1
|
Yazdani S, Mozaffarian M, Pazuki G, Hadidi N, Villate-Beitia I, Zárate J, Puras G, Pedraz JL. Carbon-Based Nanostructures as Emerging Materials for Gene Delivery Applications. Pharmaceutics 2024; 16:288. [PMID: 38399344 PMCID: PMC10891563 DOI: 10.3390/pharmaceutics16020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Gene therapeutics are promising for treating diseases at the genetic level, with some already validated for clinical use. Recently, nanostructures have emerged for the targeted delivery of genetic material. Nanomaterials, exhibiting advantageous properties such as a high surface-to-volume ratio, biocompatibility, facile functionalization, substantial loading capacity, and tunable physicochemical characteristics, are recognized as non-viral vectors in gene therapy applications. Despite progress, current non-viral vectors exhibit notably low gene delivery efficiency. Progress in nanotechnology is essential to overcome extracellular and intracellular barriers in gene delivery. Specific nanostructures such as carbon nanotubes (CNTs), carbon quantum dots (CQDs), nanodiamonds (NDs), and similar carbon-based structures can accommodate diverse genetic materials such as plasmid DNA (pDNA), messenger RNA (mRNA), small interference RNA (siRNA), micro RNA (miRNA), and antisense oligonucleotides (AONs). To address challenges such as high toxicity and low transfection efficiency, advancements in the features of carbon-based nanostructures (CBNs) are imperative. This overview delves into three types of CBNs employed as vectors in drug/gene delivery systems, encompassing their synthesis methods, properties, and biomedical applications. Ultimately, we present insights into the opportunities and challenges within the captivating realm of gene delivery using CBNs.
Collapse
Affiliation(s)
- Sara Yazdani
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
| | - Mehrdad Mozaffarian
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
| | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
| | - Naghmeh Hadidi
- Department of Clinical Research and EM Microscope, Pasteur Institute of Iran (PII), Tehran P.O. Box 131694-3551, Iran;
| | - Ilia Villate-Beitia
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Jon Zárate
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Gustavo Puras
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
2
|
Angela S, You T, Pham D, Le T, Hsiao W. Surface Modification of Nanodiamonds. NANODIAMONDS IN ANALYTICAL AND BIOLOGICAL SCIENCES 2023:52-72. [DOI: 10.1002/9781394202164.ch4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
|
3
|
Le T, Chiang Y, Hui Y, Le T, Tzeng Y, Sharma N, Chiang W, Hsiao W. In vitroBioimaging of Fluorescent Nanodiamonds. NANODIAMONDS IN ANALYTICAL AND BIOLOGICAL SCIENCES 2023:95-127. [DOI: 10.1002/9781394202164.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
|
4
|
Hsiao WW, Le T, Chang H. Applications of Fluorescent Nanodiamond in Biology. ENCYCLOPEDIA OF ANALYTICAL CHEMISTRY 2022:1-43. [DOI: 10.1002/9780470027318.a9776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Abstract
Fluorescent nanodiamond (FND) has emerged as a promising material in several multidisciplinary areas, including biology, chemistry, physics, and materials science. Composed of sp
3
‐carbon atoms, FND offers superior biocompatibility, chemical inertness, a large surface area, tunable surface structure, and excellent mechanical characteristics. The nanoparticle is unique in that it comprises a high‐density ensemble of negatively charged nitrogen‐vacancy (NV
−
) centers that act as built‐in fluorophores and exhibit a number of remarkable optical and magnetic properties. These properties make FND particularly well suited for a wide range of applications, including cell labeling, long‐term cell tracking, super‐resolution imaging, nanoscale sensing, and drug delivery. This article discusses recent applications of FND‐enabled developments in biology.
Collapse
|
5
|
Schmitt S, Nuhn L, Barz M, Butt HJ, Koynov K. Shining Light on Polymeric Drug Nanocarriers with Fluorescence Correlation Spectroscopy. Macromol Rapid Commun 2022; 43:e2100892. [PMID: 35174569 DOI: 10.1002/marc.202100892] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/04/2022] [Indexed: 11/07/2022]
Abstract
The use of nanoparticles as carriers is an extremely promising way for administration of therapeutic agents, such as drug molecules, proteins and nucleic acids. Such nanocarriers (NCs) can increase the solubility of hydrophobic compounds, protect their cargo from the environment, and if properly functionalized, deliver it to specific target cells and tissues. Polymer-based NCs are especially promising, because they offer high degree of versatility and tunability. However, in order to get a full advantage of this therapeutic approach and develop efficient delivery systems, a careful characterization of the NCs is needed. This Feature Article highlights the fluorescence correlation spectroscopy (FCS) technique as a powerful and versatile tool for NCs characterization at all stages of the drug delivery process. In particular, FCS can monitor and quantify the size of the NCs and the drug loading efficiency after preparation, the NCs stability and possible interactions with, e.g., plasma proteins in the blood stream and the kinetic of drug release in the cytoplasm of the target cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sascha Schmitt
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Matthias Barz
- Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| |
Collapse
|
6
|
General Method to Increase Carboxylic Acid Content on Nanodiamonds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030736. [PMID: 35164002 PMCID: PMC8838522 DOI: 10.3390/molecules27030736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/07/2022] [Accepted: 01/19/2022] [Indexed: 01/30/2023]
Abstract
Carboxylic acid is a commonly utilized functional group for covalent surface conjugation of carbon nanoparticles that is typically generated by acid oxidation. However, acid oxidation generates additional oxygen containing groups, including epoxides, ketones, aldehydes, lactones, and alcohols. We present a method to specifically enrich the carboxylic acid content on fluorescent nanodiamond (FND) surfaces. Lithium aluminum hydride is used to reduce oxygen containing surface groups to alcohols. The alcohols are then converted to carboxylic acids through a rhodium (II) acetate catalyzed carbene insertion reaction with tert–butyl diazoacetate and subsequent ester cleavage with trifluoroacetic acid. This carboxylic acid enrichment process significantly enhanced nanodiamond homogeneity and improved the efficiency of functionalizing the FND surface. Biotin functionalized fluorescent nanodiamonds were demonstrated to be robust and stable single-molecule fluorescence and optical trapping probes.
