.2019.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Offering high temporal resolution, voltage imaging is an important and essential technique in neuroscience. Among different optical imaging approaches, the label-free approach remains attractive due to its unique value coming from free of exogenous chromophores. The intrinsic voltage-indicating signals arising from membrane deformation, membrane spectral change, phase shift, light scattering, and membrane hydration haven been reported. First demonstrated 70 years ago, label-free optical imaging of membrane potential is still at an early stage and the field is challenged by the relatively small signals generated by the intrinsic optical properties. We review major contrast mechanisms used for label-free voltage imaging and discuss several recent exciting advances that could potentially enable membrane potential imaging in mammalian neurons at high speed and high sensitivity.
Collapse
Affiliation(s)
- Hyeon Jeong Lee
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027.,Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215.,Photonics Center, Boston University, Boston, MA 02215.,These authors contributed equally
| | - Ying Jiang
- Photonics Center, Boston University, Boston, MA 02215.,Graduate Program for Neuroscience, Boston University, Boston, MA 02215.,These authors contributed equally
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215.,Department of Biomedical Engineering, Boston University, Boston, MA 02215.,Photonics Center, Boston University, Boston, MA 02215
| |
Collapse
|
13
|
Abstract
Axons functionally link the somato-dendritic compartment to synaptic terminals. Structurally and functionally diverse, they accomplish a central role in determining the delays and reliability with which neuronal ensembles communicate. By combining their active and passive biophysical properties, they ensure a plethora of physiological computations. In this review, we revisit the biophysics of generation and propagation of electrical signals in the axon and their dynamics. We further place the computational abilities of axons in the context of intracellular and intercellular coupling. We discuss how, by means of sophisticated biophysical mechanisms, axons expand the repertoire of axonal computation, and thereby, of neural computation.
Collapse
Affiliation(s)
- Pepe Alcami
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-Universitaet Muenchen, Martinsried, Germany
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Ahmed El Hady
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, United States
| |
Collapse
|
14
|
Mofidi H, Sarbaz Y, Golmohammadi S. A new theory based on possible existence of timing control by intracellular photons in tonically active neurons. Med Hypotheses 2019; 129:109248. [PMID: 31371078 DOI: 10.1016/j.mehy.2019.109248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/19/2019] [Accepted: 05/24/2019] [Indexed: 11/30/2022]
Abstract
Time perception in living organisms, especially mammals, and understanding the timing of their internal organs, have always been the topic of interest in neuroscience. In this study, our theory considers the photonic behavior on time control by some particular or some block of neurons. Photon emission by mitochondria has regular timing in intercellular process. In other words, due to the main mitochondrial function of cellular respiration as well as the source of photon emission, it is possible to deduce photon at a specific rate in TANs (Tonically Active Neurons). If photoreceptors exist in the neurons of the nervous system, photons can be received at a regulated time. Thereby, neurons can produce a constant-frequency signal for subsequent stimuli. Our studies conducted in the CNS (Central Nervous System) and TANs, and it seems that photoreceptors are present in TANs. Photons are interpreted by a series of neurons and produce an oscillating rhythm. These rhythms can be the basis of the body's chronological activity in different areas of the CNS. If this hypothesis is true, it can be deduced that an independent factor, excluding circadian activities, exists for living activities. Different neuronal structures will also be responsible for understanding the time. Although this hypothesis is far from a complete evaluation, it can compensate for some of the other problems. For instance, a series of inconsistencies that occur in some neurological diseases, such as Parkinson diseases can be well justified by this hypothesis.
Collapse
Affiliation(s)
- Hossein Mofidi
- School of Engineering Emerging Technologies, University of Tabriz, Tabriz, Iran
| | - Yashar Sarbaz
- School of Engineering Emerging Technologies, University of Tabriz, Tabriz, Iran.
| | - Saeed Golmohammadi
- School of Engineering Emerging Technologies, University of Tabriz, Tabriz, Iran
| |
Collapse
|
15
|
Huang C, Gu Y, Chen J, Bahrani AA, Abu Jawdeh EG, Bada HS, Saatman K, Yu G, Chen L. A Wearable Fiberless Optical Sensor for Continuous Monitoring of Cerebral Blood Flow in Mice. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2019; 25:1-9. [PMID: 31666792 DOI: 10.1109/jstqe.2018.2869613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Continuous and longitudinal monitoring of cerebral blood flow (CBF) in animal models provides information for studying the mechanisms and interventions of various cerebral diseases. Since anesthesia may affect brain hemodynamics, researchers have been seeking wearable devices for use in conscious animals. We present a wearable diffuse speckle contrast flowmeter (DSCF) probe for monitoring CBF variations in mice. The DSCF probe consists of a small low-power near-infrared laser diode as a point source and an ultra-small low-power CMOS camera as a 2D detector array, which can be affixed on a mouse head. The movement of red blood cells in brain cortex (i.e., CBF) produces spatial fluctuations of laser speckles, which are captured by the camera. The DSCF system was calibrated using tissue phantoms and validated in a human forearm and mouse brains for continuous monitoring of blood flow increases and decreases against the established technologies. Significant correlations were observed among these measurements (R2 ≥ 0.80, p < 10-5). This small fiberless probe has the potential to be worn by a freely moving conscious mouse. Moreover, the flexible source-detector configuration allows for varied probing depths up to ~8 mm, which is sufficient for transcranially detecting CBF in the cortices of rodents and newborn infants.
