1
|
Bentahar S, Gómez-Gaviro MV, Desco M, Ripoll J, Fernández R. Multispectral imaging for characterizing autofluorescent tissues. Sci Rep 2024; 14:12084. [PMID: 38802477 PMCID: PMC11130125 DOI: 10.1038/s41598-024-61020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
Selective Plane Illumination Microscopy (SPIM) has become an emerging technology since its first application for 3D in-vivo imaging of the development of a living organism. An extensive number of works have been published, improving both the speed of acquisition and the resolution of the systems. Furthermore, multispectral imaging allows the effective separation of overlapping signals associated with different fluorophores from the spectrum over the whole field-of-view of the analyzed sample. To eliminate the need of using fluorescent dyes, this technique can also be applied to autofluorescence imaging. However, the effective separation of the overlapped spectra in autofluorescence imaging necessitates the use of mathematical tools. In this work, we explore the application of a method based on Principal Component Analysis (PCA) that enables tissue characterization upon spectral autofluorescence data without the use of fluorophores. Thus, enabling the separation of different tissue types in fixed and living samples with no need of staining techniques. Two procedures are described for acquiring spectral data, including a single excitation based method and a multi-excitation scanning approach. In both cases, we demonstrate the effective separation of various tissue types based on their unique autofluorescence spectra.
Collapse
Affiliation(s)
- Sara Bentahar
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain
| | | | - Manuel Desco
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Jorge Ripoll
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| | - Roberto Fernández
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain.
- Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
2
|
Jung D, Shin J, Park J, Shin J, Sung YN, Kim Y, Yoo S, Lee BW, Jang SW, Park IJ, Wood LD, Pack CG, Hruban RH, Hong SM. Frequent Intraluminal Growth of Large Muscular Veins in Surgically Resected Colorectal Cancer Tissues: A 3-Dimensional Pathologic Reconstruction Study. Mod Pathol 2023; 36:100082. [PMID: 36788099 PMCID: PMC10548450 DOI: 10.1016/j.modpat.2022.100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/27/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023]
Abstract
Although venous invasion (VI) is common in colorectal cancers (CRCs) and is associated with distant metastasis, the 3-dimensional (3D) microscopic features and associated mechanisms of VI are not well elucidated. To characterize the patterns of VI, 103 tissue slabs were harvested from surgically resected CRCs with ≥pT2. They were cleared using the modified immunolabeling-enabled 3D imaging of solvent-cleared organs method, labeled with multicolor fluorescent antibodies, including antibodies against cytokeratin 19, desmin, CD31, and E-cadherin, and visualized by confocal laser scanning microscopy. VI was classified as intravasation, intraluminal growth, and/or extravasation, and 2-dimensional and 3D microscopic features were compared. VI was detected more frequently in 3D (56/103 [54.4%]) than in conventional 2-dimensional hematoxylin and eosin-stained slides (33/103 [32%]; P < .001). When VI was present, it was most commonly in the form of intraluminal growth (51/56), followed by extravasation (13/56) and intravasation (5/56). The mean length of intraluminal growth was 334.0 ± 212.4 μm. Neoplastic cell projections extended from cancer cell clusters in the connective tissue surrounding veins, penetrated the smooth muscle layer, and then grew into and filled the venous lumen. E-cadherin expression changed at each invasion phase; intact E-cadherin expression was observed in the cancer cells in the venous walls, but its expression was lost in small clusters of intraluminal neoplastic cells. In addition, reexpression of E-cadherin was observed when cancer cells formed well-oriented tubular structures and accumulated and grew along the luminal side of the venous wall. In contrast, singly scattered cancer cells and cancer cells with poorly defined tubular structures showed loss of E-cadherin expression. E-cadherin expression was intact in the large cohesive clusters of extravasated cancer cells. However, singly scattered cells and smaller projections of neoplastic cells in the stroma outward of venous wall showed a loss of E-cadherin expression. In conclusion, VI was observed in more than half of the CRCs analyzed by 3D histopathologic image reconstruction. Once inside a vein, neoplastic cells can grow intraluminally. The epithelial-mesenchymal transition is not maintained during VI of CRCs.
Collapse
Affiliation(s)
- Dongjun Jung
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Junyoung Shin
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jihyun Park
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jaehoon Shin
- Department of Pathology, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - You-Na Sung
- Department of Pathology, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Yeseul Kim
- Department of Pathology, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Seungyeon Yoo
- Pathology Center, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Byong-Wook Lee
- Cellular Imaging Core, Convergence Medicine Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Wuk Jang
- Department of Biomedical Sciences, Asan Medical Center, Ulsan University College of Medicine, Seoul, Republic of Korea
| | - In Ja Park
- Department of Colon and Rectal Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Laura D Wood
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Chan-Gi Pack
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ralph H Hruban
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Munck S, Cawthorne C, Escamilla‐Ayala A, Kerstens A, Gabarre S, Wesencraft K, Battistella E, Craig R, Reynaud EG, Swoger J, McConnell G. Challenges and advances in optical 3D mesoscale imaging. J Microsc 2022; 286:201-219. [PMID: 35460574 PMCID: PMC9325079 DOI: 10.1111/jmi.13109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/02/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022]
Abstract
Optical mesoscale imaging is a rapidly developing field that allows the visualisation of larger samples than is possible with standard light microscopy, and fills a gap between cell and organism resolution. It spans from advanced fluorescence imaging of micrometric cell clusters to centimetre-size complete organisms. However, with larger volume specimens, new problems arise. Imaging deeper into tissues at high resolution poses challenges ranging from optical distortions to shadowing from opaque structures. This manuscript discusses the latest developments in mesoscale imaging and highlights limitations, namely labelling, clearing, absorption, scattering, and also sample handling. We then focus on approaches that seek to turn mesoscale imaging into a more quantitative technique, analogous to quantitative tomography in medical imaging, highlighting a future role for digital and physical phantoms as well as artificial intelligence.
