1
|
Feng J, Zhu Z, Zhou R, Liu H, Hu Z, Wu F, Wang H, Yue J, Zhou T, Yang L, Wu F. Differential methylation patterns from clusters associated with glucose metabolism: evidence from a Shanghai twin study. Epigenomics 2024; 16:445-459. [PMID: 38410918 DOI: 10.2217/epi-2023-0449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Aim: To assess the associations between genome-wide DNA methylation (DNAm) and glucose metabolism among a Chinese population, in particular the multisite correlation. Materials & methods: Epigenome-wide associations with fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) were analyzed among 100 Shanghai monozygotic (MZ) twin pairs using the Infinium HumanMethylationEPIC v2.0 BeadChip. We conducted a Pearson's correlation test, hierarchical cluster and pairwise analysis to examine the differential methylation patterns from clusters. Results: Cg01358804 (TXNIP) was identified as the most significant site associated with FPG and HbA1c. Two clusters with hypermethylated and hypomethylated patterns were observed for both FPG and HbA1c. Conclusion: Differential methylation patterns from clusters may provide new clues for epigenetic changes and biological mechanisms in glucose metabolism.
Collapse
Affiliation(s)
- Jingyuan Feng
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Zhenni Zhu
- Division of Health Risk Factors Monitoring & Control, Shanghai Municipal Center for Disease Control & Prevention, 200336, Shanghai, China
| | - Rongfei Zhou
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Hongwei Liu
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Zihan Hu
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Fei Wu
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Huiting Wang
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Junhong Yue
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Tong Zhou
- Shanghai Precision Medicine Co. Ltd, Shanghai, 201406, China
| | - Li Yang
- Shanghai Precision Medicine Co. Ltd, Shanghai, 201406, China
| | - Fan Wu
- School of Public Health, Fudan University, Shanghai, 200032, China
| |
Collapse
|
2
|
Iovino L, Giusti V, Pischedda F, Giusto E, Plotegher N, Marte A, Battisti I, Di Iacovo A, Marku A, Piccoli G, Bandopadhyay R, Perego C, Bonifacino T, Bonanno G, Roseti C, Bossi E, Arrigoni G, Bubacco L, Greggio E, Hilfiker S, Civiero L. Trafficking of the glutamate transporter is impaired in LRRK2-related Parkinson's disease. Acta Neuropathol 2022; 144:81-106. [PMID: 35596783 PMCID: PMC9217889 DOI: 10.1007/s00401-022-02437-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022]
Abstract
The Excitatory Amino Acid Transporter 2 (EAAT2) accounts for 80% of brain glutamate clearance and is mainly expressed in astrocytic perisynaptic processes. EAAT2 function is finely regulated by endocytic events, recycling to the plasma membrane and degradation. Noteworthy, deficits in EAAT2 have been associated with neuronal excitotoxicity and neurodegeneration. In this study, we show that EAAT2 trafficking is impaired by the leucine-rich repeat kinase 2 (LRRK2) pathogenic variant G2019S, a common cause of late-onset familial Parkinson’s disease (PD). In LRRK2 G2019S human brains and experimental animal models, EAAT2 protein levels are significantly decreased, which is associated with elevated gliosis. The decreased expression of the transporter correlates with its reduced functionality in mouse LRRK2 G2019S purified astrocytic terminals and in Xenopus laevis oocytes expressing human LRRK2 G2019S. In LRRK2 G2019S knock-in mouse brain, the correct surface localization of the endogenous transporter is impaired, resulting in its interaction with a plethora of endo-vesicular proteins. Mechanistically, we report that pathogenic LRRK2 kinase activity delays the recycling of the transporter to the plasma membrane via Rabs inactivation, causing its intracellular re-localization and degradation. Taken together, our results demonstrate that pathogenic LRRK2 interferes with the physiology of EAAT2, pointing to extracellular glutamate overload as a possible contributor to neurodegeneration in PD.