Collapse
|
7
|
Silk Fibroin Coated Magnesium Oxide Nanospheres: A Biocompatible and Biodegradable Tool for Noninvasive Bioimaging Applications. NANOMATERIALS 2021; 11:nano11030695. [PMID: 33802102 PMCID: PMC7998877 DOI: 10.3390/nano11030695] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022]
Abstract
Fluorescent nanoparticles (NPs) have been increasingly studied as contrast agents for better understanding of biological processes at the cellular and molecular level. However, their use as bioimaging tools is strongly dependent on their optical emission as well as their biocompatibility. This work reports the fabrication and characterization of silk fibroin (SF) coated magnesium oxide (MgO) nanospheres, containing oxygen, Cr3+ and V2+ related optical defects, as a nontoxic and biodegradable hybrid platform for bioimaging applications. The MgO-SF spheres demonstrated enhanced emission efficiency compared to noncoated MgO NPs. Furthermore, SF sphere coating was found to overcome agglomeration limitations of the MgO NPs. The hybrid nanospheres were investigated as an in vitro bioimaging tool by recording their cellular uptake, trajectories, and mobility in human skin keratinocytes cells (HaCaT), human glioma cells (U87MG) and breast cancer cells (MCF7). Enhanced cellular uptake and improved intracellular mobilities of MgO-SF spheres compared to MgO NPs was demonstrated in three different cell lines. Validated infrared and bright emission of MgO-SF NP indicate their prospects for in vivo imaging. The results identify the potential of the hybrid MgO-SF nanospheres for bioimaging. This study may also open new avenues to optimize drug delivery through biodegradable silk and provide noninvasive functional imaging feedback on the therapeutic processes through fluorescent MgO.
Collapse
|
8
|
Perevedentseva E, Lin YC, Cheng CL. A review of recent advances in nanodiamond-mediated drug delivery in cancer. Expert Opin Drug Deliv 2020; 18:369-382. [PMID: 33047984 DOI: 10.1080/17425247.2021.1832988] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Nanodiamond (ND) refers to diamond particles with sizes from few to near 100 nanometers. For its superb physical, chemical and spectroscopic properties, it has been proposed and studied with the aims for bio imaging and drug delivery. Many modalities on conjugating drug molecules on ND to form ND-X for more efficient drug delivery have been demonstrated in the cellular and animal models. AREA COVERED Many novel drug delivery approaches utilizing nanodiamond as a platform have been demonstrated recently. This review summarizes recent developments on the nanodiamond facilitated drug delivery, from the ND-X complexes preparations to tests in the cellular and animal models. The outlook on clinical translation is discussed. EXPERT OPINION Nanodiamond and drug complexes (ND-X) produced from different methods are realized for drug delivery; almost all studies reported ND-X being more efficient compared to pure drug alone. However, ND of particle size less than 10 nm are found more toxic due to size and surface structure, and strongly aggregate. In vivo studies demonstrate ND accumulation in animal organs and no confirmed long-term effect studies on their release from organs are available. Standardized nanodiamond materials and drug delivery approaches are needed to advance the applications to the clinical level.
Collapse
Affiliation(s)
- Elena Perevedentseva
- Department of Physics, National Dong Hwa University, Shoufeng, Taiwan.,Russian Academy of Sciences, P.N. Lebedev Physics Institute, Moskva, Russian Federation
| | - Yu-Chung Lin
- Department of Physics, National Dong Hwa University, Shoufeng, Taiwan
| | - Chia-Liang Cheng
- Department of Physics, National Dong Hwa University, Shoufeng, Taiwan
| |
Collapse
|
9
|
Surface functionalization of nanodiamonds for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110996. [DOI: 10.1016/j.msec.2020.110996] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/27/2020] [Accepted: 04/19/2020] [Indexed: 12/26/2022]
|
10
|
Nanodiamonds: Synthesis and Application in Sensing, Catalysis, and the Possible Connection with Some Processes Occurring in Space. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124094] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The relationship between the unique characteristics of nanodiamonds (NDs) and the fluorescence properties of nitrogen-vacancy (NV) centers has lead to a tool with quantum sensing capabilities and nanometric spatial resolution; this tool is able to operate in a wide range of temperatures and pressures and in harsh chemical conditions. For the development of devices based on NDs, a great effort has been invested in researching cheap and easily scalable synthesis techniques for NDs and NV-NDs. In this review, we discuss the common fluorescent NDs synthesis techniques as well as the laser-assisted production methods. Then, we report recent results regarding the applications of fluorescent NDs, focusing in particular on sensing of the environmental parameters as well as in catalysis. Finally, we underline that the highly non-equilibrium processes occurring in the interactions of laser-materials in controlled laboratory conditions for NDs synthesis present unique opportunities for investigation of the phenomena occurring under extreme thermodynamic conditions in planetary cores or under warm dense matter conditions.
Collapse
|
11
|
Dong S, Chen X, Yang H, Tang X, Chen J, Lin X, Peng Y. Visualization photofragmentation-induced rhodamine B release from gold nanorod delivery system by combination two-photon luminescence imaging with correlation spectroscopy. JOURNAL OF BIOPHOTONICS 2020; 13:e201960103. [PMID: 31919964 DOI: 10.1002/jbio.201960103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/25/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Plasmon-enhanced gold nanorod (AuNR) with high photothermal conversion efficiency is a promising light-controllable nanodrug delivery system for cancer therapy. Understanding the mechanism for the light-controllable drug release of AuNR delivery systems is important for the development of nanomedicine. In this study, the rhodamine B (RB) released from AuNR-RB nanodelivery system was quantitated and visualized by using two-photon luminescence (TPL) imaging combined with correlation spectroscopy. The photofragmentation of AuNR induced by femtosecond pulsed laser was revealed by TPL correlation spectroscopy when the laser energy was above the thermal damage threshold of AuNR, and the RB released from this nanodrug delivery system was visualized by TPL imaging. Furthermore, the photofragmentation-induced release of RB from AuNR-RB nanodelivery system was visualized in living MCF-7 breast cancer cells by TPL imaging combined with correlation spectroscopy. These results provided a novel optical approach to quantify the release of drugs from gold nanocarriers in complex biological media.