Collapse
Affiliation(s)
- Sebastian Munck
- VIB‐KU Leuven Center for Brain & Disease ResearchLight Microscopy Expertise Unit & VIB BioImaging CoreLeuvenBelgium
- KU Leuven Department of NeurosciencesLeuven Brain InstituteLeuvenBelgium
| | | | - Abril Escamilla‐Ayala
- VIB‐KU Leuven Center for Brain & Disease ResearchLight Microscopy Expertise Unit & VIB BioImaging CoreLeuvenBelgium
- KU Leuven Department of NeurosciencesLeuven Brain InstituteLeuvenBelgium
| | - Axelle Kerstens
- VIB‐KU Leuven Center for Brain & Disease ResearchLight Microscopy Expertise Unit & VIB BioImaging CoreLeuvenBelgium
- KU Leuven Department of NeurosciencesLeuven Brain InstituteLeuvenBelgium
| | - Sergio Gabarre
- VIB‐KU Leuven Center for Brain & Disease ResearchLight Microscopy Expertise Unit & VIB BioImaging CoreLeuvenBelgium
- KU Leuven Department of NeurosciencesLeuven Brain InstituteLeuvenBelgium
| | | | | | - Rebecca Craig
- Department of Physics, SUPAUniversity of StrathclydeGlasgowUK
| | - Emmanuel G. Reynaud
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinBelfieldIreland
| | - Jim Swoger
- European Molecular Biology Laboratory (EMBL) BarcelonaBarcelonaSpain
| | - Gail McConnell
- Department of Physics, SUPAUniversity of StrathclydeGlasgowUK
| |
Collapse
|
4
|
Schmidt C, Planchette AL, Nguyen D, Giardina G, Neuenschwander Y, Franco MD, Mylonas A, Descloux AC, Pomarico E, Radenovic A, Extermann J. High resolution optical projection tomography platform for multispectral imaging of the mouse gut. BIOMEDICAL OPTICS EXPRESS 2021; 12:3619-3629. [PMID: 34221683 PMCID: PMC8221953 DOI: 10.1364/boe.423284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Optical projection tomography (OPT) is a powerful tool for three-dimensional imaging of mesoscopic biological samples with great use for biomedical phenotyping studies. We present a fluorescent OPT platform that enables direct visualization of biological specimens and processes at a centimeter scale with high spatial resolution, as well as fast data throughput and reconstruction. We demonstrate nearly isotropic sub-28 µm resolution over more than 60 mm3 after reconstruction of a single acquisition. Our setup is optimized for imaging the mouse gut at multiple wavelengths. Thanks to a new sample preparation protocol specifically developed for gut specimens, we can observe the spatial arrangement of the intestinal villi and the vasculature network of a 3-cm long healthy mouse gut. Besides the blood vessel network surrounding the gastrointestinal tract, we observe traces of vasculature at the villi ends close to the lumen. The combination of rapid acquisition and a large field of view with high spatial resolution in 3D mesoscopic imaging holds an invaluable potential for gastrointestinal pathology research.
Collapse
Affiliation(s)
- Cédric Schmidt
- HEPIA/HES-SO, University of Applied Sciences of Western Switzerland, Rue de la Prairie 4, 1202 Geneva, Switzerland
| | - Arielle L. Planchette
- Laboratoire de Biologie à l’Échelle Nanométrique, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - David Nguyen
- Zlatic Lab, Neurobiology, MRC-Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Gabriel Giardina
- HEPIA/HES-SO, University of Applied Sciences of Western Switzerland, Rue de la Prairie 4, 1202 Geneva, Switzerland
| | - Yoan Neuenschwander
- HEPIA/HES-SO, University of Applied Sciences of Western Switzerland, Rue de la Prairie 4, 1202 Geneva, Switzerland
| | - Mathieu Di Franco
- HEPIA/HES-SO, University of Applied Sciences of Western Switzerland, Rue de la Prairie 4, 1202 Geneva, Switzerland
| | - Alessio Mylonas
- Laboratoire de Biologie à l’Échelle Nanométrique, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Adrien C. Descloux
- Laboratoire de Biologie à l’Échelle Nanométrique, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Enrico Pomarico
- HEPIA/HES-SO, University of Applied Sciences of Western Switzerland, Rue de la Prairie 4, 1202 Geneva, Switzerland
| | - Aleksandra Radenovic
- Laboratoire de Biologie à l’Échelle Nanométrique, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jérôme Extermann
- HEPIA/HES-SO, University of Applied Sciences of Western Switzerland, Rue de la Prairie 4, 1202 Geneva, Switzerland
| |
Collapse
|
5
|
Frame localisation optical projection tomography. Sci Rep 2021; 11:4551. [PMID: 33633142 PMCID: PMC7907276 DOI: 10.1038/s41598-021-83454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 01/25/2021] [Indexed: 11/19/2022] Open
Abstract
We present a tomographic reconstruction algorithm (flOPT), which is applied to Optical Projection Tomography (OPT) images, that is robust to mechanical jitter and systematic angular and spatial drift. OPT relies on precise mechanical rotation and is less mechanically stable than large-scale computer tomography (CT) scanning systems, leading to reconstruction artefacts. The algorithm uses multiple (5+) tracked fiducial beads to recover the sample pose and the image rays are then back-projected at each orientation. The quality of the image reconstruction using the proposed algorithm shows an improvement when compared to the Radon transform. Moreover, when adding a systematic spatial and angular mechanical drift, the reconstruction shows a significant improvement over the Radon transform.
Collapse
|
6
|
Gómez-Gaviro MV, Sanderson D, Ripoll J, Desco M. Biomedical Applications of Tissue Clearing and Three-Dimensional Imaging in Health and Disease. iScience 2020; 23:101432. [PMID: 32805648 PMCID: PMC7452225 DOI: 10.1016/j.isci.2020.101432] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/27/2022] Open
Abstract
Three-dimensional (3D) optical imaging techniques can expand our knowledge about physiological and pathological processes that cannot be fully understood with 2D approaches. Standard diagnostic tests frequently are not sufficient to unequivocally determine the presence of a pathological condition. Whole-organ optical imaging requires tissue transparency, which can be achieved by using tissue clearing procedures enabling deeper image acquisition and therefore making possible the analysis of large-scale biological tissue samples. Here, we review currently available clearing agents, methods, and their application in imaging of physiological or pathological conditions in different animal and human organs. We also compare different optical tissue clearing methods discussing their advantages and disadvantages and review the use of different 3D imaging techniques for the visualization and image acquisition of cleared tissues. The use of optical tissue clearing resources for large-scale biological tissues 3D imaging paves the way for future applications in translational and clinical research.
