1
|
Kang SU, Kim HJ, Ma S, Oh DY, Jang JY, Seo C, Lee YS, Kim CH. Liquid plasma promotes angiogenesis through upregulation of endothelial nitric oxide synthase-induced extracellular matrix metabolism: potential applications of liquid plasma for vascular injuries. Cell Commun Signal 2024; 22:138. [PMID: 38374138 PMCID: PMC10875778 DOI: 10.1186/s12964-023-01412-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/25/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Applications of nonthermal plasma have expanded beyond the biomedical field to include antibacterial, anti-inflammatory, wound healing, and tissue regeneration. Plasma enhances epithelial cell repair; however, the potential damage to deep tissues and vascular structures remains under investigation. RESULT This study assessed whether liquid plasma (LP) increased nitric oxide (NO) production in human umbilical vein endothelial cells by modulating endothelial NO synthase (eNOS) phosphorylation and potential signaling pathways. First, we developed a liquid plasma product and confirmed the angiogenic effect of LP using the Matrigel plug assay. We found that the NO content increased in plasma-treated water. NO in plasma-treated water promoted cell migration and angiogenesis in scratch and tube formation assays via vascular endothelial growth factor mRNA expression. In addition to endothelial cell proliferation and migration, LP influenced extracellular matrix metabolism and matrix metalloproteinase activity. These effects were abolished by treatment with NG-L-monomethyl arginine, a specific inhibitor of NO synthase. Furthermore, we investigated the signaling pathways mediating the phosphorylation and activation of eNOS in LP-treated cells and the role of LKB1-adenosine monophosphate-activated protein kinase in signaling. Downregulation of adenosine monophosphate-activated protein kinase by siRNA partially inhibited LP-induced eNOS phosphorylation, angiogenesis, and migration. CONCLUSION The present study suggests that LP treatment may be a novel strategy for promoting angiogenesis in vascular damage. Video Abstract.
Collapse
Affiliation(s)
- Sung Un Kang
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Haeng Jun Kim
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Sukhwal Ma
- Medical Accelerator Research Team, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowonro, Nowon-gu, Seoul, 01812, South Korea
| | - Doo-Yi Oh
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Jeon Yeob Jang
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Chorong Seo
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Yun Sang Lee
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea.
| |
Collapse
|
2
|
Kong J, Deng Y. Pirfenidone alleviates vascular intima injury caused by hyperhomocysteinemia. Rev Port Cardiol 2022; 41:813-819. [DOI: 10.1016/j.repc.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 10/17/2022] Open
|
3
|
Kotlyarov S. Diversity of Lipid Function in Atherogenesis: A Focus on Endothelial Mechanobiology. Int J Mol Sci 2021; 22:11545. [PMID: 34768974 PMCID: PMC8584259 DOI: 10.3390/ijms222111545] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is one of the most important problems in modern medicine. Its high prevalence and social significance determine the need for a better understanding of the mechanisms of the disease's development and progression. Lipid metabolism and its disorders are one of the key links in the pathogenesis of atherosclerosis. Lipids are involved in many processes, including those related to the mechanoreception of endothelial cells. The multifaceted role of lipids in endothelial mechanobiology and mechanisms of atherogenesis are discussed in this review. Endothelium is involved in ensuring adequate vascular hemodynamics, and changes in blood flow characteristics are detected by endothelial cells and affect their structure and function.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
4
|
Tacey A, Millar S, Qaradakhi T, Smith C, Hayes A, Anderson S, Zulli A, O'Sullivan S, Levinger I. Undercarboxylated osteocalcin has no adverse effect on endothelial function in rabbit aorta or human vascular cells. J Cell Physiol 2020; 236:2840-2849. [PMID: 32936958 PMCID: PMC7891339 DOI: 10.1002/jcp.30048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
Undercarboxylated osteocalcin (ucOC) improves glucose metabolism; however, its effects on endothelial cell function are unclear. We examined the biological effect of ucOC on endothelial function in animal models ex vivo and human cells in vitro. Isometric tension and immunohistochemistry techniques were used on the aorta of male New Zealand white rabbits and cell culture techniques were used on human aortic endothelial cells (HAECs) to assess the effect of ucOC in normal and high-glucose environments. Overall, ucOC, both 10 and 30 ng/ml, did not significantly alter acetylcholine-induced blood vessel relaxation in rabbits (p > .05). UcOC treatment did not cause any significant changes in the immunoreactivity of cellular signalling markers (p > .05). In HAEC, ucOC did not change any of the assessed outcomes (p > .05). UcOC has no negative effects on endothelial function which is important to reduce the risks of off target adverse effects if it will be used as a therapeutic option for metabolic disease in the future.
