1
|
Snyder CD, Bedrossian M, Barr C, Deming JW, Lindensmith CA, Stenner C, Nadeau JL. Extant life detection using label-free video microscopy in analog aquatic environments. PLoS One 2025; 20:e0318239. [PMID: 40073001 PMCID: PMC11902266 DOI: 10.1371/journal.pone.0318239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/13/2025] [Indexed: 03/14/2025] Open
Abstract
The ability of microbial active motion, morphology, and optical properties to serve as biosignatures was investigated by in situ video microscopy in a wide range of extreme field sites where such imaging had not been performed previously. These sites allowed for sampling seawater, sea ice brines, cryopeg brines, hypersaline pools and seeps, hyperalkaline springs, and glaciovolcanic cave ice. In all samples except the cryopeg brine, active motion was observed without any sample treatment. Active motion was observed in the cryopeg brines when samples were subjected to a temperature gradient above in situ. In general, levels of motility were low in the field samples collected at temperatures < 4ºC. Non-motile cells could be distinguished from microminerals by differences in passive motion (e.g., density measured by sinking/floating), refractive index and/or absorbance, or morphology in the case of larger eukaryotes. Dramatic increases in the fraction of motile cells were seen with simple stimuli such as warming or the addition of L-serine. Chemotaxis and thermotaxis were also observed in select samples. An open-source, autonomous software package with computational requirements that can be scaled to spaceflight computers was used to classify the data. These results demonstrate the utility of volumetric light microscopy for life detection, but also suggest the importance of developing methods to stimulate cells in situ and process data using the restrictions imposed by mission bandwidth, as well as instruments to capture cell-like objects for detailed chemical analysis.
Collapse
Affiliation(s)
- Carl D. Snyder
- Department of Physics, Portland State University, Portland, Oregon, United States of America
| | - Manuel Bedrossian
- Department of Medical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Casey Barr
- Department of Earth Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Jody W. Deming
- School of Oceanography, University of Washington, Seattle, Washington, United States of America
| | - Chris A. Lindensmith
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, United States of America
| | | | - Jay L. Nadeau
- Department of Physics, Portland State University, Portland, Oregon, United States of America
| |
Collapse
|
2
|
Riekeles M, Santos B, Youssef SAM, Schulze-Makuch D. Viability and Motility of Escherichia coli Under Elevated Martian Salt Stresses. Life (Basel) 2024; 14:1526. [PMID: 39768235 PMCID: PMC11676641 DOI: 10.3390/life14121526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
This study investigates the effects of three Martian-relevant salts-sodium chlorate, sodium perchlorate, and sodium chloride-on the viability and motility of Escherichia coli, a model organism for understanding microbial responses to environmental stress. These salts are abundant on Mars and play a crucial role in forming brines, one of the few sources of stable liquid water on the planet. We analyze the survivability under different salt concentrations using colony plating. Additionally, we perform a semi-automated motility analysis, analyzing microbial speeds and motility patterns. Our results show that sodium perchlorate is the most toxic, followed by sodium chlorate, with sodium chloride being the least harmful. Both survivability and motility are affected by salt concentration and exposure time. Notably, we observe a short-lived increase in motility at certain concentrations, particularly under sodium chlorate and sodium perchlorate stress, despite rapid declines in cell viability, suggesting a stress response mechanism. Given that motility might enhance an organism's ability to navigate harsh and variable environments, it holds promise as a key biosignature in the search for life on Mars.
Collapse
Affiliation(s)
- Max Riekeles
- Astrobiology Group, Center of Astronomy and Astrophysics, Technical University Berlin, 10623 Berlin, Germany; (B.S.); (S.A.-M.Y.); (D.S.-M.)
| | - Berke Santos
- Astrobiology Group, Center of Astronomy and Astrophysics, Technical University Berlin, 10623 Berlin, Germany; (B.S.); (S.A.-M.Y.); (D.S.-M.)
- Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Sherif Al-Morssy Youssef
- Astrobiology Group, Center of Astronomy and Astrophysics, Technical University Berlin, 10623 Berlin, Germany; (B.S.); (S.A.-M.Y.); (D.S.-M.)
| | - Dirk Schulze-Makuch
- Astrobiology Group, Center of Astronomy and Astrophysics, Technical University Berlin, 10623 Berlin, Germany; (B.S.); (S.A.-M.Y.); (D.S.-M.)
- Section Geomicrobiology, German Research Centre for Geosciences (GFZ), 14473 Potsdam, Germany
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany
| |
Collapse
|
3
|
Belashov AV, Zhikhoreva AA, Salova AV, Belyaeva TN, Litvinov IK, Kornilova ES, Semenova IV. SLIM-assisted automatic cartography of cell death types and rates resulting from localized photodynamic treatment. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2024; 41:C72-C81. [PMID: 39889066 DOI: 10.1364/josaa.534241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/20/2024] [Indexed: 02/02/2025]
Abstract
We report a spatial light interference microscopy (SLIM)-based methodology aimed at automatic monitoring and analysis of changes in cellular morphology within extended fields of view in cytological samples. The experimental validation was performed on HeLa cells in vitro subjected to localized photodynamic treatment. The performed long-term noninvasive monitoring using the SLIM technique allowed us to estimate quantitative parameters characterizing the dynamics of average phase shift in individual cells and to reveal changes in their morphology specific for different mechanisms of cell death. The results obtained evidenced that the proposed SLIM-based methodology provides an opportunity for identification of cell death type and quantification of cell death rate in an automatic mode. The major sources of potential errors that can affect the results obtained are discussed. The developed methodology is promising for automatic monitoring of large ensembles of individual cells and for quantitative characterization of their response to various treatment modalities.