Collapse
Affiliation(s)
- Maria Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.
| | - Daniel Sanderson
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Jorge Ripoll
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Three-dimensional bright-field microscopy with isotropic resolution based on multi-view acquisition and image fusion reconstruction. Sci Rep 2020; 10:12771. [PMID: 32728161 PMCID: PMC7392767 DOI: 10.1038/s41598-020-69730-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/30/2020] [Indexed: 11/08/2022] Open
Abstract
Optical Projection Tomography (OPT) is a powerful three-dimensional imaging technique used for the observation of millimeter-scaled biological samples, compatible with bright-field and fluorescence contrast. OPT is affected by spatially variant artifacts caused by the fact that light diffraction is not taken into account by the straight-light propagation models used for reconstruction. These artifacts hinder high-resolution imaging with OPT. In this work we show that, by using a multiview imaging approach, a 3D reconstruction of the bright-field contrast can be obtained without the diffraction artifacts typical of OPT, drastically reducing the amount of acquired data, compared to previously reported approaches. The method, purely based on bright-field contrast of the unstained sample, provides a comprehensive picture of the sample anatomy, as demonstrated in vivo on Arabidopsis thaliana and zebrafish embryos. Furthermore, this bright-field reconstruction can be implemented on practically any multi-view light-sheet fluorescence microscope without complex hardware modifications or calibrations, complementing the fluorescence information with tissue anatomy.
Collapse
|
8
|
Davis SPX, Kumar S, Alexandrov Y, Bhargava A, da Silva Xavier G, Rutter GA, Frankel P, Sahai E, Flaxman S, French PMW, McGinty J. Convolutional neural networks for reconstruction of undersampled optical projection tomography data applied to in vivo imaging of zebrafish. JOURNAL OF BIOPHOTONICS 2019; 12:e201900128. [PMID: 31386281 PMCID: PMC7065643 DOI: 10.1002/jbio.201900128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/27/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Optical projection tomography (OPT) is a 3D mesoscopic imaging modality that can utilize absorption or fluorescence contrast. 3D images can be rapidly reconstructed from tomographic data sets sampled with sufficient numbers of projection angles using the Radon transform, as is typically implemented with optically cleared samples of the mm-to-cm scale. For in vivo imaging, considerations of phototoxicity and the need to maintain animals under anesthesia typically preclude the acquisition of OPT data at a sufficient number of angles to avoid artifacts in the reconstructed images. For sparse samples, this can be addressed with iterative algorithms to reconstruct 3D images from undersampled OPT data, but the data processing times present a significant challenge for studies imaging multiple animals. We show here that convolutional neural networks (CNN) can be used in place of iterative algorithms to remove artifacts-reducing processing time for an undersampled in vivo zebrafish dataset from 77 to 15 minutes. We also show that using CNN produces reconstructions of equivalent quality to compressed sensing with 40% fewer projections. We further show that diverse training data classes, for example, ex vivo mouse tissue data, can be used for CNN-based reconstructions of OPT data of other species including live zebrafish.
Collapse
Affiliation(s)
| | - Sunil Kumar
- Department of PhysicsImperial College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Yuriy Alexandrov
- Department of PhysicsImperial College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | | | - Gabriela da Silva Xavier
- Department of MedicineImperial College LondonLondonUK
- Institute of Metabolism and Systems ResearchUniversity of BirminghamBirminghamUK
| | - Guy A. Rutter
- Department of MedicineImperial College LondonLondonUK
| | - Paul Frankel
- Division of MedicineUniversity College LondonLondonUK
| | | | - Seth Flaxman
- Department of Mathematics and Data Science InstituteImperial College LondonLondonUK
| | - Paul M. W. French
- Department of PhysicsImperial College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - James McGinty
- Department of PhysicsImperial College LondonLondonUK
- The Francis Crick InstituteLondonUK
| |
Collapse
|
9
|
Vallejo Ramirez PP, Zammit J, Vanderpoorten O, Riche F, Blé FX, Zhou XH, Spiridon B, Valentine C, Spasov SE, Oluwasanya PW, Goodfellow G, Fantham MJ, Siddiqui O, Alimagham F, Robbins M, Stretton A, Simatos D, Hadeler O, Rees EJ, Ströhl F, Laine RF, Kaminski CF. OptiJ: Open-source optical projection tomography of large organ samples. Sci Rep 2019; 9:15693. [PMID: 31666606 PMCID: PMC6821862 DOI: 10.1038/s41598-019-52065-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022] Open
Abstract
The three-dimensional imaging of mesoscopic samples with Optical Projection Tomography (OPT) has become a powerful tool for biomedical phenotyping studies. OPT uses visible light to visualize the 3D morphology of large transparent samples. To enable a wider application of OPT, we present OptiJ, a low-cost, fully open-source OPT system capable of imaging large transparent specimens up to 13 mm tall and 8 mm deep with 50 µm resolution. OptiJ is based on off-the-shelf, easy-to-assemble optical components and an ImageJ plugin library for OPT data reconstruction. The software includes novel correction routines for uneven illumination and sample jitter in addition to CPU/GPU accelerated reconstruction for large datasets. We demonstrate the use of OptiJ to image and reconstruct cleared lung lobes from adult mice. We provide a detailed set of instructions to set up and use the OptiJ framework. Our hardware and software design are modular and easy to implement, allowing for further open microscopy developments for imaging large organ samples.
Collapse
Affiliation(s)
- Pedro P Vallejo Ramirez
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Joseph Zammit
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Oliver Vanderpoorten
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Fergus Riche
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Francois-Xavier Blé
- Clinical Discovery Unit, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Xiao-Hong Zhou
- Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Bogdan Spiridon
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | | | - Simeon E Spasov
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | | | - Gemma Goodfellow
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Marcus J Fantham
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Omid Siddiqui
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Farah Alimagham
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Miranda Robbins
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Andrew Stretton
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Dimitrios Simatos
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Oliver Hadeler
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Eric J Rees
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Florian Ströhl
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Department of Physics and Technology, UiT The Arctic University of Norway, NO-9037, Tromsø, Norway
| | - Romain F Laine
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Medical Research Council Laboratory for Molecular Cell Biology (LMCB), University College London, Gower Street, London, WC1E 6BT, UK
| | - Clemens F Kaminski
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Koskela O, Montonen T, Belay B, Figueiras E, Pursiainen S, Hyttinen J. Gaussian Light Model in Brightfield Optical Projection Tomography. Sci Rep 2019; 9:13934. [PMID: 31558755 PMCID: PMC6763473 DOI: 10.1038/s41598-019-50469-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/12/2019] [Indexed: 01/27/2023] Open
Abstract
This study focuses on improving the reconstruction process of the brightfield optical projection tomography (OPT). OPT is often described as the optical equivalent of X-ray computed tomography, but based on visible light. The detection optics used to collect light in OPT focus on a certain distance and induce blurring in those features out of focus. However, the conventionally used inverse Radon transform assumes an absolute focus throughout the propagation axis. In this study, we model the focusing properties of the detection by coupling Gaussian beam model (GBM) with the Radon transform. The GBM enables the construction of a projection operator that includes modeling of the blurring caused by the light beam. We also introduce the concept of a stretched GBM (SGBM) in which the Gaussian beam is scaled in order to avoid the modeling errors related to the determination of the focal plane. Furthermore, a thresholding approach is used to compress memory usage. We tested the GBM and SGBM approaches using simulated and experimental data in mono- and multifocal modes. When compared with the traditionally used filtered backprojection algorithm, the iteratively computed reconstructions, including the Gaussian models GBM and SGBM, provided smoother images with higher contrast.