Collapse
|
3
|
Paulusma CC, Lamers W, Broer S, van de Graaf SFJ. Amino acid metabolism, transport and signalling in the liver revisited. Biochem Pharmacol 2022; 201:115074. [PMID: 35568239 DOI: 10.1016/j.bcp.2022.115074] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
Abstract
The liver controls the systemic exposure of amino acids entering via the gastro-intestinal tract. For most amino acids except branched chain amino acids, hepatic uptake is very efficient. This implies that the liver orchestrates amino acid metabolism and also controls systemic amino acid exposure. Although many amino acid transporters have been identified, cloned and investigated with respect to substrate specificity, transport mechanism, and zonal distribution, which of these players are involved in hepatocellular amino acid transport remains unclear. Here, we aim to provide a review of current insight into the molecular machinery of hepatic amino acid transport. Furthermore, we place this information in a comprehensive overview of amino acid transport, signalling and metabolism.
Collapse
Affiliation(s)
- Coen C Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Wouter Lamers
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Stefan Broer
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Research School of Biology, Australian National University, Canberra, Australia
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands; Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
4
|
The role of glial cells in multiple sclerosis disease progression. Nat Rev Neurol 2022; 18:237-248. [PMID: 35190704 DOI: 10.1038/s41582-022-00624-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 12/13/2022]
Abstract
Despite the development of highly effective treatments for relapsing-remitting multiple sclerosis (MS), limited progress has been made in addressing primary progressive or secondary progressive MS, both of which lead to loss of oligodendrocytes and neurons and axons, and to irreversible accumulation of disability. Neuroinflammation is central to all forms of MS. The current effective therapies for relapsing-remitting MS target the peripheral immune system; these treatments, however, have repeatedly failed in progressive MS. Greater understanding of inflammation driven by CNS-resident cells - including astrocytes and microglia - is, therefore, required to identify novel potential therapeutic opportunities. Advances in imaging, biomarker analysis and genomics suggest that microglia and astrocytes have central roles in the progressive disease process. In this Review, we provide an overview of the involvement of astrocytes and microglia at major sites of pathology in progressive MS. We discuss current and future therapeutic approaches to directly target glial cells, either to inhibit pathogenic functions or to restore homeostatic functions lost during the course of the disease. We also discuss how bidirectional communication between astrocytes and microglia needs to be considered, as therapeutic targeting of one is likely to alter the functions of the other.
Collapse
|
5
|
Ameliorative effect of low molecular weight peptides from the head of red shrimp (Solenocera crassicornis) against cyclophosphamide-induced hepatotoxicity in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104085] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
6
|
Kim R, Sepulveda-Orengo MT, Healey KL, Williams EA, Reissner KJ. Regulation of glutamate transporter 1 (GLT-1) gene expression by cocaine self-administration and withdrawal. Neuropharmacology 2018; 128:1-10. [PMID: 28919080 PMCID: PMC5714670 DOI: 10.1016/j.neuropharm.2017.09.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 12/24/2022]
Abstract
Downregulation of the astroglial glutamate transporter GLT-1 is observed in the nucleus accumbens (NAc) following administration of multiple drugs of abuse. The decrease in GLT-1 protein expression following cocaine self-administration is dependent on both the amount of cocaine self-administered and the length of withdrawal, with longer access to cocaine and longer withdrawal periods leading to greater decreases in GLT-1 protein. However, the mechanism(s) by which cocaine downregulates GLT-1 protein remains unknown. We used qRT-PCR to examine gene expression of GLT-1 splice isoforms (GLT-1A, GLT-1B) in the NAc, prelimbic cortex (PL) and basolateral amygdala (BLA) of rats, following two widely used models of cocaine self-administration: short-access (ShA) self-administration, and the long-access (LgA) self-administration/incubation model. While downregulation of GLT-1 protein is observed following ShA cocaine self-administration and extinction, this model did not lead to a change in GLT-1A or GLT-1B gene expression in any brain region examined. Forced abstinence following ShA cocaine self-administration also was without effect. In contrast, LgA cocaine self-administration and prolonged abstinence significantly decreased GLT-1A gene expression in the NAc and BLA, and significantly decreased GLT-1B gene expression in the PL. No change was observed in NAc GLT-1A gene expression one day after LgA cocaine self-administration, indicating withdrawal-induced decreases in GLT-1A mRNA. In addition, LgA cocaine self-administration and withdrawal induced hypermethylation of the GLT-1 gene in the NAc. These results indicate that a decrease in NAc GLT-1 mRNA is only observed after extended access to cocaine combined with protracted abstinence, and that epigenetic mechanisms likely contribute to this effect.
