1
|
Shen Z, Lu S, Xiong X. Optical generation and continuous transformation of plasmonic skyrmions. OPTICS EXPRESS 2024; 32:48289-48301. [PMID: 39876138 DOI: 10.1364/oe.546017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/24/2024] [Indexed: 01/30/2025]
Abstract
Topological quasiparticles, including skyrmions and merons, are topological textures with sophisticated vectorial structures that can be used for high-density information storage, precision metrology, position sensing, etc. Here, we realized the optical generation and continuous transformation of plasmonic field skyrmions. We generated the isolated Néel-type skyrmion using surface plasmon polaritons (SPPs) excited by a focused structured light on a silver film. We used a square and a hexagonal aperture for symmetry constraints and successfully generated the meron lattice and the skyrmion lattice. We unveiled the mechanism of topological texture generation and transformation and optimized the distribution of skyrmion and meron topologies. We further demonstrated the continuous transformation among the isolated skyrmion, the meron lattice, and the skyrmion lattice using well-designed circular-fourfold, circular-sixfold, and fourfold-sixfold symmetry apertures, respectively. This work can open up a pathway for the generation and transformation of skyrmion and meron topologies, which is expected to facilitate new applications in optical information storage and encoding.
Collapse
|
2
|
Recent advances in surface plasmon resonance imaging and biological applications. Talanta 2023; 255:124213. [PMID: 36584617 DOI: 10.1016/j.talanta.2022.124213] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Surface Plasmon Resonance Imaging (SPRI) is a robust technique for visualizing refractive index changes, which enables researchers to observe interactions between nanoscale objects in an imaging manner. In the past period, scholars have been attracted by the Prism-Coupled and Non-prism Coupled configurations of SPRI and have published numerous experimental results. This review describes the principle of SPRI and discusses recent developments in Prism-Coupled and Non-prism Coupled SPRI techniques in detail, respectively. And then, major advances in biological applications of SPRI are reviewed, including four sub-fields (cells, viruses, bacteria, exosomes, and biomolecules). The purpose is to briefly summarize the recent advances of SPRI and provide an outlook on the development of SPRI in various fields.
Collapse
|
3
|
Lu F, Zhang W, Sun L, Mei T, Yuan X. Circular nanocavity substrate-assisted plasmonic tip for its enhancement in nanofocusing and optical trapping. OPTICS EXPRESS 2021; 29:37515-37524. [PMID: 34808821 DOI: 10.1364/oe.441689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Plasmonic tip nanofocusing has widely been applied in tip-enhanced Raman spectroscopy, optical trapping, nonlinear optics, and super-resolution imaging due to its capability of high local field enhancement. In this work, a substrate with a circular nanocavity is proposed to enhance the nanofocusing and optical trapping characteristics of the plasmonic tip. Under axial illumination of a tightly focused radial polarized beam, the circular nanohole etched on a metallic substrate can form a nanocavity to induce an interference effect and further enhance the electric field intensity. When a plasmonic tip is placed closely above such a substrate, the electric field intensity of the gap-plasmon mode can further be improved, which is 10 folds stronger than that of the conventional gap-plasmon mode. Further analysis reveals that the enhanced gap-plasmon mode can significantly strengthen the optical force exerted on a nanoparticle and stably trap a 4-nm-diameter dielectric nanoparticle. Our proposed method can improve the performance of tip-enhanced spectroscopy, plasmonic tweezers and extend their applications. We anticipate that our methods allow simultaneously manipulating and characterizing single nanoparticles in-situ.
Collapse
|
4
|
Zhang Y, Min C, Dou X, Wang X, Urbach HP, Somekh MG, Yuan X. Plasmonic tweezers: for nanoscale optical trapping and beyond. LIGHT, SCIENCE & APPLICATIONS 2021; 10:59. [PMID: 33731693 PMCID: PMC7969631 DOI: 10.1038/s41377-021-00474-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/24/2020] [Accepted: 01/14/2021] [Indexed: 05/06/2023]
Abstract
Optical tweezers and associated manipulation tools in the far field have had a major impact on scientific and engineering research by offering precise manipulation of small objects. More recently, the possibility of performing manipulation with surface plasmons has opened opportunities not feasible with conventional far-field optical methods. The use of surface plasmon techniques enables excitation of hotspots much smaller than the free-space wavelength; with this confinement, the plasmonic field facilitates trapping of various nanostructures and materials with higher precision. The successful manipulation of small particles has fostered numerous and expanding applications. In this paper, we review the principles of and developments in plasmonic tweezers techniques, including both nanostructure-assisted platforms and structureless systems. Construction methods and evaluation criteria of the techniques are presented, aiming to provide a guide for the design and optimization of the systems. The most common novel applications of plasmonic tweezers, namely, sorting and transport, sensing and imaging, and especially those in a biological context, are critically discussed. Finally, we consider the future of the development and new potential applications of this technique and discuss prospects for its impact on science.
Collapse
Affiliation(s)
- Yuquan Zhang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Changjun Min
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.
| | - Xiujie Dou
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- Optics Research Group, Delft University of Technology, Lorentzweg 1, 2628CJ, Delft, The Netherlands
| | - Xianyou Wang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Hendrik Paul Urbach
- Optics Research Group, Delft University of Technology, Lorentzweg 1, 2628CJ, Delft, The Netherlands
| | - Michael G Somekh
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Xiaocong Yuan
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
5
|
Refractive index of biological tissues: Review, measurement techniques, and applications. Photodiagnosis Photodyn Ther 2021; 33:102192. [PMID: 33508501 DOI: 10.1016/j.pdpdt.2021.102192] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 11/24/2022]
Abstract
Refractive index (RI) is a characteristic optical variable that controls the propagation of light in the medium (e.g., biological tissues). Basic research with the aim to investigate the RI of biological tissues is of paramount importance for biomedical optics and associated applications. Herein, we reviewed and summarized the RI data of biological tissues and the associated insights. Different techniques for the measurement of RI of biological tissues are also discussed. Moreover, several examples of the RI applications from basic research, clinics and optics industry are outlined. This study may provide a comprehensive reference for RI data of biological tissues for the biomedical research and beyond.
Collapse
|
6
|
Xin Z, Zhang C, Sun L, Wan C, Chen T, Chen H, Wang M, Wang Y, Zhu S, Yuan X. High-performance imaging of cell-substrate contacts using refractive index quantification microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:7096-7108. [PMID: 33408982 PMCID: PMC7747918 DOI: 10.1364/boe.409764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Non-invasive imaging of living cells is an advanced technique that is widely used in the life sciences and medical research. We demonstrate a refractive index quantification microscopy (RIQM) that enables label-free studies of glioma cell-substrate contacts involving cell adhesion molecules and the extracellular matrix. This microscopy takes advantage of the smallest available spot created when an azimuthally polarized perfect optical vortex beam (POV) is tightly focused with a first-order spiral phase, which results in a relatively high imaging resolution among biosensors. A high refractive index (RI) resolution enables the RI distribution within neuronal cells to be monitored. The microscopy shows excellent capability for recognizing cellular structures and activities, demonstrating great potential in biological sensing and live-cell kinetic imaging.