Collapse
Affiliation(s)
- Olli Koskela
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, 33014, Finland.
- HAMK Smart Research Unit, Häme University of Applied Sciences, Hämeenlinna, 13100, Finland.
| | - Toni Montonen
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, 33014, Finland
| | - Birhanu Belay
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, 33014, Finland
| | - Edite Figueiras
- Champalimaud Research, Champalimaud Foundation, Lisbon, 1400-038, Portugal
| | - Sampsa Pursiainen
- Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, 33014, Finland
| | - Jari Hyttinen
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, 33014, Finland
| |
Collapse
|
11
|
Albert-Smet I, Marcos-Vidal A, Vaquero JJ, Desco M, Muñoz-Barrutia A, Ripoll J. Applications of Light-Sheet Microscopy in Microdevices. Front Neuroanat 2019; 13:1. [PMID: 30760983 PMCID: PMC6362405 DOI: 10.3389/fnana.2019.00001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/09/2019] [Indexed: 11/23/2022] Open
Abstract
Light-sheet fluorescence microscopy (LSFM) has been present in cell biology laboratories for quite some time, mainly as custom-made systems, with imaging applications ranging from single cells (in the micrometer scale) to small organisms (in the millimeter scale). Such microscopes distinguish themselves for having very low phototoxicity levels and high spatial and temporal resolution, properties that make them ideal for a large range of applications. These include the study of cellular dynamics, in particular cellular motion which is essential to processes such as tumor metastasis and tissue development. Experimental setups make extensive use of microdevices (bioMEMS) that provide better control over the substrate environment than traditional cell culture experiments. For example, to mimic in vivo conditions, experiment biochemical dynamics, and trap, move or count cells. Microdevices provide a higher degree of empirical complexity but, so far, most have been designed to be imaged through wide-field or confocal microscopes. Nonetheless, the properties of LSFM render it ideal for 3D characterization of active cells. When working with microdevices, confocal microscopy is more widespread than LSFM even though it suffers from higher phototoxicity and slower acquisition speeds. It is sometimes possible to illuminate with a light-sheet microdevices designed for confocal microscopes. However, these bioMEMS must be redesigned to exploit the full potential of LSFM and image more frequently on a wider scale phenomena such as motion, traction, differentiation, and diffusion of molecules. The use of microdevices for LSFM has extended beyond cell tracking studies into experiments regarding cytometry, spheroid cultures and lab-on-a-chip automation. Due to light-sheet microscopy being in its early stages, a setup of these characteristics demands some degree of optical expertise; and designing three-dimensional microdevices requires facilities, ingenuity, and experience in microfabrication. In this paper, we explore different approaches where light-sheet microscopy can achieve single-cell and subcellular resolution within microdevices, and provide a few pointers on how these experiments may be improved.
Collapse
Affiliation(s)
- Ignacio Albert-Smet
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
| | - Asier Marcos-Vidal
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
| | - Juan José Vaquero
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
- Experimental Medicine and Surgery Unit, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
| | - Manuel Desco
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
- Experimental Medicine and Surgery Unit, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Arrate Muñoz-Barrutia
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
- Experimental Medicine and Surgery Unit, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
| | - Jorge Ripoll
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
- Experimental Medicine and Surgery Unit, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
| |
Collapse
|
12
|
Li T, Hui H, Hu C, Ma H, Yang X, Tian J. Multiscale imaging of colitis in mice using confocal laser endomicroscopy, light-sheet fluorescence microscopy, and magnetic resonance imaging. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-8. [PMID: 30701723 PMCID: PMC6985686 DOI: 10.1117/1.jbo.24.1.016003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
The objective of our study is to develop a multimodality approach by combining magnetic resonance imaging (MRI) and optical imaging methods to assess acute murine colitis at the macro- and microscopic level. In vivo MRI is used to measure the cross-sectional areas of colons at the macroscopic level. Dual-color confocal laser endomicroscopy (CLE) allows in vivo examination of the fluorescently labeled epithelial cells and microvessels in the mucosa with a spatial resolution of ∼1.4 μm during ongoing endoscopy. To further validate the structural changes of the colons in three-dimensions, ex vivo light-sheet fluorescence microscopy (LSFM) is applied for in-toto imaging of cleared colon sections. MRI, LSFM, and CLE findings are significantly correlated with histological scoring (p < 0.01) and the inflammation-associated activity index (p < 0.01). Our multimodality imaging technique permits visualization of mucosa in colitis at different scales, which can enhance our understanding of the pathogenesis of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Tianmeng Li
- Northeastern University, Sino-Dutch Biomedical and Information Engineering School, Shenyang, China
- Chinese Academy of Sciences, Institute of Automation, CAS Key Laboratory of Molecular Imaging, Beijing, China
- Institute of Automation, Beijing Key Laboratory of Molecular Imaging, Beijing, China
| | - Hui Hui
- Chinese Academy of Sciences, Institute of Automation, CAS Key Laboratory of Molecular Imaging, Beijing, China
- Institute of Automation, Beijing Key Laboratory of Molecular Imaging, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chaoen Hu
- Chinese Academy of Sciences, Institute of Automation, CAS Key Laboratory of Molecular Imaging, Beijing, China
- Institute of Automation, Beijing Key Laboratory of Molecular Imaging, Beijing, China
| | - He Ma
- Northeastern University, Sino-Dutch Biomedical and Information Engineering School, Shenyang, China
| | - Xin Yang
- Chinese Academy of Sciences, Institute of Automation, CAS Key Laboratory of Molecular Imaging, Beijing, China
- Institute of Automation, Beijing Key Laboratory of Molecular Imaging, Beijing, China
| | - Jie Tian
- Chinese Academy of Sciences, Institute of Automation, CAS Key Laboratory of Molecular Imaging, Beijing, China
- Institute of Automation, Beijing Key Laboratory of Molecular Imaging, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Chatterjee K, Pratiwi FW, Wu FCM, Chen P, Chen BC. Recent Progress in Light Sheet Microscopy for Biological Applications. APPLIED SPECTROSCOPY 2018; 72:1137-1169. [PMID: 29926744 DOI: 10.1177/0003702818778851] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The introduction of light sheet fluorescence microscopy (LSFM) has overcome the challenges in conventional optical microscopy. Among the recent breakthroughs in fluorescence microscopy, LSFM had been proven to provide a high three-dimensional spatial resolution, high signal-to-noise ratio, fast imaging acquisition rate, and minuscule levels of phototoxic and photodamage effects. The aforementioned auspicious properties are crucial in the biomedical and clinical research fields, covering a broad range of applications: from the super-resolution imaging of intracellular dynamics in a single cell to the high spatiotemporal resolution imaging of developmental dynamics in an entirely large organism. In this review, we provided a systematic outline of the historical development of LSFM, detailed discussion on the variants and improvements of LSFM, and delineation on the most recent technological advancements of LSFM and its potential applications in single molecule/particle detection, single-molecule super-resolution imaging, imaging intracellular dynamics of a single cell, multicellular imaging: cell-cell and cell-matrix interactions, plant developmental biology, and brain imaging and developmental biology.
