1
|
Gargano C, Mauro M, Martino C, Queiroz V, Vizzini A, Luparello C, Badalamenti R, Bellistrì F, Cuttitta A, Kondo H, Longo F, Arizza V, Vazzana M. Shark immune system: A review about their immunoglobulin repertoire. FISH & SHELLFISH IMMUNOLOGY 2025; 160:110187. [PMID: 39947340 DOI: 10.1016/j.fsi.2025.110187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 03/03/2025]
Abstract
In the past few decades, the literature about the immune system of vertebrates has increased thanks to the research about new therapies and new biomolecules able to treat or eradicate many human autoimmune diseases. Researchers found that immunoglobulins (Igs) are the most versatile biomolecules able to recognize almost every existing epitope with their binding domains. Phylogenetically, the most recent vertebrates exhibit the greatest sequence diversification in their Igs to extend their ability to distinguish different antigens. Among cartilaginous fishes, the most ancient vertebrates on phylogenetic history, sharks possess four types of Igs with similar pathways to extend sequence diversity and binding domains variability. Their Ig new antigen receptor (IgNAR) represents one of the most versatile and small Ig type upon all other species. The shark species are fundamental sources of new therapeutic receptors lending a further step to treatments against several human diseases. The aim of this review is to analyze sharks Igs, focusing on IgNARs for each species.
Collapse
Affiliation(s)
- C Gargano
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - M Mauro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy.
| | - C Martino
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - V Queiroz
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Sala 300, Rua do Matão, Travessa 14, n° 101, Cidade Universitária, São Paulo, 05508-090, Brazil
| | - A Vizzini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - C Luparello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - R Badalamenti
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - F Bellistrì
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - A Cuttitta
- National Research Council (CNR-ISMed), Institute for Studies on the Mediterranean, Via Filippo Parlatore, 65, 90145, Palermo, Italy
| | - H Kondo
- Laboratory of Genome Science, Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - F Longo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - V Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - M Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy; National Biodiversity Future Center, 90133, Palermo, Italy.
| |
Collapse
|
2
|
Flajnik MF. The Janus (dual) model of immunoglobulin isotype evolution: Conservation and plasticity are the defining paradigms. Immunol Rev 2024; 328:49-64. [PMID: 39223989 PMCID: PMC12010099 DOI: 10.1111/imr.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The study of antibodies in jawed vertebrates (gnathostomes) provides every immunologist with a bird's eye view of how human immunoglobulins (Igs) came into existence and subsequently evolved into their present forms. It is a fascinating Darwinian history of conservation on the one hand and flexibility on the other, exemplified by the Ig heavy chain (H) isotypes IgM and IgD/W, respectively. The cartilaginous fish (e.g., sharks) Igs provide a glimpse of "how everything got off the ground," while the amphibians (e.g., the model Xenopus) reveal how the adaptive immune system made an about face with the emergence of Ig isotype switching and IgG-like structure/function. The evolution of mucosal Igs is a captivating account of malleability, convergence, and conservation, and a call to arms for future study! In between there are spellbinding chronicles of antibody evolution in each class of vertebrates and rather incredible stories of how antibodies can adapt to occupy niches, for example, single-domain variable regions, cold-adapted Igs, convergent mechanisms to dampen antibody function, provision of mucosal defense, and many more. The purpose here is not to provide an encyclopedic examination of antibody evolution, but rather to hit the high points and entice readers to appreciate how things "came to be."
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Flajnik MF, Stanfield R, Pokidysheva EN, Boudko SP, Wilson I, Ohta Y. An Ancient MHC-Linked Gene Encodes a Nonrearranging Shark Antibody, UrIg, Convergent with IgG. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1042-1051. [PMID: 37540118 PMCID: PMC10530332 DOI: 10.4049/jimmunol.2300361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023]
Abstract
Gnathostome adaptive immunity is defined by the Ag receptors, Igs and TCRs, and the MHC. Cartilaginous fish are the oldest vertebrates with these adaptive hallmarks. We and others have unearthed nonrearranging Ag receptor-like genes in several vertebrates, some of which are encoded in the MHC or in MHC paralogous regions. One of these genes, named UrIg, was detected in the class III region of the shark MHC that encodes a protein with typical V and C domains such as those found in conventional Igs and TCRs. As no transmembrane region was detected in gene models or cDNAs, the protein does not appear to act as a receptor. Unlike some other shark Ig genes, the UrIg V region shows no evidence of RAG-mediated rearrangement, and thus it is likely related to other V genes that predated the invasion of the RAG transposon. The UrIg gene is present in all elasmobranchs and evolves conservatively, unlike Igs and TCRs. Also, unlike Ig/TCR, the gene is not expressed in secondary lymphoid tissues, but mainly in the liver. Recombinant forms of the molecule form disulfide-linked homodimers, which is the form also detected in many shark tissues by Western blotting. mAbs specific for UrIg identify the protein in the extracellular matrix of several shark tissues by immunohistochemistry. We propose that UrIg is related to the V gene invaded by the RAG transposon, consistent with the speculation of emergence of Ig/TCR within the MHC or proto-MHC.