Collapse
|
4
|
Johnston N, Dubay MM, Serabyn E, Nadeau JL. Detectability of unresolved particles in off-axis digital holographic microscopy. APPLIED OPTICS 2024; 63:B114-B125. [PMID: 38437262 DOI: 10.1364/ao.507375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/09/2024] [Indexed: 03/06/2024]
Abstract
Off-axis digital holographic microscopy (DHM) provides both amplitude and phase images, and so it may be used for label-free 3D tracking of micro- and nano-sized particles of different compositions, including biological cells, strongly absorbing particles, and strongly scattering particles. Contrast is provided by differences in either the real or imaginary parts of the refractive index (phase contrast and absorption) and/or by scattering. While numerous studies have focused on phase contrast and improving resolution in DHM, particularly axial resolution, absent have been studies quantifying the limits of detection for unresolved particles. This limit has important implications for microbial detection, including in life-detection missions for space flight. Here we examine the limits of detection of nanosized particles as a function of particle optical properties, microscope optics (including camera well depth and substrate), and data processing techniques and find that DHM provides contrast in both amplitude and phase for unresolved spheres, in rough agreement with Mie theory scattering cross-sections. Amplitude reconstructions are more useful than phase for low-index spheres and should not be neglected in DHM analysis.
Collapse
|
5
|
Júnior AGDS, Distante C, Gonçalves LMG. Complete holography-based system for the identification of microparticles in water samples. J Microsc 2024; 293:38-58. [PMID: 38053244 DOI: 10.1111/jmi.13249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023]
Abstract
Here, we present a comprehensive holography-based system designed for detecting microparticles through microscopic holographic projections of water samples. This system is designed for researchers who may be unfamiliar with holographic technology but are engaged in microparticle research, particularly in the field of water analysis. Additionally, our innovative system can be deployed for environmental monitoring as a component of an autonomous sailboat robot. Our system's primary application is for large-scale classification of diverse microplastics that are prevalent in water bodies worldwide. This paper provides a step-by-step guide for constructing our system and outlines its entire processing pipeline, including hologram acquisition for image reconstruction.
Collapse
Affiliation(s)
- Andouglas Gonçalves da Silva Júnior
- Federal Institute of Rio Grande do Norte, Campus Parelhas, Rio Grande do Norte, Brazil
- Computer and Automation Department, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Cosimo Distante
- Institute of Applied Sciences and Intelligent Systems 'Eduardo Caianiello', Lecce Unit, Italy
| | - Luiz Marcos Garcia Gonçalves
- Computer and Automation Department, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
6
|
Chen X, Wang H, Razi A, Kozicki M, Mann C. DH-GAN: a physics-driven untrained generative adversarial network for holographic imaging. OPTICS EXPRESS 2023; 31:10114-10135. [PMID: 37157567 DOI: 10.1364/oe.480894] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Digital holography is a 3D imaging technique by emitting a laser beam with a plane wavefront to an object and measuring the intensity of the diffracted waveform, called holograms. The object's 3D shape can be obtained by numerical analysis of the captured holograms and recovering the incurred phase. Recently, deep learning (DL) methods have been used for more accurate holographic processing. However, most supervised methods require large datasets to train the model, which is rarely available in most DH applications due to the scarcity of samples or privacy concerns. A few one-shot DL-based recovery methods exist with no reliance on large datasets of paired images. Still, most of these methods often neglect the underlying physics law that governs wave propagation. These methods offer a black-box operation, which is not explainable, generalizable, and transferrable to other samples and applications. In this work, we propose a new DL architecture based on generative adversarial networks that uses a discriminative network for realizing a semantic measure for reconstruction quality while using a generative network as a function approximator to model the inverse of hologram formation. We impose smoothness on the background part of the recovered image using a progressive masking module powered by simulated annealing to enhance the reconstruction quality. The proposed method exhibits high transferability to similar samples, which facilitates its fast deployment in time-sensitive applications without the need for retraining the network from scratch. The results show a considerable improvement to competitor methods in reconstruction quality (about 5 dB PSNR gain) and robustness to noise (about 50% reduction in PSNR vs noise increase rate).