Collapse
Affiliation(s)
- Alexander Tacey
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, Victoria, Australia
| | | | - Tawar Qaradakhi
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Cassandra Smith
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, Victoria, Australia
| | - Alan Hayes
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, Victoria, Australia
| | - Susan Anderson
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, UK
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Saoirse O'Sullivan
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, UK
| | - Itamar Levinger
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, Victoria, Australia
| |
Collapse
|
5
|
The Effect of an Atherogenic Diet and Acute Hyperglycaemia on Endothelial Function in Rabbits Is Artery Specific. Nutrients 2020; 12:nu12072108. [PMID: 32708633 PMCID: PMC7400854 DOI: 10.3390/nu12072108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/30/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Hyperglycaemia has a toxic effect on blood vessels and promotes coronary artery disease. It is unclear whether the dysfunction caused by hyperglycaemia is blood vessel specific and whether the dysfunction is exacerbated following an atherogenic diet. Abdominal aorta, iliac, and mesenteric arteries were dissected from New Zealand White rabbits following either a 4-week normal or atherogenic diet (n = 6–12 per group). The arteries were incubated ex vivo in control or high glucose solution (20 mM or 40 mM) for 2 h. Isometric tension myography was used to determine endothelial-dependent vasodilation. The atherogenic diet reduced relaxation as measured by area under the curve (AUC) by 25% (p < 0.05), 17% (p = 0.06) and 40% (p = 0.07) in the aorta, iliac, and mesenteric arteries, respectively. In the aorta from the atherogenic diet fed rabbits, the 20 mM glucose altered EC50 (p < 0.05). Incubation of the iliac artery from atherogenic diet fed rabbits in 40 mM glucose altered EC50 (p < 0.05). No dysfunction occurred in the mesentery with high glucose incubation following either the normal or atherogenic diet. High glucose induced endothelial dysfunction appears to be blood vessel specific and the aorta may be the optimal artery to study potential therapeutic treatments of hyperglycaemia induced endothelial dysfunction.
Collapse
|
6
|
Wu Y, Wang X, Zhou Q, Wang Y, Zhou J, Jiang Q, Wang Y, Zhu H. ATRA improves endothelial dysfunction in atherosclerotic rabbits by decreasing CAV‑1 expression and enhancing eNOS activity. Mol Med Rep 2018; 17:6796-6802. [PMID: 29488619 DOI: 10.3892/mmr.2018.8647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 12/09/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to explore the protective effects and possible mechanisms of all‑trans‑retinoic acid (ATRA) against atherosclerosis (AS). Rabbits were randomly allocated for standard or high‑fat diet with or without ATRA. After 12 weeks, the aortic rings of the rabbits were removed. Endothelium‑dependent relaxation (EDR) induced by acetylcholine and non‑endothelium‑dependent relaxation induced by sodium nitroprusside in the thoracic aorta were evaluated. NO level and eNOS activity were measured according to the protocol of NO and eNOS ELISA kits. The permeability and morphology of the arterial walls were identified by immunofluorescence and H&E staining respectively. The expression of caveolin‑1 (CAV‑1) and occludin was analyzed using western blotting and immunohistochemistry. The EDR function was significantly reduced in the AS rabbits compared with the normal group, however it was elevated following treatment with ATRA. The eNOS activity and NO level were reduced in the AS group, however were notably increased following oral administration of ATRA. There was an enhancement of endothelial permeability in the AS group compared with the normal group, which decreased following ATRA treatment. Western blot analysis and immunohistochemical analysis identified an increase in occludin expression after treatment with ATRA, in contrast to CAV‑1 expression under the same conditions. ATRA is able to ameliorate high‑fat‑induced AS in rabbits, which is mediated through the activation of eNOS and downregulating CAV‑1 expression.
Collapse
Affiliation(s)
- Yan Wu
- Reproductive Medicine Center, 105 Hospital of People's Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Xiaobian Wang
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qing Zhou
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yi Wang
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jiali Zhou
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qiaoling Jiang
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuan Wang
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Huaqing Zhu
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
7
|
Kruzliak P, Hare DL, Sabaka P, Delev D, Gaspar L, Rodrigo L, Zulli A. Evidence for CD34/SMA positive cells in the left main coronary artery in atherogenesis. Acta Histochem 2016; 118:413-7. [PMID: 27087050 DOI: 10.1016/j.acthis.2016.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/30/2016] [Accepted: 04/06/2016] [Indexed: 12/31/2022]
Abstract
UNLABELLED Regression of atherosclerosis is a key aspect of preventing further coronary artery disease and understanding which cell type forms smooth muscle cells in atherosclerotic fibrous caps will aid in reducing CAD. Atherogenesis is a complex interplay of cells migrating and proliferating into the vascular wall. CD34 positive hemapoetic stem cells are believed to not transform into vascular smooth muscle cells (SMC). The current study hypothesised that there would be no evidence for CD34(+)/α SMC actin(+) cells in atherosclerotic coronary arteries. AIMS To identify CD34+/α actin positive cells in the fibrous cap and wall of atherosclerotic plaques in the coronary artery. METHODS Male New Zealand White rabbits were fed a diet containing 0.5% cholesterol and 1% methionine for 4 weeks, then 9 weeks of normal diet to induce regression. Immunohistochemistry was used to detect CD34(+) haematopoietic progenitor cells and α SMC actin. RESULTS In the fibrous cap, the majority of cells were CD34(-)/α SMC actin(+) spindle shaped cells. However very rare populations of CD34(+)/α SMC actin(+) and CD34(+)/α SMC actin(-) cells were also present but these cells were not spindle shaped. CONCLUSION Our study found that CD34(+)/α SMC actin(-) spindle shaped cells were absent from the fibrous cap. Moreover, the predominant cell population were the vascular smooth muscle cells (CD34(-)/α SMC actin(+)) but (CD34(+)/α SMC actin(+)) cells were also present. This model could be used to understand the role of each SMC population subtype to hasten atherosclerotic regression in the coronary artery.