Collapse
Affiliation(s)
- Krishnendu Chatterjee
- 1 Nanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- 2 Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- 3 Department of Engineering and System Science, National Tsing-Hua University, Hsinchu, Taiwan
| | - Feby Wijaya Pratiwi
- 1 Nanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- 2 Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- 4 Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | | | - Peilin Chen
- 2 Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Bi-Chang Chen
- 2 Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
14
|
Mayer J, Robert-Moreno A, Sharpe J, Swoger J. Attenuation artifacts in light sheet fluorescence microscopy corrected by OPTiSPIM. LIGHT, SCIENCE & APPLICATIONS 2018; 7:70. [PMID: 30302241 PMCID: PMC6168557 DOI: 10.1038/s41377-018-0068-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 05/18/2023]
Abstract
Light sheet fluorescence microscopy (LSFM) is rapidly becoming an essential technology for mesoscopic imaging of samples such as embryos and adult mouse organs. However, LSFM can suffer from optical artifacts for which there is no intrinsic solution. The attenuation of light due to absorbing material causes "shadow" artifacts along both the illumination and detection paths. Several approaches have been introduced to reduce this problem, including scanning illumination and multi-view imaging. However, neither of these approaches completely eliminates the problem. If the distribution of the absorbing material is complex, shadows cannot be avoided. We introduce a new approach that relies on multi-modal integration of two very different mesoscopic techniques. Unlike LSFM, optical projection tomography (OPT) can operate in transmission mode to create a voxel map of the 3D distribution of the sample's optical attenuation. Here, we demonstrate a hybrid instrument (OPTiSPIM) that can quantify this attenuation and use the information to correct the shadow artifacts of LSFM.
Collapse
Affiliation(s)
- Jürgen Mayer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Alexandre Robert-Moreno
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - James Sharpe
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Jim Swoger
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Present Address: European Molecular Biology Laboratory (EMBL), Dr. Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
15
|
Nguyen D, Marchand PJ, Planchette AL, Nilsson J, Sison M, Extermann J, Lopez A, Sylwestrzak M, Sordet-Dessimoz J, Schmidt-Christensen A, Holmberg D, Van De Ville D, Lasser T. Optical projection tomography for rapid whole mouse brain imaging. BIOMEDICAL OPTICS EXPRESS 2017; 8:5637-5650. [PMID: 29296493 PMCID: PMC5745108 DOI: 10.1364/boe.8.005637] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 05/21/2023]
Abstract
In recent years, three-dimensional mesoscopic imaging has gained significant importance in life sciences for fundamental studies at the whole-organ level. In this manuscript, we present an optical projection tomography (OPT) method designed for imaging of the intact mouse brain. The system features an isotropic resolution of ~50 µm and an acquisition time of four to eight minutes, using a 3-day optimized clearing protocol. Imaging of the brain autofluorescence in 3D reveals details of the neuroanatomy, while the use of fluorescent labels displays the vascular network and amyloid deposition in 5xFAD mice, an important model of Alzheimer's disease (AD). Finally, the OPT images are compared with histological slices.
Collapse
Affiliation(s)
- David Nguyen
- Laboratoire d’Optique Biomédicale, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,
Switzerland
| | - Paul J. Marchand
- Laboratoire d’Optique Biomédicale, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,
Switzerland
| | - Arielle L. Planchette
- Laboratoire d’Optique Biomédicale, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,
Switzerland
| | - Julia Nilsson
- Autoimmunity, Department of Experimental Medical Sciences, Lund University Diabetes Centre, 20502 Malmö,
Sweden
| | - Miguel Sison
- Laboratoire d’Optique Biomédicale, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,
Switzerland
| | - Jérôme Extermann
- Laboratoire d’Optique Biomédicale, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,
Switzerland
| | - Antonio Lopez
- Laboratoire d’Optique Biomédicale, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,
Switzerland
| | - Marcin Sylwestrzak
- Laboratoire d’Optique Biomédicale, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,
Switzerland
| | - Jessica Sordet-Dessimoz
- Laboratoire d’Optique Biomédicale, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,
Switzerland
| | - Anja Schmidt-Christensen
- Autoimmunity, Department of Experimental Medical Sciences, Lund University Diabetes Centre, 20502 Malmö,
Sweden
| | - Dan Holmberg
- Autoimmunity, Department of Experimental Medical Sciences, Lund University Diabetes Centre, 20502 Malmö,
Sweden
| | - Dimitri Van De Ville
- Medical Image Processing Lab, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1202 Genève,
Switzerland
| | - Theo Lasser
- Laboratoire d’Optique Biomédicale, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,
Switzerland
| |
Collapse
|
16
|
Ancora D, Di Battista D, Giasafaki G, Psycharakis SE, Liapis E, Ripoll J, Zacharakis G. Optical projection tomography via phase retrieval algorithms. Methods 2017; 136:81-89. [PMID: 29080740 DOI: 10.1016/j.ymeth.2017.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/15/2017] [Accepted: 10/17/2017] [Indexed: 11/16/2022] Open
Abstract
We describe a computational method for accurate, quantitative tomographic reconstructions in Optical Projection Tomography, based on phase retrieval algorithms. Our method overcomes limitations imposed by light scattering in opaque tissue samples under the memory effect regime, as well as reduces artifacts due to mechanical movements, misalignments or vibrations. We make use of Gerchberg-Saxton algorithms, calculating first the autocorrelation of the object and then retrieving the associated phase under four numerically simulated measurement conditions. By approaching the task in such a way, we avoid the projection alignment procedure, exploiting the fact that the autocorrelation sinogram is always aligned and centered. We thus propose two new, projection-based, tomographic imaging flowcharts that allow registration-free imaging of opaque biological specimens and unlock three-dimensional tomographic imaging of hidden objects. Two main reconstruction approaches are discussed in the text, focusing on their efficiency in the tomographic retrieval and discussing their applicability under four different numerical experiments.
