1
|
Briggs EJ, Foley S, Cook LG. Gondwanan relic or recent arrival? The biogeographic origins and systematics of Australian tarantulas. Mol Phylogenet Evol 2025; 204:108246. [PMID: 39603547 DOI: 10.1016/j.ympev.2024.108246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/23/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024]
Abstract
The composition of Australia's fauna and flora has been largely assembled by two biogeographic processes, vicariance and long-distance dispersal and establishment. These patterns can be observed today through the survival of Gondwanan lineages contrasted with relatively recent colonization from south-east Asia, respectively. In general, the post-Gondwanan immigrant lineages from south-east Asia are taxa with traits that facilitate dispersal. Consequently, taxa like tarantulas (Araneae, Theraphosidae) that are largely pan-tropical but also have a low propensity for dispersal, are thought to be Gondwanan in origin. However, the Australian tarantulas are unsampled for phylogenomic studies and, as such, their classification and biogeographic origins have been long debated and are unresolved. Here we test if their current, morphology-based classification in Selenocosmiinae is accurate and assess whether the Australian tarantulas were present in Australia while it was part of Gondwana. We sample 369 tarantula specimens from across Australia, greatly expanding the geographic sampling of previous studies, to develop the first continent-wide phylogeny of the Australian tarantulas. To resolve the 'back bone' of the Australian tarantula phylogeny we generate 20 new transcriptomes for species of Australian tarantulas representing distinct lineages uncovered using mitochondrial sequence data and combine these new transcriptomes with published transcriptomic data. Through the recovery of ultra-conserved element (UCE) loci from transcriptomes and testing multiple data occupancy matrices, we find that the Australian clade is monophyletic and nested inside the largely Asian Selenocosmiinae. We find the Australian fauna are a relatively young radiation with a crown age of 18.8-8.3 Ma and we therefore reject the hypothesis of a Gondwanan origin for these animals and, instead, infer a recent dispersal from south-east Asia. Our findings indicate that they underwent a rapid radiation, possibly coinciding with their arrival into Australia. Our findings refute the monophyly of Selenocosmia and Coremiocnemis as currently recognised, and we remove Selenocosmia stalkeri from synonymy with Selenocosmia stirlingi.
Collapse
Affiliation(s)
- Ethan J Briggs
- School of the Environment, The University of Queensland, Brisbane, Queensland 4072, Australia; Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA.
| | - Saoirse Foley
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Lyn G Cook
- School of the Environment, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
2
|
Bjornson S, Verbruggen H, Upham NS, Steenwyk JL. Reticulate evolution: Detection and utility in the phylogenomics era. Mol Phylogenet Evol 2024; 201:108197. [PMID: 39270765 DOI: 10.1016/j.ympev.2024.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Phylogenomics has enriched our understanding that the Tree of Life can have network-like or reticulate structures among some taxa and genes. Two non-vertical modes of evolution - hybridization/introgression and horizontal gene transfer - deviate from a strictly bifurcating tree model, causing non-treelike patterns. However, these reticulate processes can produce similar patterns to incomplete lineage sorting or recombination, potentially leading to ambiguity. Here, we present a brief overview of a phylogenomic workflow for inferring organismal histories and compare methods for distinguishing modes of reticulate evolution. We discuss how the timing of coalescent events can help disentangle introgression from incomplete lineage sorting and how horizontal gene transfer events can help determine the relative timing of speciation events. In doing so, we identify pitfalls of certain methods and discuss how to extend their utility across the Tree of Life. Workflows, methods, and future directions discussed herein underscore the need to embrace reticulate evolutionary patterns for understanding the timing and rates of evolutionary events, providing a clearer view of life's history.
Collapse
Affiliation(s)
- Saelin Bjornson
- School of BioSciences, University of Melbourne, Victoria, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Victoria, Australia; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
3
|
Fedosov AE, Zaharias P, Lemarcis T, Modica MV, Holford M, Oliverio M, Kantor YI, Puillandre N. Phylogenomics of Neogastropoda: The Backbone Hidden in the Bush. Syst Biol 2024; 73:521-531. [PMID: 38456663 PMCID: PMC11377187 DOI: 10.1093/sysbio/syae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/16/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024] Open
Abstract
The molluskan order Neogastropoda encompasses over 15,000 almost exclusively marine species playing important roles in benthic communities and in the economies of coastal countries. Neogastropoda underwent intensive cladogenesis in the early stages of diversification, generating a "bush" at the base of their evolutionary tree, which has been hard to resolve even with high throughput molecular data. In the present study to resolve the bush, we use a variety of phylogenetic inference methods and a comprehensive exon capture dataset of 1817 loci (79.6% data occupancy) comprising 112 taxa of 48 out of 60 Neogastropoda families. Our results show consistent topologies and high support in all analyses at (super)family level, supporting monophyly of Muricoidea, Mitroidea, Conoidea, and, with some reservations, Olivoidea and Buccinoidea. Volutoidea and Turbinelloidea as currently circumscribed are clearly paraphyletic. Despite our analyses consistently resolving most backbone nodes, 3 prove problematic: First, the uncertain placement of Cancellariidae, as the sister group to either a Ficoidea-Tonnoidea clade or to the rest of Neogastropoda, leaves monophyly of Neogastropoda unresolved. Second, relationships are contradictory at the base of the major "core Neogastropoda" grouping. Third, coalescence-based analyses reject monophyly of the Buccinoidea in relation to Vasidae. We analyzed phylogenetic signal of targeted loci in relation to potential biases, and we propose the most probable resolutions in the latter 2 recalcitrant nodes. The uncertain placement of Cancellariidae may be explained by orthology violations due to differential paralog loss shortly after the whole genome duplication, which should be resolved with a curated set of longer loci.
Collapse
Affiliation(s)
- Alexander E Fedosov
- Department of Zoology, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Paul Zaharias
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Thomas Lemarcis
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Maria Vittoria Modica
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Mandë Holford
- Department of Chemistry, Hunter College, Belfer Research Building, City University of New York, 413 E. 69th Street, BRB 424, New York, NY 10021, USA
- Department of Invertebrate Zoology, the American Museum of Natural History, New York, NY 10024, USA
- PhD Programs in Biology, Biochemistry, and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Marco Oliverio
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
- Department of Biology and Biotechnologies "Charles Darwin," Sapienza University of Rome, Viale dell'Università 32, I-00185 Rome, Italy
| | - Yuri I Kantor
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
- Department of Ecology and Morphology of Marine Invertebrates, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky prospect, 33, 119071 Moscow, Russia
| | - Nicolas Puillandre
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
| |
Collapse
|
4
|
Liu H, Steenwyk JL, Zhou X, Schultz DT, Kocot KM, Shen XX, Rokas A, Li Y. A taxon-rich and genome-scale phylogeny of Opisthokonta. PLoS Biol 2024; 22:e3002794. [PMID: 39283949 PMCID: PMC11426530 DOI: 10.1371/journal.pbio.3002794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/26/2024] [Accepted: 08/07/2024] [Indexed: 09/27/2024] Open
Abstract
Ancient divergences within Opisthokonta-a major lineage that includes organisms in the kingdoms Animalia, Fungi, and their unicellular relatives-remain contentious. To assess progress toward a genome-scale Opisthokonta phylogeny, we conducted the most taxon rich phylogenomic analysis using sets of genes inferred with different orthology inference methods and established the geological timeline of Opisthokonta diversification. We also conducted sensitivity analysis by subsampling genes or taxa from the full data matrix based on filtering criteria previously shown to improve phylogenomic inference. We found that approximately 85% of internal branches were congruent across data matrices and the approaches used. Notably, the use of different orthology inference methods was a substantial contributor to the observed incongruence: analyses using the same set of orthologs showed high congruence of 97% to 98%, whereas different sets of orthologs resulted in somewhat lower congruence (87% to 91%). Examination of unicellular Holozoa relationships suggests that the instability observed across varying gene sets may stem from weak phylogenetic signals. Our results provide a comprehensive Opisthokonta phylogenomic framework that will be useful for illuminating ancient evolutionary episodes concerning the origin and diversification of the 2 major eukaryotic kingdoms and emphasize the importance of investigating effects of orthology inference on phylogenetic analyses to resolve ancient divergences.
Collapse
Affiliation(s)
- Hongyue Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Darrin T Schultz
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
- Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America
| | - Kevin M Kocot
- University of Alabama, Department of Biological Sciences & Alabama Museum of Natural History, Tuscaloosa, Alabama, United States of America
| | - Xing-Xing Shen
- Institute of Insect Sciences and Centre for Evolutionary and Organismal Biology, Zhejiang University, Hangzhou, China
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
5
|
Ma XG, Ren YB, Sun H. Introgression and incomplete lineage sorting blurred phylogenetic relationships across the genomes of sclerophyllous oaks from southwest China. Cladistics 2024; 40:357-373. [PMID: 38197450 DOI: 10.1111/cla.12570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/27/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024] Open
Abstract
Resolving evolutionary relationships among closely related species with interspecific gene flow is challenging. Genome-scale data provide opportunities to clarify complex evolutionary relationships in closely related species and to observe variations in species relationships across the genomes of such species. The Himalayan-Hengduan subalpine oaks have a nearly completely sympatric distribution in southwest China and probably constitute a syngameon. In this study, we mapped resequencing data from different species in this group to the Quercus aquifolioides reference genome to obtain a high-quality filtered single nucleotide polymorphism (SNP) dataset. We also assembled their plastomes. We reconstructed their phylogenetic relationships, explored the level and pattern of introgression among these species and investigated gene tree variation in the genomes of these species using sliding windows. The same or closely related plastomes were found to be shared extensively among different species within a specific geographical area. Phylogenomic analyses of genome-wide SNP data found that most oaks in the Himalayan-Hengduan subalpine clade showed genetic coherence, but several species were found to be connected by introgression. The gene trees obtained using sliding windows showed that the phylogenetic relationships in the genomes of oaks are highly heterogeneous and therefore highly obscured. Our study found that all the oaks of the Himalayan-Hengduan subalpine clade from southwest China form a syngameon. The obscured phylogenetic relationships observed empirically across the genome are best explained by interspecific gene flow in conjunction with incomplete lineage sorting.
Collapse
Affiliation(s)
- Xiang-Guang Ma
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yue-Bo Ren
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
6
|
Bruneau A, de Queiroz LP, Ringelberg JJ, Borges LM, Bortoluzzi RLDC, Brown GK, Cardoso DBOS, Clark RP, Conceição ADS, Cota MMT, Demeulenaere E, de Stefano RD, Ebinger JE, Ferm J, Fonseca-Cortés A, Gagnon E, Grether R, Guerra E, Haston E, Herendeen PS, Hernández HM, Hopkins HCF, Huamantupa-Chuquimaco I, Hughes CE, Ickert-Bond SM, Iganci J, Koenen EJM, Lewis GP, de Lima HC, de Lima AG, Luckow M, Marazzi B, Maslin BR, Morales M, Morim MP, Murphy DJ, O’Donnell SA, Oliveira FG, Oliveira ACDS, Rando JG, Ribeiro PG, Ribeiro CL, Santos FDS, Seigler DS, da Silva GS, Simon MF, Soares MVB, Terra V. Advances in Legume Systematics 14. Classification of Caesalpinioideae. Part 2: Higher-level classification. PHYTOKEYS 2024; 240:1-552. [PMID: 38912426 PMCID: PMC11188994 DOI: 10.3897/phytokeys.240.101716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 11/19/2023] [Indexed: 06/25/2024]
Abstract
Caesalpinioideae is the second largest subfamily of legumes (Leguminosae) with ca. 4680 species and 163 genera. It is an ecologically and economically important group formed of mostly woody perennials that range from large canopy emergent trees to functionally herbaceous geoxyles, lianas and shrubs, and which has a global distribution, occurring on every continent except Antarctica. Following the recent re-circumscription of 15 Caesalpinioideae genera as presented in Advances in Legume Systematics 14, Part 1, and using as a basis a phylogenomic analysis of 997 nuclear gene sequences for 420 species and all but five of the genera currently recognised in the subfamily, we present a new higher-level classification for the subfamily. The new classification of Caesalpinioideae comprises eleven tribes, all of which are either new, reinstated or re-circumscribed at this rank: Caesalpinieae Rchb. (27 genera / ca. 223 species), Campsiandreae LPWG (2 / 5-22), Cassieae Bronn (7 / 695), Ceratonieae Rchb. (4 / 6), Dimorphandreae Benth. (4 / 35), Erythrophleeae LPWG (2 /13), Gleditsieae Nakai (3 / 20), Mimoseae Bronn (100 / ca. 3510), Pterogyneae LPWG (1 / 1), Schizolobieae Nakai (8 / 42-43), Sclerolobieae Benth. & Hook. f. (5 / ca. 113). Although many of these lineages have been recognised and named in the past, either as tribes or informal generic groups, their circumscriptions have varied widely and changed over the past decades, such that all the tribes described here differ in generic membership from those previously recognised. Importantly, the approximately 3500 species and 100 genera of the former subfamily Mimosoideae are now placed in the reinstated, but newly circumscribed, tribe Mimoseae. Because of the large size and ecological importance of the tribe, we also provide a clade-based classification system for Mimoseae that includes 17 named lower-level clades. Fourteen of the 100 Mimoseae genera remain unplaced in these lower-level clades: eight are resolved in two grades and six are phylogenetically isolated monogeneric lineages. In addition to the new classification, we provide a key to genera, morphological descriptions and notes for all 163 genera, all tribes, and all named clades. The diversity of growth forms, foliage, flowers and fruits are illustrated for all genera, and for each genus we also provide a distribution map, based on quality-controlled herbarium specimen localities. A glossary for specialised terms used in legume morphology is provided. This new phylogenetically based classification of Caesalpinioideae provides a solid system for communication and a framework for downstream analyses of biogeography, trait evolution and diversification, as well as for taxonomic revision of still understudied genera.