Collapse
Affiliation(s)
- Peter Kruzliak
- Laboratory of Structural Biology and Proteomics, Central Laboratories, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.
| | - David L Hare
- Department of Cardiology, Austin Health, Australia
| | - Peter Sabaka
- 2(nd) Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovak Republic
| | - Delian Delev
- Department Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Ludovit Gaspar
- 2(nd) Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovak Republic
| | - Luis Rodrigo
- Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Anthony Zulli
- Centre for Chronic Disease (CCD), College of Health and Biomedicine Victoria University, Australia.
| |
Collapse
|
8
|
Kruzliak P, Sabo J, Zulli A. Endothelial endoplasmic reticulum and nitrative stress in endothelial dysfunction in the atherogenic rabbit model. Acta Histochem 2015; 117:762-6. [PMID: 26359324 DOI: 10.1016/j.acthis.2015.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/02/2015] [Accepted: 08/12/2015] [Indexed: 12/31/2022]
Abstract
UNLABELLED Oxidative stress causes endothelial dysfunction which ultimately leads to atherogenesis, yet anti-oxidant therapy has failed to reduce human clinical outcomes. We hypothesise that endoplasmic reticulum stress and oxidative stress are both present in the endothelial layer of aorta with atherosclerosis. Rabbits were fed for 4 weeks a diet supplemented with 1% methionine +0.5% cholesterol (MC). Control animals received a normal diet. The endothelial function of the abdominal aorta was examined using organ bath techniques. Semi-quantitative immunohistochemistry was used to determine endothelial nitrotyrosine (for nitrative/oxidative stress) and glucose regulated protein 78 (GRP 78) and CHOP to determine endoplasmic reticulum stress. Endothelium dependent relaxation in response to acetylcholine significantly decreased in MC. Stress markers were significantly elevated in endothelia in MC compared to control. The total endothelial area examined for GRP78 increased by 8.4±0.25% in MC vs control (p=0.026) and C/EBP homologous protein (CHOP) increased by 21.9±0.05% in MC vs control (p=0.014). Nitrotyrosine increased by 13.3±0.03% in MC vs control (p=0.012). CONCLUSIONS Both endoplasmic reticulum stress and nitrative stress are present during endothelial dysfunction. Treatment directed at both stresses might be beneficial in the prevention of atherosclerosis.
Collapse
|
9
|
Rizzo V. The Role of Caveolae and Caveolins in Atherogenesis. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Habiyakare B, Alsaadon H, Mathai ML, Hayes A, Zulli A. Reduction of angiotensin A and alamandine vasoactivity in the rabbit model of atherogenesis: differential effects of alamandine and Ang(1-7). Int J Exp Pathol 2014; 95:290-5. [PMID: 24953785 DOI: 10.1111/iep.12087] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/29/2014] [Indexed: 01/07/2023] Open
Abstract
Novel treatments are necessary to reduce the burden of cardiovascular disease (CVD). Alamandine binds to MrgD and is reported to induce vasodilation via stimulation of endothelial nitric oxide synthase (eNOS), but its role in atherogenic blood vessels is yet to be determined. To determine the vasoactive role of alamandine and its precursor AngA in diseased aorta, New Zealand White rabbits were fed a diet containing 1% methionine + 0.5% cholesterol + 5% peanut oil for 4 weeks (MC, n = 5) or control (n = 6). In abdominal aorta, alamandine (1 μM) was added 30 min before a dose-response curve to angiotensin II or AngA (1 nM-1 μM), and immunohistochemistry was used to identify MrgD receptors and eNOS. The thoracic aorta, renal, carotid and iliac arteries were mounted in organ baths. Rings were precontracted with phenylephrine, then a bolus dose of alamandine (1 μM) was added 10 min before a dose-response curve to acetylcholine (0.01 μM-10 μM). The MrgD receptor was localized to normal and diseased aorta and colocalized with eNOS. In control but not diseased blood vessels, alamandine enhanced acetylcholine-mediated vasodilation in the thoracic aorta and the iliac artery (P < 0.05) and reduced it in the renal artery (P < 0.05). In control abdominal aorta, AngA evoked less desensitization than AngII (P < 0.05) and alamandine reduced AngA-mediated vasoconstriction (P < 0.05). In MC, AngA constriction was markedly reduced vs. control (P < 0.05). The vasoactivity of alamandine and AngA are reduced in atherogenesis. Its role in the prevention of CVD remains to be validated.