Collapse
Affiliation(s)
- Daniele Ancora
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 70013 Heraklion, Greece; Department of Materials Science and Technology, University of Crete, 71003 Heraklion, Greece
| | - Diego Di Battista
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 70013 Heraklion, Greece; Assing S.p.A, Monterotondo, 00015 Rome, Italy
| | - Georgia Giasafaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 70013 Heraklion, Greece
| | - Stylianos E Psycharakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 70013 Heraklion, Greece; School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Evangelos Liapis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 70013 Heraklion, Greece
| | - Jorge Ripoll
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, 28911 Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, 28007 Madrid, Spain
| | - Giannis Zacharakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 70013 Heraklion, Greece.
| |
Collapse
|
17
|
Phase-Retrieved Tomography enables Mesoscopic imaging of Opaque Tumor Spheroids. Sci Rep 2017; 7:11854. [PMID: 28928445 PMCID: PMC5605697 DOI: 10.1038/s41598-017-12193-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/06/2017] [Indexed: 12/03/2022] Open
Abstract
We present a new Phase-Retrieved Tomography (PRT) method to radically improve mesoscopic imaging at regimes beyond one transport mean-free-path and achieve high resolution, uniformly throughout the volume of opaque samples. The method exploits multi-view acquisition in a hybrid Selective Plane Illumination Microscope (SPIM) and Optical Projection Tomography (OPT) setup and a three-dimensional Gerchberg-Saxton phase-retrieval algorithm applied in 3D through the autocorrelation sinogram. We have successfully applied this innovative protocol to image optically dense 3D cell cultures in the form of tumor spheroids, highly versatile models to study cancer behavior and response to chemotherapy. We have thus achieved a significant improvement of resolution in depths not yet accessible with the currently used methods in SPIM/OPT, while overcoming all registration and alignment problems inherent to these techniques.
Collapse
|
18
|
Lee KJI, Calder GM, Hindle CR, Newman JL, Robinson SN, Avondo JJHY, Coen ES. Macro optical projection tomography for large scale 3D imaging of plant structures and gene activity. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:527-538. [PMID: 28025317 PMCID: PMC5441912 DOI: 10.1093/jxb/erw452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Optical projection tomography (OPT) is a well-established method for visualising gene activity in plants and animals. However, a limitation of conventional OPT is that the specimen upper size limit precludes its application to larger structures. To address this problem we constructed a macro version called Macro OPT (M-OPT). We apply M-OPT to 3D live imaging of gene activity in growing whole plants and to visualise structural morphology in large optically cleared plant and insect specimens up to 60 mm tall and 45 mm deep. We also show how M-OPT can be used to image gene expression domains in 3D within fixed tissue and to visualise gene activity in 3D in clones of growing young whole Arabidopsis plants. A further application of M-OPT is to visualise plant-insect interactions. Thus M-OPT provides an effective 3D imaging platform that allows the study of gene activity, internal plant structures and plant-insect interactions at a macroscopic scale.
Collapse
Affiliation(s)
- Karen J I Lee
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK
| | - Grant M Calder
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK
| | | | - Jacob L Newman
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK
| | - Simon N Robinson
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK
| | | | - Enrico S Coen
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK
| |
Collapse
|
19
|
Liang X, Zang Y, Dong D, Zhang L, Fang M, Yang X, Arranz A, Ripoll J, Hui H, Tian J. Stripe artifact elimination based on nonsubsampled contourlet transform for light sheet fluorescence microscopy. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:106005. [PMID: 27784051 DOI: 10.1117/1.jbo.21.10.106005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/28/2016] [Indexed: 05/18/2023]
Abstract
Stripe artifacts, caused by high-absorption or high-scattering structures in the illumination light path, are a common drawback in both unidirectional and multidirectional light sheet fluorescence microscopy (LSFM), significantly deteriorating image quality. To circumvent this problem, we present an effective multidirectional stripe remover (MDSR) method based on nonsubsampled contourlet transform (NSCT), which can be used for both unidirectional and multidirectional LSFM. In MDSR, a fast Fourier transform (FFT) filter is designed in the NSCT domain to shrink the stripe components and eliminate the noise. Benefiting from the properties of being multiscale and multidirectional, MDSR succeeds in eliminating stripe artifacts in both unidirectional and multidirectional LSFM. To validate the method, MDSR has been tested on images from a custom-made unidirectional LSFM system and a commercial multidirectional LSFM system, clearly demonstrating that MDSR effectively removes most of the stripe artifacts. Moreover, we performed a comparative experiment with the variational stationary noise remover and the wavelet-FFT methods and quantitatively analyzed the results with a peak signal-to-noise ratio, showing an improved noise removal when using the MDSR method.