Collapse
Affiliation(s)
- Shiqing Dong
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Xiuqin Chen
- Fujian Provincial Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| | - Hongqin Yang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Xiaoqiong Tang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Jianling Chen
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Xiu Lin
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, China
| | - Yiru Peng
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| |
Collapse
|
12
|
Terada D, Genjo T, Segawa TF, Igarashi R, Shirakawa M. Nanodiamonds for bioapplications–specific targeting strategies. Biochim Biophys Acta Gen Subj 2020; 1864:129354. [DOI: 10.1016/j.bbagen.2019.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/25/2019] [Indexed: 12/21/2022]
|
13
|
Johnstone GE, Cairns GS, Patton BR. Nanodiamonds enable adaptive-optics enhanced, super-resolution, two-photon excitation microscopy. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190589. [PMID: 31417755 PMCID: PMC6689623 DOI: 10.1098/rsos.190589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Particles of diamond in the 5-100 nm size range, known as nanodiamond (ND), have shown promise as robust fluorophores for optical imaging. We demonstrate here that, due to their photostability, they are not only suitable for two-photon imaging, but also allow significant resolution enhancement when combined with computational super-resolution techniques. We observe a resolution of 42.5 nm when processing two-photon images with the Super-Resolution Radial Fluctuations algorithm. We show manipulation of the point-spread function of the microscope using adaptive optics. This demonstrates how the photostability of ND can also be of use when characterizing adaptive optics technologies or testing the resilience of super-resolution or aberration correction algorithms.
Collapse
Affiliation(s)
| | | | - Brian R. Patton
- Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, UK
| |
Collapse
|
14
|
Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:913-931. [DOI: 10.1016/j.msec.2018.12.073] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 02/07/2023]
|
15
|
Brandenburg F, Nagumo R, Saichi K, Tahara K, Iwasaki T, Hatano M, Jelezko F, Igarashi R, Yatsui T. Improving the electron spin properties of nitrogen-vacancy centres in nanodiamonds by near-field etching. Sci Rep 2018; 8:15847. [PMID: 30367130 PMCID: PMC6203751 DOI: 10.1038/s41598-018-34158-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/10/2018] [Indexed: 11/20/2022] Open
Abstract
The nitrogen-vacancy (NV) centre in diamond is a promising candidate for quantum computing applications and magnetic sensing applications, because it is an atomic-scale defect with stable coherence time (T2) and reliable accessibility at room temperature. We demonstrated a method for improving the NV spin properties (the full width half maximum (FWHM) value of the magnetic resonance spectrum and T2) through a near-field (NF) etching method under ambient conditions. The NF etching method, based on a He-Cd ultraviolet laser (325 nm), which is longer than the absorption edge of the oxygen molecule, enabled selective removal of defects on the nanodiamond surface. We observed a decrease in the FWHM value close to 15% and an increase in T2 close to 25%. Since our technique can be easily reproduced, a wide range of NV centre applications could be improved, especially magnetic sensing applications. Our results are especially attractive, because they have been obtained under ambient conditions and only require a light source with wavelength slightly above the O2 absorption edge.
Collapse
Grants
- 18H01470 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 17H01262 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 26286022 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 12024046 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
Collapse
Affiliation(s)
- F Brandenburg
- School of Engineering, University of Tokyo, Tokyo, Japan
| | - R Nagumo
- School of Engineering, University of Tokyo, Tokyo, Japan
| | - K Saichi
- School of Engineering, University of Tokyo, Tokyo, Japan
| | - K Tahara
- Tokyo Institute of Technology, Tokyo, Japan
| | - T Iwasaki
- Tokyo Institute of Technology, Tokyo, Japan
| | - M Hatano
- Tokyo Institute of Technology, Tokyo, Japan
| | - F Jelezko
- Institute of Quantum Optics, Ulm University, Ulm, Germany
| | - R Igarashi
- QST Future Laboratory, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - T Yatsui
- School of Engineering, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
16
|
Sotoma S, Hsieh FJ, Chang HC. Biohybrid fluorescent nanodiamonds as dual-contrast markers for light and electron microscopies. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201800157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shingo Sotoma
- Institute of Atomic and Molecular Sciences; Academia Sinica; Taipei Taiwan
| | - Feng-Jen Hsieh
- Institute of Atomic and Molecular Sciences; Academia Sinica; Taipei Taiwan
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences; Academia Sinica; Taipei Taiwan
- Department of Chemical Engineering; National Taiwan University of Science and Technology; Taipei Taiwan
- Department of Chemistry; National Taiwan Normal University; Taipei Taiwan
| |
Collapse
|
17
|
Sotoma S, Hsieh FJ, Chen YW, Tsai PC, Chang HC. Highly stable lipid-encapsulation of fluorescent nanodiamonds for bioimaging applications. Chem Commun (Camb) 2018; 54:1000-1003. [DOI: 10.1039/c7cc08496j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly stable lipid-encapsulated fluorescent nanodiamonds (FNDs) are produced by photo-crosslinking of diacetylene-containing lipids physically attached to the FND surface for use as bioimaging agents.