Collapse
Affiliation(s)
- Ziqiang Xin
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Chonglei Zhang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Lixun Sun
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Chao Wan
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Ting Chen
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Houkai Chen
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Min Wang
- Photonics Center, Shenzhen University, Shenzhen, 518060, China
| | - Yijia Wang
- Institute of Oncology, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Siwei Zhu
- Institute of Oncology, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Xiaocong Yuan
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
7
|
Gul B, Ashraf S, Khan S, Nisar H, Ahmad I. Cell refractive index: Models, insights, applications and future perspectives. Photodiagnosis Photodyn Ther 2020; 33:102096. [PMID: 33188939 DOI: 10.1016/j.pdpdt.2020.102096] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 01/09/2023]
Abstract
Cell refractive index (RI) is an intrinsic optical parameter that governs the propagation of light (i.e., scattering and absorption) in the cell matrix. The RI of cell is sensitively correlated with its mass distribution and thereby has the capability to provide important insights for diverse biological models. Herein, we review the cell refractive index and the fundamental models for measurement of cell RI, summarize the published RI data of cell and cell organelles and discuss the associated insights. Illustrative applications of cell RI in cell biology are also outlined. Finally, future research trends and applications of cell RI, including novel imaging techniques, reshaping flow cytometry and microfluidic platforms for single cell manipulation are discussed. The rapid technological advances in optical imaging integrated with microfluidic regime seems to enable deeper understanding of subcellular dynamics with high spatio-temporal resolution in real time.
Collapse
Affiliation(s)
- Banat Gul
- Department of Basic Sciences, Military College of Engineering, National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Sumara Ashraf
- Department of Physics, The Women University Multan, Pakistan
| | - Shamim Khan
- Department of Physics, Islamia College Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Hasan Nisar
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Germany
| | - Iftikhar Ahmad
- Institute of Radiotherapy and Nuclear Medicine (IRNUM), Peshawar, Pakistan.
| |
Collapse
|
8
|
Hassani H, Wolf NR, Yuan X, Wördenweber R, Offenhäusser A. Platinum substrate for surface plasmon microscopy at small angles. OPTICS LETTERS 2020; 45:3292-3295. [PMID: 32538965 DOI: 10.1364/ol.396051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Platinum is reported as the main component of the substrate in surface plasmon microscopy of the metal-dielectric interface for small-angle measurements. In the absence of a narrow dip in the angular spectrum of platinum, the refractive index of the dielectric medium or the thickness of a deposited layer is proven deducible from the observed sharp peak, close to the critical angle. The sensitivities of refractive index and thickness measurements using platinum are compared with that of a gold surface plasmon resonance chip. Furthermore, the thickness of a structured layer of (3-Aminopropyl)triethoxysilane on the platinum substrate is measured to be 0.7 nm, demonstrating the high sensitivity of the technique.
Collapse
|
9
|
Hochstetter A. Lab-on-a-Chip Technologies for the Single Cell Level: Separation, Analysis, and Diagnostics. MICROMACHINES 2020; 11:E468. [PMID: 32365567 PMCID: PMC7281269 DOI: 10.3390/mi11050468] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022]
Abstract
In the last three decades, microfluidics and its applications have been on an exponential rise, including approaches to isolate rare cells and diagnose diseases on the single-cell level. The techniques mentioned herein have already had significant impacts in our lives, from in-the-field diagnosis of disease and parasitic infections, through home fertility tests, to uncovering the interactions between SARS-CoV-2 and their host cells. This review gives an overview of the field in general and the most notable developments of the last five years, in three parts: 1. What can we detect? 2. Which detection technologies are used in which setting? 3. How do these techniques work? Finally, this review discusses potentials, shortfalls, and an outlook on future developments, especially in respect to the funding landscape and the field-application of these chips.
Collapse
Affiliation(s)
- Axel Hochstetter
- Experimentalphysik, Universität des Saarlandes, D-66123 Saarbrücken, Germany
| |
Collapse
|
10
|
Sun L, Wang Y, Zhang H, Min C, Zhang Y, Zhang C, Xin Z, Zhu S, Yang Y, Burge RE, Yuan X. Graphene-Based Confocal Refractive Index Microscopy for Label-Free Differentiation of Living Epithelial and Mesenchymal Cells. ACS Sens 2020; 5:510-518. [PMID: 31927913 DOI: 10.1021/acssensors.9b02340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Label-free imaging and investigation of living cells are significant for many biomedical studies. It has been challenging to detect the epithelial-mesenchymal transition of cells in situ without affecting cellular activity. Here, we present a common-path differential confocal microscope based on the polarization-sensitive absorption of graphene to realize high-performance refractive index imaging and differentiation of living colorectal cancer cells (HCT116) with large detecting depth (1.29 μm), excellent refractive index resolution (2.86 × 10-5 RIU), and high spatial resolution (727 nm) simultaneously. Compared with epithelial (parental HCT116) cells, mesenchymal (paclitaxel-resistant HCT116) cells manifest generally lower refractive index values through the refractive index statistics, which is due to the stronger migration ability and weaker surface adherence of mesenchymal cells. The graphene-based microscopy provides an effective label-free approach to high-resolution imaging and study of living cell kinetics, and we expect it to be widely used in the research fields of pathology, tumorigenesis, and chemotherapy.