Collapse
Affiliation(s)
- Xiao Liang
- Chinese Academy of Sciences, Key Laboratory of Molecular Imaging, No. 95 Zhongguancun East Road, Beijing 100190, ChinabThe State Key Laboratory of Management and Control for Complex Systems, No. 95 Zhongguancun East Road, Beijing 100190, ChinacUniversity of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Beijing 100190, China
| | - Yali Zang
- Chinese Academy of Sciences, Key Laboratory of Molecular Imaging, No. 95 Zhongguancun East Road, Beijing 100190, ChinabThe State Key Laboratory of Management and Control for Complex Systems, No. 95 Zhongguancun East Road, Beijing 100190, ChinacUniversity of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Beijing 100190, China
| | - Di Dong
- Chinese Academy of Sciences, Key Laboratory of Molecular Imaging, No. 95 Zhongguancun East Road, Beijing 100190, ChinabThe State Key Laboratory of Management and Control for Complex Systems, No. 95 Zhongguancun East Road, Beijing 100190, ChinacUniversity of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Beijing 100190, China
| | - Liwen Zhang
- Chinese Academy of Sciences, Key Laboratory of Molecular Imaging, No. 95 Zhongguancun East Road, Beijing 100190, ChinabThe State Key Laboratory of Management and Control for Complex Systems, No. 95 Zhongguancun East Road, Beijing 100190, China
| | - Mengjie Fang
- Chinese Academy of Sciences, Key Laboratory of Molecular Imaging, No. 95 Zhongguancun East Road, Beijing 100190, ChinabThe State Key Laboratory of Management and Control for Complex Systems, No. 95 Zhongguancun East Road, Beijing 100190, ChinacUniversity of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Beijing 100190, China
| | - Xin Yang
- Chinese Academy of Sciences, Key Laboratory of Molecular Imaging, No. 95 Zhongguancun East Road, Beijing 100190, ChinabThe State Key Laboratory of Management and Control for Complex Systems, No. 95 Zhongguancun East Road, Beijing 100190, ChinacUniversity of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Beijing 100190, China
| | - Alicia Arranz
- Center for Molecular Biology "Severo Ochoa", Calle Nicolás Cabrera, 1, Madrid 28049, Spain
| | - Jorge Ripoll
- Universidad Carlos III of Madrid, Department of Bioengineering and Aerospace Engineering, Escuela Politécnica Superior, Avd. de la Universidad, 30, Madrid 28911, SpainfInstituto de Investigación Sanitaria del Hospital Gregorio Marañón, Experimental Medicine and Surgery Unit, Calle del Dr. Esquerdo, 46, Madrid 28007, Spain
| | - Hui Hui
- Chinese Academy of Sciences, Key Laboratory of Molecular Imaging, No. 95 Zhongguancun East Road, Beijing 100190, ChinabThe State Key Laboratory of Management and Control for Complex Systems, No. 95 Zhongguancun East Road, Beijing 100190, ChinacUniversity of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Beijing 100190, China
| | - Jie Tian
- Chinese Academy of Sciences, Key Laboratory of Molecular Imaging, No. 95 Zhongguancun East Road, Beijing 100190, ChinabThe State Key Laboratory of Management and Control for Complex Systems, No. 95 Zhongguancun East Road, Beijing 100190, ChinacUniversity of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Beijing 100190, China
| |
Collapse
|
20
|
Rieckher M. Light Sheet Microscopy to Measure Protein Dynamics. J Cell Physiol 2016; 232:27-35. [DOI: 10.1002/jcp.25451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/07/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Matthias Rieckher
- Institute for Genome Stability in Ageing and Disease; Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne; Cologne Germany
| |
Collapse
|
21
|
Candeo A, Sana I, Ferrari E, Maiuri L, D'Andrea C, Valentini G, Bassi A. Virtual unfolding of light sheet fluorescence microscopy dataset for quantitative analysis of the mouse intestine. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:56001. [PMID: 27135065 DOI: 10.1117/1.jbo.21.5.056001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
Light sheet fluorescence microscopy has proven to be a powerful tool to image fixed and chemically cleared samples, providing in depth and high resolution reconstructions of intact mouse organs. We applied light sheet microscopy to image the mouse intestine. We found that large portions of the sample can be readily visualized, assessing the organ status and highlighting the presence of regions with impaired morphology. Yet, three-dimensional (3-D) sectioning of the intestine leads to a large dataset that produces unnecessary storage and processing overload. We developed a routine that extracts the relevant information from a large image stack and provides quantitative analysis of the intestine morphology. This result was achieved by a three step procedure consisting of: (1) virtually unfold the 3-D reconstruction of the intestine; (2) observe it layer-by-layer; and (3) identify distinct villi and statistically analyze multiple samples belonging to different intestinal regions. Even if the procedure has been developed for the murine intestine, most of the underlying concepts have a general applicability.
Collapse
Affiliation(s)
- Alessia Candeo
- Politecnico di Milano, Dipartimento di Fisica, piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Ilenia Sana
- European Institute for Research in Cystic Fibrosis, IERFC ONLUS Foundation, Ospedale San Raffaele, Via Olgettina, 58, 20132 Milano, Italy
| | - Eleonora Ferrari
- European Institute for Research in Cystic Fibrosis, IERFC ONLUS Foundation, Ospedale San Raffaele, Via Olgettina, 58, 20132 Milano, Italy
| | - Luigi Maiuri
- European Institute for Research in Cystic Fibrosis, IERFC ONLUS Foundation, Ospedale San Raffaele, Via Olgettina, 58, 20132 Milano, ItalycUniversity of Piemonte Orientale, Department of Health Sciences, 28100 Novara, Italy
| | - Cosimo D'Andrea
- Politecnico di Milano, Dipartimento di Fisica, piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Gianluca Valentini
- Politecnico di Milano, Dipartimento di Fisica, piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Andrea Bassi
- Politecnico di Milano, Dipartimento di Fisica, piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
22
|
Abe J, Ozga AJ, Swoger J, Sharpe J, Ripoll J, Stein JV. Light sheet fluorescence microscopy for in situ cell interaction analysis in mouse lymph nodes. J Immunol Methods 2016; 431:1-10. [DOI: 10.1016/j.jim.2016.01.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 11/25/2022]
|
23
|
Fang M, Dong D, Zeng C, Liang X, Yang X, Arranz A, Ripoll J, Hui H, Tian J. Polarization-sensitive optical projection tomography for muscle fiber imaging. Sci Rep 2016; 6:19241. [PMID: 26752330 PMCID: PMC4707546 DOI: 10.1038/srep19241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/07/2015] [Indexed: 01/22/2023] Open
Abstract
Optical projection tomography (OPT) is a tool used for three-dimensional imaging of millimeter-scale biological samples, with the advantage of exhibiting isotropic resolution typically in the micron range. OPT can be divided into two types: transmission OPT (tOPT) and emission OPT (eOPT). Compared with eOPT, tOPT discriminates different tissues based on their absorption coefficient, either intrinsic or after specific staining. However, it fails to distinguish muscle fibers whose absorption coefficients are similar to surrounding tissues. To circumvent this problem, in this article we demonstrate a polarization sensitive OPT system which improves the detection and 3D imaging of muscle fibers by using polarized light. We also developed image acquisition and processing protocols that, together with the system, enable the clear visualization of muscles. Experimental results show that the muscle fibers of diaphragm and stomach, difficult to be distinguished in regular tOPT, were clearly displayed in our system, proving its potential use. Moreover, polarization sensitive OPT was fused with tOPT to investigate the stomach tissue comprehensively. Future applications of polarization sensitive OPT could be imaging other fiber-like structures such as myocardium or other tissues presenting high optical anisotropy.