Collapse
|
7
|
Snyder C, Centlivre JP, Bhute S, Shipman G, Friel AD, Viver T, Palmer M, Konstantinidis KT, Sun HJ, Rossello-Mora R, Nadeau J, Hedlund BP. Microbial Motility at the Bottom of North America: Digital Holographic Microscopy and Genomic Motility Signatures in Badwater Spring, Death Valley National Park. ASTROBIOLOGY 2023; 23:295-307. [PMID: 36625891 DOI: 10.1089/ast.2022.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Motility is widely distributed across the tree of life and can be recognized by microscopy regardless of phylogenetic affiliation, biochemical composition, or mechanism. Microscopy has thus been proposed as a potential tool for detection of biosignatures for extraterrestrial life; however, traditional light microscopy is poorly suited for this purpose, as it requires sample preparation, involves fragile moving parts, and has a limited volume of view. In this study, we deployed a field-portable digital holographic microscope (DHM) to explore microbial motility in Badwater Spring, a saline spring in Death Valley National Park, and complemented DHM imaging with 16S rRNA gene amplicon sequencing and shotgun metagenomics. The DHM identified diverse morphologies and distinguished run-reverse-flick and run-reverse types of flagellar motility. PICRUSt2- and literature-based predictions based on 16S rRNA gene amplicons were used to predict motility genotypes/phenotypes for 36.0-60.1% of identified taxa, with the predicted motile taxa being dominated by members of Burkholderiaceae and Spirochaetota. A shotgun metagenome confirmed the abundance of genes encoding flagellar motility, and a Ralstonia metagenome-assembled genome encoded a full flagellar gene cluster. This study demonstrates the potential of DHM for planetary life detection, presents the first microbial census of Badwater Spring and brine pool, and confirms the abundance of mobile microbial taxa in an extreme environment.
Collapse
Affiliation(s)
- Carl Snyder
- Department of Physics, Portland State University, Portland, Oregon, USA
| | - Jakob P Centlivre
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Shrikant Bhute
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Gözde Shipman
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Ariel D Friel
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (CSIC-UIB), Esporles, Illes Balears, Spain
| | - Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | | | - Henry J Sun
- Desert Research Institute, Las Vegas, Nevada, USA
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (CSIC-UIB), Esporles, Illes Balears, Spain
| | - Jay Nadeau
- Department of Physics, Portland State University, Portland, Oregon, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
- Nevada Institute of Personalized Medicine, Las Vegas, Nevada, USA
| |
Collapse
|
8
|
Dubay MM, Johnston N, Wronkiewicz M, Lee J, Lindensmith CA, Nadeau JL. Quantification of Motility in Bacillus subtilis at Temperatures Up to 84°C Using a Submersible Volumetric Microscope and Automated Tracking. Front Microbiol 2022; 13:836808. [PMID: 35531296 PMCID: PMC9069135 DOI: 10.3389/fmicb.2022.836808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
We describe a system for high-temperature investigations of bacterial motility using a digital holographic microscope completely submerged in heated water. Temperatures above 90°C could be achieved, with a constant 5°C offset between the sample temperature and the surrounding water bath. Using this system, we observed active motility in Bacillus subtilis up to 66°C. As temperatures rose, most cells became immobilized on the surface, but a fraction of cells remained highly motile at distances of >100 μm above the surface. Suspended non-motile cells showed Brownian motion that scaled consistently with temperature and viscosity. A novel open-source automated tracking package was used to obtain 2D tracks of motile cells and quantify motility parameters, showing that swimming speed increased with temperature until ∼40°C, then plateaued. These findings are consistent with the observed heterogeneity of B. subtilis populations, and represent the highest reported temperature for swimming in this species. This technique is a simple, low-cost method for quantifying motility at high temperatures and could be useful for investigation of many different cell types, including thermophilic archaea.
Collapse
Affiliation(s)
- Megan M. Dubay
- Department of Physics, Portland State University, Portland, OR, United States
| | - Nikki Johnston
- Department of Physics, Portland State University, Portland, OR, United States
| | - Mark Wronkiewicz
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Jake Lee
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | | | - Jay L. Nadeau
- Department of Physics, Portland State University, Portland, OR, United States
- *Correspondence: Jay L. Nadeau,
| |
Collapse
|
9
|
Linearity and Optimum-Sampling in Photon-Counting Digital Holographic Microscopy. PHOTONICS 2022. [DOI: 10.3390/photonics9020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the image plane configurations frequently used in digital holographic microscopy (DHM) systems, interference patterns are captured by a photo-sensitive array detector located at the image plane of an input object. The object information in these patterns is localized and thus extremely sensitive to phase errors caused by nonlinear hologram recordings (grating profiles are either square or saturated sinusoidal) or inadequate sampling regarding the information coverage (undersampled around the Nyquist frequency or arbitrarily oversampled). Here, we propose a solution for both hologram recording problems through implementing a photon-counting detector (PCD) mounted on a motorized XY translation stage. In such a way, inherently linear (because of a wide dynamic range of PCD) and optimum sampled (due to adjustable steps) digital holograms in the image plane configuration are recorded. Optimum sampling is estimated based on numerical analysis. The validity of the proposed approach is confirmed experimentally.
Collapse
|
10
|
Rouzie D, Lindensmith C, Nadeau J. Microscopic Object Classification through Passive Motion Observations with Holographic Microscopy. Life (Basel) 2021; 11:life11080793. [PMID: 34440537 PMCID: PMC8401815 DOI: 10.3390/life11080793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 11/16/2022] Open
Abstract
Digital holographic microscopy provides the ability to observe throughout a volume that is large compared to its resolution without the need to actively refocus to capture the entire volume. This enables simultaneous observations of large numbers of small objects within such a volume. We have constructed a microscope that can observe a volume of 0.4 µm × 0.4 µm × 1.0 µm with submicrometer resolution (in xy) and 2 µm resolution (in z) for observation of microorganisms and minerals in liquid environments on Earth and on potential planetary missions. Because environmental samples are likely to contain mixtures of inorganics and microorganisms of comparable sizes near the resolution limit of the instrument, discrimination between living and non-living objects may be difficult. The active motion of motile organisms can be used to readily distinguish them from non-motile objects (live or inorganic), but additional methods are required to distinguish non-motile organisms and inorganic objects that are of comparable size but different composition and structure. We demonstrate the use of passive motion to make this discrimination by evaluating diffusion and buoyancy characteristics of cells, styrene beads, alumina particles, and gas-filled vesicles of micron scale in the field of view.