Collapse
Affiliation(s)
- Ronald Kim
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marian T Sepulveda-Orengo
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kati L Healey
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily A Williams
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathryn J Reissner
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Meeker KD, Meabon JS, Cook DG. Partial Loss of the Glutamate Transporter GLT-1 Alters Brain Akt and Insulin Signaling in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2016; 45:509-20. [PMID: 25589729 DOI: 10.3233/jad-142304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The glutamate transporter GLT-1 (also called EAAT2 in humans) plays a critical role in regulating extracellular glutamate levels in the central nervous system (CNS). In Alzheimer's disease (AD), EAAT2 loss is associated with neuropathology and cognitive impairment. In keeping with this, we have reported that partial GLT-1 loss (GLT-1+/-) causes early-occurring cognitive deficits in mice harboring familial AD AβPPswe/PS1ΔE9 mutations. GLT-1 plays important roles in several molecular pathways that regulate brain metabolism, including Akt and insulin signaling in astrocytes. Significantly, AD pathogenesis also involves chronic Akt activation and reduced insulin signaling in the CNS. In this report we tested the hypothesis that GLT-1 heterozygosity (which reduces GLT-1 to levels that are comparable to losses in AD patients) in AβPPswe/PS1ΔE9 mice would induce sustained activation of Akt and disturb components of the CNS insulin signaling cascade. We found that partial GLT-1 loss chronically increased Akt activation (reflected by increased phosphorylation at serine 473), impaired insulin signaling (reflected by decreased IRβ phosphorylation of tyrosines 1150/1151 and increased IRS-1 phosphorylation at serines 632/635 - denoted as 636/639 in humans), and reduced insulin degrading enzyme (IDE) activity in brains of mice expressing familial AβPPswe/PS1ΔE9 AD mutations. GLT-1 loss also caused an apparent compensatory increase in IDE activity in the liver, an organ that has been shown to regulate peripheral amyloid-β levels and expresses GLT-1. Taken together, these findings demonstrate that partial GLT-1 loss can cause insulin/Akt signaling abnormalities that are in keeping with those observed in AD.
Collapse
Affiliation(s)
- Kole D Meeker
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, USA
| | - James S Meabon
- Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, USA Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - David G Cook
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, USA Division of Gerontology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
8
|
Meabon JS, Huber BR, Cross DJ, Richards TL, Minoshima S, Pagulayan KF, Li G, Meeker KD, Kraemer BC, Petrie EC, Raskind MA, Peskind ER, Cook DG. Repetitive blast exposure in mice and combat veterans causes persistent cerebellar dysfunction. Sci Transl Med 2016; 8:321ra6. [DOI: 10.1126/scitranslmed.aaa9585] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Šerý O, Sultana N, Kashem MA, Pow DV, Balcar VJ. GLAST But Not Least--Distribution, Function, Genetics and Epigenetics of L-Glutamate Transport in Brain--Focus on GLAST/EAAT1. Neurochem Res 2015; 40:2461-72. [PMID: 25972039 DOI: 10.1007/s11064-015-1605-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022]
Abstract
Synaptically released L-glutamate, the most important excitatory neurotransmitter in the CNS, is removed from extracellular space by fast and efficient transport mediated by several transporters; the most abundant ones are EAAT1/GLAST and EAAT2/GLT1. The review first summarizes their location, functions and basic characteristics. We then look at genetics and epigenetics of EAAT1/GLAST and EAAT2/GLT1 and perform in silico analyses of their promoter regions. There is one CpG island in SLC1A2 (EAAT2/GLT1) gene and none in SLC1A3 (EAAT1/GLAST) suggesting that DNA methylation is not the most important epigenetic mechanism regulating EAAT1/GLAST levels in brain. There are targets for specific miRNA in SLC1A2 (EAAT2/GLT1) gene. We also note that while defects in EAAT2/GLT1 have been associated with various pathological states including chronic neurodegenerative diseases, very little is known on possible contributions of defective or dysfunctional EAAT1/GLAST to any specific brain disease. Finally, we review evidence of EAAT1/GLAST involvement in mechanisms of brain response to alcoholism and present some preliminary data showing that ethanol, at concentrations which may be reached following heavy drinking, can have an effect on the distribution of EAAT1/GLAST in cultured astrocytes; the effect is blocked by baclofen, a GABA-B receptor agonist and a drug potentially useful in the treatment of alcoholism. We argue that more research effort should be focused on EAAT1/GLAST, particularly in relation to alcoholism and drug addiction.