Collapse
Affiliation(s)
- Lixun Sun
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology , Shenzhen University , Shenzhen 518060 , China
| | - Yijia Wang
- Laboratory of Oncologic Molecular Medicine , Tianjin Union Medical Center , Tianjin 300121 , China
| | - Huiqin Zhang
- Institute of Modern Optics , Nankai University , Tianjin 300071 , China
| | - Changjun Min
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology , Shenzhen University , Shenzhen 518060 , China
| | - Yuquan Zhang
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology , Shenzhen University , Shenzhen 518060 , China
| | - Chonglei Zhang
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology , Shenzhen University , Shenzhen 518060 , China
| | - Ziqiang Xin
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology , Shenzhen University , Shenzhen 518060 , China
| | - Siwei Zhu
- Laboratory of Oncologic Molecular Medicine , Tianjin Union Medical Center , Tianjin 300121 , China
| | - Yong Yang
- Institute of Modern Optics , Nankai University , Tianjin 300071 , China
| | - Ronald E Burge
- Cavendish Laboratory , University of Cambridge , Madingley Road , Cambridge CB3 0HE , U.K
| | - Xiaocong Yuan
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology , Shenzhen University , Shenzhen 518060 , China
| |
Collapse
|
11
|
Son T, Lee C, Moon G, Lee D, Cheong E, Kim D. Enhanced surface plasmon microscopy based on multi-channel spatial light switching for label-free neuronal imaging. Biosens Bioelectron 2019; 146:111738. [PMID: 31600626 DOI: 10.1016/j.bios.2019.111738] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/27/2019] [Indexed: 02/04/2023]
Abstract
In this paper, we have investigated multi-channel switching of light incidence in multiple directions to improve image clarity in surface plasmon microscopy (SPM) for robust and consistent imaging performance regardless of the pattern geometry and shape. Multi-channel light switching in SPM allows significant reduction of adverse scattering effects by surface plasmon (SP). For proof of concept, an eight-channel spatially switched SPM (ssSPM) system has been set up. The results with reference objects including square arrays and Siemens stars experimentally confirm much improved images with ssSPM by reducing the artifacts of SP scattering significantly. On a quantitative basis, contrast analysis preformed with square arrays shows image contrast enhanced by more than three times over conventional SPM. Three image reconstruction algorithms were evaluated for optimal image acquisition. It is suggested that averaging combined with minimum-filtering produces the highest resolution. ssSPM was applied to label-free imaging of primary neuron cultures and shown to present enhanced images with clarity far better than conventional SPM.
Collapse
Affiliation(s)
- Taehwang Son
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Changhun Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Gwiyeong Moon
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Dongsu Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Eunji Cheong
- Department of Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Donghyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
12
|
Sun L, Zhang Y, Zhang C, Dai Y, Xin Z, Zhu S, Yuan X, Min C, Yang Y. Refractive index sensing and imaging based on polarization-sensitive graphene. OPTICS EXPRESS 2019; 27:29273-29286. [PMID: 31684664 DOI: 10.1364/oe.27.029273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Graphene exhibits extraordinary opto-electronic properties due to its unique dynamic conductivity, bringing great value in optical sensing, surface plasmon modulation and photonic devices. Based on the polarization-sensitive absorption of graphene working at near infrared to ultraviolet wavelengths, we theoretically investigate the refractive index sensing and imaging mechanism under oblique and tight focusing incidences of light respectively. We demonstrate that such graphene-based methods can provide ultrahigh refractive index resolution (∼2.09×10-8 RIU) for label-free sensing, and high transverse spatial resolution (∼200 nm) and large longitudinal detecting length (∼750 nm) for imaging under 532 nm incident wavelength. The proposed methods could potentially guide future researches in graphene optical detection, non-invasive biological sensing and imaging, and other applications.
Collapse
|
13
|
Zhang S, Reinhard BM. Characterizing Large-Scale Receptor Clustering on the Single Cell Level: A Comparative Plasmon Coupling and Fluorescence Superresolution Microscopy Study. J Phys Chem B 2019; 123:5494-5505. [PMID: 31244098 DOI: 10.1021/acs.jpcb.9b05176] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Spatial clustering of cell membrane receptors has been indicated to play a regulatory role in signal initiation, and the distribution of receptors on the cell surface may represent a potential biomarker. To realize its potential for diagnostic purposes, scalable assays capable of mapping spatial receptor heterogeneity with high throughput are needed. In this work, we use gold nanoparticle (NP) labels with an average diameter of 72.17 ± 2.16 nm as bright markers for large-scale epidermal growth factor receptor (EGFR) clustering in hyperspectral plasmon coupling microscopy and compare the obtained clustering maps with those obtained through fluorescence superresolution microscopy (direct stochastic optical reconstruction microscopy, dSTORM). Our dSTORM experiments reveal average EGFR cluster sizes of 172 ± 99 and 150 ± 90 nm for MDA-MB-468 and HeLa, respectively. The cluster sizes decrease after EGFR activation. Hyperspectral imaging of the NP labels shows that differences in the EGFR cluster sizes are accompanied by differences in the average separations between electromagnetically coupled NPs. Because of the distance dependence of plasmon coupling, changes in the average interparticle separation result in significant spectral shifts. For the experimental conditions investigated in this work, hyperspectral plasmon coupling microscopy of NP labels identified the same trends in large-scale EGFR clustering as dSTORM, but the NP imaging approach provided the information in a fraction of the time. Both dSTORM and hyperspectral plasmon coupling microscopy confirm the cortical actin network as one structural component that determines the average size of EGFR clusters.
Collapse
Affiliation(s)
- Sandy Zhang
- Department of Chemistry and The Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Björn M Reinhard
- Department of Chemistry and The Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
14
|
Zhang B, Zhang C, Somekh MG, Yan P, Wang L. Common-path surface plasmon interferometer with radial polarization. OPTICS LETTERS 2018; 43:3245-3248. [PMID: 30004477 DOI: 10.1364/ol.43.003245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
We present a common-path surface plasmon interferometer with radial polarization. We show how the V(z) effect, the output of the microscope versus defocus z, can be derived utilizing a radially polarized illumination and a virtual annulus. The measurement of the V(z) effect gives a strong signature of the surface plasmon propagation, which is functionally related to the material properties. We discuss the advantages of using radial polarization compared to linear polarization.
Collapse
|
15
|
Demonstration of a terahertz pure vector beam by tailoring geometric phase. Sci Rep 2018; 8:8690. [PMID: 29875483 PMCID: PMC5989212 DOI: 10.1038/s41598-018-26964-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 05/23/2018] [Indexed: 11/30/2022] Open
Abstract
We demonstrate the creation of a vector beam by tailoring geometric phase of left- and right- circularly polarized beams. Such a vector beam with a uniform phase has not been demonstrated before because a vortex phase remains in the beam. We focus on vortex phase cancellation to generate vector beams in terahertz regions, and measure the geometric phase of the beam and its spatial distribution of polarization. We conduct proof-of-principle experiments for producing a vector beam with radial polarization and uniform phase at 0.36 THz. We determine the vortex phase of the vector beam to be below 4%, thus highlighting the extendibility and availability of the proposed concept to the super broadband spectral region from ultraviolet to terahertz. The extended range of our proposed techniques could lead to breakthroughs in the fields of microscopy, chiral nano-materials, and quantum information science.
Collapse
|
16
|
Son T, Lee C, Seo J, Choi IH, Kim D. Surface plasmon microscopy by spatial light switching for label-free imaging with enhanced resolution. OPTICS LETTERS 2018; 43:959-962. [PMID: 29444037 DOI: 10.1364/ol.43.000959] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/10/2018] [Indexed: 05/20/2023]
Abstract
In this Letter, we describe spatially switched surface plasmon microscopy (ssSPM) based on two-channel momentum sampling. The performance evaluated with periodic nanowires in comparison with conventional SPM and bright-field microscopy shows that the resolution of ssSPM is enhanced by almost 15 times over conventional SPM. ssSPM provides an extremely simple way to attain diffraction limit in SPM and to go beyond for super-resolution in label-free microscopy techniques.