Collapse
Affiliation(s)
- Chong Huang
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506 USA
| | - Yutong Gu
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA, 90089 USA
| | - Jing Chen
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506 USA
| | - Ahmed A Bahrani
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506 USA
| | - Elie G Abu Jawdeh
- Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, KY 40536 USA
| | - Henrietta S Bada
- Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, KY 40536 USA
| | - Kathryn Saatman
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536 USA
| | - Guoqiang Yu
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506 USA
| | - Lei Chen
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536 USA
| |
Collapse
|
16
|
|
17
|
Black BJ, Atmaramani R, Plagens S, Campbell ZT, Dussor G, Price TJ, Pancrazio JJ. Emerging neurotechnology for antinoceptive mechanisms and therapeutics discovery. Biosens Bioelectron 2018; 126:679-689. [PMID: 30544081 DOI: 10.1016/j.bios.2018.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/01/2018] [Accepted: 11/10/2018] [Indexed: 12/20/2022]
Abstract
The tolerance, abuse, and potential exacerbation associated with classical chronic pain medications such as opioids creates a need for alternative therapeutics. Phenotypic screening provides a complementary approach to traditional target-based drug discovery. Profiling cellular phenotypes enables quantification of physiologically relevant traits central to a disease pathology without prior identification of a specific drug target. For complex disorders such as chronic pain, which likely involves many molecular targets, this approach may identify novel treatments. Sensory neurons, termed nociceptors, are derived from dorsal root ganglia (DRG) and can undergo changes in membrane excitability during chronic pain. In this review, we describe phenotypic screening paradigms that make use of nociceptor electrophysiology. The purpose of this paper is to review the bioelectrical behavior of DRG neurons, signaling complexity in sensory neurons, various sensory neuron models, assays for bioelectrical behavior, and emerging efforts to leverage microfabrication and microfluidics for assay development. We discuss limitations and advantages of these various approaches and offer perspectives on opportunities for future development.
Collapse
Affiliation(s)
- Bryan J Black
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA.
| | - Rahul Atmaramani
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| | - Sarah Plagens
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| | - Zachary T Campbell
- Department of Biological Sciences, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| | - Joseph J Pancrazio
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| |
Collapse
|
18
|
Wide-Field Functional Microscopy of Peripheral Nerve Injury and Regeneration. Sci Rep 2018; 8:14004. [PMID: 30228335 PMCID: PMC6143548 DOI: 10.1038/s41598-018-32346-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
Abstract
Severe peripheral nerve injuries often result in partial repair and lifelong disabilities in patients. New surgical techniques and better graft tissues are being studied to accelerate regeneration and improve functional recovery. Currently, limited tools are available to provide in vivo monitoring of changes in nerve physiology such as myelination and vascularization, and this has impeded the development of new therapeutic options. We have developed a wide-field and label-free functional microscopy platform based on angiographic and vectorial birefringence methods in optical coherence tomography (OCT). By incorporating the directionality of the birefringence, which was neglected in the previously reported polarization-sensitive OCT techniques for nerve imaging, vectorial birefringence contrast reveals internal nerve microanatomy and allows for quantification of local myelination with superior sensitivity. Advanced OCT angiography is applied in parallel to image the three-dimensional vascular networks within the nerve over wide-fields. Furthermore, by combining vectorial birefringence and angiography, intraneural vessels can be discriminated from those of the surrounding tissues. The technique is used to provide longitudinal imaging of myelination and revascularization in the rodent sciatic nerve model, i.e. imaged at certain sequential time-points during regeneration. The animals were exposed to either crush or transection injuries, and in the case of transection, were repaired using an autologous nerve graft or acellular nerve allograft. Such label-free functional imaging by the platform can provide new insights into the mechanisms that limit regeneration and functional recovery, and may ultimately provide intraoperative assessment in human subjects.
Collapse
|
19
|
Ling T, Boyle KC, Goetz G, Zhou P, Quan Y, Alfonso FS, Huang TW, Palanker D. Full-field interferometric imaging of propagating action potentials. LIGHT, SCIENCE & APPLICATIONS 2018; 7:107. [PMID: 30564313 PMCID: PMC6290013 DOI: 10.1038/s41377-018-0107-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/24/2018] [Accepted: 11/24/2018] [Indexed: 05/15/2023]
Abstract
Currently, cellular action potentials are detected using either electrical recordings or exogenous fluorescent probes that sense the calcium concentration or transmembrane voltage. Ca imaging has a low temporal resolution, while voltage indicators are vulnerable to phototoxicity, photobleaching, and heating. Here, we report full-field interferometric imaging of individual action potentials by detecting movement across the entire cell membrane. Using spike-triggered averaging of movies synchronized with electrical recordings, we demonstrate deformations up to 3 nm (0.9 mrad) during the action potential in spiking HEK-293 cells, with a rise time of 4 ms. The time course of the optically recorded spikes matches the electrical waveforms. Since the shot noise limit of the camera (~2 mrad/pix) precludes detection of the action potential in a single frame, for all-optical spike detection, images are acquired at 50 kHz, and 50 frames are binned into 1 ms steps to achieve a sensitivity of 0.3 mrad in a single pixel. Using a self-reinforcing sensitivity enhancement algorithm based on iteratively expanding the region of interest for spatial averaging, individual spikes can be detected by matching the previously extracted template of the action potential with the optical recording. This allows all-optical full-field imaging of the propagating action potentials without exogeneous labels or electrodes.
Collapse
Affiliation(s)
- Tong Ling
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 USA
- Department of Ophthalmology, Stanford University, Stanford, CA 94305 USA
| | - Kevin C. Boyle
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305 USA
| | - Georges Goetz
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 USA
| | - Peng Zhou
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305 USA
| | - Yi Quan
- Department of Ophthalmology, Stanford University, Stanford, CA 94305 USA
| | - Felix S. Alfonso
- Department of Chemistry, Stanford University, Stanford, CA 94305 USA
| | - Tiffany W. Huang
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305 USA
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 USA
- Department of Ophthalmology, Stanford University, Stanford, CA 94305 USA
| |
Collapse
|