Collapse
Affiliation(s)
- Omar Šerý
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic
| | - Nilufa Sultana
- Laboratory of Neurochemistry, Bosch Institute and Discipline of Anatomy and Histology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Mohammed Abul Kashem
- Laboratory of Neurochemistry, Bosch Institute and Discipline of Anatomy and Histology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - David V Pow
- School of Medical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - Vladimir J Balcar
- Laboratory of Neurochemistry, Bosch Institute and Discipline of Anatomy and Histology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
10
|
Xie AX, Petravicz J, McCarthy KD. Molecular approaches for manipulating astrocytic signaling in vivo. Front Cell Neurosci 2015; 9:144. [PMID: 25941472 PMCID: PMC4403552 DOI: 10.3389/fncel.2015.00144] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/27/2015] [Indexed: 12/26/2022] Open
Abstract
Astrocytes are the predominant glial type in the central nervous system and play important roles in assisting neuronal function and network activity. Astrocytes exhibit complex signaling systems that are essential for their normal function and the homeostasis of the neural network. Altered signaling in astrocytes is closely associated with neurological and psychiatric diseases, suggesting tremendous therapeutic potential of these cells. To further understand astrocyte function in health and disease, it is important to study astrocytic signaling in vivo. In this review, we discuss molecular tools that enable the selective manipulation of astrocytic signaling, including the tools to selectively activate and inactivate astrocyte signaling in vivo. Lastly, we highlight a few tools in development that present strong potential for advancing our understanding of the role of astrocytes in physiology, behavior, and pathology.
Collapse
Affiliation(s)
- Alison X Xie
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Jeremy Petravicz
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Ken D McCarthy
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| |
Collapse
|
11
|
Huber BR, Meabon JS, Martin TJ, Mourad PD, Bennett R, Kraemer BC, Cernak I, Petrie EC, Emery MJ, Swenson ER, Mayer C, Mehic E, Peskind ER, Cook DG. Blast exposure causes early and persistent aberrant phospho- and cleaved-tau expression in a murine model of mild blast-induced traumatic brain injury. J Alzheimers Dis 2014; 37:309-23. [PMID: 23948882 DOI: 10.3233/jad-130182] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mild traumatic brain injury (mTBI) is considered the 'signature injury' of combat veterans that have served during the wars in Iraq and Afghanistan. This prevalence of mTBI is due in part to the common exposure to high explosive blasts in combat zones. In addition to the threats of blunt impact trauma caused by flying objects and the head itself being propelled against objects, the primary blast overpressure (BOP) generated by high explosives is capable of injuring the brain. Compared to other means of causing TBI, the pathophysiology of mild-to-moderate BOP is less well understood. To study the consequences of BOP exposure in mice, we employed a well-established approach using a compressed gas-driven shock tube that recapitulates battlefield-relevant open-field BOP. We found that 24 hours post-blast a single mild BOP provoked elevation of multiple phospho- and cleaved-tau species in neurons, as well as elevating manganese superoxide-dismutase (MnSOD or SOD2) levels, a cellular response to oxidative stress. In hippocampus, aberrant tau species persisted for at least 30 days post-exposure, while SOD2 levels returned to sham control levels. These findings suggest that elevated phospho- and cleaved-tau species may be among the initiating pathologic processes induced by mild blast exposure. These findings may have important implications for efforts to prevent blast-induced insults to the brain from progressing into long-term neurodegenerative disease processes.