Collapse
|
17
|
Sun L, Zhang Y, Wang Y, Yang Y, Zhang C, Weng X, Zhu S, Yuan X. Real-time subcellular imaging based on graphene biosensors. NANOSCALE 2018; 10:1759-1765. [PMID: 29308810 DOI: 10.1039/c7nr07479d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Non-invasive living cell microscopy in real time is essential for a wide variety of biomedical research. Here, we present a subcellular refractive index imaging technique for living cells based on a graphene biosensor system. Owing to the optical reflectivity differences of graphene to s- and p-polarizations, a 45° generalized-cylindrical-vector-polarized laser beam is employed to demodulate the reflected cylindrical vector beam for differential detecting. Benefitting from the vector beam-enabled common-path graphene biosensor, the imaging spatial resolution and refractive index sensitivity are noticeably improved. Subcellular refractive index mapping of live human colonic cancer cells is perfectly achieved without inducing any cell damage. Furthermore, real-time monitoring of an individual cell is also performed with the disassembly of the cell nucleolus clearly observed. This technique would be a promising tool for the study of living cell morphology, kinetics, and pathology, and for other biomedical research.
Collapse
Affiliation(s)
- Lixun Sun
- Institute of Modern Optics, Nankai University, Tianjin, 300071, China.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Model MA, Petruccelli JC. Intracellular Macromolecules in Cell Volume Control and Methods of Their Quantification. CURRENT TOPICS IN MEMBRANES 2018; 81:237-289. [DOI: 10.1016/bs.ctm.2018.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Zhu L, Zhang D, Wang R, Wen X, Wang P, Ming H, Badugu R, Lakowicz JR. Out-of-Focal Plane Imaging by Leakage Radiation Microscopy. JOURNAL OF OPTICS (2010) 2017; 19:095004. [PMID: 29545944 PMCID: PMC5846715 DOI: 10.1088/2040-8986/aa79cc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Leakage radiation microscopy (LRM) is used to investigate the optical properties of surfaces. The front-focal plane (FFP) image with LRM reveals structural features on the surfaces. Back-focal plane (BFP) image with LRM reveals the angular distribution of the radiation. Herein we experimentally demonstrate that the out-of-focal plane (OFP) images present a link between the FFP and BFP images and provide optical information that cannot be resolved by either FFP or BFP images. The OFP image provides a linkage between the spatial location of the emission and the angular distribution from the same location, and thus information about the film's discontinuity, nonuniformity or variable thickness can be uncovered. The use of OFP imaging will extend the scope and applications of the LRM and coupled emission imaging which are powerful tools in nanophotonics and high throughput fluorescence screening.
Collapse
Affiliation(s)
- Liangfu Zhu
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Douguo Zhang
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Corresponding author:
| | - Ruxue Wang
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaolei Wen
- Center for Micro- and Nanoscale Research and Fabrication, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Pei Wang
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hai Ming
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ramachandram Badugu
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joseph R. Lakowicz
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
20
|
Liu PY, Chin LK, Ser W, Chen HF, Hsieh CM, Lee CH, Sung KB, Ayi TC, Yap PH, Liedberg B, Wang K, Bourouina T, Leprince-Wang Y. Cell refractive index for cell biology and disease diagnosis: past, present and future. LAB ON A CHIP 2016; 16:634-44. [PMID: 26732872 DOI: 10.1039/c5lc01445j] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cell refractive index is a key biophysical parameter, which has been extensively studied. It is correlated with other cell biophysical properties including mechanical, electrical and optical properties, and not only represents the intracellular mass and concentration of a cell, but also provides important insight for various biological models. Measurement techniques developed earlier only measure the effective refractive index of a cell or a cell suspension, providing only limited information on cell refractive index and hence hindering its in-depth analysis and correlation. Recently, the emergence of microfluidic, photonic and imaging technologies has enabled the manipulation of a single cell and the 3D refractive index of a single cell down to sub-micron resolution, providing powerful tools to study cells based on refractive index. In this review, we provide an overview of cell refractive index models and measurement techniques including microfluidic chip-based techniques for the last 50 years, present the applications and significance of cell refractive index in cell biology, hematology, and pathology, and discuss future research trends in the field, including 3D imaging methods, integration with microfluidics and potential applications in new and breakthrough research areas.
Collapse
Affiliation(s)
- P Y Liu
- Université Paris-Est, UPEM, F-77454 Marne-la-Vallée, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Berguiga L, Streppa L, Boyer-Provera E, Martinez-Torres C, Schaeffer L, Elezgaray J, Arneodo A, Argoul F. Time-lapse scanning surface plasmon microscopy of living adherent cells with a radially polarized beam. APPLIED OPTICS 2016; 55:1216-27. [PMID: 26906571 DOI: 10.1364/ao.55.001216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We report on a fibered high-resolution scanning surface plasmon microscope for long term imaging of living adherent cells. The coupling of a high numerical aperture objective lens and a fibered heterodyne interferometer enhances both the sensitivity and the long term stability of this microscope, allowing for time-lapse recording over several days. The diffraction limit is reached with a radially polarized illumination beam. Adherence and motility of living C2C12 myoblast cells are followed for 50 h, revealing that the dynamics of these cells change after 10 h. This plasmon enhanced evanescent wave microscopy is particularly suited for investigating cell adhesion, since it can not only be performed without staining of the sample but it can also capture in real time the exchange of extracellular matrix elements between the substrate and the cells.
Collapse
|
22
|
Angelini A. Resonant evanescent complex fields on dielectric multilayers. OPTICS LETTERS 2015; 40:5746-5749. [PMID: 26670502 DOI: 10.1364/ol.40.005746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Complex light fields, including evanescent Bessel beams, can be generated at dielectric interfaces by means of oil-immersion optics operating in total internal reflection conditions. Here we report on the observation of evanescent complex fields produced on a dielectric multilayer through the interference of surface modes resonantly sustained by the multilayer itself. The coupling to surface modes is attained by modifying the wavefront of an incident laser beam in such a way that the resulting intensity distribution in k-space matches the dispersion of the surface mode. The phase of surface modes can be further controlled, and two-dimensional vortex beams can also be produced according to the same working principle.