Collapse
Affiliation(s)
- Shingo Sotoma
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 106
- Taiwan
| | - Feng-Jen Hsieh
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 106
- Taiwan
| | - Yen-Wei Chen
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 106
- Taiwan
| | - Pei-Chang Tsai
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 106
- Taiwan
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 106
- Taiwan
- Department of Chemical Engineering
| |
Collapse
|
18
|
Kalwarczyk T, Kwapiszewska K, Szczepanski K, Sozanski K, Szymanski J, Michalska B, Patalas-Krawczyk P, Duszynski J, Holyst R. Apparent Anomalous Diffusion in the Cytoplasm of Human Cells: The Effect of Probes’ Polydispersity. J Phys Chem B 2017; 121:9831-9837. [DOI: 10.1021/acs.jpcb.7b07158] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tomasz Kalwarczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Karina Kwapiszewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Krzysztof Szczepanski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Krzysztof Sozanski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jedrzej Szymanski
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Bernadeta Michalska
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Paulina Patalas-Krawczyk
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Jerzy Duszynski
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Robert Holyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
19
|
Rodríguez-Sevilla P, Zhang Y, de Sousa N, Marqués MI, Sanz-Rodríguez F, Jaque D, Liu X, Haro-González P. Optical Torques on Upconverting Particles for Intracellular Microrheometry. NANO LETTERS 2016; 16:8005-8014. [PMID: 27960460 DOI: 10.1021/acs.nanolett.6b04583] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Precise knowledge and control over the orientation of individual upconverting particles is extremely important for full exploiting their capabilities as multifunctional bioprobes for interdisciplinary applications. In this work, we report on how time-resolved, single particle polarized spectroscopy can be used to determine the orientation dynamics of a single upconverting particle when entering into an optical trap. Experimental results have unequivocally evidenced the existence of a unique stable configuration. Numerical simulations and simple numerical calculations have demonstrated that the dipole magnetic interactions between the upconverting particle and trapping radiation are the main mechanisms responsible of the optical torques that drive the upconverting particle to its stable orientation. Finally, how a proper analysis of the rotation dynamics of a single upconverting particle within an optical trap can provide valuable information about the properties of the medium in which it is suspended is demonstrated. A proof of concept is given in which the laser driven intracellular rotation of upconverting particles is used to successfully determine the intracellular dynamic viscosity by a passive and an active method.
Collapse
Affiliation(s)
- Paloma Rodríguez-Sevilla
- Fluorescence Imaging Group, Departamento de Física de Materiales, Universidad Autónoma de Madrid , 28049 Madrid, Spain
| | - Yuhai Zhang
- Department of Chemistry, National University of Singapore , Science Drive 3, Singapore 117543, Singapore
| | - Nuno de Sousa
- Departamento de Física de la Materia Condensada, Condensed Matter Physics Center (IFIMAC), and Nicolás Cabrera Institute, Universidad Autónoma de Madrid , 28049 Madrid, Spain
- Donostia International Physics Center (DIPC) , Donostia-San Sebastián 20018, Spain
| | - Manuel I Marqués
- Departamento de Física de Materiales, Condensed Matter Physics Center (IFIMAC), and Nicolás Cabrera Institute, Universidad Autónoma de Madrid , 28049 Madrid, Spain
| | - Francisco Sanz-Rodríguez
- Fluorescence Imaging Group, Departamento de Física de Materiales, Universidad Autónoma de Madrid , 28049 Madrid, Spain
- Instituto Ramón y Cajal de Investigaciones Sanitarias, Hospital Ramón y Cajal , Madrid 28034, Spain
| | - Daniel Jaque
- Fluorescence Imaging Group, Departamento de Física de Materiales, Universidad Autónoma de Madrid , 28049 Madrid, Spain
- Instituto Ramón y Cajal de Investigaciones Sanitarias, Hospital Ramón y Cajal , Madrid 28034, Spain
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore , Science Drive 3, Singapore 117543, Singapore
| | - Patricia Haro-González
- Fluorescence Imaging Group, Departamento de Física de Materiales, Universidad Autónoma de Madrid , 28049 Madrid, Spain
| |
Collapse
|
20
|
Lin YC, Wu KT, Lin ZR, Perevedentseva E, Karmenyan A, Lin MD, Cheng CL. Nanodiamond for biolabelling and toxicity evaluation in the zebrafish embryo in vivo. JOURNAL OF BIOPHOTONICS 2016; 9:827-836. [PMID: 27093912 DOI: 10.1002/jbio.201500304] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/27/2016] [Accepted: 03/01/2016] [Indexed: 06/05/2023]
Abstract
Nanodiamond (ND) has been proposed for various biomedical applications, including bioimaging, biosensing and drug delivery, owing to its physical-chemical properties and biocompatibility. Particularly, ND has been demonstrated as fluorescence- and Raman-detectable labels in many cellular models. Different surface functionalization methods have been developed, varying the ND's surface properties and rendering the possibility to attach biomolecules to provide interaction with biological targets. For this, toxicity is of major concern in animal models. Aside from cellular models, a cost-effective animal test will greatly facilitate the development of applications. In this study, we use the rapid, sensitive and reproducible zebrafish embryo model for in vivo nanotoxicity test. We optimize the conditions for using this animal model and analyze the zebrafish embryonic development in the presence of ND. ND is observed in the embryo in vivo using laser confocal fluorescence microscopy and fluorescence lifetime imaging. Using the zebrafish model for a safety evaluation of ND-based nanolabel is discussed.