Collapse
Affiliation(s)
- Anne Bruneau
- Institut de recherche en biologie végétale and Département de Sciences biologiques, Université de Montréal, 4101 Sherbrooke E., Montreal (QC) H1X 2B2, CanadaUniversité de MontréalMontrealCanada
| | - Luciano Paganucci de Queiroz
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s/n, Campus, Novo Horizonte. 44036-900, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Jens J. Ringelberg
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, SwitzerlandUniversity of ZurichZurichSwitzerland
- School of Geosciences, University of Edinburgh, Old College, South Bridge, Edinburgh EH8 9YL, UKUniversity of EdinburghEdinburghUnited Kingdom
| | - Leonardo M. Borges
- Universidade Federal de São Carlos, Departamento de Botânica, Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, BrazilUniversidade Federal de São CarlosSão CarlosBrazil
| | - Roseli Lopes da Costa Bortoluzzi
- Programa de Pós-graduação em Produção Vegetal, Universidade do Estado de Santa Catarina, Centro de Ciências Agroveterinárias, Avenida Luiz de Camões 2090, 88520-000, Lages, Santa Catarina, BrazilUniversidade do Estado de Santa CatarinaSanta CatarinaBrazil
| | - Gillian K. Brown
- Queensland Herbarium and Biodiversity Science, Department of Environment and Science, Toowong, Queensland, 4066, AustraliaQueensland Herbarium and Biodiversity ScienceToowongAustralia
| | - Domingos B. O. S. Cardoso
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Pacheco Leão 915, 22460-030, Rio de Janeiro, RJ, BrazilInstituto de Pesquisas Jardim Botânico do Rio de JaneiroRio de JaneiroBrazil
- Programa de Pós-Graduação em Biodiversidade e Evolução (PPGBioEvo), Instituto de Biologia, Universidade Federal de Bahia (UFBA), Rua Barão de Jeremoabo, s.n., Ondina, 40170-115, Salvador, BA, BrazilUniversidade Federal de BahiaSalvadorBrazil
| | - Ruth P. Clark
- Accelerated Taxonomy Department, Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UKRoyal Botanic GardensRichmondUnited Kingdom
| | - Adilva de Souza Conceição
- Programa de Pós-graduação em Diversidade Vegetal, Universidade do Estado da Bahia, Herbário HUNEB, Campus VIII, Rua do Gangorra 503, 48608-240, Paulo Afonso, Bahia, BrazilUniversidade do Estado da BahiaBahiaBrazil
| | - Matheus Martins Teixeira Cota
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s/n, Campus, Novo Horizonte. 44036-900, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Else Demeulenaere
- Center for Island Sustainability and Sea Grant, University of Guam, UOG Station, Mangilao, 96923, GuamUniversity of GuamMangilaoGuam
| | - Rodrigo Duno de Stefano
- Centro de Investigación Científica de Yucatán, A.C. (CICY), Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo; CP 97205, Mérida, Yucatán, MexicoCentro de Investigación Científica de Yucatán, A.C.MéridaMexico
| | - John E. Ebinger
- Eastern Illinois University, Charleston, IL 61920, USAEastern Illinois UniversityCharlestonUnited States of America
| | - Julia Ferm
- Department of Ecology, Environment and Plant Sciences, 10691, Stockholm University, Stockholm, SwedenStockholm UniversityStockholmSweden
| | - Andrés Fonseca-Cortés
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s/n, Campus, Novo Horizonte. 44036-900, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Edeline Gagnon
- Department of Integrative Biology, University of Guelph, 50 Stone Road, Guelph (ON) N1G 2W1, CanadaRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
- Chair of Phytopathology, Technical University Munich, 85354 Freising, GermanyUniversity of GuelphGuelphCanada
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UKTechnical University MunichFreisingGermany
| | - Rosaura Grether
- Departamento de Biología, Universidad Autónoma Metropolitana-Iztapalapa, Apdo. Postal 55-535, 09340 Ciudad de México, MexicoUniversidad Autónoma Metropolitana-IztapalapaCiudad de MéxicoMexico
| | - Ethiéne Guerra
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Botânica, Av. Bento Gonçalves 9500, Bloco IV - Prédio 43433, Porto Alegre, RS, 91501-970, BrazilUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Elspeth Haston
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UKTechnical University MunichFreisingGermany
| | - Patrick S. Herendeen
- Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL 60022, USAChicago Botanic GardenGlencoeUnited States of America
| | - Héctor M. Hernández
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510 Ciudad de México, MexicoUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Helen C. F. Hopkins
- Accelerated Taxonomy Department, Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UKRoyal Botanic GardensRichmondUnited Kingdom
| | - Isau Huamantupa-Chuquimaco
- Herbario Alwyn Gentry (HAG), Universidad Nacional Amazónica de Madre de Dios (UNAMAD), AV. Jorge Chávez N°1160, Madre de Dios, PeruUniversidad Nacional Amazónica de Madre de DiosMadre de DiosPeru
| | - Colin E. Hughes
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, SwitzerlandUniversity of ZurichZurichSwitzerland
| | - Stefanie M. Ickert-Bond
- Department of Biology & Wildlife & Herbarium (ALA) at the University of Alaska Museum of the North, University of Alaska Fairbanks, P.O. Box 756960, Fairbanks AK 99775-6960, USAUniversity of Alaska FairbanksFairbanksUnited States of America
| | - João Iganci
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Botânica, Av. Bento Gonçalves 9500, Bloco IV - Prédio 43433, Porto Alegre, RS, 91501-970, BrazilUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Programa de Pós-Graduação em Fisiologia Vegetal, Universidade Federal de Pelotas, Instituto de Biologia, Campus Universitário Capão do Leão, Passeio André Dreyfus, Departamento de Botânica, Prédio 21, Pelotas, Rio Grande do Sul, 96010-900, BrazilUniversidade Federal de PelotasPelotasBrazil
| | - Erik J. M. Koenen
- Evolutionary Biology & Ecology, Université Libre de Bruxelles, Faculté des Sciences, Campus du Solbosch - CP 160/12, Avenue F.D. Roosevelt, 50, 1050 Bruxelles, BelgiumUniversité Libre de BruxellesBruxellesBelgium
| | - Gwilym P. Lewis
- Accelerated Taxonomy Department, Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UKRoyal Botanic GardensRichmondUnited Kingdom
| | - Haroldo Cavalcante de Lima
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Pacheco Leão 915, 22460-030, Rio de Janeiro, RJ, BrazilInstituto de Pesquisas Jardim Botânico do Rio de JaneiroRio de JaneiroBrazil
- Instituto Nacional da Mata Atlântica / INMA-MCTI, Av. José Ruschi, 4, Centro, 29650-000, Santa Teresa, Espírito Santo, BrazilInstituto Nacional da Mata AtlânticaSanta TeresaBrazil
| | - Alexandre Gibau de Lima
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Pacheco Leão 915, 22460-030, Rio de Janeiro, RJ, BrazilInstituto de Pesquisas Jardim Botânico do Rio de JaneiroRio de JaneiroBrazil
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, SwedenUniversity of GothenburgGothenburgSweden
| | - Melissa Luckow
- School of Integrative Plant Science, Plant Biology Section, Cornell University, 215 Garden Avenue, Roberts Hall 260, Ithaca, NY 14853, USACornell UniversityIthacaUnited States of America
| | - Brigitte Marazzi
- Natural History Museum of Canton Ticino, Viale C. Cattaneo 4, 6900 Lugano, SwitzerlandNatural History Museum of Canton TicinoLuganoSwitzerland
| | - Bruce R. Maslin
- Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Western Australia, 6983, AustraliaWestern Australian HerbariumBentley Delivery CentreAustralia
- Singapore Herbarium, 1 Cluny Road, Singapore, SingaporeSingapore HerbariumSingaporeSingapore
| | - Matías Morales
- Instituto de Recursos Biológicos, CIRN–CNIA, INTA. N. Repetto & Los Reseros s.n., Hurlingham, Buenos Aires, ArgentinaInstituto de Recursos BiológicosBuenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, ArgentinaConsejo Nacional de Investigaciones Científicas y TécnicasCiudad Autónoma de Buenos AiresArgentina
| | - Marli Pires Morim
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Pacheco Leão 915, 22460-030, Rio de Janeiro, RJ, BrazilInstituto de Pesquisas Jardim Botânico do Rio de JaneiroRio de JaneiroBrazil
| | - Daniel J. Murphy
- Royal Botanic Gardens Victoria, Melbourne, Victoria, 3004, AustraliaRoyal Botanic Gardens VictoriaVictoriaAustralia
| | - Shawn A. O’Donnell
- Geography and Environmental Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne, NE1 8ST, UKNorthumbria UniversityNewcastle upon TyneUnited Kingdom
| | - Filipe Gomes Oliveira
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s/n, Campus, Novo Horizonte. 44036-900, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Ana Carla da Silva Oliveira
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s/n, Campus, Novo Horizonte. 44036-900, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Juliana Gastaldello Rando
- Programa de Pós-graduação em Ciências Ambientais, Universidade Federal do Oeste da Bahia, Rua Professor José Seabra Lemos 316, 47800-021, Barreiras, Bahia, BrazilUniversidade Federal do Oeste da BahiaBarreirasBrazil
| | - Pétala Gomes Ribeiro
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s/n, Campus, Novo Horizonte. 44036-900, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Carolina Lima Ribeiro
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s/n, Campus, Novo Horizonte. 44036-900, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Felipe da Silva Santos
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s/n, Campus, Novo Horizonte. 44036-900, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - David S. Seigler
- Department of Plant Biology, University of Illinois, Urbana, IL 61801, USAUniversity of IllinoisUrbanaUnited States of America
| | - Guilherme Sousa da Silva
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, 13083-876, São Paulo/SP, BrazilUniversidade Estadual de CampinasSão PauloBrazil
| | - Marcelo F. Simon
- Empresa Brasileira de Pesquisa Agropecuária (Embrapa) Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Caixa Postal 02372, 70770-917, Brasília/DF, BrazilEmpresa Brasileira de Pesquisa AgropecuáriaBrasíliaBrazil
| | - Marcos Vinícius Batista Soares
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Botânica, Av. Bento Gonçalves 9500, Bloco IV - Prédio 43433, Porto Alegre, RS, 91501-970, BrazilUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Vanessa Terra
- Instituto de Biologia, Universidade Federal de Santa Maria, 97105-900, Santa Maria/RS, BrazilUniversidade Federal de Santa MariaSanta MariaBrazil
| |
Collapse
|
7
|
Jiang Z, Zang W, Ericson PGP, Song G, Wu S, Feng S, Drovetski SV, Liu G, Zhang D, Saitoh T, Alström P, Edwards SV, Lei F, Qu Y. Gene flow and an anomaly zone complicate phylogenomic inference in a rapidly radiated avian family (Prunellidae). BMC Biol 2024; 22:49. [PMID: 38413944 PMCID: PMC10900574 DOI: 10.1186/s12915-024-01848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Resolving the phylogeny of rapidly radiating lineages presents a challenge when building the Tree of Life. An Old World avian family Prunellidae (Accentors) comprises twelve species that rapidly diversified at the Pliocene-Pleistocene boundary. RESULTS Here we investigate the phylogenetic relationships of all species of Prunellidae using a chromosome-level de novo assembly of Prunella strophiata and 36 high-coverage resequenced genomes. We use homologous alignments of thousands of exonic and intronic loci to build the coalescent and concatenated phylogenies and recover four different species trees. Topology tests show a large degree of gene tree-species tree discordance but only 40-54% of intronic gene trees and 36-75% of exonic genic trees can be explained by incomplete lineage sorting and gene tree estimation errors. Estimated branch lengths for three successive internal branches in the inferred species trees suggest the existence of an empirical anomaly zone. The most common topology recovered for species in this anomaly zone was not similar to any coalescent or concatenated inference phylogenies, suggesting presence of anomalous gene trees. However, this interpretation is complicated by the presence of gene flow because extensive introgression was detected among these species. When exploring tree topology distributions, introgression, and regional variation in recombination rate, we find that many autosomal regions contain signatures of introgression and thus may mislead phylogenetic inference. Conversely, the phylogenetic signal is concentrated to regions with low-recombination rate, such as the Z chromosome, which are also more resistant to interspecific introgression. CONCLUSIONS Collectively, our results suggest that phylogenomic inference should consider the underlying genomic architecture to maximize the consistency of phylogenomic signal.
Collapse
Affiliation(s)
- Zhiyong Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenqing Zang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Per G P Ericson
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, PO Box 50007, Stockholm, SE-104 05, Sweden
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shaoyuan Wu
- Jiangsu International Joint Center of Genomics, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Shaohong Feng
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, 314102, China
| | - Sergei V Drovetski
- National Museum of Natural History, Smithsonian Institution, Washington, DC, 20004, USA
- Present address: U.S. Geological Survey, Eastern Ecological Science Center at Patuxent Research Refuge, Laurel, MD, 20708, USA
| | - Gang Liu
- Chinese Academy of Forestry, Institute of Ecological Conservation and Restoration, Beijing, 100091, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Takema Saitoh
- Yamashina Institute for Ornithology, Abiko, Chiba, Japan
| | - Per Alström
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, 752 36, Uppsala, Sweden
| | - Scott V Edwards
- Museum of Comparative Zoology and Department of Organismic & Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, PO Box 50007, Stockholm, SE-104 05, Sweden.
| |
Collapse
|
8
|
Patané JSL, Martins J, Setubal JC. A Guide to Phylogenomic Inference. Methods Mol Biol 2024; 2802:267-345. [PMID: 38819564 DOI: 10.1007/978-1-0716-3838-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Phylogenomics aims at reconstructing the evolutionary histories of organisms taking into account whole genomes or large fractions of genomes. Phylogenomics has significant applications in fields such as evolutionary biology, systematics, comparative genomics, and conservation genetics, providing valuable insights into the origins and relationships of species and contributing to our understanding of biological diversity and evolution. This chapter surveys phylogenetic concepts and methods aimed at both gene tree and species tree reconstruction while also addressing common pitfalls, providing references to relevant computer programs. A practical phylogenomic analysis example including bacterial genomes is presented at the end of the chapter.