Collapse
|
23
|
Chen W, Long KD, Kurniawan J, Hung M, Yu H, Harley BA, Cunningham BT. Planar Photonic Crystal Biosensor for Quantitative Label-Free Cell Attachment Microscopy. ADVANCED OPTICAL MATERIALS 2015; 3:1623-1632. [PMID: 26877910 PMCID: PMC4750395 DOI: 10.1002/adom.201500260] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this study, a planar-surface photonic crystal (PC) biosensor for quantitative, kinetic, label-free imaging of cell-surface interactions is demonstrated. The planar biosensor surface eliminates external stimuli to the cells caused by substrate topography to more accurately reflect smooth surface environment encountered by many cell types in vitro. Here, a fabrication approach that combines nanoreplica molding and a horizontal dipping process is used to planarize the surface of the PC biosensor. The planar PC biosensor maintains a high detection sensitivity that enables the monitoring of live cell-substrate interactions with spatial resolution sufficient for observing intracellular attachment strength gradients and the extensions of filopodia from the cell body. The evolution of cell morphology during the attachment and spreading process of 3T3 fibroblast cells is compared between planar and grating-structured PC biosensors. The planar surface effectively eliminates the directionally biased cellular attachment behaviors that are observed on the grating-structured surface. This work represents an important step forward in the development of label-free techniques for observing cellular processes without unintended external environmental modulation.
Collapse
Affiliation(s)
- Weili Chen
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kenneth D Long
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jonas Kurniawan
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Margaret Hung
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hojeong Yu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brendan A Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brian T Cunningham
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
24
|
Wei SC, Yang PT, Wu TH, Lu YL, Gu F, Sung KB, Lin CW. Characteristic investigation of scanning surface plasmon microscopy for nucleotide functionalized nanoarray. OPTICS EXPRESS 2015; 23:20104-20114. [PMID: 26367668 DOI: 10.1364/oe.23.020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A calculation based on surface plasmon coupling condition and Maxwell-Garnett equation was performed for predicting the coupling angle shift and thin film thickness in scanning surface plasmon microscopy (SSPM). The refractive index sensitivity and lateral resolution of an SSPM system was also investigated. The limit of detection of angle shift was 0.01°, the limit of quantification of angle shift was 0.03°, and the sensitivity was around 0.12° shift per nm ZnO film when the film thickness was less than 22.6 nm. Two partially connected Au nano-discs with a center-to-center distance of 1.1 μm could be identified as two peaks. The system was applied to image nanostructure defects and a virus-probe functionalized nanoarray. We expect the potential application in nanobiosensors with further optimization in the future.
Collapse
|
25
|
Abe H, Narimatsu M, Watanabe T, Furumoto T, Yokouchi Y, Nishijima Y, Kita S, Tomitaka A, Ota S, Takemura Y, Baba T. Living-cell imaging using a photonic crystal nanolaser array. OPTICS EXPRESS 2015; 23:17056-17066. [PMID: 26191714 DOI: 10.1364/oe.23.017056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We proposed and demonstrated a label-free imaging method for living cells using a GaInAsP H0-type photonic crystal nanolaser array. We integrated 441 nanolasers in an arrayed configuration and achieved photopumped lasing with a 100% yield. Then, we attached HeLa cells on it, measured the wavelengths of all nanolasers and used them as pixel information. We acquired cell images, which partially corresponds to optical micrographs and probably reflects the attachment condition of the cells. We improved the refractive index resolution from ~10(-2) to 2 × 10(-3) by incorporating a nanoslot into each nanolaser and compensating the nonuniformity of each index sensitivity.
Collapse
|
26
|
Min C, Shen Z, Shen J, Zhang Y, Fang H, Yuan G, Du L, Zhu S, Lei T, Yuan X. Focused plasmonic trapping of metallic particles. Nat Commun 2014; 4:2891. [PMID: 24305554 PMCID: PMC3863898 DOI: 10.1038/ncomms3891] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/06/2013] [Indexed: 11/10/2022] Open
Abstract
Scattering forces in focused light beams push away metallic particles. Thus, trapping metallic particles with conventional optical tweezers, especially those of Mie particle size, is difficult. Here we investigate a mechanism by which metallic particles are attracted and trapped by plasmonic tweezers when surface plasmons are excited and focused by a radially polarized beam in a high-numerical-aperture microscopic configuration. This contrasts the repulsion exerted in optical tweezers with the same configuration. We believe that different types of forces exerted on particles are responsible for this contrary trapping behaviour. Further, trapping with plasmonic tweezers is found not to be due to a gradient force balancing an opposing scattering force but results from the sum of both gradient and scattering forces acting in the same direction established by the strong coupling between the metallic particle and the highly focused plasmonic field. Theoretical analysis and simulations yield good agreement with experimental results. Focused light beams can be used as optical tweezers for manipulating small dielectric particles, but they normally repel metallic ones. By exploiting surface plasmons excited by a radially polarized beam, Min et al. show that it is possible to trap metallic particles with diameters up to 2.2 μm.
Collapse
Affiliation(s)
- Changjun Min
- 1] Institute of Modern Optics, Key Laboratory of Optical Information Science and Technology, Ministry of Education of China, Nankai University, Tianjin 300071, China [2]
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Halpern AR, Wood JB, Wang Y, Corn RM. Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of DNA hybridization adsorption. ACS NANO 2014; 8:1022-1030. [PMID: 24350885 DOI: 10.1021/nn405868e] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A novel 814 nm near-infrared surface plasmon resonance (SPR) microscope is used for the real-time detection of the sequence-selective hybridization adsorption of single DNA-functionalized gold nanoparticles. The objective-coupled, high numerical aperture SPR microscope is capable of imaging in situ the adsorption of single polystyrene and gold particles with diameters ranging from 450 to 20 nm onto a 90 μm × 70 μm area of a gold thin film with a time resolution of approximately 1-3 s. Initial real-time SPR imaging (SPRI) measurements were performed to detect the accumulation of 40 nm gold nanoparticles for 10 min onto a gold thin film functionalized with a 100% complementary DNA surface at concentrations from 5 pM to 100 fM by counting individual particle binding events. A 100% noncomplementary DNA surface exhibited virtually no nanoparticle adsorption. In contrast, in a second set of SPRI measurements, two component complementary/noncomplementary mixed DNA monolayers that contained a very small percentage of complementary sequences ranging from 0.1 to 0.001%, showed both permanent and transient hybridization adsorption of the gold nanoparticles that could be tracked both temporally and spatially with the SPR microscope. These experiments demonstrate that SPR imaging measurements of single biofunctionalized nanoparticles can be incorporated into bioaffinity biosensing methods at subpicomolar concentrations.