Collapse
Affiliation(s)
- Y-C Lin
- Department of Physics, National Dong Hwa University, 1, Sec. 2 Da Hsueh Rd., Shoufeng, 97403, Hualien, Taiwan
| | - K-T Wu
- Department of Physics, National Dong Hwa University, 1, Sec. 2 Da Hsueh Rd., Shoufeng, 97403, Hualien, Taiwan
| | - Z-R Lin
- Department of Physics, National Dong Hwa University, 1, Sec. 2 Da Hsueh Rd., Shoufeng, 97403, Hualien, Taiwan
| | - E Perevedentseva
- Department of Physics, National Dong Hwa University, 1, Sec. 2 Da Hsueh Rd., Shoufeng, 97403, Hualien, Taiwan
- P. N. Lebedev Physics Institute, Russian Academy of Science, Moscow, Russia
| | - A Karmenyan
- Department of Physics, National Dong Hwa University, 1, Sec. 2 Da Hsueh Rd., Shoufeng, 97403, Hualien, Taiwan
| | - M-D Lin
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - C-L Cheng
- Department of Physics, National Dong Hwa University, 1, Sec. 2 Da Hsueh Rd., Shoufeng, 97403, Hualien, Taiwan.
| |
Collapse
|
21
|
Khalid A, Tran PA, Norello R, Simpson DA, O'Connor AJ, Tomljenovic-Hanic S. Intrinsic fluorescence of selenium nanoparticles for cellular imaging applications. NANOSCALE 2016; 8:3376-85. [PMID: 26792107 DOI: 10.1039/c5nr08771f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nanoparticles hold great potential in contributing to high-resolution bioimaging as well as for biomedical applications. Although, selenium (Se) nanoparticles (NPs) have been investigated owing to their potential roles in therapeutics, the imaging capability of these NPs has never been explored. This manuscript identifies the intrinsic fluorescence of Se NPs, which is highly beneficial for nanoscale imaging of biological structures. The emission of individual NPs and its evolution with time is explored. The photoluminescence spectra has revealed visible to near infrared emission for Se NPs. The work finally reflects on the role of this intrinsic fluorescence for in vitro imaging and tracking in fibroblast cells, without the need of any additional tags. This technique would overcome the limitations of the conventionally used methods of imaging with tagged fluorescent proteins and dyes, preventing possible adverse cellular effects or phototoxicity caused by the added fluorescent moieties.
Collapse
Affiliation(s)
- A Khalid
- School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Phong A Tran
- Department of Chemical and Biomolecular Engineering, University of Melbourne, VIC 3010, Australia and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.
| | - Romina Norello
- School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
| | - David A Simpson
- School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrea J O'Connor
- Department of Chemical and Biomolecular Engineering, University of Melbourne, VIC 3010, Australia
| | | |
Collapse
|
22
|
Jimenez CM, Knezevic NZ, Rubio YG, Szunerits S, Boukherroub R, Teodorescu F, Croissant JG, Hocine O, Seric M, Raehm L, Stojanovic V, Aggad D, Maynadier M, Garcia M, Gary-Bobo M, Durand JO. Nanodiamond–PMO for two-photon PDT and drug delivery. J Mater Chem B 2016; 4:5803-5808. [DOI: 10.1039/c6tb01915c] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report nanodiamond–PMO nanosystems which generate ROS upon two-photon excitation.
Collapse
|
23
|
Khalid A, Mitropoulos AN, Marelli B, Simpson DA, Tran PA, Omenetto FG, Tomljenovic-Hanic S. Fluorescent Nanodiamond Silk Fibroin Spheres: Advanced Nanoscale Bioimaging Tool. ACS Biomater Sci Eng 2015; 1:1104-1113. [PMID: 33429552 DOI: 10.1021/acsbiomaterials.5b00220] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High resolution bioimaging is not only critical to the study of cellular structures and processes but it also has important applications in drug delivery and therapeutics. Fluorescent nanodiamonds (NDs) are excellent candidates for long-term bioimaging and tracking of biological structures at the nanoscale. Encapsulating NDs in natural biopolymers like silk fibroin (SF) widens their biomedical applications. Here we report the synthesis, structural and optical characterization of ND incorporated SF nanospheres. The photoluminescence from optical defects within the NDs is found to increase when encapsulated in the SF spheres. The encapsulated NDs are applied in vitro to investigate the intracellular mobility compared to bare NDs. The diffusion rate of encapsulated NDs is shown to improve due to SF coating. These ND-SF spheres are envisioned as highly suitable candidates for bioinjectable imaging and drug release carriers for targeted drug delivery applications.
Collapse
Affiliation(s)
| | - Alexander N Mitropoulos
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Benedetto Marelli
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | | | - Phong A Tran
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland 4059, Australia
| | - Fiorenzo G Omenetto
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | | |
Collapse
|
24
|
Science and engineering of nanodiamond particle surfaces for biological applications (Review). Biointerphases 2015; 10:030802. [PMID: 26245200 DOI: 10.1116/1.4927679] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Diamond has outstanding bulk properties such as super hardness, chemical inertness, biocompatibility, luminescence, to name just a few. In the nanoworld, in order to exploit these outstanding bulk properties, the surfaces of nanodiamond (ND) particles must be accordingly engineered for specific applications. Modification of functional groups on the ND's surface and the corresponding electrostatic properties determine their colloidal stability in solvents, formation of photonic crystals, controlled adsorption and release of cargo molecules, conjugation with biomolecules and polymers, and cellular uptake. The optical activity of the luminescent color centers in NDs depends on their proximity to the ND's surface and surface termination. In order to engineer the ND surface, a fundamental understanding of the specific structural features and sp(3)-sp(2) phase transformations on the surface of ND particles is required. In the case of ND particles produced by detonation of carbon containing explosives (detonation ND), it should also be taken into account that its structure depends on the synthesis parameters and subsequent processing. Thus, for development of a strategy of surface modification of detonation ND, it is imperative to know details of its production. In this review, the authors discuss ND particles structure, strategies for surface modification, electrokinetic properties of NDs in suspensions, and conclude with a brief overview of the relevant bioapplications.