Collapse
Affiliation(s)
- José S L Patané
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração/Heart Institute Hospital das Clínicas - Faculdade de Medicina da Universidade de São Paulo São Paulo, São Paulo, SP, Brazil
| | - Joaquim Martins
- Integrative Omics group, Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - João Carlos Setubal
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Steenwyk JL, Li Y, Zhou X, Shen XX, Rokas A. Incongruence in the phylogenomics era. Nat Rev Genet 2023; 24:834-850. [PMID: 37369847 PMCID: PMC11499941 DOI: 10.1038/s41576-023-00620-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 06/29/2023]
Abstract
Genome-scale data and the development of novel statistical phylogenetic approaches have greatly aided the reconstruction of a broad sketch of the tree of life and resolved many of its branches. However, incongruence - the inference of conflicting evolutionary histories - remains pervasive in phylogenomic data, hampering our ability to reconstruct and interpret the tree of life. Biological factors, such as incomplete lineage sorting, horizontal gene transfer, hybridization, introgression, recombination and convergent molecular evolution, can lead to gene phylogenies that differ from the species tree. In addition, analytical factors, including stochastic, systematic and treatment errors, can drive incongruence. Here, we review these factors, discuss methodological advances to identify and handle incongruence, and highlight avenues for future research.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xing-Xing Shen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.
| |
Collapse
|
10
|
Bernot JP, Owen CL, Wolfe JM, Meland K, Olesen J, Crandall KA. Major Revisions in Pancrustacean Phylogeny and Evidence of Sensitivity to Taxon Sampling. Mol Biol Evol 2023; 40:msad175. [PMID: 37552897 PMCID: PMC10414812 DOI: 10.1093/molbev/msad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 08/10/2023] Open
Abstract
The clade Pancrustacea, comprising crustaceans and hexapods, is the most diverse group of animals on earth, containing over 80% of animal species and half of animal biomass. It has been the subject of several recent phylogenomic analyses, yet relationships within Pancrustacea show a notable lack of stability. Here, the phylogeny is estimated with expanded taxon sampling, particularly of malacostracans. We show small changes in taxon sampling have large impacts on phylogenetic estimation. By analyzing identical orthologs between two slightly different taxon sets, we show that the differences in the resulting topologies are due primarily to the effects of taxon sampling on the phylogenetic reconstruction method. We compare trees resulting from our phylogenomic analyses with those from the literature to explore the large tree space of pancrustacean phylogenetic hypotheses and find that statistical topology tests reject the previously published trees in favor of the maximum likelihood trees produced here. Our results reject several clades including Caridoida, Eucarida, Multicrustacea, Vericrustacea, and Syncarida. Notably, we find Copepoda nested within Allotriocarida with high support and recover a novel relationship between decapods, euphausiids, and syncarids that we refer to as the Syneucarida. With denser taxon sampling, we find Stomatopoda sister to this latter clade, which we collectively name Stomatocarida, dividing Malacostraca into three clades: Leptostraca, Peracarida, and Stomatocarida. A new Bayesian divergence time estimation is conducted using 13 vetted fossils. We review our results in the context of other pancrustacean phylogenetic hypotheses and highlight 15 key taxa to sample in future studies.
Collapse
Affiliation(s)
- James P Bernot
- Department of Invertebrate Zoology, US National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Christopher L Owen
- Systematic Entomology Laboratory, USDA-ARS, ℅ National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Joanna M Wolfe
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Kenneth Meland
- Department of Biology, University of Bergen, Bergen, Norway
| | - Jørgen Olesen
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Keith A Crandall
- Department of Invertebrate Zoology, US National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| |
Collapse
|
11
|
Das S, Greenbaum E, Meiri S, Bauer AM, Burbrink FT, Raxworthy CJ, Weinell JL, Brown RM, Brecko J, Pauwels OSG, Rabibisoa N, Raselimanana AP, Merilä J. Ultraconserved elements-based phylogenomic systematics of the snake superfamily Elapoidea, with the description of a new Afro-Asian family. Mol Phylogenet Evol 2023; 180:107700. [PMID: 36603697 DOI: 10.1016/j.ympev.2022.107700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
The highly diverse snake superfamily Elapoidea is considered to be a classic example of ancient, rapid radiation. Such radiations are challenging to fully resolve phylogenetically, with the highly diverse Elapoidea a case in point. Previous attempts at inferring a phylogeny of elapoids produced highly incongruent estimates of their evolutionary relationships, often with very low statistical support. We sought to resolve this situation by sequencing over 4,500 ultraconserved element loci from multiple representatives of every elapoid family/subfamily level taxon and inferring their phylogenetic relationships with multiple methods. Concatenation and multispecies coalescent based species trees yielded largely congruent and well-supported topologies. Hypotheses of a hard polytomy were not retained for any deep branches. Our phylogenies recovered Cyclocoridae and Elapidae as diverging early within Elapoidea. The Afro-Malagasy radiation of elapoid snakes, classified as multiple subfamilies of an inclusive Lamprophiidae by some earlier authors, was found to be monophyletic in all analyses. The genus Micrelaps was consistently recovered as sister to Lamprophiidae. We establish a new family, Micrelapidae fam. nov., for Micrelaps and assign Brachyophis to this family based on cranial osteological synapomorphy. We estimate that Elapoidea originated in the early Eocene and rapidly diversified into all the major lineages during this epoch. Ecological opportunities presented by the post-Cretaceous-Paleogene mass extinction event may have promoted the explosive radiation of elapoid snakes.
Collapse
Affiliation(s)
- Sunandan Das
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Finland.
| | - Eli Greenbaum
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA
| | - Shai Meiri
- School of Zoology, Tel Aviv University, Tel Aviv, Israel; The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| | - Aaron M Bauer
- Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA
| | - Frank T Burbrink
- Department of Herpetology, American Museum of Natural History, 200 Central Park West, New York, NY 10024-5192, USA
| | - Christopher J Raxworthy
- Department of Herpetology, American Museum of Natural History, 200 Central Park West, New York, NY 10024-5192, USA
| | - Jeffrey L Weinell
- Department of Herpetology, American Museum of Natural History, 200 Central Park West, New York, NY 10024-5192, USA; Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA
| | - Rafe M Brown
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA
| | - Jonathan Brecko
- Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium; Royal Museum for Central Africa, Tervuren, Belgium
| | - Olivier S G Pauwels
- Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium
| | - Nirhy Rabibisoa
- Sciences de la Vie et de l'Environnement, Faculté des Sciences, de Technologies et de l'Environnement, Université de Mahajanga, Campus Universitaire d'Ambondrona, BP 652, Mahajanga 401, Madagascar
| | - Achille P Raselimanana
- Zoologie et Biodiversité Animale, Faculté des Sciences, Université d'Antananarivo, BP 906, Antananarivo 101, Madagascar
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Finland; Area of Ecology and Biodiversity, School of Biological Sciences, Kadoorie Biological Sciences Building, Pokfulam Road, The University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
12
|
Peris D, Ubbelohde EJ, Kuang MC, Kominek J, Langdon QK, Adams M, Koshalek JA, Hulfachor AB, Opulente DA, Hall DJ, Hyma K, Fay JC, Leducq JB, Charron G, Landry CR, Libkind D, Gonçalves C, Gonçalves P, Sampaio JP, Wang QM, Bai FY, Wrobel RL, Hittinger CT. Macroevolutionary diversity of traits and genomes in the model yeast genus Saccharomyces. Nat Commun 2023; 14:690. [PMID: 36755033 PMCID: PMC9908912 DOI: 10.1038/s41467-023-36139-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Species is the fundamental unit to quantify biodiversity. In recent years, the model yeast Saccharomyces cerevisiae has seen an increased number of studies related to its geographical distribution, population structure, and phenotypic diversity. However, seven additional species from the same genus have been less thoroughly studied, which has limited our understanding of the macroevolutionary events leading to the diversification of this genus over the last 20 million years. Here, we show the geographies, hosts, substrates, and phylogenetic relationships for approximately 1,800 Saccharomyces strains, covering the complete genus with unprecedented breadth and depth. We generated and analyzed complete genome sequences of 163 strains and phenotyped 128 phylogenetically diverse strains. This dataset provides insights about genetic and phenotypic diversity within and between species and populations, quantifies reticulation and incomplete lineage sorting, and demonstrates how gene flow and selection have affected traits, such as galactose metabolism. These findings elevate the genus Saccharomyces as a model to understand biodiversity and evolution in microbial eukaryotes.
Collapse
Grants
- R01 GM080669 NIGMS NIH HHS
- T32 GM007133 NIGMS NIH HHS
- We thank the University of Wisconsin Biotechnology Center DNA Sequencing Facility for providing Illumina and Sanger sequencing facilities and services; Maria Sardi, Audrey Gasch, and Ursula Bond for providing strains; Sean McIlwain for providing guidance for genome ultra-scaffolding; Yury V. Bukhman for discussing applications of the Growth Curve Analysis Tool (GCAT); Mick McGee for HPLC analysis; Raúl Ortíz-Merino for assistance during YGAP annotations; Jessica Leigh for assistance with PopART; Cecile Ané for suggestions about BUCKy utilization and phylogenetic network analyses; Samina Naseeb and Daniela Delneri for sharing preliminary multi-locus Saccharomyces jurei data; and Branden Timm, Brian Kyle, and Dan Metzger for computational assistance. Some computations were performed on Tirant III of the Spanish Supercomputing Network (‘‘Servei d’Informàtica de la Universitat de València”) under the project BCV-2021-1-0001 granted to DP, while others were performed at the Wisconsin Energy Institute and the Center for High-Throughput Computing of the University of Wisconsin-Madison. During a portion of this project, DP was a researcher funded by the European Union’s Horizon 2020 research and innovation programme Marie Sklodowska-Curie, grant agreement No. 747775, the Research Council of Norway (RCN) grant Nos. RCN 324253 and 274337, and the Generalitat Valenciana plan GenT grant No. CIDEGENT/2021/039. DP is a recipient of an Illumina Grant for Illumina Sequencing Saccharomyces strains in this study. QKL was supported by the National Science Foundation under Grant No. DGE-1256259 (Graduate Research Fellowship) and the Predoctoral Training Program in Genetics, funded by the National Institutes of Health (5T32GM007133). This material is based upon work supported in part by the Great Lakes Bioenergy Research Center, Office of Science, Office of Biological and Environmental Research under Award Numbers DE-SC0018409 and DE-FC02-07ER64494; the National Science Foundation under Grant Nos. DEB-1253634, DEB-1442148, and DEB-2110403; and the USDA National Institute of Food and Agriculture Hatch Project Number 1020204. C.T.H. is an H. I. Romnes Faculty Fellow, supported by the Office of the Vice Chancellor for Research and Graduate Education with funding from Wisconsin Alumni Research Foundation. QMW was supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 31770018 and 31961133020. CRL holds the Canada Research Chair in Cellular Systems and Synthetic Biology, and his research on wild yeast is supported by a NSERC Discovery Grant.
Collapse
Affiliation(s)
- David Peris
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway.
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Spain.
| | - Emily J Ubbelohde
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Meihua Christina Kuang
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacek Kominek
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Quinn K Langdon
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Marie Adams
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Justin A Koshalek
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Amanda Beth Hulfachor
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Dana A Opulente
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Katie Hyma
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Justin C Fay
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Jean-Baptiste Leducq
- Departement des Sciences Biologiques, Université de Montréal, Montreal, QC, Canada
- Département de Biologie, PROTEO, Pavillon Charles‑Eugène‑Marchand, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Guillaume Charron
- Canada Natural Resources, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - Christian R Landry
- Département de Biologie, PROTEO, Pavillon Charles‑Eugène‑Marchand, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET)-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Carla Gonçalves
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Vanderbilt University, Department of Biological Sciences, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Paula Gonçalves
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - José Paulo Sampaio
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Qi-Ming Wang
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Russel L Wrobel
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Díaz-Escandón D, Tagirdzhanova G, Vanderpool D, Allen CCG, Aptroot A, Češka O, Hawksworth DL, Huereca A, Knudsen K, Kocourková J, Lücking R, Resl P, Spribille T. Genome-level analyses resolve an ancient lineage of symbiotic ascomycetes. Curr Biol 2022; 32:5209-5218.e5. [PMID: 36423639 DOI: 10.1016/j.cub.2022.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/30/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022]
Abstract
Ascomycota account for about two-thirds of named fungal species.1 Over 98% of known Ascomycota belong to the Pezizomycotina, including many economically important species as well as diverse pathogens, decomposers, and mutualistic symbionts.2 Our understanding of Pezizomycotina evolution has until now been based on sampling traditionally well-defined taxonomic classes.3,4,5 However, considerable diversity exists in undersampled and uncultured, putatively early-diverging lineages, and the effect of these on evolutionary models has seldom been tested. We obtained genomes from 30 putative early-diverging lineages not included in recent phylogenomic analyses and analyzed these together with 451 genomes covering all available ascomycete genera. We show that 22 of these lineages, collectively representing over 600 species, trace back to a single origin that diverged from the common ancestor of Eurotiomycetes and Lecanoromycetes over 300 million years BP. The new clade, which we recognize as a more broadly defined Lichinomycetes, includes lichen and insect symbionts, endophytes, and putative mycorrhizae and encompasses a range of morphologies so disparate that they have recently been placed in six different taxonomic classes. To test for shared hidden features within this group, we analyzed genome content and compared gene repertoires to related groups in Ascomycota. Regardless of their lifestyle, Lichinomycetes have smaller genomes than most filamentous Ascomycota, with reduced arsenals of carbohydrate-degrading enzymes and secondary metabolite gene clusters. Our expanded genome sample resolves the relationships of numerous "orphan" ascomycetes and establishes the independent evolutionary origins of multiple mutualistic lifestyles within a single, morphologically hyperdiverse clade of fungi.