Collapse
Affiliation(s)
- Aaron R Halpern
- Department of Chemistry, University of California-Irvine , Irvine, California 92697, United States
| | | | | | | |
Collapse
|
28
|
Du L, Lei DY, Yuan G, Fang H, Zhang X, Wang Q, Tang D, Min C, Maier SA, Yuan X. Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering. Sci Rep 2013; 3:3064. [PMID: 24165970 PMCID: PMC3810658 DOI: 10.1038/srep03064] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/07/2013] [Indexed: 11/09/2022] Open
Abstract
Mapping near-field profiles and dynamics of surface plasmon polaritons is crucial for understanding their fundamental optical properties and designing miniaturized photonic devices. This requires a spatial resolution on the sub-wavelength scale because the effective polariton wavelength is shorter than free-space excitation wavelengths. Here by combining total internal reflection excitation with surface-enhanced Raman scattering imaging, we mapped at the sub-wavelength scale the spatial distribution of the dominant perpendicular component of surface plasmon fields in a metal nanoparticle-film system through spectrally selective and polarization-resolved excitation of the vertical gap mode. The lateral field-extension at the junction, which is determined by the gap-mode volume, is small enough to distinguish a spot size ~0.355λ0 generated by a focused radially polarized beam with high reproducibility. The same excitation and imaging schemes are also used to trace near-field nano-focusing and interferences of surface plasmon polaritons created by a variety of plasmon lenses.
Collapse
Affiliation(s)
- Luping Du
- School of Electrical & Electronic Engineering, Nanyang Technological University, Nanyang Avenue 639798, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Han W, Yang Y, Cheng W, Zhan Q. Vectorial optical field generator for the creation of arbitrarily complex fields. OPTICS EXPRESS 2013; 21:20692-706. [PMID: 24103942 DOI: 10.1364/oe.21.020692] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Generation of vectorial optical fields with complex spatial distribution in the cross section is of great interest in areas where exotic optical fields are desired, including particle manipulation, optical nanofabrication, beam shaping and optical imaging. In this work, a vectorial optical field generator capable of creating arbitrarily complex beam cross section is designed, built and tested. Based on two reflective phase-only liquid crystal spatial light modulators, this generator is capable of controlling all the parameters of the spatial distributions of an optical field, including the phase, amplitude and polarization (ellipticity and orientation) on a pixel-by-pixel basis. Various optical fields containing phase, amplitude and/or polarization modulations are successfully generated and tested using Stokes parameter measurement to demonstrate the capability and versatility of this optical field generator.
Collapse
|
30
|
Le AP, Kang S, Thompson LB, Rubakhin SS, Sweedler JV, Rogers JA, Nuzzo RG. Quantitative reflection imaging of fixed Aplysia californica pedal ganglion neurons on nanostructured plasmonic crystals. J Phys Chem B 2013; 117:13069-81. [PMID: 23647567 DOI: 10.1021/jp402731f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies of the interactions between cells and surrounding environment including cell culture surfaces and their responses to distinct chemical and physical cues are essential to understanding the regulation of cell growth, migration, and differentiation. In this work, we demonstrate the capability of a label-free optical imaging technique-surface plasmon resonance (SPR)-to quantitatively investigate the relative thickness of complex biomolecular structures using a nanoimprinted plasmonic crystal and laboratory microscope. Polyelectrolyte films of different thicknesses deposited by layer-by-layer assembly served as the model system to calibrate the reflection contrast response originating from SPRs. The calibrated SPR system allows quantitative analysis of the thicknesses of the interface formed between the cell culture substrate and cellular membrane regions of fixed Aplysia californica pedal ganglion neurons. Bandpass filters were used to isolate spectral regions of reflected light with distinctive image contrast changes. Combining of the data from images acquired using different bandpass filters leads to increase image contrast and sensitivity to topological differences in interface thicknesses. This SPR-based imaging technique is restricted in measurable thickness range (∼100-200 nm) due to the limited plasmonic sensing volume, but we complement this technique with an interferometric analysis method. Described here simple reflection imaging techniques show promise as quantitative methods for analyzing surface thicknesses at nanometer scale over large areas in real-time and in physicochemical diverse environments.
Collapse
Affiliation(s)
- An-Phong Le
- Department of Chemistry, ‡Department of Materials Science and Engineering, and §Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | | | | | | | |
Collapse
|
31
|
Terakado G, Ning J, Watanabe K, Kano H. High-resolution simultaneous microscopy of refractive index and fluorescent intensity distributions by using localized surface plasmons. APPLIED OPTICS 2013; 52:3324-3328. [PMID: 23669847 DOI: 10.1364/ao.52.003324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/12/2013] [Indexed: 06/02/2023]
Abstract
We propose a localized surface plasmon microscope that provides simultaneous imaging of refractive index and fluorescent intensity distributions. We show experimental images of fluorescent and transparent particles under circular pupil illumination to confirm simultaneous high-resolution imaging. Furthermore, we investigate applicability of annular pupil illumination employing two axicons to improve energy efficiency in the fluorescent imaging and find that a brighter image is obtainable by maintaining high spatial resolution for both imaging modes.
Collapse
Affiliation(s)
- Goro Terakado
- Division of Engineering for Composite Functions, Muroran Institute of Technology, Mizumoto 27-1, Muroran, Hokkaido 050-8585, Japan
| | | | | | | |
Collapse
|
32
|
Chen YK, Zhang DG, Wang XX, Liu C, Wang P, Ming H. Launching plasmonic Bloch waves with excited dye molecules. NANOTECHNOLOGY 2012; 23:475202. [PMID: 23111235 DOI: 10.1088/0957-4484/23/47/475202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this paper, we will demonstrate that excited dye molecules can be used to launch the plasmonic Bloch waves (PBWs) propagating at multi-metal-dielectric interfaces. The properties of the PBWs, such as wavevectors, propagating bands, the interface and grating period effect, were characterized by a leakage radiation microscope. Theoretical simulations were also carried out to reveal the properties of the PBWs and were consistent with the experimental results. What is more, experimental results reveal an interesting phenomenon: the PBWs launched by the excited dye molecules present different optical behaviors from those launched by far-field laser beams through attenuated total reflection. The mechanism of this difference was analyzed based on the energy conversion between the optical near-field and far-field. Our work provides a new way to launch the PBWs. Further, the coupling between the dye molecules and PBWs also demonstrates a new method to manipulate the fluorescence emission from random to controllable.
Collapse
Affiliation(s)
- Y K Chen
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | | | | | | | | | | |
Collapse
|
33
|
Yuan GH, Wang Q, Tan PS, Lin J, Yuan XC. A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam. NANOTECHNOLOGY 2012; 23:385204. [PMID: 22948098 DOI: 10.1088/0957-4484/23/38/385204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A novel phase modulation method for dynamic manipulation of surface plasmon polaritons (SPPs) with a phase engineered optical vortex (OV) beam illuminating on nanoslits is experimentally demonstrated. Because of the unique helical phase carried by an OV beam, dynamic control of SPP multiple focusing and standing wave generation is realized by changing the OV beam's topological charge constituent with the help of a liquid-crystal spatial light modulator. Measurement of SPP distributions with near-field scanning optical microscopy showed an excellent agreement with numerical predictions. The proposed phase modulation technique for manipulating SPPs features has seemingly dynamic and reconfigurable advantages, with profound potential for development of SPP coupling, routing, multiplexing and high-resolution imaging devices on plasmonic chips.