Collapse
|
25
|
Hong G, Diao S, Antaris AL, Dai H. Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chem Rev 2015; 115:10816-906. [PMID: 25997028 DOI: 10.1021/acs.chemrev.5b00008] [Citation(s) in RCA: 858] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Guosong Hong
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Shuo Diao
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Alexander L Antaris
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Hongjie Dai
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
26
|
Sotoma S, Akagi K, Hosokawa S, Igarashi R, Tochio H, Harada Y, Shirakawa M. Comprehensive and quantitative analysis for controlling the physical/chemical states and particle properties of nanodiamonds for biological applications. RSC Adv 2015. [DOI: 10.1039/c4ra16482b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The physical/chemical states and properties of nanodiamonds subjected to thermal annealing and air oxidation, which are indispensable processes for the preparation of fluorescent nanodiamonds, were investigated.
Collapse
Affiliation(s)
- S. Sotoma
- Department of Molecular Engineering
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - K. Akagi
- Section of Laboratory Equipment
- National Institute of Biomedical Innovation
- Osaka
- Japan
| | - S. Hosokawa
- Department of Molecular Engineering
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - R. Igarashi
- Department of Molecular Engineering
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - H. Tochio
- Department of Biophysics
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| | - Y. Harada
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
- Kyoto University
- Kyoto 606-8501
- Japan
| | - M. Shirakawa
- Department of Molecular Engineering
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| |
Collapse
|
27
|
Vaijayanthimala V, Lee DK, Kim SV, Yen A, Tsai N, Ho D, Chang HC, Shenderova O. Nanodiamond-mediated drug delivery and imaging: challenges and opportunities. Expert Opin Drug Deliv 2014; 12:735-49. [DOI: 10.1517/17425247.2015.992412] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Pope I, Payne L, Zoriniants G, Thomas E, Williams O, Watson P, Langbein W, Borri P. Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds. NATURE NANOTECHNOLOGY 2014; 9:940-6. [PMID: 25305746 PMCID: PMC4990125 DOI: 10.1038/nnano.2014.210] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 08/14/2014] [Indexed: 05/22/2023]
Abstract
Nanoparticles have attracted enormous attention for biomedical applications as optical labels, drug-delivery vehicles and contrast agents in vivo. In the quest for superior photostability and biocompatibility, nanodiamonds are considered one of the best choices due to their unique structural, chemical, mechanical and optical properties. So far, mainly fluorescent nanodiamonds have been utilized for cell imaging. However, their use is limited by the efficiency and costs in reliably producing fluorescent defect centres with stable optical properties. Here, we show that single non-fluorescing nanodiamonds exhibit strong coherent anti-Stokes Raman scattering (CARS) at the sp(3) vibrational resonance of diamond. Using correlative light and electron microscopy, the relationship between CARS signal strength and nanodiamond size is quantified. The calibrated CARS signal in turn enables the analysis of the number and size of nanodiamonds internalized in living cells in situ, which opens the exciting prospect of following complex cellular trafficking pathways quantitatively.
Collapse
Affiliation(s)
- Iestyn Pope
- Cardiff University School of Biosciences, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | - Lukas Payne
- Cardiff University School of Biosciences, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | - George Zoriniants
- Cardiff University School of Biosciences, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | - Evan Thomas
- Cardiff University School of Physics and Astronomy, The Parade, Cardiff CF24 3AA, United Kingdom
| | - Oliver Williams
- Cardiff University School of Physics and Astronomy, The Parade, Cardiff CF24 3AA, United Kingdom
| | - Peter Watson
- Cardiff University School of Biosciences, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | - Wolfgang Langbein
- Cardiff University School of Physics and Astronomy, The Parade, Cardiff CF24 3AA, United Kingdom
| | - Paola Borri
- Cardiff University School of Biosciences, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| |
Collapse
|
29
|
Abstract
Fluorescence cross-correlation spectroscopy (FCCS) is a single-molecule sensitive technique to quantitatively study interactions among fluorescently tagged biomolecules. Besides the initial implementation as dual-color FCCS (DC-FCCS), FCCS has several powerful derivatives, including single-wavelength FCCS (SW-FCCS), two-photon FCCS (TP-FCCS), and pulsed interleaved excitation FCCS (PIE-FCCS). However, to apply FCCS successfully, one needs to be familiar with procedures ranging from fluorescent labeling, instrumentation setup and alignment, sample preparation, and data analysis. Here, we describe the procedures to apply FCCS in various biological samples ranging from live cells to in vivo measurements, with the focus on DC-FCCS and SW-FCCS.
Collapse
|
30
|
Hayashi K, Pack CG, Sato MK, Mouri K, Kaizu K, Takahashi K, Okada Y. Viscosity and drag force involved in organelle transport: investigation of the fluctuation dissipation theorem. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:136. [PMID: 24297312 DOI: 10.1140/epje/i2013-13136-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 11/06/2013] [Indexed: 06/02/2023]
Abstract
We observed the motion of an organelle transported by motor proteins in cells using fluorescence microscopy. Particularly, among organelles, the mitochondria in PC12 cells were studied. A mitochondrion was dragged at a constant speed for several seconds without pausing. We investigated the fluctuation dissipation theorem for this constant drag motion by comparing it with the motion of Brownian beads that were incorporated into the cells by an electroporation method. We estimated the viscosity value inside cells from the diffusion coefficients of the beads. Then the viscosity value obtained by using the beads was found to be slightly lower than that obtained from the diffusion coefficient for the organelle motion via the Einstein relation. This discrepancy indicates the violation of the Einstein relation for the organelle motion.
Collapse
Affiliation(s)
- K Hayashi
- School of Engineering, Tohoku University, Sendai, Japan,
| | | | | | | | | | | | | |
Collapse
|
31
|
Perevedentseva E, Lin YC, Jani M, Cheng CL. Biomedical applications of nanodiamonds in imaging and therapy. Nanomedicine (Lond) 2013; 8:2041-60. [DOI: 10.2217/nnm.13.183] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nanodiamonds have attracted remarkable scientific attention for bioimaging and therapeutic applications owing to their low toxicity with many cell lines, convenient surface properties and stable fluorescence without photobleaching. Newer techniques are being applied to enhance fluorescence. Interest is also growing in exploring the possibilities for modifying the nanodiamond surface and functionalities by attaching various biomolecules of interest for interaction with the targets. The potential of Raman spectroscopy and fluorescence properties of nanodiamonds has been explored for bioimaging and drug delivery tracing. The interest in nanodiamonds’ biological/medical application appears to be continuing with enhanced focus. In this review an attempt is made to capture the scope, spirit and recent developments in the field of nanodiamonds for biomedical applications.