Collapse
Affiliation(s)
- Devan Rouzie
- Department of Physics, Portland State University, 1719 SW 10th Ave., Portland, OR 97201, USA;
| | - Christian Lindensmith
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91125, USA;
| | - Jay Nadeau
- Department of Physics, Portland State University, 1719 SW 10th Ave., Portland, OR 97201, USA;
- Correspondence: ; Tel.: +1-503-795-8929
| |
Collapse
|
11
|
Tobon-Maya H, Zapata-Valencia S, Zora-Guzmán E, Buitrago-Duque C, Garcia-Sucerquia J. Open-source, cost-effective, portable, 3D-printed digital lensless holographic microscope. APPLIED OPTICS 2021; 60:A205-A214. [PMID: 33690371 DOI: 10.1364/ao.405605] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/17/2020] [Indexed: 06/12/2023]
Abstract
In this work, the design, construction, and testing of the most cost-effective digital lensless holographic microscope to date are presented. The architecture of digital lensless holographic microscopy (DLHM) is built by means of a 3D-printed setup and utilizing off-the-shelf materials to produce a DLHM microscope costing US$52.82. For the processing of the recorded in-line holograms, an open-source software specifically developed to process this type of recordings is utilized. The presented DLHM setup has all the degrees of freedom needed to achieve different fields of view, levels of spatial resolution, and 2D scanning of the sample. The feasibility of the presented platform is tested by imaging non-bio and bio samples; the resolution test targets, a section of the head of a Drosophila melanogaster fly, red blood cells, and cheek cells are imaged on the built microscope.
Collapse
|
12
|
Gibson T, Bedrossian M, Serabyn E, Lindensmith C, Nadeau JL. Using the Gouy phase anomaly to localize and track bacteria in digital holographic microscopy 4D images. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2021; 38:A11-A18. [PMID: 33690523 DOI: 10.1364/josaa.404004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/19/2020] [Indexed: 06/12/2023]
Abstract
Described over 100 years ago, the Gouy phase anomaly refers to the additional π phase shift that is accumulated as a wave passes through focus. It is potentially useful in analyzing any type of phase-sensitive imaging; in light microscopy, digital holographic microscopy (DHM) provides phase information in the encoded hologram. One limitation of DHM is the weak contrast generated by many biological cells, especially unpigmented bacteria. We demonstrate here that the Gouy phase anomaly may be detected directly in the phase image using the z-derivative of the phase, allowing for precise localization of unlabeled, micrometer-sized bacteria. The use of dyes that increase phase contrast does not improve detectability. This approach is less computationally intensive than other procedures such as deconvolution and is relatively insensitive to reconstruction parameters. The software is implemented in an open-source FIJI plug-in.
Collapse
|
13
|
Farhadi A, Bedrossian M, Lee J, Ho GH, Shapiro MG, Nadeau JL. Genetically Encoded Phase Contrast Agents for Digital Holographic Microscopy. NANO LETTERS 2020; 20:8127-8134. [PMID: 33118828 DOI: 10.1101/833830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Quantitative phase imaging and digital holographic microscopy have shown great promise for visualizing the motion, structure, and physiology of microorganisms and mammalian cells in three dimensions. However, these imaging techniques currently lack molecular contrast agents analogous to the fluorescent dyes and proteins that have revolutionized fluorescence microscopy. Here we introduce the first genetically encodable phase contrast agents based on gas vesicles. The relatively low index of refraction of the air-filled core of gas vesicles results in optical phase advancement relative to aqueous media, making them a "positive" phase contrast agent easily distinguished from organelles, dyes, or microminerals. We demonstrate this capability by identifying and tracking the motion of gas vesicles and gas vesicle-expressing bacteria using digital holographic microscopy, and by imaging the uptake of engineered gas vesicles by mammalian cells. These results give phase imaging a biomolecular contrast agent, expanding the capabilities of this powerful technology for three-dimensional biological imaging.
Collapse
Affiliation(s)
- Arash Farhadi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Manuel Bedrossian
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Justin Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Gabrielle H Ho
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jay L Nadeau
- Department of Physics, Portland State University, Portland, Oregon 97207, United States
| |
Collapse
|
14
|
Bedrossian M, Wallace JK, Serabyn E, Lindensmith C, Nadeau J. Enhancing final image contrast in off-axis digital holography using residual fringes. OPTICS EXPRESS 2020; 28:16764-16771. [PMID: 32549491 DOI: 10.1364/oe.394231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
We show that background fringe-pattern subtraction is a useful technique for removing static noise from off-axis holographic reconstructions and can enhance image contrast in volumetric reconstructions by an order of magnitude in the case for instruments with relatively stable fringes. We demonstrate the fundamental principle of this technique and introduce some practical considerations that must be made when implementing this scheme, such as quantifying fringe stability. This work also shows an experimental verification of the background fringe subtraction scheme using various biological samples.