Collapse
Affiliation(s)
- Belthrand Habiyakare
- Centre for Chronic Disease Prevention & Management (CCDPM), College of Health and Biomedicine, Victoria University, St Albans Campus, Melbourne, VIC, Australia
| | | | | | | | | |
Collapse
|
11
|
Zulli A, Hare D, Buxton B, Widdop R. Vasoactive Role for Angiotensin II Type 2 Receptors in Human Radial Artery. Int J Immunopathol Pharmacol 2014; 27:79-85. [DOI: 10.1177/039463201402700110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- A. Zulli
- College of Health and Biomedicine, Victoria University, St Albans, Australia
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Australia
| | - D.L. Hare
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Australia
- Department of Cardiology, Austin Health, Heidelberg, Australia
| | - B.F. Buxton
- Department of Cardiac Surgery, Austin Health, Heidelberg, Australia
| | - R.E. Widdop
- Department of Pharmacology, Monash University, Australia
| |
Collapse
|
12
|
High dietary taurine inhibits myocardial apoptosis during an atherogenic diet: association with increased myocardial HSP70 and HSF-1 but not caspase 3. Eur J Nutr 2013; 53:929-37. [PMID: 24146099 DOI: 10.1007/s00394-013-0596-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/07/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIM Apoptosis is a major cause of myocyte death, and taurine is anti-apoptotic. Heat shock protein 70 (HSP70) (which is regulated by heat shock factor-HSF-1) is also anti-apoptotic, and caspase 3 stimulates the apoptotic pathway. This study investigated whether taurine affects atherogenic diet-induced myocardial apoptosis, and whether HSP70, HSF-1 and caspase 3 are involved. METHODS New Zealand white rabbits were divided into 3 groups for 4 weeks according to their diet. Group 1 (control) was fed a normal rabbit diet; Group 2 (MC) received a normal rabbit diet with 1% methionine plus 0.5% cholesterol. Group 3 received MC diet + 2.5% taurine (MCT). RESULTS The atherogenic diet did not affect myocardial HSP70 or HSF-1 protein, but increased myocardial apoptotic nuclei to 40% (p < 0.01) versus 7% in con and 12% in MCT (p < 0.01). However, in MCT, myocardial HSP70 expression increased by 42.7% versus con and MC (p = 0.016), HSF-1 by 12% versus con and MC (p < 0.05), and total nuclei count increased by 37% versus MC (p < 0.05). Caspase 3 subunits remained unchanged in all groups, and HSP70 was increased approximately twofold in endothelial layer of arterioles (p = 0.01). CONCLUSION This study shows that taurine could reduce myocardial apoptotic nuclei and thus confer myocardial cytoprotection via stimulating myocardial HSP70 via HSF-1 and caspase 3-independent mechanisms.
Collapse
|
13
|
Liu XP, Huang YC, Hung WC, Chen WT, Yu HS, Chai CY. Sodium arsenite-induced abnormalities in expressions of Caveolin-1, eNOS, IKKβ, and COX-2 in SV-40 immortalized human uroepithelial cells and in urothelial carcinomas. Toxicol In Vitro 2012; 26:1098-105. [DOI: 10.1016/j.tiv.2012.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 06/07/2012] [Accepted: 07/04/2012] [Indexed: 11/25/2022]
|
14
|
Arora R, Hare DL, Zulli A. Simvastatin Reduces Endothelial NOS: Caveolin-1 Ratio but not the Phosphorylation Status of eNOS In Vivo. J Atheroscler Thromb 2012. [DOI: 10.5551/jat.12401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
15
|
He GW, Fan L, Grove KL, Furnary A, Yang Q. Expression and function of endothelial nitric oxide synthase messenger RNA and protein are higher in internal mammary than in radial arteries. Ann Thorac Surg 2011; 92:845-850. [PMID: 21871268 DOI: 10.1016/j.athoracsur.2011.04.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 04/12/2011] [Accepted: 04/18/2011] [Indexed: 11/25/2022]
Abstract
BACKGROUND The internal mammary artery (IMA) has a better long-term patency rate than the radial artery (RA), but the underlying molecular mechanisms are unclear. We compared endothelial nitric oxide synthase (eNOS) and related NO release in these two arteries. METHODS Real-time polymerase chain reaction was used to quantify eNOS messenger RNA (mRNA) expression level in the endothelial cells of IMAs and RAs. eNOS protein localization was determined by immunohistochemistry. NO release from the endothelium of IMAs and RAs was directly measured by an electrochemical method using a membrane-type NO-sensitive electrode. RESULTS Endothelial nitric oxide synthase mRNA expression level was significantly higher in the endothelial cells of IMAs than in RAs (1.03±0.19 vs 0.53±0.09, n=7, p<0.05), but was similar in the whole vascular tissue. eNOS protein immunoreactivity was higher in the endothelial cells of IMAs than in RAs. NO release at both levels in IMAs was significantly greater than in RAs (basal: 17.5±1.9 vs 10.2±0.7 nM, n=11 each, p=0.003; stimulated with bradykinin -7 log M: 31.5±3.6 vs 14.3±5.3 nM, n=6 each, p=0.02). CONCLUSIONS Endothelial cells in the IMA express higher levels of eNOS mRNA and protein than those in the RA, which is linked with higher release of NO. These findings may be related to the superior long-term patency rate of the IMA vs the RA. This study also provides some basic genetic information for grafting arteries.
Collapse
Affiliation(s)
- Guo-Wei He
- TEDA International Cardiovascular Hospital, Medical College, Nankai University, Tianjin, China.