Collapse
Affiliation(s)
- David Díaz-Escandón
- Department of Biological Sciences CW405, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Gulnara Tagirdzhanova
- Department of Biological Sciences CW405, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Dan Vanderpool
- National Genomics Center for Wildlife and Fish Conservation, Rocky Mountain Research Station, 800 E Beckwith, Missoula, MT 59812, USA
| | - Carmen C G Allen
- Department of Biological Sciences CW405, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - André Aptroot
- Laboratório de Botânica / Liquenologia, Instituto de Biociências Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva s/n Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900, Brazil
| | | | - David L Hawksworth
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Surrey TW9 3DS, UK; Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Alejandro Huereca
- Department of Biological Sciences CW405, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Kerry Knudsen
- Czech University of Life Sciences, Faculty of Environmental Sciences, Department of Ecology, Kamýcká 129, Praha-Suchdol 165 00, Czech Republic
| | - Jana Kocourková
- Czech University of Life Sciences, Faculty of Environmental Sciences, Department of Ecology, Kamýcká 129, Praha-Suchdol 165 00, Czech Republic
| | - Robert Lücking
- Botanischer Garten, Freie Universität Berlin, Königin-Luise-Straße 6-8, 14195 Berlin, Germany
| | - Philipp Resl
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Toby Spribille
- Department of Biological Sciences CW405, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
14
|
Rodríguez-Aguilar ED, Martínez-Barnetche J, Rodríguez MH. Three highly variable genome regions of the four dengue virus serotypes can accurately recapitulate the CDS phylogeny. MethodsX 2022; 9:101859. [PMID: 36187156 PMCID: PMC9516459 DOI: 10.1016/j.mex.2022.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/10/2022] [Indexed: 11/18/2022] Open
Abstract
The circulation of the four-dengue virus (DENV) serotypes has significantly increased in recent years, accompanied by an increase in viral genetic diversity. In order to conduct disease surveillance and understand DENV evolution and its effects on virus transmission and disease, efficient and accurate methods for phylogenetic classification are required. Phylogenetic analysis of different viral genes sequences is the most used method, the envelope gene (E) being the most frequently selected target. We explored the genetic variability of the four DENV serotypes throughout their complete coding sequence (CDS) of sequences available in GenBank and used genomic regions of different variability rate to recapitulate the phylogeny obtained with the DENV CDS. Our results indicate that the use of high or low variable regions accurately recapitulate the phylogeny obtained with CDS of sequences from different DENV genotypes. However, when analyzing the phylogeny of a single genotype, highly variable regions performed better in recapitulating the distance branch length, topology, and support of the CDS phylogeny. The use of three concatenated highly variable regions was not statistically different in distance branch length and support to that obtained in CDS phylogeny.•This study demonstrated the ability of highly variable regions of the DENV genome to recapitulate the phylogeny obtained with the full coding sequence (CDS).•The use of genomic regions of high or low variability did not affect the performance in recapitulating the phylogeny obtained with CDS from different genotypes. However, when phylogeny was analyzed for sequences from a single genotype, highly variable regions performed better in recapitulating the distance branch length, topology, and support of the CDS phylogeny.•The use of concatenated highly variable genome regions represent a useful option for recapitulating genome-wide phylogenies in analyses of sequences belonging to the same DENV genotype.
Collapse
|
15
|
Abstract
It has been assumed that fungi are characterized by a haploid-dominant life cycle with a general absence of mitosis in the diploid stage (haplontic life cycles). However, this characterization is based largely on information for Dikarya, a group of fungi that contains mushrooms, lichens, molds, yeasts, and most described fungi. We now appreciate that most early-diverging lineages of fungi are not Dikarya and share traits with protists, such as flagellated life stages. Here, we generated an improved phylogeny of the fungi by generating genome sequences of 69 zoosporic fungi. We show, using the estimated heterozygosity of these genomes, that many fungal lineages have diploid-dominant life cycles (diplontic). This finding forces us to rethink the early evolution of the fungal cell. Most of the described species in kingdom Fungi are contained in two phyla, the Ascomycota and the Basidiomycota (subkingdom Dikarya). As a result, our understanding of the biology of the kingdom is heavily influenced by traits observed in Dikarya, such as aerial spore dispersal and life cycles dominated by mitosis of haploid nuclei. We now appreciate that Fungi comprises numerous phylum-level lineages in addition to those of Dikarya, but the phylogeny and genetic characteristics of most of these lineages are poorly understood due to limited genome sampling. Here, we addressed major evolutionary trends in the non-Dikarya fungi by phylogenomic analysis of 69 newly generated draft genome sequences of the zoosporic (flagellated) lineages of true fungi. Our phylogeny indicated five lineages of zoosporic fungi and placed Blastocladiomycota, which has an alternation of haploid and diploid generations, as branching closer to the Dikarya than to the Chytridiomyceta. Our estimates of heterozygosity based on genome sequence data indicate that the zoosporic lineages plus the Zoopagomycota are frequently characterized by diploid-dominant life cycles. We mapped additional traits, such as ancestral cell-cycle regulators, cell-membrane– and cell-wall–associated genes, and the use of the amino acid selenocysteine on the phylogeny and found that these ancestral traits that are shared with Metazoa have been subject to extensive parallel loss across zoosporic lineages. Together, our results indicate a gradual transition in the genetics and cell biology of fungi from their ancestor and caution against assuming that traits measured in Dikarya are typical of other fungal lineages.
Collapse
|
16
|
Lozano-Fernandez J. A Practical Guide to Design and Assess a Phylogenomic Study. Genome Biol Evol 2022; 14:evac129. [PMID: 35946263 PMCID: PMC9452790 DOI: 10.1093/gbe/evac129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Over the last decade, molecular systematics has undergone a change of paradigm as high-throughput sequencing now makes it possible to reconstruct evolutionary relationships using genome-scale datasets. The advent of "big data" molecular phylogenetics provided a battery of new tools for biologists but simultaneously brought new methodological challenges. The increase in analytical complexity comes at the price of highly specific training in computational biology and molecular phylogenetics, resulting very often in a polarized accumulation of knowledge (technical on one side and biological on the other). Interpreting the robustness of genome-scale phylogenetic studies is not straightforward, particularly as new methodological developments have consistently shown that the general belief of "more genes, more robustness" often does not apply, and because there is a range of systematic errors that plague phylogenomic investigations. This is particularly problematic because phylogenomic studies are highly heterogeneous in their methodology, and best practices are often not clearly defined. The main aim of this article is to present what I consider as the ten most important points to take into consideration when planning a well-thought-out phylogenomic study and while evaluating the quality of published papers. The goal is to provide a practical step-by-step guide that can be easily followed by nonexperts and phylogenomic novices in order to assess the technical robustness of phylogenomic studies or improve the experimental design of a project.
Collapse
Affiliation(s)
- Jesus Lozano-Fernandez
- Department of Genetics, Microbiology and Statistics, Biodiversity Research Institute (IRBio), University of Barcelona, Avd. Diagonal 643, 08028 Barcelona, Spain
- Institute of Evolutionary Biology (CSIC – Universitat Pompeu Fabra), Passeig marítim de la Barcelona 37-49, 08003 Barcelona, Spain
| |
Collapse
|
17
|
Ringelberg JJ, Koenen EJM, Iganci JR, de Queiroz LP, Murphy DJ, Gaudeul M, Bruneau A, Luckow M, Lewis GP, Hughes CE. Phylogenomic analysis of 997 nuclear genes reveals the need for extensive generic re-delimitation in Caesalpinioideae (Leguminosae). PHYTOKEYS 2022; 205:3-58. [PMID: 36762007 PMCID: PMC9848904 DOI: 10.3897/phytokeys.205.85866] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/27/2022] [Indexed: 05/05/2023]
Abstract
Subfamily Caesalpinioideae with ca. 4,600 species in 152 genera is the second-largest subfamily of legumes (Leguminosae) and forms an ecologically and economically important group of trees, shrubs and lianas with a pantropical distribution. Despite major advances in the last few decades towards aligning genera with clades across Caesalpinioideae, generic delimitation remains in a state of considerable flux, especially across the mimosoid clade. We test the monophyly of genera across Caesalpinioideae via phylogenomic analysis of 997 nuclear genes sequenced via targeted enrichment (Hybseq) for 420 species and 147 of the 152 genera currently recognised in the subfamily. We show that 22 genera are non-monophyletic or nested in other genera and that non-monophyly is concentrated in the mimosoid clade where ca. 25% of the 90 genera are found to be non-monophyletic. We suggest two main reasons for this pervasive generic non-monophyly: (i) extensive morphological homoplasy that we document here for a handful of important traits and, particularly, the repeated evolution of distinctive fruit types that were historically emphasised in delimiting genera and (ii) this is an artefact of the lack of pantropical taxonomic syntheses and sampling in previous phylogenies and the consequent failure to identify clades that span the Old World and New World or conversely amphi-Atlantic genera that are non-monophyletic, both of which are critical for delimiting genera across this large pantropical clade. Finally, we discuss taxon delimitation in the phylogenomic era and especially how assessing patterns of gene tree conflict can provide additional insights into generic delimitation. This new phylogenomic framework provides the foundations for a series of papers reclassifying genera that are presented here in Advances in Legume Systematics (ALS) 14 Part 1, for establishing a new higher-level phylogenetic tribal and clade-based classification of Caesalpinioideae that is the focus of ALS14 Part 2 and for downstream analyses of evolutionary diversification and biogeography of this important group of legumes which are presented elsewhere.
Collapse
Affiliation(s)
- Jens J. Ringelberg
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH 8008, Zurich, SwitzerlandUniversity of ZurichZurichSwitzerland
| | - Erik J. M. Koenen
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH 8008, Zurich, SwitzerlandUniversity of ZurichZurichSwitzerland
- Present address: Evolutionary Biology & Ecology, Université Libre de Bruxelles, Faculté des Sciences, Campus du Solbosch - CP 160/12, Avenue F.D. Roosevelt, 50, 1050 Bruxelles, BelgiumUniversité Libre de BruxellesBruxellesBelgium
| | - João R. Iganci
- Instituto de Biologia, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, Travessa André Dreyfus s/n, Capão do Leão 96010-900, Rio Grande do Sul, BrazilUniversidade Federal de PelotasRio Grande do SulBrazil
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, 91501-970, BrazilUniversidade Federal do Rio Grande do SulRio Grande do SulBrazil
| | - Luciano P. de Queiroz
- Departamento Ciências Biológicas, Universidade Estadual de Feira de Santana, Avenida Transnordestina s/n – Novo Horizonte, 44036-900, Feira de Santana, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Daniel J. Murphy
- Royal Botanic Gardens Victoria, Birdwood Ave., Melbourne, VIC 3004, AustraliaRoyal Botanic Gardens VictoriaMelbourneAustralia
| | - Myriam Gaudeul
- Institut de Systématique, Evolution, Biodiversité (ISYEB), MNHN-CNRS-SU-EPHE-UA, 57 rue Cuvier, CP 39, 75231 Paris, Cedex 05, FranceInstitut de Systématique, Evolution, Biodiversité (ISYEB)ParisFrance
| | - Anne Bruneau
- Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montreal, QC H1X 2B2, CanadaUniversité de MontréalMontrealCanada
| | - Melissa Luckow
- School of Integrative Plant Science, Plant Biology Section, Cornell University, 215 Garden Avenue, Roberts Hall 260, Ithaca, NY 14853, USACornell UniversityIthacaUnited States of America
| | - Gwilym P. Lewis
- Accelerated Taxonomy Department, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UKAccelerated Taxonomy Department, Royal Botanic GardensRichmondUnited Kingdom
| | - Colin E. Hughes
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH 8008, Zurich, SwitzerlandUniversity of ZurichZurichSwitzerland
| |
Collapse
|
18
|
Li J, Wingfield MJ, Barnes I, Chen S. Calonectria in the age of genes and genomes: Towards understanding an important but relatively unknown group of pathogens. MOLECULAR PLANT PATHOLOGY 2022; 23:1060-1072. [PMID: 35338559 PMCID: PMC9190971 DOI: 10.1111/mpp.13209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/26/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The genus Calonectria includes many aggressive plant pathogens causing diseases on various agricultural crops as well as forestry and ornamental tree species. Some species have been accidentally introduced into new environments via international trade of putatively asymptomatic plant germplasm or contaminated soil, resulting in significant economic losses. This review provides an overview of the taxonomy, population biology, and pathology of Calonectria species, specifically emerging from contemporary studies that have relied on DNA-based technologies. The growing importance of genomics in future research is highlighted. A life cycle is proposed for Calonectria species, aimed at improving our ability to manage diseases caused by these pathogens.
Collapse
Affiliation(s)
- JieQiong Li
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
- Research Institute of Fast‐growing Trees/China Eucalypt Research Centre, Chinese Academy of ForestryZhanjiangChina
| | - Michael J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
| | - ShuaiFei Chen
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
- Research Institute of Fast‐growing Trees/China Eucalypt Research Centre, Chinese Academy of ForestryZhanjiangChina
| |
Collapse
|
19
|
Abstract
Whole genome sequences are beginning to revolutionize our understanding of phylogenetic relationships. Yet, even whole genome sequences can fail to resolve the evolutionary history of the most rapidly radiating lineages, where incomplete lineage sorting, standing genetic variation, introgression, and other factors obscure the phylogenetic history of the group. To overcome such challenges, one emerging strategy is to integrate results across different methods. Most such approaches have been implemented on reduced representation genomic data sets, but whole genomes should provide the maximum possible evidence approach. Here, we test the ability of single nucleotide polymorphisms extracted from whole genome resequencing data, implemented in an integrative genomic approach, to resolve key nodes in the phylogeny of the mbuna, rock-dwelling cichlid fishes of Lake Malaŵi, which epitomize the phylogenetic intractability that often accompanies explosive lineage diversification. This monophyletic radiation has diversified at an unparalleled rate into several hundred species in less than 2 million years. Using an array of phylogenomic methods, we consistently recovered four major clades of mbuna, but a large basal polytomy among them. Although introgression between clades apparently contributed to the challenge of phylogenetic reconstruction, reduction of the data set to nonintrogressed sites still did not help to resolve the basal polytomy. On the other hand, relationships among six congeneric species pairs were resolved without ambiguity, even in one case where existing data led us to predict that resolution would be difficult. We conclude that the bursts of diversification at the earliest stages of the mbuna radiation may be phylogenetically unresolvable, but other regions of the tree are phylogenetically clearly supported. Integration of multiple phylogenomic approaches will continue to increase confidence in relationships inferred from these and other whole-genome data sets. [Incomplete lineage sorting; introgression; linkage disequilibrium; multispecies coalescence; rapid radiation; soft polytomy.]