Collapse
Affiliation(s)
- Bertrand R Huber
- Northwest Network Mental Illness, Research, Education, and Clinical Center (MIRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhou Y, Waanders LF, Holmseth S, Guo C, Berger UV, Li Y, Lehre AC, Lehre KP, Danbolt NC. Proteome analysis and conditional deletion of the EAAT2 glutamate transporter provide evidence against a role of EAAT2 in pancreatic insulin secretion in mice. J Biol Chem 2013; 289:1329-44. [PMID: 24280215 DOI: 10.1074/jbc.m113.529065] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Islet function is incompletely understood in part because key steps in glutamate handling remain undetermined. The glutamate (excitatory amino acid) transporter 2 (EAAT2; Slc1a2) has been hypothesized to (a) provide islet cells with glutamate, (b) protect islet cells against high extracellular glutamate concentrations, (c) mediate glutamate release, or (d) control the pH inside insulin secretory granules. Here we floxed the EAAT2 gene to produce the first conditional EAAT2 knock-out mice. Crossing with Nestin-cyclization recombinase (Cre) eliminated EAAT2 from the brain, resulting in epilepsy and premature death, confirming the importance of EAAT2 for brain function and validating the genetic construction. Crossing with insulin-Cre lines (RIP-Cre and IPF1-Cre) to obtain pancreas-selective deletion did not appear to affect survival, growth, glucose tolerance, or β-cell number. We found (using TaqMan RT-PCR, immunoblotting, immunocytochemistry, and proteome analysis) that the EAAT2 levels were too low to support any of the four hypothesized functions. The proteome analysis detected more than 7,000 islet proteins of which more than 100 were transporters. Although mitochondrial glutamate transporters and transporters for neutral amino acids were present at high levels, all other transporters with known ability to transport glutamate were strikingly absent. Glutamate-metabolizing enzymes were abundant. The level of glutamine synthetase was 2 orders of magnitude higher than that of glutaminase. Taken together this suggests that the uptake of glutamate by islets from the extracellular fluid is insignificant and that glutamate is intracellularly produced. Glutamine synthetase may be more important for islets than assumed previously.
Collapse
Affiliation(s)
- Yun Zhou
- From The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Koh DS, Cho JH, Chen L. Paracrine interactions within islets of Langerhans. J Mol Neurosci 2012; 48:429-40. [PMID: 22528452 DOI: 10.1007/s12031-012-9752-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 03/12/2012] [Indexed: 01/05/2023]
Abstract
Glucose supply fluctuates between meal and fasting periods and its consumption by the body varies greatly depending on bodily metabolism. Pancreatic islets of Langerhans secrete various endocrine hormones including insulin and glucagon to keep blood glucose level relatively constant. Additionally, islet hormones regulate activity of neighboring cells as local autocrine or paracrine modulators. Moreover, islet cells release neurotransmitters such as glutamate and γ-aminobutyric acid (GABA) to gain more precise regulation of hormones release kinetics. Excitatory glutamate is co-released with glucagon from α-cells and activates glutamate receptors in the neighboring cells. GABA released from β-cells was shown to inhibit α-cells but to activate β-cells by acting GABA(A) receptors. This review summarizes the recent progress in understanding the paracrine/autocrine interactions in islets.
Collapse
Affiliation(s)
- Duk-Su Koh
- University of Washington, Seattle, WA, USA.
| | | | | |
Collapse
|