| | | | | | | | | |
Collapse
|
16
|
Engel D, Beckers L, Wijnands E, Seijkens T, Lievens D, Drechsler M, Gerdes N, Soehnlein O, Daemen MJAP, Stan RV, Biessen EAL, Lutgens E. Caveolin-1 deficiency decreases atherosclerosis by hampering leukocyte influx into the arterial wall and generating a regulatory T-cell response. FASEB J 2011; 25:3838-48. [PMID: 21795505 DOI: 10.1096/fj.11-183350] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Caveolin-1 plays a crucial role in atherosclerosis, which is mainly attributed to its effects on low-density-lipoprotein (LDL) transcytosis. However, caveolin-1 has also been implicated in the regulation of inflammation. We investigated the effects of caveolin-1 deficiency in atherosclerosis with its accompanying changes in plaque- and lymphoid-related immunology and inflammation. Cav1(-/-)Apoe(-/-) mice exhibited a 15-fold reduction in plaque size with plaques containing fewer macrophages, T cells, and neutrophils. Intravital microscopy revealed 83% less leukocyte adhesion to the vessel wall in Cav1(-/-)Apoe(-/-) mice, which could be attributed to reduced endothelial chemokine ligand-2 (CCL-2/MCP-1) and vascular cell adhesion molecule-1 (VCAM-1) expression. Caveolin-1 deficiency resulted in a 57% increase in regulatory T cells and a 4% decrease in CD4(+) effector T cells in lymphoid organs. Bone marrow transplantations revealed that Cav1(-/-)Apoe(-/-) mice receiving Cav1(+/+)Apoe(-/-) or Cav1(-/-)Apoe(-/-) bone marrow presented 4- to 4.5-fold smaller plaques with no additional phenotypic changes. In contrast, atherosclerosis was not affected in Cav1(+/+) Apoe(-/-) recipients receiving Cav1(-/-)Apoe(-/-) or Cav1(+/+) Apoe(-/-) bone marrow. However, the presence of Cav1(-/-) Apoe(-/-) bone marrow was associated with an anti-inflammatory T-cell profile. Our study reveals that nonhematopoietic caveolin-1 determines plaque size, whereas hematopoietic caveolin-1 regulates lymphoid immune-modulation. However, both are required for phenotypic modulation of plaques.
Collapse
Affiliation(s)
- David Engel
- Department of Pathology, Cardiovascular Research Institute Maastricht, University Maastricht, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sun C, Liu X, Qi L, Xu J, Zhao J, Zhang Y, Zhang S, Miao J. Modulation of vascular endothelial cell senescence by integrin β4. J Cell Physiol 2010; 225:673-81. [PMID: 20509141 DOI: 10.1002/jcp.22262] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Increasing evidence has demonstrated that the senescence of vascular endothelial cells (VECs) has critical roles in the pathogenesis of vascular dysfunction. Finding important factors that regulate VEC senescence will help provide novel therapeutic strategies for vascular disorders. Previously, we found that integrin β4 was involved in VEC senescence. However, the mechanism underlying VEC senescence mediated by integrin β4 remains poorly understand. In this study, we used a mouse in vivo model and showed that the level of integrin β4 in the endothelium of mouse thoracic aorta was increased during natural aging and atherosclerosis. Furthermore, we found that H-ras, caveolin-1, and AP-1 were implicated in the senescent signal pathway mediated by integrin β4 in human umbilical vein ECs (HUVECs). Knockdown of integrin β4 could attenuate HUVEC senescent features, including increased interleukin-8 (IL-8) release and decreased endothelial nitric oxide synthase (eNOS) and NO levels and mitochondrial membrane potential in vitro. Our findings provide new clues illustrating the mechanism of VEC senescence. Integrin β4 might be a potential target for therapy in cardiovascular diseases.
Collapse
Affiliation(s)
- ChunHui Sun
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Interleukin-6 inhibits endothelial nitric oxide synthase activation and increases endothelial nitric oxide synthase binding to stabilized caveolin-1 in human vascular endothelial cells. J Hypertens 2010; 28:940-51. [PMID: 20375905 DOI: 10.1097/hjh.0b013e32833992ef] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE We hypothesized a possible mechanism for atherosclerosis in which interleukin-6 (IL-6) might affect the endothelial nitric oxide synthase (eNOS)-caveolin-1 interaction and result in decreased nitric oxide bioavailability in the setting of low-grade inflammation. METHODS Because eNOS and caveolin-1 are crucial for vascular tone control, we studied the effects of IL-6 on the expression and activation of eNOS and caveolin-1 in human vascular endothelial cells. RESULTS IL-6 inhibited the phosphorylation of eNOS at Ser1177 and the bradykinin-stimulated nitric oxide production; however, eNOS protein expression was not changed. In addition, IL-6 inhibited bradykinin-stimulated Akt phosphorylation at Ser473 and Thr 308 without affecting the Akt protein expression. IL-6 did not alter the mRNA level of caveolin-1; however, the caveolin-1 protein level was significantly increased dose-dependently. The binding of eNOS and caveolin-1 in endothelial cells, as demonstrated by coimmunoprecipitation assay, was increased by IL-6 treatment. IL-6 treatment was found to stabilize caveolin-1 protein and its half-life was estimated to prolong from 7.5 h to longer than 12 h. Furthermore, treatment with PD98059 and short interference RNA of extracellular signal-regulated kinase gene reversed the effects of IL-6 on eNOS and caveolin-1. CONCLUSION In addition to decreasing Akt phosphorylation, the results of this study demonstrate, for the first time, the molecular mechanism underlying the effect of IL-6 to decrease the nitric oxide bioavailability by increasing the half-life and, therefore, the protein levels of caveolin-1. The increased caveolin-1 proteins bind more eNOS and consequently decrease eNOS activation by reducing the Ser1177 phosphorylation.