Collapse
|
20
|
Tihelka E, Cai C, Giacomelli M, Lozano-Fernandez J, Rota-Stabelli O, Huang D, Engel MS, Donoghue PCJ, Pisani D. The evolution of insect biodiversity. Curr Biol 2021; 31:R1299-R1311. [PMID: 34637741 DOI: 10.1016/j.cub.2021.08.057] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Insects comprise over half of all described animal species. Together with the Protura (coneheads), Collembola (springtails) and Diplura (two-pronged bristletails), insects form the Hexapoda, a terrestrial arthropod lineage characterised by possessing six legs. Exponential growth of genome-scale data for the hexapods has substantially altered our understanding of the origin and evolution of insect biodiversity. Phylogenomics has provided a new framework for reconstructing insect evolutionary history, resolving their position among the arthropods and some long-standing internal controversies such as the placement of the termites, twisted-winged insects, lice and fleas. However, despite the greatly increased size of phylogenomic datasets, contentious relationships among key insect clades remain unresolved. Further advances in insect phylogeny cannot rely on increased depth and breadth of genome and taxon sequencing. Improved modelling of the substitution process is fundamental to countering tree-reconstruction artefacts, while gene content, modelling of duplications and deletions, and comparative morphology all provide complementary lines of evidence to test hypotheses emerging from the analysis of sequence data. Finally, the integration of molecular and morphological data is key to the incorporation of fossil species within insect phylogeny. The emerging integrated framework of insect evolution will help explain the origins of insect megadiversity in terms of the evolution of their body plan, species diversity and ecology. Future studies of insect phylogeny should build upon an experimental, hypothesis-driven approach where the robustness of hypotheses generated is tested against increasingly realistic evolutionary models as well as complementary sources of phylogenetic evidence.
Collapse
Affiliation(s)
- Erik Tihelka
- School of Earth Sciences, University of Bristol, Bristol, UK; State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China.
| | - Chenyang Cai
- School of Earth Sciences, University of Bristol, Bristol, UK; State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China.
| | | | - Jesus Lozano-Fernandez
- School of Biological Sciences, University of Bristol, Bristol, UK; Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Omar Rota-Stabelli
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all Adige, Italy; Center Agriculture Food Environment, University of Trento, 38010 San Michele all Adige, Italy
| | - Diying Huang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - Michael S Engel
- Division of Entomology, Natural History Museum, University of Kansas, Lawrence, KS, USA; Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | | | - Davide Pisani
- School of Earth Sciences, University of Bristol, Bristol, UK; School of Biological Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
21
|
Qin L, Hu Y, Wang J, Wang X, Zhao R, Shan H, Li K, Xu P, Wu H, Yan X, Liu L, Yi X, Wanke S, Bowers JE, Leebens-Mack JH, dePamphilis CW, Soltis PS, Soltis DE, Kong H, Jiao Y. Insights into angiosperm evolution, floral development and chemical biosynthesis from the Aristolochia fimbriata genome. NATURE PLANTS 2021; 7:1239-1253. [PMID: 34475528 PMCID: PMC8445822 DOI: 10.1038/s41477-021-00990-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/22/2021] [Indexed: 05/04/2023]
Abstract
Aristolochia, a genus in the magnoliid order Piperales, has been famous for centuries for its highly specialized flowers and wide medicinal applications. Here, we present a new, high-quality genome sequence of Aristolochia fimbriata, a species that, similar to Amborella trichopoda, lacks further whole-genome duplications since the origin of extant angiosperms. As such, the A. fimbriata genome is an excellent reference for inferences of angiosperm genome evolution, enabling detection of two novel whole-genome duplications in Piperales and dating of previously reported whole-genome duplications in other magnoliids. Genomic comparisons between A. fimbriata and other angiosperms facilitated the identification of ancient genomic rearrangements suggesting the placement of magnoliids as sister to monocots, whereas phylogenetic inferences based on sequence data we compiled yielded ambiguous relationships. By identifying associated homologues and investigating their evolutionary histories and expression patterns, we revealed highly conserved floral developmental genes and their distinct downstream regulatory network that may contribute to the complex flower morphology in A. fimbriata. Finally, we elucidated the genetic basis underlying the biosynthesis of terpenoids and aristolochic acids in A. fimbriata.
Collapse
Affiliation(s)
- Liuyu Qin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiheng Hu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinpeng Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Xiaoliang Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ran Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Kunpeng Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hanying Wu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Xueqing Yan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lumei Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Yi
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Stefan Wanke
- Institute of Botany, Dresden University of Technology, Dresden, Germany
| | - John E Bowers
- Department of Plant Biology, University of Georgia, Athens, GA, USA
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, USA
| | | | - Claude W dePamphilis
- Department of Biology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
22
|
Grant PR, Grant BR. Morphological ghosts of introgression in Darwin's finch populations. Proc Natl Acad Sci U S A 2021; 118:e2107434118. [PMID: 34330836 PMCID: PMC8346875 DOI: 10.1073/pnas.2107434118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Many species of plants, animals, and microorganisms exchange genes well after the point of evolutionary divergence at which taxonomists recognize them as species. Genomes contain signatures of past gene exchange and, in some cases, they reveal a legacy of lineages that no longer exist. But genomic data are not available for many organisms, and particularly problematic for reconstructing and interpreting evolutionary history are communities that have been depleted by extinctions. For these, morphology may substitute for genes, as exemplified by the history of Darwin's finches on the Galápagos islands of Floreana and San Cristóbal. Darwin and companions collected seven specimens of a uniquely large form of Geospiza magnirostris in 1835. The populations became extinct in the next few decades, partly due to destruction of Opuntia cactus by introduced goats, whereas Geospiza fortis has persisted to the present. We used measurements of large samples of G. fortis collected for museums in the period 1891 to 1906 to test for unusually large variances and skewed distributions of beak and body size resulting from introgression. We found strong evidence of hybridization on Floreana but not on San Cristóbal. The skew is in the direction of the absent G. magnirostris We estimate introgression influenced 6% of the frequency distribution that was eroded by selection after G. magnirostris became extinct on these islands. The genetic residuum of an extinct species in an extant one has implications for its future evolution, as well as for a conservation program of reintroductions in extinction-depleted communities.
Collapse
Affiliation(s)
- Peter R Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | - B Rosemary Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
23
|
Ontano AZ, Gainett G, Aharon S, Ballesteros JA, Benavides LR, Corbett KF, Gavish-Regev E, Harvey MS, Monsma S, Santibáñez-López CE, Setton EVW, Zehms JT, Zeh JA, Zeh DW, Sharma PP. Taxonomic Sampling and Rare Genomic Changes Overcome Long-Branch Attraction in the Phylogenetic Placement of Pseudoscorpions. Mol Biol Evol 2021; 38:2446-2467. [PMID: 33565584 PMCID: PMC8136511 DOI: 10.1093/molbev/msab038] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Long-branch attraction is a systematic artifact that results in erroneous groupings of fast-evolving taxa. The combination of short, deep internodes in tandem with long-branch attraction artifacts has produced empirically intractable parts of the Tree of Life. One such group is the arthropod subphylum Chelicerata, whose backbone phylogeny has remained unstable despite improvements in phylogenetic methods and genome-scale data sets. Pseudoscorpion placement is particularly variable across data sets and analytical frameworks, with this group either clustering with other long-branch orders or with Arachnopulmonata (scorpions and tetrapulmonates). To surmount long-branch attraction, we investigated the effect of taxonomic sampling via sequential deletion of basally branching pseudoscorpion superfamilies, as well as varying gene occupancy thresholds in supermatrices. We show that concatenated supermatrices and coalescent-based summary species tree approaches support a sister group relationship of pseudoscorpions and scorpions, when more of the basally branching taxa are sampled. Matrix completeness had demonstrably less influence on tree topology. As an external arbiter of phylogenetic placement, we leveraged the recent discovery of an ancient genome duplication in the common ancestor of Arachnopulmonata as a litmus test for competing hypotheses of pseudoscorpion relationships. We generated a high-quality developmental transcriptome and the first genome for pseudoscorpions to assess the incidence of arachnopulmonate-specific duplications (e.g., homeobox genes and miRNAs). Our results support the inclusion of pseudoscorpions in Arachnopulmonata (new definition), as the sister group of scorpions. Panscorpiones (new name) is proposed for the clade uniting Scorpiones and Pseudoscorpiones.
Collapse
Affiliation(s)
- Andrew Z Ontano
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Shlomi Aharon
- National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jesús A Ballesteros
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ligia R Benavides
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Kevin F Corbett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Efrat Gavish-Regev
- National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mark S Harvey
- Collections & Research, Western Australian Museum, Welshpool, WA, Australia
| | | | | | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jakob T Zehms
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeanne A Zeh
- Department of Biology and Program in Ecology, Evolution & Conservation Biology, University of Nevada, Reno, NV, USA
| | - David W Zeh
- Department of Biology and Program in Ecology, Evolution & Conservation Biology, University of Nevada, Reno, NV, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
24
|
Santaquiteria A, Siqueira AC, Duarte-Ribeiro E, Carnevale G, White W, Pogonoski J, Baldwin CC, Ortí G, Arcila D, Betancur RR. Phylogenomics and Historical Biogeography of Seahorses, Dragonets, Goatfishes, and Allies (Teleostei: Syngnatharia): Assessing Factors Driving Uncertainty in Biogeographic Inferences. Syst Biol 2021; 70:1145-1162. [PMID: 33892493 DOI: 10.1093/sysbio/syab028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/19/2021] [Indexed: 11/14/2022] Open
Abstract
The charismatic trumpetfishes, goatfishes, dragonets, flying gurnards, seahorses, and pipefishes encompass a recently defined yet extraordinarily diverse clade of percomorph fishes-the series Syngnatharia. This group is widely distributed in tropical and warm-temperate regions, with a great proportion of its extant diversity occurring in the Indo-Pacific. Because most syngnatharians feature long-range dispersal capabilities, tracing their biogeographic origins is challenging. Here, we applied an integrative phylogenomic approach to elucidate the evolutionary biogeography of syngnatharians. We built upon a recently published phylogenomic study that examined ultraconserved elements by adding 62 species (total 169 species) and one family (Draconettidae), to cover ca. 25% of the species diversity and all 10 families in the group. We inferred a set of time-calibrated trees and conducted ancestral range estimations. We also examined the sensitivity of these analyses to phylogenetic uncertainty (estimated from multiple genomic subsets), area delimitation, and biogeographic models that include or exclude the jump-dispersal parameter (j). Of the three factors examined, we found that the j parameter has the strongest effect in ancestral range estimates, followed by number of areas defined, and tree topology and divergence times. After accounting for these uncertainties, our results reveal that syngnatharians originated in the ancient Tethys Sea ca. 87 Ma (84-94 Ma; Late Cretaceous) and subsequently occupied the Indo-Pacific. Throughout syngnatharian history, multiple independent lineages colonized the eastern Pacific (6-8 times) and the Atlantic (6-14 times) from their center of origin, with most events taking place following an east-to-west route prior to the closure of the Tethys Seaway ca. 12-18 Ma. Ultimately, our study highlights the importance of accounting for different factors generating uncertainty in macroevolutionary and biogeographic inferences.
Collapse
Affiliation(s)
- Aintzane Santaquiteria
- Department of Biology, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Alexandre C Siqueira
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Emanuell Duarte-Ribeiro
- Department of Biology, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Giorgio Carnevale
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, via Valperga Caluso 35, 10125, Torino, Italy
| | - William White
- CSIRO Australian National Fish Collection, National Research Collections of Australia, Hobart, TAS, Australia
| | - John Pogonoski
- CSIRO Australian National Fish Collection, National Research Collections of Australia, Hobart, TAS, Australia
| | - Carole C Baldwin
- Department of Vertebrate Zoology, Smithsonian National Museum of Natural History, 10th St. & Constitution Ave. NW, Washington, DC 20560, USA
| | - Guillermo Ortí
- Department of Vertebrate Zoology, Smithsonian National Museum of Natural History, 10th St. & Constitution Ave. NW, Washington, DC 20560, USA.,Department of Biological Sciences, George Washington University, 2029 G St. NW, Washington, DC 20052, USA
| | - Dahiana Arcila
- Department of Biology, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA.,Sam Noble Oklahoma Museum of Natural History, 2401 Chautauqua Ave, Norman, OK 73072, USA
| | - Ricardo R Betancur
- Department of Biology, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| |
Collapse
|
25
|
Arcila D, Hughes LC, Meléndez-Vazquez F, Baldwin CC, White W, Carpenter K, Williams JT, Santos MD, Pogonoski J, Miya M, Ortí G, Betancur-R R. Testing the utility of alternative metrics of branch support to address the ancient evolutionary radiation of tunas, stromateoids, and allies (Teleostei: Pelagiaria). Syst Biol 2021; 70:1123-1144. [PMID: 33783539 DOI: 10.1093/sysbio/syab018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 03/13/2021] [Indexed: 12/19/2022] Open
Abstract
The use of high-throughput sequencing technologies to produce genome-scale datasets was expected to settle some long-standing controversies across the Tree of Life, particularly in areas where short branches occur at deep timescales. Instead, these datasets have often yielded many well-supported but conflicting topologies, and highly variable gene-tree distributions. A variety of branch-support metrics beyond the nonparametric bootstrap are now available to assess how robust a phylogenetic hypothesis may be, as well as new methods to quantify gene-tree discordance. We applied multiple branch support metrics to an ancient group of marine fishes (Teleostei: Pelagiaria) whose interfamilial relationships have proven difficult to resolve due to a rapid accumulation of lineages very early in its history. We analyzed hundreds of loci including published UCE data and newly generated exonic data along with their flanking regions to represent all 16 extant families for more than 150 out of 284 valid species in the group. Branch support was lower for interfamilial relationships (except the SH-like aLRT and aBayes methods) regardless of the type of marker used. Several nodes that were highly supported with bootstrap had very low site and gene-tree concordance, revealing underlying conflict. Despite this conflict, we were able to identify four consistent interfamilial clades, each comprised of two or three families. Combining exons with their flanking regions also produced increased branch lengths in the deep branches of the pelagiarian tree. Our results demonstrate the limitations of employing current metrics of branch support and species-tree estimation when assessing the confidence of ancient evolutionary radiations and emphasize the necessity to embrace alternative measurements to explore phylogenetic uncertainty and discordance in phylogenomic datasets.