Collapse
Affiliation(s)
- G H Yuan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
| | | | | | | | | |
Collapse
|
34
|
Wang R, Zhang C, Yang Y, Zhu S, Yuan XC. Focused cylindrical vector beam assisted microscopic pSPR biosensor with an ultra wide dynamic range. OPTICS LETTERS 2012; 37:2091-2093. [PMID: 22660131 DOI: 10.1364/ol.37.002091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A novel phase-sensitive surface plasmon resonance (pSPR) biosensor based on differential phase measurement between two cylindrical vector beams, namely radially polarized and azmuthally polarized beams, is proposed and studied in an inverted microscope. Different from a fixed angle or a relatively small angular range for SPR excitation in the attenuated total reflection (ATR) configuration, the signal beam focused by a total internal reflection fluorescence microscopic objective contains the entire angular range from 0 to the maximum angle given by the numerical aperture, leading to a dynamic range of 0.41 RIU which is over seven times wider than the best result of the ATR pSPR sensor. Moreover, with the technique of differential phase measurement between radial and azimuthal polarizations employed in our configuration, high sensitivity of ±9.05×10(-8) refractive index unit/1 deg can simultaneously be achieved in principle. The proposed technique maintains the unique advantages in terms of securing high imaging resolution and sensitivity with an ultra-wide dynamic range simultaneously.
Collapse
Affiliation(s)
- Rong Wang
- Institute of Modern Optics, Key Laboratory of Optoelectronic Information Science & Technology, Ministry of Education of China, Nankai University, Tianjin, China, 300071
| | | | | | | | | |
Collapse
|
35
|
Abstract
This paper develops the theoretical framework to understand the capability of the interferometric surface plasmon microscope to quantify sample properties in a confined region. We use rigorous diffraction theory to quantify the ability of the system to measure local properties and eliminate crosstalk from adjacent regions. We argue that the interferometric system in the defocused condition defines the measured point of excitation and reradiation of the surface plasmons; which greatly improves localisation. We also present results for the noninterferometric microscope, which confirm that the interferometric based system can perform quantitative measurements over smaller regions.
Collapse
Affiliation(s)
- S Pechprasarn
- Faculty of Engineering, Institute of Biophysics Imaging and Optical Science (IBIOS), University of Nottingham, Nottingham, UK
| | | |
Collapse
|
36
|
Lan TH, Chung YK, Li JE, Tien CH. Plasmonic rainbow rings induced by white radial polarization. OPTICS LETTERS 2012; 37:1205-1207. [PMID: 22466196 DOI: 10.1364/ol.37.001205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This Letter presents a scheme to embed both angular/spectral surface plasmon resonance (SPR) in a unique far-field rainbow feature by tightly focusing (effective NA=1.45) a polychromatic radially polarized beam on an Au (20 nm)/SiO2 (500 nm)/Au (20 nm) sandwich structure. Without the need for angular or spectral scanning, the virtual spectral probe snapshots a wide operation range (n=1-1.42; λ=400-700 nm) of SPR excitation in a locally nanosized region. Combined with the high-speed spectral analysis, a proof-of-concept scenario was given by monitoring the NaCl liquid concentration change in real time. The proposed scheme will certainly has a promising impact on the development of objective-based SPR sensor and biometric studies due to its rapidity and versatility.
Collapse
Affiliation(s)
- Tzu-Hsiang Lan
- Department of Photonics and Institute of Electro-optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | | | | | | |
Collapse
|
37
|
Scheuer J. Ultra-high enhancement of the field concentration in split ring resonators by azimuthally polarized excitation. OPTICS EXPRESS 2011; 19:25454-25464. [PMID: 22273938 DOI: 10.1364/oe.19.025454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We study the field enhancement and resonance frequencies in split-ring resonators (SRR) illuminated by azimuthally polarized light. We find that compared to linearly polarized illumination, the azimuthally polarized illumination increase the intensity enhancement by more than an order of magnitude. We attribute the increase in the intensity enhancement to the improved overlap between the SRR geometry and the direction of the electric field vector at each point. In addition, we present and explore a method to tune the resonance frequency of the SRR (for azimuthal polarization) by introducing more gaps in the structure. This approach allows for simple and straightforward tuning of the resonance frequency with small impact on the intensity enhancement. The impact of the design parameters on the intensity enhancement under azimuthally polarized illumination is also studied in details, exhibiting clear differences compared to the case of linear polarized illumination.
Collapse
Affiliation(s)
- Jacob Scheuer
- School of Electrical Engineering Tel Aviv University, Ramat Aviv, Tel-Aviv, Israel.
| |
Collapse
|
38
|
Kedem O, Vaskevich A, Rubinstein I. Improved Sensitivity of Localized Surface Plasmon Resonance Transducers Using Reflection Measurements. J Phys Chem Lett 2011; 2:1223-1226. [PMID: 26295330 DOI: 10.1021/jz200482f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The refractive index sensitivity (RIS) of a localized surface plasmon resonance (LSPR) transducer is one of the key parameters determining its effectiveness in sensing applications. LSPR spectra of nanoparticulate gold films, including Au island films prepared by evaporation on glass and annealing as well as immobilized Au nanoparticle (NP) films, were measured in the transmission and reflection modes. It is shown that the RIS, measured as the wavelength shift in solvents with varying refractive index (RI), is significantly higher in reflection measurements.
Collapse
Affiliation(s)
- Ofer Kedem
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexander Vaskevich
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Israel Rubinstein
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
39
|
Züchner T, Failla AV, Meixner AJ. Lichtmikroskopie mit Doughnut-Moden: ein Konzept zur Detektion, Charakterisierung und Manipulation einzelner Nanoobjekte. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201005845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Züchner T, Failla AV, Meixner AJ. Light microscopy with doughnut modes: a concept to detect, characterize, and manipulate individual nanoobjects. Angew Chem Int Ed Engl 2011; 50:5274-93. [PMID: 21591027 DOI: 10.1002/anie.201005845] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/15/2010] [Indexed: 11/06/2022]
Abstract
Higher order laser modes, mainly called doughnut modes (DMs) have use in many different branches of research, such as, bio-imaging, material science, single-molecule microscopy, and spectroscopy. The main reason of their increasing importance is that recently, the techniques to generate well-defined DMs have been refined or rediscovered. Although their potential is still not fully utilized, their specifically polarized field distribution gives rise to a wide field of applications. They are contributing to complete our fundamental knowledge of the optical properties of single emitting species, such as molecules, nanoparticles, or quantum dots, offering insight into the three-dimensional dipole or particle orientation in space. The perfect zero intensity in the focus center qualifies some DMs for stimulated emission depletion (STED) microscopy. For the same reason, they have been suggested for trapping and tweezing applications.