Collapse
|
19
|
Rai S, Hare DL, Zulli A. A physiologically relevant atherogenic diet causes severe endothelial dysfunction within 4 weeks in rabbit. Int J Exp Pathol 2009; 90:598-604. [PMID: 19758419 DOI: 10.1111/j.1365-2613.2009.00668.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A physiological atherogenic human diet consists of 0.1% cholesterol, fat, as well as high levels of methionine, which is the precursor to homocysteine. The pathological effects of a diet enriched with physiologically high levels of cholesterol, methionine and fat over a short period on the aorta are unknown. In this regard, we sought to determine the effects of a 0.1% cholesterol diet in combination with a 1% methionine over a 4-week period on endothelial function and artery pathology and the expression of endothelial nitric oxide synthase as well as nitrosative stress by nitrotyrosine (NT), oxidative stress by heat shock protein 70 (HSP70) and endoplasmic reticulum stress by glucose regulated protein 78 (GRP78). Rabbits were fed for 4 weeks a diet supplemented with 1% methionine + 0.1% cholesterol + 5% peanut oil (MC). The endothelial function of the abdominal aorta was examined using organ bath techniques, atherosclerosis determined in each artery by microscopy and eNOS, NT, GRP78 and HSP70 by standard immunohistochemistry. Endothelium dependent relaxation in response to acetylcholine significantly decreased by 63% at 1 muM acetylcholine (P < 0.001) compared with control arteries. There was no evidence of atherosclerosis formation in any artery studied, however, eNOS, NT and GRP78 was clearly present in all arteries studied but HSP70 was not easily detectable. Severe endothelial dysfunction is present in the abdominal aorta of rabbits within 4 weeks of physiological dietary manipulation, possibly due to NT formation and endoplasmic reticulum stress. This model could be used to study the early onset of endothelial dysfunction prior to the initiation of atherosclerosis.
Collapse
Affiliation(s)
- Sudarshan Rai
- Departments of Cardiology and Medicine, University of Melbourne, Austin Health, Australia
| | | | | |
Collapse
|
20
|
Zulli A, Hare DL. High dietary methionine plus cholesterol stimulates early atherosclerosis and late fibrous cap development which is associated with a decrease in GRP78 positive plaque cells. Int J Exp Pathol 2009; 90:311-20. [PMID: 19563613 DOI: 10.1111/j.1365-2613.2009.00649.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The role of homocysteine, or its precursor methionine, in the formation of fibrous caps and its association with endoplasmic reticulum (ER) stress is unclear. Homocysteine can stimulate collagen accumulation and upregulate the ER stress chaperone glucose regulated protein 78 (GRP78). The aim of this study was to determine if high dietary methionine would increase fibrous caps, and that removal of an atherogenic diet would decrease the amount of ER stressed cells. New Zealand white rabbits were fed for 2, 4, or 12 weeks an atherogenic diet [1% methionine + 0.5% cholesterol (2MC, 4MC or 12MC)]; for 4 or 12 weeks a 0.5% cholesterol diet (4Ch, 12Ch); and to study plaque regression, an MC diet for 2 or 4 weeks accompanied by 10 weeks of a normal diet (2MCr, 4MCr). Endothelial function, atherosclerosis and GRP78 positive cells were studied. Endothelial function was abolished in 4MC and atherosclerosis increased 17-fold (P < 0.05) compared with 4Ch. Fibrous caps composed 48% of total plaque area in 12MC vs. 10% in 12Ch (P < 0.01), and 12MC expressed less GRP78 plaque cells vs. 12Ch (P < 0.01). Four MCr had less plaque GRP78 cells than 12MC (P < 0.05) and less endothelial GRP78 cells (P < 0.01). In addition, GRP78 positive cells were the highest in 4MC, but decreased in all other groups (P < 0.01). GRP78 positive cells within the fibrous cap inversely correlated with cap size (r(2) = 0.9). These studies suggest that high dietary methionine could be beneficial for plaque stabilisation, and a normal diet also stabilises plaque and decreases the number of stressed plaque cells.
Collapse
Affiliation(s)
- Anthony Zulli
- Departments of Cardiology and Medicine, University of Melbourne, Austin Health, Australia.
| | | |
Collapse
|
21
|
Wu CC, Wang SH, Kuan II, Tseng WK, Chen MF, Wu JC, Chen YL. OxLDL upregulates caveolin-1 expression in macrophages: Role for caveolin-1 in the adhesion of oxLDL-treated macrophages to endothelium. J Cell Biochem 2009; 107:460-72. [DOI: 10.1002/jcb.22144] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
The elevated expression of calcitonin receptor by cells recruited into the endothelial layer and neo-intima of atherosclerotic plaque. Histochem Cell Biol 2009; 132:181-9. [DOI: 10.1007/s00418-009-0600-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2009] [Indexed: 02/04/2023]
|
23
|
Zulli A, Buxton BF, Merrilees M, Hare DL. Human diseased arteries contain cells expressing leukocytic and embryonic stem cell markers. Hum Pathol 2008; 39:657-65. [PMID: 18439939 DOI: 10.1016/j.humpath.2007.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 08/30/2007] [Accepted: 09/26/2007] [Indexed: 10/22/2022]
Abstract
Recent evidence suggests that smooth muscle cells within the intima of diseased human blood vessels of the elderly population contain the embryonic form of smooth muscle cells. We wanted to explore the idea that human diseased vessels may contain other primitive cell types, such as pluripotent embryonic stem cells and hematopoietic stem cells. Radial and internal mammary arteries were collected from patients undergoing coronary artery bypass surgery; and coronary arteries, from hearts at autopsy and transplant. Immunohistochemistry was used to identify the embryonic stem cell markers Octomer-4; stage-specific embryonic antigens 1, 3, and 4; TRA-1-60; and TRA-1-81, and the leukocytic markers CD34, CD14, CD133, and CD64 in all vessels. We found that diseased human radial arteries contained the highest numbers of cells in the media- and intima-expressing markers of embryonic and leukocytic origin compared with diseased human coronary arteries. In nondiseased human vessels (internal mammary arteries), such cells were rarely observed. Granulation tissue within the diseased human arteries contained similar cells, and the angiogenic vessel endothelial cell layer also expressed these markers. It is concluded that diseased human blood vessels contain cells that express markers from leukocytic and embryonic origin. These results suggest that cells within human arteries might be able to differentiate into various cell types and that blood vessels might be a reservoir for such cells.