Collapse
|
15
|
Rastogi V, Agarwal S, Dubey SK, Khan GS, Shakher C. Design and development of volume phase holographic grating based digital holographic interferometer for label-free quantitative cell imaging. APPLIED OPTICS 2020; 59:3773-3783. [PMID: 32400505 DOI: 10.1364/ao.387620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/15/2020] [Indexed: 06/11/2023]
Abstract
In this paper, a volume phase holographic optical element based digital holographic interferometer is designed and used for quantitative phase imaging of biological cells [white blood cells, red blood cells, platelets, and Staphylococcus aureus (S. aureus) bacteria cells]. The experimental results reveal that sharp images of the S. aureus bacteria cells of the order of ${\sim}{1}\;{\unicode{x00B5}{\rm m}}$∼1µm can be clearly seen. The volume phase holographic grating will remove the stray light from the system reaching toward the grating and will minimize the coherent noise (speckle noise). This will improve the sharpness in the image reconstructed from the recorded digital hologram.
Collapse
|
16
|
Yin X, Cheng H, Yang K, Xia M. Bayesian reconstruction method for underwater 3D range-gated imaging enhancement. APPLIED OPTICS 2020; 59:370-379. [PMID: 32225315 DOI: 10.1364/ao.59.000370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
We investigate a systematic improvement for 3D range-gated imaging in scattering environments. Drawbacks including absorption, ambient light, and scattering effect are studied. The former two are compensated through parameter estimation and preprocessing. With regard to the scattering effect, we propose a new 3D reconfiguration algorithm using a Bayesian approach that incorporates spatial constraints through a general Gaussian Markov random field. The model takes both scene depth and albedo into account, which provides a more informative and accurate restoration result. Hyper-parameters for the statistical mechanism are evaluated adaptively in the procedure and an iterated conditional mode optimization algorithm is employed to find an optimum solution. The performance of our method was assessed via conducting various experiments and the results also indicate that the proposed method is helpful for restoring the 2D image of a scene with improved visibility.
Collapse
|
17
|
Puyo L, Huignard JP, Atlan M. Off-axis digital holography with multiplexed volume Bragg gratings. APPLIED OPTICS 2018; 57:3281-3287. [PMID: 29714317 DOI: 10.1364/ao.57.003281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
We report on an optical imaging design based on common-path off-axis digital holography, using a multiplexed volume Bragg grating. In the reported method, a reference optical wave is made by deflection and spatial filtering through a volume Bragg grating. This design has several advantages, including simplicity, stability, and robustness against misalignment.
Collapse
|
18
|
Showalter GM, Deming JW. Low-temperature chemotaxis, halotaxis and chemohalotaxis by the psychrophilic marine bacterium Colwellia psychrerythraea 34H. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:92-101. [PMID: 29235725 DOI: 10.1111/1758-2229.12610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/18/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
A variety of ecologically important processes are driven by bacterial motility and taxis, yet these basic bacterial behaviours remain understudied in cold habitats. Here, we present a series of experiments designed to test the chemotactic ability of the model marine psychrophilic bacterium Colwellia psychrerythraea 34H, when grown at optimal temperature and salinity (8°C, 35 ppt) or its original isolation conditions (-1°C, 35 ppt), towards serine and mannose at temperatures from -8°C to 27°C (above its upper growth temperature of 18°C), and at salinities of 15, 35 and 55 ppt (at 8°C and -1°C). Results indicate that C. psychrerythraea 34H is capable of chemotaxis at all temperatures tested, with strongest chemotaxis at the temperature at which it was first grown, whether 8°C or -1°C. This model marine psychrophile also showed significant halotaxis towards 15 and 55 ppt solutions, as well as strong substrate-specific chemohalotaxis. We suggest that such patterns of taxis may enable bacteria to colonize sea ice, position themselves optimally within its extremely cold, hypersaline and temporally fluctuating microenvironments, and respond to various chemical signals therein.
Collapse
Affiliation(s)
- G M Showalter
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - J W Deming
- School of Oceanography, University of Washington, Seattle, WA, USA
| |
Collapse
|
19
|
Serabyn E, Liewer K, Wallace JK. Resolution optimization of an off-axis lensless digital holographic microscope. APPLIED OPTICS 2018; 57:A172-A180. [PMID: 29328143 DOI: 10.1364/ao.57.00a172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/28/2017] [Indexed: 06/07/2023]
Abstract
Microscopes aimed at detecting cellular life in extreme environments such as ocean-bearing solar system moons must provide high resolution in a compact, robust instrument. Here, we consider the resolution optimization of a compact off-axis lensless digital holographic microscope (DHM) that consists of a sample placed between an input point-source pair and a detector array. Two optimal high-resolution regimes are identified at opposite extremes-a low-magnification regime with the sample located near a small-pixel detector array, and a high-magnification regime with the sample near the input plane. In the former, resolution improves with smaller pixels, while in the latter, the effect of the finite pixel size is obviated, and the spatial resolution improves with detector array size. Using an off-axis lensless DHM with a 2 k×2 k array of 5.5 μm-pixels in the high-magnification regime, and standard aberration correction software, a resolution of ∼0.95 μm has been demonstrated, a factor of 5.8 smaller than the pixel size. Our analysis further suggests that with yet larger detector arrays, a lensless DHM should be capable of near wavelength-scale resolution.