Collapse
Affiliation(s)
- Elena Perevedentseva
- Department of Physics, National Dong Hwa University, No. 1, Sec. 2 Da Hsueh Rd, Shoufeng, Hualien, 97401, Taiwan
| | - Yu-Chung Lin
- Department of Physics, National Dong Hwa University, No. 1, Sec. 2 Da Hsueh Rd, Shoufeng, Hualien, 97401, Taiwan
| | - Mona Jani
- Department of Physics, National Dong Hwa University, No. 1, Sec. 2 Da Hsueh Rd, Shoufeng, Hualien, 97401, Taiwan
| | - Chia-Liang Cheng
- Department of Physics, National Dong Hwa University, No. 1, Sec. 2 Da Hsueh Rd, Shoufeng, Hualien, 97401, Taiwan
| |
Collapse
|
32
|
Hui YY, Chang HC. Recent Developments and Applications of Nanodiamonds as Versatile Bioimaging Agents. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201300346] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Sreenivasan VKA, Zvyagin AV, Goldys EM. Luminescent nanoparticles and their applications in the life sciences. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:194101. [PMID: 23611923 DOI: 10.1088/0953-8984/25/19/194101] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nanoparticles have recently emerged as an important group of materials used in numerous disciplines within the life sciences, ranging from basic biophysical research to clinical therapeutics. Luminescent nanoparticles make excellent optical bioprobes significantly extending the capabilities of alternative fluorophores such as organic dyes and genetically engineered fluorescent proteins. Their advantages include excellent photostability, tunable and narrow spectra, controllable size, resilience to environmental conditions such as pH and temperature, combined with a large surface for anchoring targeting biomolecules. Some types of nanoparticles provide enhanced detection contrast due to their long emission lifetime and/or luminescence wavelength blue-shift (anti-Stokes) due to energy upconversion. This topical review focuses on four key types of luminescent nanoparticles whose emission is governed by different photophysics. We discuss the origin and characteristics of optical absorption and emission in these nanoparticles and give a brief account of synthesis and surface modification procedures. We also introduce some of their applications with opportunities for further development, which could be appreciated by the physics-trained readership.
Collapse
|
34
|
Ivanov IP, Li X, Dolan PR, Gu M. Nonlinear absorption properties of the charge states of nitrogen-vacancy centers in nanodiamonds. OPTICS LETTERS 2013; 38:1358-60. [PMID: 23595484 DOI: 10.1364/ol.38.001358] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We have conducted a study on the nonlinear absorption properties of nitrogen-vacancy color centers in processed nanodiamonds. Their two-photon (2P) spectra disclose distinguishable features for the two charge states in which the center exists. The 2P absorption cross section is found to be between 0.1 and 0.5 GM in the wavelength range between 800 and 1040 nm. In addition, the center demonstrates the feature of strong 2P absorption for its neutral charge state below 1000 nm excitation wavelength and predominant 2P absorption by the negative charge state above this wavelength.
Collapse
Affiliation(s)
- Ivaylo P Ivanov
- Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | | | | | | |
Collapse
|
35
|
Srivastava SK, Bhardwaj A, Leavesley SJ, Grizzle WE, Singh S, Singh AP. MicroRNAs as potential clinical biomarkers: emerging approaches for their detection. Biotech Histochem 2013; 88:373-87. [PMID: 23293934 DOI: 10.3109/10520295.2012.730153] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as novel post-transcriptional regulators of gene expression. These short non-coding RNAs are involved in diverse biological processes and their dysregulation is often observed under diseased conditions. Therefore, miRNAs hold great potential as clinical biomarkers of physiological and pathological states and extensive efforts are underway to develop efficient approaches for their detection. We review recent advances and discuss the promises and pitfalls of emerging methods of miRNA profiling and detection.
Collapse
Affiliation(s)
- S K Srivastava
- Mitchell Cancer Institute, University of South Alabama, Mobile
| | | | | | | | | | | |
Collapse
|
36
|
NANODIAMONDS FOR FLUORESCENT CELL AND SENSOR NANOTECHNOLOGIES. BIOTECHNOLOGIA ACTA 2013. [DOI: 10.15407/biotech6.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
37
|
Personalized nanomedicine advancements for stem cell tracking. Adv Drug Deliv Rev 2012; 64:1488-507. [PMID: 22820528 DOI: 10.1016/j.addr.2012.07.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/11/2012] [Indexed: 12/12/2022]
Abstract
Recent technological developments in biomedicine have facilitated the generation of data on the anatomical, physiological and molecular level for individual patients and thus introduces opportunity for therapy to be personalized in an unprecedented fashion. Generation of patient-specific stem cells exemplifies the efforts toward this new approach. Cell-based therapy is a highly promising treatment paradigm; however, due to the lack of consistent and unbiased data about the fate of stem cells in vivo, interpretation of therapeutic effects remains challenging hampering the progress in this field. The advent of nanotechnology with a wide palette of inorganic and organic nanostructures has expanded the arsenal of methods for tracking transplanted stem cells. The diversity of nanomaterials has revolutionized personalized nanomedicine and enables individualized tailoring of stem cell labeling materials for the specific needs of each patient. The successful implementation of stem cell tracking will likely be a significant driving force that will contribute to the further development of nanotheranostics. The purpose of this review is to emphasize the role of cell tracking using currently available nanoparticles.