Collapse
Affiliation(s)
- Anthony Zulli
- Department of Cardiology, University of Melbourne, Austin Health, Heildelberg 3084, Australia.
| | | | | | | |
Collapse
|
24
|
Wookey PJ, Zulli A, Buxton BF, Hare DL. Calcitonin receptor immunoreactivity associated with specific cell types in diseased radial and internal mammary arteries. Histopathology 2008; 52:605-12. [PMID: 18370957 DOI: 10.1111/j.1365-2559.2008.02979.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To determine and quantify calcitonin receptor (CTR) immunoreactivity associated with specific cell types within, and associated with, the endothelial layers, neo-intima, media and vasa vasorum of diseased radial and internal mammary arteries. METHODS AND RESULTS Immunohistochemistry and anti-CTR antibodies were used to identify positive cells within remnants of diseased human radial (n = 3) and internal mammary arteries (n = 4) that remained after bypass surgery. Three cell types expressed CTR, including endothelial cells, fibroblast-like cells within the neo-intima, and cellular structures aligned with the smooth muscle cells of the media. Other smaller cells within the surrounding parenchyma of the vasa vasorum of diseased vessels and blood-borne cells were also immunoreactive. Immunoquantification of CTR expression (Intensity x Proportional Area) in the endothelium (P < 0.05), neo-intima (P < 0.02) and media (P < 0.03) established a significant statistical correlation (Students' two-tailed t-test) with the ratio of intimal/media thickness. CONCLUSIONS Increased immunoreactivity developed using anti-CTR antibodies was associated with specific cell types in the endothelial layers, neo-intima, media and vasa vasorum of diseased regions of radial and internal mammary arteries, in which there was an increased intimal/media ratio. Furthermore, CTR+, blood-borne cells present in the vessels of diseased regions suggest recruitment into these surrounding tissues.
Collapse
Affiliation(s)
- P J Wookey
- Departments of Cardiology, Medicine (University of Melbourne), and Cardiac Surgery, Austin Health, Heidelberg, Victoria, Australia.
| | | | | | | |
Collapse
|
25
|
Lim EJ, Smart EJ, Toborek M, Hennig B. The role of caveolin-1 in PCB77-induced eNOS phosphorylation in human-derived endothelial cells. Am J Physiol Heart Circ Physiol 2007; 293:H3340-7. [PMID: 17933968 DOI: 10.1152/ajpheart.00921.2007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Polychlorinated biphenyls (PCBs) may contribute to the pathology of atherosclerosis by activating inflammatory responses in vascular endothelial cells. Endothelial nitric oxide synthase (eNOS) is colocalized with caveolae and is a critical regulator of vascular homeostasis. PCBs may be proatherogenic by causing dysfunctional eNOS signaling. The objective of this study was to investigate the role of caveolin-1 in PCB-induced endothelial dysfunction with a focus on mechanisms associated with eNOS signaling. Cells derived from an immortalized human vascular endothelial cell line were treated with PCB77 to study nitrotyrosine formation through eNOS signaling. Phosphorylation studies of eNOS, caveolin-1, and kinases, such as Src, phosphatidylinositol 3-kinase (PI3K), and Akt, were conducted in cells containing either functional or small-interfering RNA-silenced caveolin-1 protein. We also investigated caveolin-1-regulated mechanisms associated with PCB-induced markers of peroxynitrite formation and DNA binding of NF-kappaB. Cellular exposure to PCB77 increased eNOS phosphorylation and nitric oxide production, as well as peroxynitrite levels. A subsequent PCB-induced increase in NF-kappaB DNA binding may have implications in oxidative stress-mediated inflammatory mechanisms. The activation of eNOS by PCB77 treatment was blocked by inhibitors of the Src/PI3K/Akt pathway. PCB77 also increased phosphorylation of caveolin-1, indicating caveolae-dependent endocytosis. Caveolin-1 silencing abolished both the PCB-stimulated Akt and eNOS phosphorylation, suggesting a regulatory role of caveolae in PCB-induced eNOS signaling. These findings suggest that PCB77 induces eNOS phosphorylation in endothelial cells through a Src/PI3K/Akt-dependent mechanism, events regulated by functional caveolin-1. Our data provide evidence that caveolae may play a critical role in regulating vascular endothelial cell activation and toxicity induced by persistent environmental pollutants such as coplanar PCBs.