Collapse
Affiliation(s)
- Mengjie Fang
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
| | - Di Dong
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
| | - Chaoting Zeng
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangdong 510282, China
| | - Xiao Liang
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
| | - Xin Yang
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
| | - Alicia Arranz
- Center for Molecular Biology "Severo Ochoa" (CSIC-UAM), Madrid 28049, Spain
| | - Jorge Ripoll
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III of Madrid, Madrid 28911, Spain
| | - Hui Hui
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
| |
Collapse
|
24
|
Unleashing Optics and Optoacoustics for Developmental Biology. Trends Biotechnol 2015; 33:679-691. [PMID: 26435161 DOI: 10.1016/j.tibtech.2015.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 08/11/2015] [Accepted: 08/18/2015] [Indexed: 01/23/2023]
Abstract
The past decade marked an optical revolution in biology: an unprecedented number of optical techniques were developed and adopted for biological exploration, demonstrating increasing interest in optical imaging and in vivo interrogations. Optical methods have become faster and have reached nanoscale resolution, and are now complemented by optoacoustic (photoacoustic) methods capable of imaging whole specimens in vivo. Never before were so many optical imaging barriers broken in such a short time-frame: with new approaches to optical microscopy and mesoscopy came an increased ability to image biology at unprecedented speed, resolution, and depth. This review covers the most relevant techniques for imaging in developmental biology, and offers an outlook on the next steps for these technologies and their applications.
Collapse
|
25
|
Bassi A, Schmid B, Huisken J. Optical tomography complements light sheet microscopy for in toto imaging of zebrafish development. Development 2015; 142:1016-20. [PMID: 25655702 PMCID: PMC4352980 DOI: 10.1242/dev.116970] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fluorescently labeled structures can be spectrally isolated and imaged at high resolution in living embryos by light sheet microscopy. Multimodal imaging techniques are now needed to put these distinct structures back into the context of the surrounding tissue. We found that the bright-field contrast of unstained specimens in a selective plane illumination microscopy (SPIM) setup can be exploited for in vivo tomographic reconstructions of the three-dimensional anatomy of zebrafish, without causing phototoxicity. We report multimodal imaging of entire zebrafish embryos over several hours of development, as well as segmentation, tracking and automatic registration of individual organs. Summary: Bright-field imaging of unstained specimens during selective plane illumination microscopy can provide in vivo tomographic reconstruction of zebrafish anatomy.
Collapse
Affiliation(s)
- Andrea Bassi
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany Politecnico di Milano, Dipartimento di Fisica, Milano 20133, Italy
| | - Benjamin Schmid
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| |
Collapse
|
26
|
Guo J, Yang Y, Dong D, Shi L, Hui H, Xu M. A projection selection method to improve image quality in optical projection tomography. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:206-9. [PMID: 25569933 DOI: 10.1109/embc.2014.6943565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Optical projection tomography (OPT) is a very important imaging tool for a mesoscopic-scale. It can provide three dimensional (3D) transmission and emission imaging. However, high-resolution OPT is limited in depth of field (DOF) due to a high numerical aperture, which causes a poor performance of OPT in imaging large samples. Moreover, it is difficult to tune the focus plane (FP) to a fixed position where OPT always has the best image quality in different directions. To address these problems, we developed a projection selection method to improve DOF in OPT. In each direction, our method automatically selects the best projection from several projections with different FP. Then, we use a series of selected projections for 3D reconstruction. The experimental results demonstrate that our method can improve the image quality comparing to a fixed FP. Moreover, our method is flexible to be used in other OPT setups by adding a linear stage.
Collapse
|
27
|
In-vivo optical tomography of small scattering specimens: time-lapse 3D imaging of the head eversion process in Drosophila melanogaster. Sci Rep 2014; 4:7325. [PMID: 25471694 PMCID: PMC4255187 DOI: 10.1038/srep07325] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 11/18/2014] [Indexed: 02/02/2023] Open
Abstract
Even though in vivo imaging approaches have witnessed several new and important developments, specimens that exhibit high light scattering properties such as Drosophila melanogaster pupae are still not easily accessible with current optical imaging techniques, obtaining images only from subsurface features. This means that in order to obtain 3D volumetric information these specimens need to be studied either after fixation and a chemical clearing process, through an imaging window - thus perturbing physiological development -, or during early stages of development when the scattering contribution is negligible. In this paper we showcase how Optical Projection Tomography may be used to obtain volumetric images of the head eversion process in vivo in Drosophila melanogaster pupae, both in control and headless mutant specimens. Additionally, we demonstrate the use of Helical Optical Projection Tomography (hOPT) as a tool for high throughput 4D-imaging of several specimens simultaneously.
Collapse
|
28
|
Dong D, Arranz A, Zhu S, Yang Y, Shi L, Wang J, Shen C, Tian J, Ripoll J. Vertically scanned laser sheet microscopy. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:106001. [PMID: 25271539 DOI: 10.1117/1.jbo.19.10.106001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/02/2014] [Indexed: 06/03/2023]
Abstract
Laser sheet microscopy is a widely used imaging technique for imaging the three-dimensional distribution of a fluorescence signal in fixed tissue or small organisms. In laser sheet microscopy, the stripe artifacts caused by high absorption or high scattering structures are very common, greatly affecting image quality. To solve this problem, we report here a two-step procedure which consists of continuously acquiring laser sheet images while vertically displacing the sample, and then using the variational stationary noise remover (VSNR) method to further reduce the remaining stripes. Images from a cleared murine colon acquired with a vertical scan are compared with common stitching procedures demonstrating that vertically scanned light sheet microscopy greatly improves the performance of current light sheet microscopy approaches without the need for complex changes to the imaging setup and allows imaging of elongated samples, extending the field of view in the vertical direction.
Collapse
Affiliation(s)
- Di Dong
- Chinese Academy of Sciences, Key Laboratory of Molecular Imaging, Beijing 100190, China
| | - Alicia Arranz
- Swiss Federal Institute of Technology (ETH-Zurich), Institute for Biomedical Engineering, Switzerland
| | - Shouping Zhu
- Xidian University, Xian, School of Life Science and Technology, Shaanxi 710071, China
| | - Yujie Yang
- Chinese Academy of Sciences, Key Laboratory of Molecular Imaging, Beijing 100190, China
| | - Liangliang Shi
- Chinese Academy of Sciences, Key Laboratory of Molecular Imaging, Beijing 100190, China
| | - Jun Wang
- Harbin University of Science and Technology, School of Automation, Harbin 150080, China
| | - Chen Shen
- Xidian University, Xian, School of Life Science and Technology, Shaanxi 710071, China
| | - Jie Tian
- Chinese Academy of Sciences, Key Laboratory of Molecular Imaging, Beijing 100190, China
| | - Jorge Ripoll
- Universidad Carlos III of Madrid, Department of Bioengineering and Aerospace Engineering, Madrid 28911, SpainfInstituto de Investigación Sanitaria del Hospital Gregorio Marañón, Experimental Medicine and Surgery Unit, Madrid 28007, SpaingFoundation for Re
| |
Collapse
|