Collapse
Affiliation(s)
- Tina Züchner
- Institut für Physikalische und Theoretische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | | | | |
Collapse
|
41
|
Berguiga L, Roland T, Monier K, Elezgaray J, Argoul F. Amplitude and phase images of cellular structures with a scanning surface plasmon microscope. OPTICS EXPRESS 2011; 19:6571-6586. [PMID: 21451685 DOI: 10.1364/oe.19.006571] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Imaging cellular internal structure at nanometer scale axial resolution with non invasive microscopy techniques has been a major technical challenge since the nineties. We propose here a complement to fluorescence based microscopies with no need of staining the biological samples, based on a Scanning Surface Plasmon Microscope (SSPM). We describe the advantages of this microscope, namely the possibility of both amplitude and phase imaging and, due to evanescent field enhancement by the surface plasmon resonance, a very high resolution in Z scanning (Z being the axis normal to the sample). We show for fibroblast cells (IMR90) that SSPM offers an enhanced detection of index gradient regions, and we conclude it is very well suited to discriminate regions of variable density in biological media such as cell compartments, nucleus, nucleoli and membranes.
Collapse
Affiliation(s)
- L Berguiga
- USR3010, UMR 5672, CNRS, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | |
Collapse
|
42
|
Sung CH, Chauvat D, Zyss J, Lee CK. Enhanced detection of fluorescent nanospheres using two-channel radially polarized surface plasmon microscopy. OPTICS LETTERS 2010; 35:2873-2875. [PMID: 20808353 DOI: 10.1364/ol.35.002873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We detected single dye-stained latex nanospheres as small as 20 nm using a two-detection channel modified surface plasmon microscope. We found that a radially polarized incident beam leading to excitation of well-focused surface plasmons induces both fluorescence and elastic linear scattering from the spheres. The two complementary emitted signals were detected in parallel by the two separated channels, leading to well-colocalized images. We obtained high spatial resolutions for both channels down to 250 nm in the lateral direction and 300 nm along the longitudinal axis. We believe this multimodal microscope can be useful to track nano objects and to compensate for intermittent fluorescence, thanks to a permanently activated parallel scattering detection channel.
Collapse
Affiliation(s)
- Chih-Hsiang Sung
- Laboratoire de Photonique Quantique et Moléculaire (UMR 8537), Institut d'Alembert, Ecole Normale Supérieure de Cachan, Cachan, France
| | | | | | | |
Collapse
|
43
|
Zhou R, Haus JW, Powers PE, Zhan Q. Vectorial fiber laser using intracavity axial birefringence. OPTICS EXPRESS 2010; 18:10839-10847. [PMID: 20588939 DOI: 10.1364/oe.18.010839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this paper we investigate the polarization properties of a fiber laser with an intracavity c-cut calcite crystal that is capable of producing reconfigurable vectorial output modes. Vectorial modes with radial, azimuthal and generalized cylindrical vector polarizations can be generated by translating one lens within the laser cavity. Detailed studies of the mode polarization evolution show that the modes inside the laser cavity can be spatially homogeneously polarized in one section of the cavity while being spatially inhomogeneously polarized in another section of the cavity, which opens the opportunities for many potential new fiber laser design possibilities and applications. Furthermore, more complicated vectorial vortex output modes are also observed by purposefully introducing angular misalignments.
Collapse
Affiliation(s)
- Renjie Zhou
- Electro-Optics Program, University of Dayton, 300 College Park, Dayton, Ohio 45469, USA
| | | | | | | |
Collapse
|
44
|
He RY, Lin CY, Su YD, Chiu KC, Chang NS, Wu HL, Chen SJ. Imaging live cell membranes via surface plasmon-enhanced fluorescence and phase microscopy. OPTICS EXPRESS 2010; 18:3649-3659. [PMID: 20389375 DOI: 10.1364/oe.18.003649] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This paper demonstrates the first combination for wide-field surface plasmon (SP) phase microscopy and SP-enhanced fluorescence microscopy to image living cells' contacts on the surface of a bio-substrate simultaneously. The phase microscopy with a phase-shift interferometry and common-path optical setup can provide high-sensitivity phase information in long-term stability. Simultaneously, the fluorescence microscopy with the enhancement of a local electromagnetic field can supply bright fluorescent images. The combined microscope imposes a high numerical aperture objective upon the excitation of surface plasmon through a silver film with a thickness of 30 nm. The developed SP microscope is successfully applied to the real-time bright observation of the transfected fluorescence of living cells localized near the cell membrane on the bio-substrate and the high-sensitivity phase image of the cell-substrate contacts at the same time.
Collapse
Affiliation(s)
- Ruei-Yu He
- Institute of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | |
Collapse
|
45
|
Jia B, Kang H, Li J, Gu M. Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method. OPTICS LETTERS 2009; 34:1918-1920. [PMID: 19571951 DOI: 10.1364/ol.34.001918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Radially polarized ultrafast laser beams are used in the fabrication of three-dimensional photonic crystals with the two-photon polymerization technique in organic-inorganic hybrid materials. It has been found that when a radially polarized beam is employed, the lateral size of the fabricated polymer rods is decreased by 27.5% from 138 to 100 nm under a threshold fabrication condition, leading to a 17.35% reduction in the filling ratio of the photonic crystal. A comparison of the stop gaps between radially polarized and linearly polarized beam illumination shows a higher suppression ratio in transmission and a wider wavelength range in the former case owing to the favorable tuning of the filling ratio of the three-dimensional photonic crystals.
Collapse
Affiliation(s)
- Baohua Jia
- Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Australia.
| | | | | | | |
Collapse
|
46
|
Moh KJ, Yuan XC, Bu J, Zhu SW, Gao BZ. Radial polarization induced surface plasmon virtual probe for two-photon fluorescence microscopy. OPTICS LETTERS 2009; 34:971-3. [PMID: 19340188 PMCID: PMC3760964 DOI: 10.1364/ol.34.000971] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Surface plasmons excited by a focused femtosecond radially polarized beam on a metal surface form a standing wave pattern with a sharp peak that can be used as a "virtual probe" for surface plasmon microscopy. The rotational symmetry of radially polarized light effectively provides the TM polarization required for coupling to the surface plasmons while the short pulse nature of the probe allows for nonlinear processes to be studied.
Collapse
Affiliation(s)
- K. J. Moh
- School of Electrical & Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore
| | - X.-C. Yuan
- Institute of Modern Optics, Key Laboratory of Optoelectronic Information Science and Technology, Ministry of Education of China, Nankai University, Tianjin, 300071, China
- Corresponding author:
| | - J. Bu
- Institute of Modern Optics, Key Laboratory of Optoelectronic Information Science and Technology, Ministry of Education of China, Nankai University, Tianjin, 300071, China
| | - S. W. Zhu
- Tianjin Union Medicine Centre, Tianjin 300121, China
| | - Bruce Z. Gao
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, USA
| |
Collapse
|