Collapse
|
20
|
Bedrossian M, El-Kholy M, Neamati D, Nadeau J. A machine learning algorithm for identifying and tracking bacteria in three dimensions using Digital Holographic Microscopy. AIMS BIOPHYSICS 2018. [DOI: 10.3934/biophy.2018.1.36] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Methods for Collection and Characterization of Samples From Icy Environments. METHODS IN MICROBIOLOGY 2018. [DOI: 10.1016/bs.mim.2018.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Cao R, Xiao W, Wu X, Sun L, Pan F. Quantitative observations on cytoskeleton changes of osteocytes at different cell parts using digital holographic microscopy. BIOMEDICAL OPTICS EXPRESS 2018; 9:72-85. [PMID: 29359088 PMCID: PMC5772590 DOI: 10.1364/boe.9.000072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 05/10/2023]
Abstract
Cytoskeletons such as F-actin have different distributions in different cell parts and they are the cause of different degrees of cell collapse when the F-actin is disrupted. It is challenging to use conventional methods such as fluorescence microscopy and atomic force microscopy to conduct real-time and three-dimensional observations on the dynamic processes at different cell parts due to the slow measuring speed and the need for live-cell staining. In this study, the morphological variations of different bone cell parts caused by F-actin disruption are dynamically measured by using digital holographic microscopy (DHM). We separately analyze local parameters (cell height and cell width) and global parameters (cell projected area and cell volume) of cells to address variations of specific cell areas and quantify the changing process of the whole cell. We found significant differences in temporal variations of both local and global cell parameters between the cell body and cell process, which is consistent with the qualitative observation by fluorescence staining. Our study not only validates the unique ability of DHM to simultaneously investigate the dynamic process at different cell parts, but also provides sufficient experimental bases for exploring the mechanism for F-actin disruption.
Collapse
Affiliation(s)
- Runyu Cao
- Key Laboratory of Precision Opto-Mechatronics Technology of Ministry of Education, School of Instrumentation Science & Optoelectronics Engineering, Beihang University, Beijing, 100191, China
| | - Wen Xiao
- Key Laboratory of Precision Opto-Mechatronics Technology of Ministry of Education, School of Instrumentation Science & Optoelectronics Engineering, Beihang University, Beijing, 100191, China
| | - Xintong Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Lianwen Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Feng Pan
- Key Laboratory of Precision Opto-Mechatronics Technology of Ministry of Education, School of Instrumentation Science & Optoelectronics Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
23
|
Bedrossian M, Barr C, Lindensmith CA, Nealson K, Nadeau JL. Quantifying Microorganisms at Low Concentrations Using Digital Holographic Microscopy (DHM). J Vis Exp 2017. [PMID: 29155763 DOI: 10.3791/56343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Accurately detecting and counting sparse bacterial samples has many applications in the food, beverage, and pharmaceutical processing industries, in medical diagnostics, and for life detection by robotic missions to other planets and moons of the solar system. Currently, sparse bacterial samples are counted by culture plating or epifluorescence microscopy. Culture plates require long incubation times (days to weeks), and epifluorescence microscopy requires extensive staining and concentration of the sample. Here, we demonstrate how to use off-axis digital holographic microscopy (DHM) to enumerate bacteria in very dilute cultures (100-104 cells/mL). First, the construction of the custom DHM is discussed, along with detailed instructions on building a low-cost instrument. The principles of holography are discussed, and a statistical model is used to estimate how long videos should be to detect cells, based on the optical performance characteristics of the instrument and the concentration of the bacterial solution (Table 2). Video detection of cells at 105, 104, 103, and 100 cells/mL is demonstrated in real time using un-reconstructed holograms. Reconstruction of amplitude and phase images is demonstrated using an open-source software package.
Collapse
Affiliation(s)
- Manuel Bedrossian
- Department of Medical Engineering, California Institute of Technology
| | - Casey Barr
- Department of Earth Sciences, University of Southern California
| | | | - Kenneth Nealson
- Department of Earth Sciences, University of Southern California
| | - Jay L Nadeau
- Department of Medical Engineering, California Institute of Technology;
| |
Collapse
|
24
|
Marin Z, Wallace JK, Nadeau J, Khalil A. Wavelet-based tracking of bacteria in unreconstructed off-axis holograms. Methods 2017; 136:60-65. [PMID: 28916149 DOI: 10.1016/j.ymeth.2017.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/02/2017] [Accepted: 09/05/2017] [Indexed: 01/18/2023] Open
Abstract
We propose an automated wavelet-based method of tracking particles in unreconstructed off-axis holograms to provide rough estimates of the presence of motion and particle trajectories in digital holographic microscopy (DHM) time series. The wavelet transform modulus maxima segmentation method is adapted and tailored to extract Airy-like diffraction disks, which represent bacteria, from DHM time series. In this exploratory analysis, the method shows potential for estimating bacterial tracks in low-particle-density time series, based on a preliminary analysis of both living and dead Serratia marcescens, and for rapidly providing a single-bit answer to whether a sample chamber contains living or dead microbes or is empty.