Collapse
Affiliation(s)
- Dahiana Arcila
- Department of Ichthyology, Sam Noble Oklahoma Museum of Natural History, Norman, Oklahoma, U.S.A.,Department of Biology, University of Oklahoma, Norman, Oklahoma, U.S.A
| | - Lily C Hughes
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, U.S.A.,Department of Organismal Biology and Anatomy, The University of Chicago, Illinois, Chicago, U.S.A.,Department of Vertebrate Zoology, Smithsonian Institution National Museum of Natural History, Washington, District of Columbia, U.S.A
| | - Fernando Meléndez-Vazquez
- Department of Ichthyology, Sam Noble Oklahoma Museum of Natural History, Norman, Oklahoma, U.S.A.,Department of Biology, University of Oklahoma, Norman, Oklahoma, U.S.A
| | - Carole C Baldwin
- Department of Vertebrate Zoology, Smithsonian Institution National Museum of Natural History, Washington, District of Columbia, U.S.A
| | - William White
- CSIRO Australian National Fish Collection, National Research Collections Australia, Hobart, Hobart, Tasmania, Australia
| | - Kent Carpenter
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, U.S.A
| | - Jeffrey T Williams
- Department of Vertebrate Zoology, Smithsonian Institution National Museum of Natural History, Washington, District of Columbia, U.S.A
| | | | - John Pogonoski
- CSIRO Australian National Fish Collection, National Research Collections Australia, Hobart, Hobart, Tasmania, Australia
| | - Masaki Miya
- Natural History Museum and Institute, Chiba, Aoba-cho, Chuo-ku, Chiba, Japan
| | - Guillermo Ortí
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, U.S.A.,Department of Vertebrate Zoology, Smithsonian Institution National Museum of Natural History, Washington, District of Columbia, U.S.A
| | | |
Collapse
|
26
|
Steenwyk JL, Buida TJ, Labella AL, Li Y, Shen XX, Rokas A. PhyKIT: a broadly applicable UNIX shell toolkit for processing and analyzing phylogenomic data. Bioinformatics 2021; 37:2325-2331. [PMID: 33560364 PMCID: PMC8388027 DOI: 10.1093/bioinformatics/btab096] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/13/2021] [Accepted: 02/05/2021] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Diverse disciplines in biology process and analyze multiple sequence alignments (MSAs) and phylogenetic trees to evaluate their information content, infer evolutionary events and processes, and predict gene function. However, automated processing of MSAs and trees remains a challenge due to the lack of a unified toolkit. To fill this gap, we introduce PhyKIT, a toolkit for the UNIX shell environment with 30 functions that process MSAs and trees, including but not limited to estimation of mutation rate, evaluation of sequence composition biases, calculation of the degree of violation of a molecular clock, and collapsing bipartitions (internal branches) with low support. RESULTS To demonstrate the utility of PhyKIT, we detail three use cases: (1) summarizing information content in MSAs and phylogenetic trees for diagnosing potential biases in sequence or tree data; (2) evaluating gene-gene covariation of evolutionary rates to identify functional relationships, including novel ones, among genes; and (3) identify lack of resolution events or polytomies in phylogenetic trees, which are suggestive of rapid radiation events or lack of data. We anticipate PhyKIT will be useful for processing, examining, and deriving biological meaning from increasingly large phylogenomic datasets. AVAILABILITY PhyKIT is freely available on GitHub (https://github.com/JLSteenwyk/PhyKIT), PyPi (https://pypi.org/project/phykit/), and the Anaconda Cloud (https://anaconda.org/JLSteenwyk/phykit) under the MIT license with extensive documentation and user tutorials (https://jlsteenwyk.com/PhyKIT). SUPPLEMENTARY INFORMATION Supplementary data are available on figshare (doi: 10.6084/m9.figshare.13118600) and are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN, 37235, United States of America
| | - Thomas J Buida
- 9 City Place #312, Nashville, TN, 37209, United States of America
| | - Abigail L Labella
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN, 37235, United States of America
| | - Yuanning Li
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN, 37235, United States of America
| | - Xing-Xing Shen
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN, 37235, United States of America
| |
Collapse
|
27
|
Hime PM, Lemmon AR, Lemmon ECM, Prendini E, Brown JM, Thomson RC, Kratovil JD, Noonan BP, Pyron RA, Peloso PLV, Kortyna ML, Keogh JS, Donnellan SC, Mueller RL, Raxworthy CJ, Kunte K, Ron SR, Das S, Gaitonde N, Green DM, Labisko J, Che J, Weisrock DW. Phylogenomics Reveals Ancient Gene Tree Discordance in the Amphibian Tree of Life. Syst Biol 2021; 70:49-66. [PMID: 32359157 PMCID: PMC7823230 DOI: 10.1093/sysbio/syaa034] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 11/30/2022] Open
Abstract
Molecular phylogenies have yielded strong support for many parts of the amphibian Tree of Life, but poor support for the resolution of deeper nodes, including relationships among families and orders. To clarify these relationships, we provide a phylogenomic perspective on amphibian relationships by developing a taxon-specific Anchored Hybrid Enrichment protocol targeting hundreds of conserved exons which are effective across the class. After obtaining data from 220 loci for 286 species (representing 94% of the families and 44% of the genera), we estimate a phylogeny for extant amphibians and identify gene tree-species tree conflict across the deepest branches of the amphibian phylogeny. We perform locus-by-locus genealogical interrogation of alternative topological hypotheses for amphibian monophyly, focusing on interordinal relationships. We find that phylogenetic signal deep in the amphibian phylogeny varies greatly across loci in a manner that is consistent with incomplete lineage sorting in the ancestral lineage of extant amphibians. Our results overwhelmingly support amphibian monophyly and a sister relationship between frogs and salamanders, consistent with the Batrachia hypothesis. Species tree analyses converge on a small set of topological hypotheses for the relationships among extant amphibian families. These results clarify several contentious portions of the amphibian Tree of Life, which in conjunction with a set of vetted fossil calibrations, support a surprisingly younger timescale for crown and ordinal amphibian diversification than previously reported. More broadly, our study provides insight into the sources, magnitudes, and heterogeneity of support across loci in phylogenomic data sets.[AIC; Amphibia; Batrachia; Phylogeny; gene tree-species tree discordance; genomics; information theory.].
Collapse
Affiliation(s)
- Paul M Hime
- Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL 32306, USA
| | | | - Elizabeth Prendini
- Division of Vertebrate Zoology: Herpetology, American Museum of Natural History, New York, NY 10024, USA
| | - Jeremy M Brown
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Robert C Thomson
- School of Life Sciences, University of Hawai’i, Honolulu, HI 96822, USA
| | - Justin D Kratovil
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Brice P Noonan
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - R Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Pedro L V Peloso
- Division of Vertebrate Zoology: Herpetology, American Museum of Natural History, New York, NY 10024, USA
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, 66075-750, Brazil
| | - Michelle L Kortyna
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - J Scott Keogh
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, 2601, Australia
| | - Stephen C Donnellan
- South Australian Museum, North Terrace, Adelaide 5000, Australia
- School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | | | - Christopher J Raxworthy
- Division of Vertebrate Zoology: Herpetology, American Museum of Natural History, New York, NY 10024, USA
| | - Krushnamegh Kunte
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Santiago R Ron
- Museo de Zoología, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Sandeep Das
- Forest Ecology and Biodiversity Conservation Division, Kerala Forest Research Institute, Peechi, Kerala 680653, India
| | - Nikhil Gaitonde
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - David M Green
- Redpath Museum, McGill University, Montreal, Quebec H3A 0C4, Canada
| | - Jim Labisko
- The Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, The University of Kent, Canterbury, Kent, CT2 7NR, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, PO Box 1348, Anse Royale, Mahé, Seychelles
| | - Jing Che
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - David W Weisrock
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
28
|
GWideCodeML: A Python Package for Testing Evolutionary Hypotheses at the Genome-Wide Level. G3-GENES GENOMES GENETICS 2020; 10:4369-4372. [PMID: 33093185 PMCID: PMC7718741 DOI: 10.1534/g3.120.401874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
One of the most widely used programs for detecting positive selection, at the molecular level, is the program codeml, which is implemented in the Phylogenetic Analysis by Maximum Likelihood (PAML) package. However, it has a limitation when it comes to genome-wide studies, as it runs on a gene-by-gene basis. Furthermore, the size of such studies will depend on the number of orthologous genes the genomes have income and these are often restricted to only account for instances where a one-to-one relationship is observed between the genomes. In this work, we present GWideCodeML, a Python package, which runs a genome-wide codeml with the option of parallelization. To maximize the number of analyzed genes, the package allows for a variable number of taxa in the alignments and will automatically prune the topology to fit each of them, before running codeml.
Collapse
|
29
|
Swimming through the sands of the Sahara and Arabian deserts: Phylogeny of sandfish skinks (Scincidae, Scincus) reveals a recent and rapid diversification. Mol Phylogenet Evol 2020; 155:107012. [PMID: 33217580 DOI: 10.1016/j.ympev.2020.107012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 11/18/2022]
Abstract
Large parts of the Sahara Desert and Arabia are covered by sand seas and sand dunes, which are inhabited by specialized animal communities. For example, many lizards have developed adaptations to life in loose sand, including sand-swimming behavior. The best-known sand swimmers of the Saharo-Arabia are the sandfish skinks (genus Scincus). Although there are currently only four Scincus species recognized, their phylogenetic relationships have not yet been addressed in detail. We use eight genetic markers (three mitochondrial, five nuclear) and a complete sampling of species to infer the relationships within the genus. We employ multiple phylogenetic approaches to reconstruct the evolutionary history of these skinks and to assess the level of reticulation at the onset of their radiation. Our results indicate the presence of five strongly supported species-level lineages, four represented by the currently recognized species and the fifth by S. scincus conirostris, which does not form a clade with S. scincus. Based on these results we elevate the Iranian and northern Arabian S. conirostris to the species level. The two Saharan species, S. albifasciatus and S. scincus, are sister in all analyses. Deeper relationships within the genus, however, remained largely unresolved despite the extensive genetic data set. This basal polytomy, together with the fact that we detected no sign of hybridization in the history of the genus, indicates that the diversification of the five Scincus species was rapid, burst-like, and not followed by secondary hybridization events. Divergence time estimations show a Middle Pliocene crown radiation of the genus (3.3 Mya). We hypothesize that the aridification of the Saharo-Arabia that began in the Late Miocene triggered the initial diversification of Scincus, and that the subsequent expansion of sand deserts enabled their dispersal over the large Saharan and Arabian range. We discuss the evolution of body form in sand swimming lizards and ponder how Scincus retained their fully limbed morphology despite being sand swimmers that are typically limbless.
Collapse
|
30
|
Singhal S, Colston TJ, Grundler MR, Smith SA, Costa GC, Colli GR, Moritz C, Pyron RA, Rabosky DL. Congruence and Conflict in the Higher-Level Phylogenetics of Squamate Reptiles: An Expanded Phylogenomic Perspective. Syst Biol 2020; 70:542-557. [PMID: 32681800 DOI: 10.1093/sysbio/syaa054] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 05/05/2020] [Accepted: 07/05/2020] [Indexed: 12/16/2022] Open
Abstract
Genome-scale data have the potential to clarify phylogenetic relationships across the tree of life but have also revealed extensive gene tree conflict. This seeming paradox, whereby larger data sets both increase statistical confidence and uncover significant discordance, suggests that understanding sources of conflict is important for accurate reconstruction of evolutionary history. We explore this paradox in squamate reptiles, the vertebrate clade comprising lizards, snakes, and amphisbaenians. We collected an average of 5103 loci for 91 species of squamates that span higher-level diversity within the clade, which we augmented with publicly available sequences for an additional 17 taxa. Using a locus-by-locus approach, we evaluated support for alternative topologies at 17 contentious nodes in the phylogeny. We identified shared properties of conflicting loci, finding that rate and compositional heterogeneity drives discordance between gene trees and species tree and that conflicting loci rarely overlap across contentious nodes. Finally, by comparing our tests of nodal conflict to previous phylogenomic studies, we confidently resolve 9 of the 17 problematic nodes. We suggest this locus-by-locus and node-by-node approach can build consensus on which topological resolutions remain uncertain in phylogenomic studies of other contentious groups. [Anchored hybrid enrichment (AHE); gene tree conflict; molecular evolution; phylogenomic concordance; target capture; ultraconserved elements (UCE).].