Collapse
|
38
|
Pack CG, Song MR, Tae EL, Hiroshima M, Byun KH, Kim JS, Sako Y. Microenvironments and different nanoparticle dynamics in living cells revealed by a standard nanoparticle. J Control Release 2012; 163:315-21. [PMID: 22922061 DOI: 10.1016/j.jconrel.2012.07.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/29/2012] [Accepted: 07/30/2012] [Indexed: 01/26/2023]
Abstract
For quantitative analysis of nanoparticle diffusions and submicro-environments in living cells, use of newly synthesized silica-based fluorescent nanoparticle (Si-FNP) as a standard nanoprobe is successfully demonstrated. The appropriate characteristics of a standard probe were fully analyzed in vitro by single molecule detection, transmission electron microscopy, and dynamic light scattering. Using fluorescence correlation analysis in single living cells, we quantitatively compared the diffusional properties of the standard Si-FNP with a diameter of 50 nm, peptide coated Si-FNP, streptavidin coated Qdot, and GFP molecule which have different sizes and surface properties. The result demonstrates that the standard Si-FNP without coat is minimally trapped in the vesicles in the process of cellular endocytosis. Interestingly, a large proportion of Si-FNP introduced into the cells by electroporation diffuses freely in the cells during a cell cycle suggesting free diffusing NPs are hardly trapped in the vesicles. The simple but highly sensitive method will provide insight into strategies to understanding the hydrodynamic process of nanoparticle delivery into living cells as well as the cellular microenvironment in the view of submicro-size.
Collapse
Affiliation(s)
- Chan Gi Pack
- Cellular Informatics Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | | | | | | | |
Collapse
|
39
|
Zhang B, Fang CY, Chang CC, Peterson R, Maswadi S, Glickman RD, Chang HC, Ye JY. Photoacoustic emission from fluorescent nanodiamonds enhanced with gold nanoparticles. BIOMEDICAL OPTICS EXPRESS 2012; 3:1662-29. [PMID: 22808436 PMCID: PMC3395489 DOI: 10.1364/boe.3.001662] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 05/13/2023]
Abstract
Fluorescent nanodiamonds (FNDs) have drawn much attention in recent years for biomedical imaging applications due to their desired physical properties including excellent photostability, high biocompatibility, extended far-red fluorescence emission, and ease of surface functionalization. Here we explore a new feature of FNDs, i.e. their photoacoustic emission capability, which may lead to potential applications of using FNDs as a dual imaging contrast agent for combined fluorescence and photoacoustic imaging modalities. We observed significant enhancement of photoacoustic emission from FNDs when they were conjugated with gold nanoparticles (GNPs).
Collapse
Affiliation(s)
- Bailin Zhang
- Department of Biomedical Engineering, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, Texas 78249, USA
| | - Chia-Yi Fang
- Institute of Atomic and Molecular Sciences, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Cheng-Chun Chang
- Institute of Atomic and Molecular Sciences, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Ralph Peterson
- Department of Biomedical Engineering, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, Texas 78249, USA
| | - Saher Maswadi
- The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio Texas 78229, USA
| | - Randolph D. Glickman
- The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio Texas 78229, USA
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Jing Yong Ye
- Department of Biomedical Engineering, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, Texas 78249, USA
| |
Collapse
|
40
|
Kalwarczyk T, Ziebacz N, Bielejewska A, Zaboklicka E, Koynov K, Szymański J, Wilk A, Patkowski A, Gapiński J, Butt HJ, Hołyst R. Comparative analysis of viscosity of complex liquids and cytoplasm of mammalian cells at the nanoscale. NANO LETTERS 2011; 11:2157-63. [PMID: 21513331 DOI: 10.1021/nl2008218] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We present a scaling formula for size-dependent viscosity coefficients for proteins, polymers, and fluorescent dyes diffusing in complex liquids. The formula was used to analyze the mobilities of probes of different sizes in HeLa and Swiss 3T3 mammalian cells. This analysis unveils in the cytoplasm two length scales: (i) the correlation length ξ (approximately 5 nm in HeLa and 7 nm in Swiss 3T3 cells) and (ii) the limiting length scale that marks the crossover between nano- and macroscale viscosity (approximately 86 nm in HeLa and 30 nm in Swiss 3T3 cells). During motion, probes smaller than ξ experienced matrix viscosity: η(matrix) ≈ 2.0 mPa·s for HeLa and 0.88 mPa·s for Swiss 3T3 cells. Probes much larger than the limiting length scale experienced macroscopic viscosity, η(macro) ≈ 4.4 × 10(-2) and 2.4 × 10(-2) Pa·s for HeLa and Swiss 3T3 cells, respectively. Our results are persistent for the lengths scales from 0.14 nm to a few hundred nanometers.
Collapse
Affiliation(s)
- Tomasz Kalwarczyk
- Department of Soft Condensed Matter, Institute of Physical Chemistry PAS, Kasprzaka 44/52 01-224 Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Luchowski R. Two-photon excitation of 2,5-diphenyloxazole using a low power green solid state laser. Chem Phys Lett 2011; 501:572-574. [PMID: 21399731 PMCID: PMC3049896 DOI: 10.1016/j.cplett.2010.11.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This Letter concerns two-photon excitation of 2,5-Diphenyloxazole (PPO) upon illumination from a pulsed 532 nm solid state laser, with an average power of 30 mW, and a repetition rate of 20 MHz. A very agreeable emission spectrum position and shape has been achieved for PPO receiving one- and two-photon excitation, which suggests that the same excited state is involved for both excitation modes. Also, a perfect quadratic dependence of laser power in the emission intensity function has been recorded. We tested the application of a small solid state green laser to two-photon induced time-resolved fluorescence, revealing the emission anisotropy of PPO to be considerably higher for two-photon than for one-photon excitation.
Collapse
Affiliation(s)
- Rafal Luchowski
- Address: Center for Commercialization of Fluorescence Technologies (CCFT), Department of Molecular Biology and Immunology, UNTHSC, Fort Worth, TX 76107, USA.
| |
Collapse
|