Collapse
Affiliation(s)
- Zach Marin
- CompuMAINE Laboratory, Department of Mathematics & Statistics, University of Maine, Orono, ME 04469, USA.
| | - J Kent Wallace
- The Motility Group, Division of Aerospace Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA; Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA.
| | - Jay Nadeau
- The Motility Group, Division of Aerospace Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA.
| | - Andre Khalil
- CompuMAINE Laboratory, Department of Mathematics & Statistics, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
25
|
Bedrossian M, Lindensmith C, Nadeau JL. Digital Holographic Microscopy, a Method for Detection of Microorganisms in Plume Samples from Enceladus and Other Icy Worlds. ASTROBIOLOGY 2017; 17:913-925. [PMID: 28708412 PMCID: PMC5610429 DOI: 10.1089/ast.2016.1616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/06/2017] [Indexed: 05/20/2023]
Abstract
Detection of extant microbial life on Earth and elsewhere in the Solar System requires the ability to identify and enumerate micrometer-scale, essentially featureless cells. On Earth, bacteria are usually enumerated by culture plating or epifluorescence microscopy. Culture plates require long incubation times and can only count culturable strains, and epifluorescence microscopy requires extensive staining and concentration of the sample and instrumentation that is not readily miniaturized for space. Digital holographic microscopy (DHM) represents an alternative technique with no moving parts and higher throughput than traditional microscopy, making it potentially useful in space for detection of extant microorganisms provided that sufficient numbers of cells can be collected. Because sample collection is expected to be the limiting factor for space missions, especially to outer planets, it is important to quantify the limits of detection of any proposed technique for extant life detection. Here we use both laboratory and field samples to measure the limits of detection of an off-axis digital holographic microscope (DHM). A statistical model is used to estimate any instrument's probability of detection at various bacterial concentrations based on the optical performance characteristics of the instrument, as well as estimate the confidence interval of detection. This statistical model agrees well with the limit of detection of 103 cells/mL that was found experimentally with laboratory samples. In environmental samples, active cells were immediately evident at concentrations of 104 cells/mL. Published estimates of cell densities for Enceladus plumes yield up to 104 cells/mL, which are well within the off-axis DHM's limits of detection to confidence intervals greater than or equal to 95%, assuming sufficient sample volumes can be collected. The quantitative phase imaging provided by DHM allowed minerals to be distinguished from cells. Off-axis DHM's ability for rapid low-level bacterial detection and counting shows its viability as a technique for detection of extant microbial life provided that the cells can be captured intact and delivered to the sample chamber in a sufficient volume of liquid for imaging. Key Words: In situ life detection-Extant microorganisms-Holographic microscopy-Ocean Worlds-Enceladus-Imaging. Astrobiology 17, 913-925.
Collapse
Affiliation(s)
- Manuel Bedrossian
- Graduate Aerospace Laboratories (GALCIT) and Medical Engineering, California Institute of Technology, Pasadena, California
| | - Chris Lindensmith
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Jay L. Nadeau
- Graduate Aerospace Laboratories (GALCIT) and Medical Engineering, California Institute of Technology, Pasadena, California
| |
Collapse
|
26
|
Porco CC. A Community Grows around the Geysering World of Enceladus. ASTROBIOLOGY 2017; 17:815-819. [PMID: 28742370 PMCID: PMC5610423 DOI: 10.1089/ast.2017.1711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The discovery by NASA's Cassini mission at Saturn in 2005 of a large plume of material erupting from the south polar terrain of Enceladus, sourced within a subsurface ocean of salty liquid water laced with organic compounds, has brought together scientists from a diverse range of disciplines over the last decade to evaluate this small moon's potential for extraterrestrial life. The collection of papers published today in Astrobiology, as the mission draws to a close, is the outcome of our most recent meeting at UC Berkeley in June 2016. Key Words: Enceladus-Enceladus Focus Group-Ocean world-Search for biosignatures. Astrobiology 17, 815-819.
Collapse
Affiliation(s)
- Carolyn C Porco
- University of California , Berkeley, California
- Space Science Institute , Boulder, Colorado
| |
Collapse
|
27
|
Rostykus M, Moser C. Compact lensless off-axis transmission digital holographic microscope. OPTICS EXPRESS 2017; 25:16652-16659. [PMID: 28789166 DOI: 10.1364/oe.25.016652] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/28/2017] [Indexed: 06/07/2023]
Abstract
Current compact lensless holographic microscopes are based on either multiple angle in-line holograms, multiple wavelength illumination or a combination thereof. Complex computational algorithms are necessary to retrieve the phase image which slows down the visualization of the image. Here we propose a simple compact lensless transmission holographic microscope with an off-axis configuration which simplifies considerably the computational processing to visualize the phase images and opens the possibility of real time phase imaging using off the shelf smart phone processors and less than $3 worth of optics and detectors, suitable for broad educational dissemination. This is achieved using a side illumination and analog hologram gratings to shape the reference and signal illumination beams from one light source. We demonstrate experimentally imaging of cells with a field of view (FOV) of ~12mm2, and a resolution of ~3.9μm.
Collapse
|
28
|
Serabyn E, Liewer K, Lindensmith C, Wallace K, Nadeau J. Compact, lensless digital holographic microscope for remote microbiology. OPTICS EXPRESS 2016; 24:28540-28548. [PMID: 27958498 DOI: 10.1364/oe.24.028540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In situ investigation of microbial life in extreme environments can be carried out with microscopes capable of imaging 3-dimensional volumes and tracking particle motion. Here we present a lensless digital holographic microscope approach that provides roughly 1.5 micron resolution in a compact, robust package suitable for remote deployment. High resolution is achieved by generating high numerical-aperture input beams with radial gradient-index rod lenses. The ability to detect and track prokaryotes was explored using bacterial strains of two different sizes. In the larger strain, a variety of motions were seen, while the smaller strain was used to demonstrate a detection capability down to micron scales.