Collapse
Affiliation(s)
- Eun Jin Lim
- Molecular and Cell Nutrition Laboratory, University of Kentucky, Lexington, KY 40536-0200, USA
| | | | | | | |
Collapse
|
26
|
Adebiyi A, Zhao G, Cheranov SY, Ahmed A, Jaggar JH. Caveolin-1 abolishment attenuates the myogenic response in murine cerebral arteries. Am J Physiol Heart Circ Physiol 2007; 292:H1584-92. [PMID: 17098833 PMCID: PMC2241733 DOI: 10.1152/ajpheart.00584.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intravascular pressure-induced vasoconstriction (the "myogenic response") is intrinsic to smooth muscle cells, but mechanisms that underlie this response are unresolved. Here we investigated the physiological function of arterial smooth muscle cell caveolae in mediating the myogenic response. Since caveolin-1 (cav-1) ablation abolishes caveolae formation in arterial smooth muscle cells, myogenic mechanisms were compared in cerebral arteries from control (cav-1(+/+)) and cav-1-deficient (cav-1(-/-)) mice. At low intravascular pressure (10 mmHg), wall membrane potential, intracellular calcium concentration ([Ca(2+)](i)), and myogenic tone were similar in cav-1(+/+) and cav-1(-/-) arteries. In contrast, pressure elevations to between 30 and 70 mmHg induced a smaller depolarization, [Ca(2+)](i) elevation, and myogenic response in cav-1(-/-) arteries. Depolarization induced by 60 mM K(+) also produced an attenuated [Ca(2+)](i) elevation and constriction in cav-1(-/-) arteries, whereas extracellular Ca(2+) removal and diltiazem, an L-type Ca(2+) channel blocker, similarly dilated cav-1(+/+) and cav-1(-/-) arteries. N(omega)-nitro-l-arginine, an nitric oxide synthase inhibitor, did not restore myogenic tone in cav-1(-/-) arteries. Iberiotoxin, a selective Ca(2+)-activated K(+) (K(Ca)) channel blocker, induced a similar depolarization and constriction in pressurized cav-1(+/+) and cav-1(-/-) arteries. Since pressurized cav-1(-/-) arteries are more hyperpolarized and this effect would reduce K(Ca) current, these data suggest that cav-1 ablation leads to functional K(Ca) channel activation, an effect that should contribute to the attenuated myogenic constriction. In summary, data indicate that cav-1 ablation reduces pressure-induced depolarization and depolarization-induced Ca(2+) influx, and these effects combine to produce a diminished arterial wall [Ca(2+)](i) elevation and constriction.
Collapse
Affiliation(s)
- Adebowale Adebiyi
- Dept of Physiology, Univ of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
27
|
Lin WW, Lin YC, Chang TY, Tsai SH, Ho HC, Chen YT, Yang VC. Caveolin-1 Expression Is Associated with Plaque Formation in Hypercholesterolemic Rabbits. J Histochem Cytochem 2006; 54:897-904. [PMID: 16585386 DOI: 10.1369/jhc.5a6869.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Caveolin-1, the major structural protein of caveolae, is present in several cell types known to play a role in the development of atherosclerosis. In this study, the distribution and expression of caveolin-1 in the arterial walls were studied in hypercholesterolemic rabbits. Immunohistochemical results indicated that the staining intensity of caveolin-1 reached a high level in the arterial intima at 5 weeks after high-cholesterol-diet treatment and decreased to a very low level at 8 weeks when atheromatous plaques appeared. Western blot analysis showed that in rabbits fed a high-cholesterol diet for 5 weeks, the expression of caveolin-1 reached its highest level and then decreased from 8 to 12 weeks. The proliferative activity of smooth muscle cells (SMCs) decreased to the lowest level at 5 weeks and then increased at 8 and 12 weeks. Nitric oxide synthase activity gradually decreased in animals fed a high-cholesterol diet throughout the experiment. These studies demonstrate that the change in abundance of caveolin-1 is associated with SMC proliferation in the formation of atheromatous plaque after hypercholesterolemia insult.
Collapse
Affiliation(s)
- Wei-Wen Lin
- Department of Life Science, Tunghai University, 181, Section 3, Taichung Harbor Road, Taichung, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
28
|
Zulli A, Buxton BF, Black MJ, Hare DL. CD34 Class III positive cells are present in atherosclerotic plaques of the rabbit model of atherosclerosis. Histochem Cell Biol 2005; 124:517-22. [PMID: 16177890 DOI: 10.1007/s00418-005-0072-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2005] [Indexed: 01/16/2023]
Abstract
CD34 is a positive marker for haematopoietic stem cells and endothelial cells. Recent evidence suggests that haematopoietic progenitor cells are involved in atherogenesis. CD34-positive haematopoietic progenitor cells have never been described in rabbit atherosclerotic tissues. The aim of this study is to identify CD34-positive haematopoietic progenitor cells in rabbit atherosclerotic tissues, and to compare this with macrophage (RAM-11), alpha smooth muscle cell actin and fibroblast (prolyl-4-hydroxylase) immunoreactive cells. Sixteen Male New Zealand White rabbits were divided into two groups: Group 1, control diet (Con); group 2, 0.5% cholesterol diet, and killed after 12 weeks. Immunohistochemistry was used to detect CD34 haematopoietic progenitor cells. CD34-positive haematopoietic progenitor cells were identified both within and overlying atherosclerotic plaques. As well, these haematopoietic progenitor cells also stained for RAM-11, CD45, prolyl-4 hydroxylase and alpha smooth muscle cell actin. These findings suggest that in the rabbit model of atherosclerosis, the previously identified macrophages, smooth muscle cells and fibroblasts within and overlying atherosclerotic plaques might be of haematopoietic origin.
Collapse
Affiliation(s)
- Anthony Zulli
- Division of Cardiovascular Research, Department of Cardiology, University of Melbourne, Austin Health, Heidelberg, 3084, Australia.
| | | | | | | |
Collapse
|