Collapse
Affiliation(s)
- Sonal Singhal
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.,Museum of Zoology, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Biology, CSU Dominguez Hills, Carson, CA 90747, USA
| | - Timothy J Colston
- Department of Biological Sciences, The George Washington University, Washington D.C. 20052, USA.,Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Maggie R Grundler
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.,Museum of Zoology, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Environmental Science, Policy, & Management, University of California Berkeley, Berkeley, CA 94720, USA
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabriel C Costa
- Department of Biology and Environmental Sciences, Auburn University at Montgomery, Montgomery, AL, USA
| | - Guarino R Colli
- Departamento de Zoologia, Universidade de Brasília, Brasília, DF, Brazil
| | - Craig Moritz
- Division of Ecology and Evolution, Research School of Biology, and Centre for Biodiversity Analysis, The Australian National University, 46 Sullivans Creek Road, Acton, ACT 2601, Australia
| | - R Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington D.C. 20052, USA
| | - Daniel L Rabosky
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.,Museum of Zoology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
31
|
Perea S, Sousa‐Santos C, Robalo J, Doadrio I. Multilocus phylogeny and systematics of Iberian endemicSqualius(Actinopterygii, Leuciscidae). ZOOL SCR 2020. [DOI: 10.1111/zsc.12420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Silvia Perea
- Department of Biodiversity and Evolutionary Biology Museo Nacional de Ciencias Naturales - CSIC Madrid Spain
| | - Carla Sousa‐Santos
- MARE – Marine and Environmental Sciences Centre ISPA‐Instituto Universitário Lisbon Portugal
| | - Joana Robalo
- MARE – Marine and Environmental Sciences Centre ISPA‐Instituto Universitário Lisbon Portugal
| | - Ignacio Doadrio
- Department of Biodiversity and Evolutionary Biology Museo Nacional de Ciencias Naturales - CSIC Madrid Spain
| |
Collapse
|
32
|
Criscuolo F, Sueur C. An Evolutionary Point of View of Animal Ethics. Front Psychol 2020; 11:403. [PMID: 32300318 PMCID: PMC7142228 DOI: 10.3389/fpsyg.2020.00403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
| | - Cédric Sueur
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- Institut Universitaire de France, Paris, France
- CEERE, Centre Européen d'Enseignement et de Recherche en Ethique, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
33
|
Abstract
Introgressive hybridization can affect the evolution of populations in several important ways. It may retard or reverse divergence of species, enable the development of novel traits, enhance the potential for future evolution by elevating levels of standing variation, create new species, and alleviate inbreeding depression in small populations. Most of what is known of contemporary hybridization in nature comes from the study of pairs of species, either coexisting in the same habitat or distributed parapatrically and separated by a hybrid zone. More rarely, three species form an interbreeding complex (triad), reported in vertebrates, insects, and plants. Often, one species acts as a genetic link or conduit for the passage of genes (alleles) between two others that rarely, if ever, hybridize. Demographic and genetic consequences are unknown. Here we report results of a long-term study of interbreeding Darwin's finches on Daphne Major island, Galápagos. Geospiza fortis acted as a conduit for the passage of genes between two others that have never been observed to interbreed on Daphne: Geospiza fuliginosa, a rare immigrant, and Geospiza scandens, a resident. Microsatellite gene flow from G. fortis into G. scandens increased in frequency during 30 y of favorable ecological conditions, resulting in genetic and morphological convergence. G. fortis, G. scandens, and the derived dihybrids and trihybrids experienced approximately equal fitness. Especially relevant to young adaptive radiations, where species differ principally in ecology and behavior, these findings illustrate how new combinations of genes created by hybridization among three species can enhance the potential for evolutionary change.
Collapse
|
34
|
Settlecowski AE, Cuervo AM, Tello JG, Harvey MG, Brumfield RT, Derryberry EP. Investigating the utility of traditional and genomic multi-locus datasets to resolve relationships in Lipaugus and Tijuca (Cotingidae). Mol Phylogenet Evol 2020; 147:106779. [PMID: 32135309 DOI: 10.1016/j.ympev.2020.106779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/27/2020] [Accepted: 02/26/2020] [Indexed: 12/26/2022]
Abstract
Rapid diversification limits our ability to resolve evolutionary relationships and examine diversification history, as in the case of the Neotropical cotingas. Here we present an analysis with complete taxon sampling for the cotinga genera Lipaugus and Tijuca, which include some of the most range-restricted (e.g., T. condita) and also the most widespread and familiar (e.g., L. vociferans) forest birds in the Neotropics. We used two datasets: (1) Sanger sequencing data sampled from eight loci in 34 individuals across all described taxa and (2) sequence capture data linked to 1,079 ultraconserved elements and conserved exons sampled from one or two individuals per species. Phylogenies estimated from the Sanger sequencing data failed to resolve three nodes, but the sequence capture data produced a well-supported tree. Lipaugus and Tijuca formed a single, highly supported clade, but Tijuca species were not sister and were embedded within Lipaugus. A dated phylogeny confirmed Lipaugus and Tijuca diversified rapidly in the Miocene. Our study provides a detailed evolutionary hypothesis for Lipaugus and Tijuca and demonstrates that increasing genomic sampling can prove instrumental in resolving the evolutionary history of recent radiations.
Collapse
Affiliation(s)
- Amie E Settlecowski
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Andrés M Cuervo
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA; Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| | - José G Tello
- Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA; Department of Biology, Long Island University, Brooklyn, NY 11201, USA
| | - Michael G Harvey
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Robb T Brumfield
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
35
|
Nolan ED, Santibáñez-López CE, Sharma PP. Developmental gene expression as a phylogenetic data class: support for the monophyly of Arachnopulmonata. Dev Genes Evol 2020; 230:137-153. [PMID: 31927629 DOI: 10.1007/s00427-019-00644-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/10/2019] [Indexed: 01/01/2023]
Abstract
Despite application of genome-scale datasets, the phylogenetic placement of scorpions within arachnids remains contentious between two different phylogenetic data classes. Paleontologists continue to recover scorpions in a basally branching position, partly owing to their morphological similarity to extinct marine orders like Eurypterida (sea scorpions). Phylogenomic datasets consistently recover scorpions in a derived position, as the sister group of Tetrapulmonata (a clade of arachnids that includes spiders). To adjudicate between these hypotheses using a rare genomic change (RGC), we leveraged the recent discovery of ancient paralogy in spiders and scorpions to assess phylogenetic placement. We identified homologs of four transcription factors required for appendage patterning (dachshund, homothorax, extradenticle, and optomotor blind) in arthropods that are known to be duplicated in spiders. Using genomic resources for a spider, a scorpion, and a harvestman, we conducted gene tree analyses and assayed expression patterns of scorpion gene duplicates. Here we show that scorpions, like spiders, retain two copies of all four transcription factors, whereas arachnid orders like mites and harvestmen bear a single copy. A survey of embryonic expression patterns of the scorpion paralogs closely matches those of their spider counterparts, with one paralog consistently retaining the putatively ancestral pattern found in the harvestman, as well as the mite, and/or other outgroups. These data comprise a rare genomic change in chelicerate phylogeny supporting the inference of a distal placement of scorpions. Beyond demonstrating the diagnostic power of developmental genetic data as a phylogenetic data class, a derived placement of scorpions within the arachnids, together with an array of stem-group Paleozoic scorpions that occupied marine habitats, effectively rules out a scenario of a single colonization of terrestrial habitat within Chelicerata, even in tree topologies contrived to recover the monophyly of Arachnida.
Collapse
Affiliation(s)
- Erik D Nolan
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Developmental Biology, Washington University of St. Louis, St. Louis, MO, 63110, USA
| | - Carlos E Santibáñez-López
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biology, Eastern Connecticut State University, 83 Windham Street, Willimantic, CT, 06266, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
36
|
Roycroft EJ, Moussalli A, Rowe KC. Phylogenomics Uncovers Confidence and Conflict in the Rapid Radiation of Australo-Papuan Rodents. Syst Biol 2019; 69:431-444. [DOI: 10.1093/sysbio/syz044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 06/12/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
The estimation of robust and accurate measures of branch support has proven challenging in the era of phylogenomics. In data sets of potentially millions of sites, bootstrap support for bifurcating relationships around very short internal branches can be inappropriately inflated. Such overestimation of branch support may be particularly problematic in rapid radiations, where phylogenetic signal is low and incomplete lineage sorting severe. Here, we explore this issue by comparing various branch support estimates under both concatenated and coalescent frameworks, in the recent radiation Australo-Papuan murine rodents (Muridae: Hydromyini). Using nucleotide sequence data from 1245 independent loci and several phylogenomic inference methods, we unequivocally resolve the majority of genus-level relationships within Hydromyini. However, at four nodes we recover inconsistency in branch support estimates both within and among concatenated and coalescent approaches. In most cases, concatenated likelihood approaches using standard fast bootstrap algorithms did not detect any uncertainty at these four nodes, regardless of partitioning strategy. However, we found this could be overcome with two-stage resampling, that is, across genes and sites within genes (using -bsam GENESITE in IQ-TREE). In addition, low confidence at recalcitrant nodes was recovered using UFBoot2, a recent revision to the bootstrap protocol in IQ-TREE, but this depended on partitioning strategy. Summary coalescent approaches also failed to detect uncertainty under some circumstances. For each of four recalcitrant nodes, an equivalent (or close to equivalent) number of genes were in strong support ($>$ 75% bootstrap) of both the primary and at least one alternative topological hypothesis, suggesting notable phylogenetic conflict among loci not detected using some standard branch support metrics. Recent debate has focused on the appropriateness of concatenated versus multigenealogical approaches to resolving species relationships, but less so on accurately estimating uncertainty in large data sets. Our results demonstrate the importance of employing multiple approaches when assessing confidence and highlight the need for greater attention to the development of robust measures of uncertainty in the era of phylogenomics.
Collapse
Affiliation(s)
- Emily J Roycroft
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Science, Museums Victoria, GPO Box 666, Melbourne, VIC 3001, Australia
| | - Adnan Moussalli
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Science, Museums Victoria, GPO Box 666, Melbourne, VIC 3001, Australia
| | - Kevin C Rowe
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Science, Museums Victoria, GPO Box 666, Melbourne, VIC 3001, Australia
| |
Collapse
|
37
|
Comparative Phylogenomics, a Stepping Stone for Bird Biodiversity Studies. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11070115] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Birds are a group with immense availability of genomic resources, and hundreds of forthcoming genomes at the doorstep. We review recent developments in whole genome sequencing, phylogenomics, and comparative genomics of birds. Short read based genome assemblies are common, largely due to efforts of the Bird 10K genome project (B10K). Chromosome-level assemblies are expected to increase due to improved long-read sequencing. The available genomic data has enabled the reconstruction of the bird tree of life with increasing confidence and resolution, but challenges remain in the early splits of Neoaves due to their explosive diversification after the Cretaceous-Paleogene (K-Pg) event. Continued genomic sampling of the bird tree of life will not just better reflect their evolutionary history but also shine new light onto the organization of phylogenetic signal and conflict across the genome. The comparatively simple architecture of avian genomes makes them a powerful system to study the molecular foundation of bird specific traits. Birds are on the verge of becoming an extremely resourceful system to study biodiversity from the nucleotide up.
Collapse
|
38
|
Russell AP, Gamble T. Evolution of the Gekkotan Adhesive System: Does Digit Anatomy Point to One or More Origins? Integr Comp Biol 2019; 59:131-147. [DOI: 10.1093/icb/icz006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Recently-developed, molecularly-based phylogenies of geckos have provided the basis for reassessing the number of times adhesive toe-pads have arisen within the Gekkota. At present both a single origin and multiple origin hypotheses prevail, each of which has consequences that relate to explanations about digit form and evolutionary transitions underlying the enormous variation in adhesive toe pad structure among extant, limbed geckos (pygopods lack pertinent features). These competing hypotheses result from mapping the distribution of toe pads onto a phylogenetic framework employing the simple binary expedient of whether such toe pads are present or absent. It is evident, however, that adhesive toe pads are functional complexes that consist of a suite of integrated structural components that interact to bring about adhesive contact with the substratum and release from it. We evaluated the competing hypotheses about toe pad origins using 34 features associated with digit structure (drawn from the overall form of the digits; the presence and form of adhesive scansors; the proportions and structure of the phalanges; aspects of digital muscular and tendon morphology; presence and form of paraphalangeal elements; and the presence and form of substrate compliance-enhancing structures). We mapped these onto a well-supported phylogeny to reconstruct their evolution. Nineteen of these characters proved to be informative for all extant, limbed geckos, allowing us to assess which of them exhibit co-occurrence and/or clade-specificity. We found the absence of adhesive toe pads to be the ancestral state for the extant Gekkota as a whole, and our data to be consistent with independent origins of adhesive toe pads in the Diplodactylidae, Sphaerodactylidae, Phyllodactylidae, and Gekkonidae, with a strong likelihood of multiple origins in the latter three families. These findings are consistent with recently-published evidence of the presence of adhesively-competent digits in geckos generally regarded as lacking toe pads. Based upon morphology we identify other taxa at various locations within the gekkotan tree that are promising candidates for the expression of the early phases of adhesively-assisted locomotion. Investigation of functionally transitional forms will be valuable for enhancing our understanding of what is necessary and sufficient for the transition to adhesively-assisted locomotion, and for those whose objectives are to develop simulacra of the gekkotan adhesive system for biotechnological applications.
Collapse
Affiliation(s)
- Anthony P Russell
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
- Bell Museum of Natural History, University of Minnesota, Saint Paul, MN 55113, USA
- Milwaukee Public Museum, Milwaukee, WI 53233, USA
| |
Collapse
|
39
|
Holzer AS, Bartošová-Sojková P, Born-Torrijos A, Lövy A, Hartigan A, Fiala I. The joint evolution of the Myxozoa and their alternate hosts: A cnidarian recipe for success and vast biodiversity. Mol Ecol 2019; 27:1651-1666. [PMID: 29575260 DOI: 10.1111/mec.14558] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/01/2018] [Accepted: 03/03/2018] [Indexed: 01/03/2023]
Abstract
The relationships between parasites and their hosts are intimate, dynamic and complex; the evolution of one is inevitably linked to the other. Despite multiple origins of parasitism in the Cnidaria, only parasites belonging to the Myxozoa are characterized by a complex life cycle, alternating between fish and invertebrate hosts, as well as by high species diversity. This inspired us to examine the history of adaptive radiations in myxozoans and their hosts by determining the degree of congruence between their phylogenies and by timing the emergence of myxozoan lineages in relation to their hosts. Recent genomic analyses suggested a common origin of Polypodium hydriforme, a cnidarian parasite of acipenseriform fishes, and the Myxozoa, and proposed fish as original hosts for both sister lineages. We demonstrate that the Myxozoa emerged long before fish populated Earth and that phylogenetic congruence with their invertebrate hosts is evident down to the most basal branches of the tree, indicating bryozoans and annelids as original hosts and challenging previous evolutionary hypotheses. We provide evidence that, following invertebrate invasion, fish hosts were acquired multiple times, leading to parallel cospeciation patterns in all major phylogenetic lineages. We identify the acquisition of vertebrate hosts that facilitate alternative transmission and dispersion strategies as reason for the distinct success of the Myxozoa, and identify massive host specification-linked parasite diversification events. The results of this study transform our understanding of the origins and evolution of parasitism in the most basal metazoan parasites known.