Collapse
|
29
|
Nadeau J, Lindensmith C, Deming JW, Fernandez VI, Stocker R. Microbial Morphology and Motility as Biosignatures for Outer Planet Missions. ASTROBIOLOGY 2016; 16:755-774. [PMID: 27552160 PMCID: PMC5069736 DOI: 10.1089/ast.2015.1376] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 06/13/2016] [Indexed: 05/23/2023]
Abstract
Meaningful motion is an unambiguous biosignature, but because life in the Solar System is most likely to be microbial, the question is whether such motion may be detected effectively on the micrometer scale. Recent results on microbial motility in various Earth environments have provided insight into the physics and biology that determine whether and how microorganisms as small as bacteria and archaea swim, under which conditions, and at which speeds. These discoveries have not yet been reviewed in an astrobiological context. This paper discusses these findings in the context of Earth analog environments and environments expected to be encountered in the outer Solar System, particularly the jovian and saturnian moons. We also review the imaging technologies capable of recording motility of submicrometer-sized organisms and discuss how an instrument would interface with several types of sample-collection strategies. Key Words: In situ measurement-Biosignatures-Microbiology-Europa-Ice. Astrobiology 16, 755-774.
Collapse
Affiliation(s)
- Jay Nadeau
- 1 GALCIT, California Institute of Technology , Pasadena, California
| | - Chris Lindensmith
- 2 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | - Jody W Deming
- 3 Department of Biological Oceanography, University of Washington , Seattle, Washington
| | - Vicente I Fernandez
- 4 Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Roman Stocker
- 4 Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts
| |
Collapse
|
30
|
Lindensmith CA, Rider S, Bedrossian M, Wallace JK, Serabyn E, Showalter GM, Deming JW, Nadeau JL. A Submersible, Off-Axis Holographic Microscope for Detection of Microbial Motility and Morphology in Aqueous and Icy Environments. PLoS One 2016; 11:e0147700. [PMID: 26812683 PMCID: PMC4728210 DOI: 10.1371/journal.pone.0147700] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/07/2016] [Indexed: 12/01/2022] Open
Abstract
Sea ice is an analog environment for several of astrobiology’s near-term targets: Mars, Europa, Enceladus, and perhaps other Jovian or Saturnian moons. Microorganisms, both eukaryotic and prokaryotic, remain active within brine channels inside the ice, making it unnecessary to penetrate through to liquid water below in order to detect life. We have developed a submersible digital holographic microscope (DHM) that is capable of resolving individual bacterial cells, and demonstrated its utility for immediately imaging samples taken directly from sea ice at several locations near Nuuk, Greenland. In all samples, the appearance and motility of eukaryotes were conclusive signs of life. The appearance of prokaryotic cells alone was not sufficient to confirm life, but when prokaryotic motility occurred, it was rapid and conclusive. Warming the samples to above-freezing temperatures or supplementing with serine increased the number of motile cells and the speed of motility; supplementing with serine also stimulated chemotaxis. These results show that DHM is a useful technique for detection of active organisms in extreme environments, and that motility may be used as a biosignature in the liquid brines that persist in ice. These findings have important implications for the design of missions to icy environments and suggest ways in which DHM imaging may be integrated with chemical life-detection suites in order to create more conclusive life detection packages.
Collapse
Affiliation(s)
- Christian A. Lindensmith
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 91125, United States of America
| | - Stephanie Rider
- Graduate Aerospace Laboratories (GALCIT), California Institute of Technology, Pasadena, California, 91125, United States of America
| | - Manuel Bedrossian
- Graduate Aerospace Laboratories (GALCIT), California Institute of Technology, Pasadena, California, 91125, United States of America
| | - J. Kent Wallace
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 91125, United States of America
| | - Eugene Serabyn
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 91125, United States of America
| | - G. Max Showalter
- School of Oceanography, University of Washington, Seattle, Washington, 98195, United States of America
| | - Jody W. Deming
- School of Oceanography, University of Washington, Seattle, Washington, 98195, United States of America
| | - Jay L. Nadeau
- Graduate Aerospace Laboratories (GALCIT), California Institute of Technology, Pasadena, California, 91125, United States of America
- * E-mail:
| |
Collapse
|
31
|
Nadeau JL, Cho YB, Lindensmith CA. Use of dyes to increase phase contrast for biological holographic microscopy. OPTICS LETTERS 2015; 40:4114-4117. [PMID: 26368725 DOI: 10.1364/ol.40.004114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Holographic microscopy is an emerging biological technique that provides amplitude and quantitative phase imaging, though the contrast provided by many cell types and organelles is low, and until now no dyes were known that increased contrast. Here we show that the metallocorrole Ga(tpfc)(SO3)2, which has a strong Soret band absorption, increases contrast in both amplitude and phase and facilitates tracking of Escherichia coli with minimal toxicity. The change in phase contrast may be calculated from the dye-absorbance spectrum using the Kramers-Kronig relations, and represents a general principle that may be applied to any dye or cell type. This enables the use of holographic microscopy for all applications in which specific labeling is desired.
Collapse
|