Collapse
Affiliation(s)
- Astrid S Holzer
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| | - Pavla Bartošová-Sojková
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| | - Ana Born-Torrijos
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic.,Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Alena Lövy
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic.,Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Ashlie Hartigan
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| | - Ivan Fiala
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| |
Collapse
|
40
|
Ballesteros JA, Sharma PP. A Critical Appraisal of the Placement of Xiphosura (Chelicerata) with Account of Known Sources of Phylogenetic Error. Syst Biol 2019; 68:896-917. [DOI: 10.1093/sysbio/syz011] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/20/2018] [Accepted: 02/10/2019] [Indexed: 11/13/2022] Open
Abstract
AbstractHorseshoe crabs (Xiphosura) are traditionally regarded as sister group to the clade of terrestrial chelicerates (Arachnida). This hypothesis has been challenged by recent phylogenomic analyses, but the non-monophyly of Arachnida has consistently been disregarded as artifactual. We re-evaluated the placement of Xiphosura among chelicerates using the most complete phylogenetic data set to date, expanding outgroup sampling, and including data from whole genome sequencing projects. In spite of uncertainty in the placement of some arachnid clades, all analyses show Xiphosura consistently nested within Arachnida as the sister group to Ricinulei (hooded tick spiders). It is apparent that the radiation of arachnids is an old one and occurred over a brief period of time, resulting in several consecutive short internodes, and thus is a potential case for the confounding effects of incomplete lineage sorting (ILS). We simulated coalescent gene trees to explore the effects of increasing levels of ILS on the placement of horseshoe crabs. In addition, common sources of systematic error were evaluated, as well as the effects of fast-evolving partitions and the dynamics of problematic long branch orders. Our results indicated that the placement of horseshoe crabs cannot be explained by missing data, compositional biases, saturation, or ILS. Interrogation of the phylogenetic signal showed that the majority of loci favor the derived placement of Xiphosura over a monophyletic Arachnida. Our analyses support the inference that horseshoe crabs represent a group of aquatic arachnids, comparable to aquatic mites, breaking a long-standing paradigm in chelicerate evolution and altering previous interpretations of the ancestral transition to the terrestrial habitat. Future studies testing chelicerate relationships should approach the task with a sampling strategy where the monophyly of Arachnida is not held as the premise.
Collapse
Affiliation(s)
- Jesús A Ballesteros
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
41
|
Wang Y, Zhou X, Wang L, Liu X, Yang D, Rokas A. Gene Selection and Evolutionary Modeling Affect Phylogenomic Inference of Neuropterida Based on Transcriptome Data. Int J Mol Sci 2019; 20:E1072. [PMID: 30832228 PMCID: PMC6429444 DOI: 10.3390/ijms20051072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 11/30/2022] Open
Abstract
Neuropterida is a super order of Holometabola that consists of the orders Megaloptera (dobsonflies, fishflies, and alderflies), Neuroptera (lacewings) and Raphidioptera (snakeflies). Several proposed higher-level relationships within Neuropterida, such as the relationships between the orders or between the families, have been extensively debated. To further understand the evolutionary history of Neuropterida, we conducted phylogenomic analyses of all 13 published transcriptomes of the neuropterid species, as well as of a new transcriptome of the fishfly species Ctenochauliodes similis of Liu and Yang, 2006 (Megaloptera: Corydalidae: Chauliodinae) that we sequenced. Our phylogenomic data matrix contained 1392 ortholog genes from 22 holometabolan species representing six families from Neuroptera, two families from Raphidioptera, and two families from Megaloptera as the ingroup taxa, and nine orders of Holometabola as outgroups. Phylogenetic reconstruction was performed using both concatenation and coalescent-based approaches under a site-homogeneous model as well as under a site-heterogeneous model. Surprisingly, analyses using the site-homogeneous model strongly supported a paraphyletic Neuroptera, with Coniopterygidae assigned as the sister group of all other Neuropterida. In contrast, analyses using the site-heterogeneous model recovered Neuroptera as monophyletic. The monophyly of Neuroptera was also recovered in concatenation and coalescent-based analyses using genes with stronger phylogenetic signals [i.e., higher average bootstrap support (ABS) values and higher relative tree certainty including all conflicting bipartitions (RTCA) values] under the site-homogeneous model. The present study illustrated how both data selection and model selection influence phylogenomic analyses of large-scale data matrices comprehensively.
Collapse
Affiliation(s)
- Yuyu Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China.
- Department of Entomology, China Agricultural University, Beijing 100193, China.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China.
| | - Liming Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China.
| | - Xingyue Liu
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| | - Ding Yang
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
42
|
Harish A. What is an archaeon and are the Archaea really unique? PeerJ 2018; 6:e5770. [PMID: 30357005 PMCID: PMC6196074 DOI: 10.7717/peerj.5770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/05/2018] [Indexed: 12/05/2022] Open
Abstract
The recognition of the group Archaea as a major branch of the tree of life (ToL) prompted a new view of the evolution of biodiversity. The genomic representation of archaeal biodiversity has since significantly increased. In addition, advances in phylogenetic modeling of multi-locus datasets have resolved many recalcitrant branches of the ToL. Despite the technical advances and an expanded taxonomic representation, two important aspects of the origins and evolution of the Archaea remain controversial, even as we celebrate the 40th anniversary of the monumental discovery. These issues concern (i) the uniqueness (monophyly) of the Archaea, and (ii) the evolutionary relationships of the Archaea to the Bacteria and the Eukarya; both of these are relevant to the deep structure of the ToL. To explore the causes for this persistent ambiguity, I examine multiple datasets and different phylogenetic approaches that support contradicting conclusions. I find that the uncertainty is primarily due to a scarcity of information in standard datasets-universal core-genes datasets-to reliably resolve the conflicts. These conflicts can be resolved efficiently by comparing patterns of variation in the distribution of functional genomic signatures, which are less diffused unlike patterns of primary sequence variation. Relatively lower heterogeneity in distribution patterns minimizes uncertainties and supports statistically robust phylogenetic inferences, especially of the earliest divergences of life. This case study further highlights the limitations of primary sequence data in resolving difficult phylogenetic problems, and raises questions about evolutionary inferences drawn from the analyses of sequence alignments of a small set of core genes. In particular, the findings of this study corroborate the growing consensus that reversible substitution mutations may not be optimal phylogenetic markers for resolving early divergences in the ToL, nor for determining the polarity of evolutionary transitions across the ToL.
Collapse
Affiliation(s)
- Ajith Harish
- Department of Cell and Molecular Biology, Program in Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
43
|
Salzburger W. Understanding explosive diversification through cichlid fish genomics. Nat Rev Genet 2018; 19:705-717. [DOI: 10.1038/s41576-018-0043-9] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Grummer JA, Morando MM, Avila LJ, Sites JW, Leaché AD. Phylogenomic evidence for a recent and rapid radiation of lizards in the Patagonian Liolaemus fitzingerii species group. Mol Phylogenet Evol 2018; 125:243-254. [DOI: 10.1016/j.ympev.2018.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/07/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
|
45
|
Abstract
The origin of animals, one of the major transitions in evolution, remains mysterious. Many key aspects of animal evolution can be reconstructed by comparing living species within a robust phylogenetic framework. However, uncertainty remains regarding the evolutionary relationships between two ancient animal lineages - sponges and ctenophores - and the remaining animal phyla. Comparative morphology and some phylogenomic analyses support the view that sponges represent the sister lineage to the rest of the animals, while other phylogenomic analyses support ctenophores, a phylum of carnivorous, gelatinous marine organisms, as the sister lineage. Here, we explore why different studies yield different answers and discuss the implications of the two alternative hypotheses for understanding the origin of animals. Reconstruction of ancient evolutionary radiations is devilishly difficult and will likely require broader sampling of sponge and ctenophore genomes, improved analytical strategies and critical analyses of the phylogenetic distribution and molecular mechanisms underlying apparently conserved traits. Rather than staking out positions in favor of the ctenophores-sister or the sponges-sister hypothesis, we submit that research programs aimed at understanding the biology of the first animals should instead embrace the uncertainty surrounding early animal evolution in their experimental designs.
Collapse
|
46
|
Herrando-Moraira S. Exploring data processing strategies in NGS target enrichment to disentangle radiations in the tribe Cardueae (Compositae). Mol Phylogenet Evol 2018; 128:69-87. [PMID: 30036700 DOI: 10.1016/j.ympev.2018.07.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 12/17/2022]
Abstract
Target enrichment is a cost-effective sequencing technique that holds promise for elucidating evolutionary relationships in fast-evolving lineages. However, potential biases and impact of bioinformatic sequence treatments in phylogenetic inference have not been thoroughly explored yet. Here, we investigate this issue with an ultimate goal to shed light into a highly diversified group of Compositae (Asteraceae) constituted by four main genera: Arctium, Cousinia, Saussurea, and Jurinea. Specifically, we compared sequence data extraction methods implemented in two easy-to-use workflows, PHYLUCE and HybPiper, and assessed the impact of two filtering practices intended to reduce phylogenetic noise. In addition, we compared two phylogenetic inference methods: (1) the concatenation approach, in which all loci were concatenated in a supermatrix; and (2) the coalescence approach, in which gene trees were produced independently and then used to construct a species tree under coalescence assumptions. Here we confirm the usefulness of the set of 1061 COS targets (a nuclear conserved orthology loci set developed for the Compositae) across a variety of taxonomic levels. Intergeneric relationships were completely resolved: there are two sister groups, Arctium-Cousinia and Saussurea-Jurinea, which are in agreement with a morphological hypothesis. Intrageneric relationships among species of Arctium, Cousinia, and Saussurea are also well defined. Conversely, conflicting species relationships remain for Jurinea. Methodological choices significantly affected phylogenies in terms of topology, branch length, and support. Across all analyses, the phylogeny obtained using HybPiper and the strictest scheme of removing fast-evolving sites was estimated as the optimal. Regarding methodological choices, we conclude that: (1) trees obtained under the coalescence approach are topologically more congruent between them than those inferred using the concatenation approach; (2) refining treatments only improved support values under the concatenation approach; and (3) branch support values are maximized when fast-evolving sites are removed in the concatenation approach, and when a higher number of loci is analyzed in the coalescence approach.
Collapse
Affiliation(s)
- Sonia Herrando-Moraira
- Botanic Institute of Barcelona (IBB, CSIC-ICUB), Pg. del Migdia, s.n., 08038 Barcelona, Spain.
| | | |
Collapse
|
47
|
Fang L, Leliaert F, Novis PM, Zhang Z, Zhu H, Liu G, Penny D, Zhong B. Improving phylogenetic inference of core Chlorophyta using chloroplast sequences with strong phylogenetic signals and heterogeneous models. Mol Phylogenet Evol 2018; 127:248-255. [PMID: 29885933 DOI: 10.1016/j.ympev.2018.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/26/2018] [Accepted: 06/04/2018] [Indexed: 01/09/2023]
Abstract
Phylogenetic relationships within the green algal phylum Chlorophyta have proven difficult to resolve. The core Chlorophyta include Chlorophyceae, Ulvophyceae, Trebouxiophyceae, Pedinophyceae and Chlorodendrophyceae, but the relationships among these classes remain unresolved and the monophyly of Ulvophyceae and Trebouxiophyceae are highly controversial. We analyzed a dataset of 101 green algal species and 73 protein-coding genes sampled from complete and partial chloroplast genomes, including six newly sequenced ulvophyte genomes (Blidingia minima NIES-1837, Ulothrix zonata, Halochlorococcum sp. NIES-1838, Scotinosphaera sp. NIES-154, Caulerpa brownii and Cephaleuros sp. HZ-2017). We applied the Tree Certainty (TC) score to quantify the level of incongruence between phylogenetic trees in chloroplast genomic datasets, and show that the conflicting phylogenetic trees of core Chlorophyta stem from the most GC-heterogeneous sites. With removing the most GC-heterogeneous sites, our chloroplast phylogenomic analyses using heterogeneous models consistently support monophyly of the Chlorophyceae and of the Trebouxiophyceae, but the Ulvophyceae was resolved as polyphyletic. Our analytical framework provides an efficient approach to reconstruct the optimal phylogenetic relationships by minimizing conflicting signals.
Collapse
Affiliation(s)
- Ling Fang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Frederik Leliaert
- Botanic Garden Meise, 1860 Meise, Belgium; Phycology Research Group, Biology Department, Ghent University, 9000 Ghent, Belgium
| | - Phil M Novis
- Allan Herbarium, Manaaki Whenua-Landcare Research, Lincoln 7640, New Zealand
| | - Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Huan Zhu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guoxiang Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - David Penny
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
48
|
Fonseca LHM, Lohmann LG. Combining high-throughput sequencing and targeted loci data to infer the phylogeny of the “Adenocalymma-Neojobertia” clade (Bignonieae, Bignoniaceae). Mol Phylogenet Evol 2018; 123:1-15. [DOI: 10.1016/j.ympev.2018.01.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 10/18/2022]
|
49
|
Discordance between genomic divergence and phenotypic variation in a rapidly evolving avian genus (Motacilla). Mol Phylogenet Evol 2018; 120:183-195. [DOI: 10.1016/j.ympev.2017.11.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/10/2017] [Accepted: 11/29/2017] [Indexed: 01/23/2023]
|
50
|
Resolving taxonomic turbulence and uncovering cryptic diversity in the musk turtles (Sternotherus) using robust demographic modeling. Mol Phylogenet Evol 2018; 120:1-15. [DOI: 10.1016/j.ympev.2017.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/09/2017] [Accepted: 11/16/2017] [Indexed: 01/25/2023]
|