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD
| | - Robyn Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Elena N Pokidysheva
- Division of Nephrology and Hypertension, Department of Medicine, Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN
| | - Sergei P Boudko
- Division of Nephrology and Hypertension, Department of Medicine, Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN
- Department of Biochemistry, Vanderbilt University, Nashville, TN
| | - Ian Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD
| |
Collapse
|
4
|
Boudinot P, Novas S, Jouneau L, Mondot S, Lefranc MP, Grimholt U, Magadán S. Evolution of T cell receptor beta loci in salmonids. Front Immunol 2023; 14:1238321. [PMID: 37649482 PMCID: PMC10464911 DOI: 10.3389/fimmu.2023.1238321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/17/2023] [Indexed: 09/01/2023] Open
Abstract
T-cell mediated immunity relies on a vast array of antigen specific T cell receptors (TR). Characterizing the structure of TR loci is essential to study the diversity and composition of T cell responses in vertebrate species. The lack of good-quality genome assemblies, and the difficulty to perform a reliably mapping of multiple highly similar TR sequences, have hindered the study of these loci in non-model organisms. High-quality genome assemblies are now available for the two main genera of Salmonids, Salmo and Oncorhynchus. We present here a full description and annotation of the TRB loci located on chromosomes 19 and 25 of rainbow trout (Oncorhynchus mykiss). To get insight about variations of the structure and composition of TRB locus across salmonids, we compared rainbow trout TRB loci with other salmonid species and confirmed that the basic structure of salmonid TRB locus is a double set of two TRBV-D-J-C loci in opposite orientation on two different chromosomes. Our data shed light on the evolution of TRB loci in Salmonids after their whole genome duplication (WGD). We established a coherent nomenclature of salmonid TRB loci based on comprehensive annotation. Our work provides a fundamental basis for monitoring salmonid T cell responses by TRB repertoire sequencing.
Collapse
Affiliation(s)
- Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Samuel Novas
- Immunology Laboratory, Research Center for Nanomaterials and Biomedicine (CINBIO), Universidade de Vigo, Vigo, Spain
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Stanislas Mondot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Marie-Paule Lefranc
- IMGT, The International ImMunoGeneTics Information System® (IMGT), Laboratoire d´ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France
| | - Unni Grimholt
- Fish Health Research Section, Norwegian Veterinary Institute, Oslo, Norway
| | - Susana Magadán
- Immunology Laboratory, Research Center for Nanomaterials and Biomedicine (CINBIO), Universidade de Vigo, Vigo, Spain
| |
Collapse
|
5
|
Anumukonda K, Francis M, Currie P, Tulenko F, Hsu E. Heavy chain-only antibody genes in fish evolved to generate unique CDR3 repertoire. Eur J Immunol 2021; 52:247-260. [PMID: 34708869 DOI: 10.1002/eji.202149588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/08/2021] [Accepted: 10/26/2021] [Indexed: 11/11/2022]
Abstract
In addition to conventional immunoglobulin, camelids and cartilaginous fish express a special class of antibody that consists only of heavy (H) chain (HCAbs). In the holocephalan elephantfish, there are two HCAb classes, one of which has evolved surprising features. The H-chain genes in cartilaginous fish are organized as 20-200 minigenes, or clusters, each consisting of VH, 1-3 DH, JH gene segments with one set of constant region exons. We report that HHC2 (holocephalan H-chain antibody 2) evolved from IgM H-chain clusters, but its DH gene segments have diverged considerably. The three DH in HHC2 clusters are A-rich, so that one to three potential reading frames for each DH encode lysine and arginine. All three are incorporated into the rearranged VDJ, ensuring that the ligand-binding site carries multiple basic residues, as cDNA sequences demonstrate. The electropositive character in HHC2 CDR3 is accompanied by a paucity of aromatic amino acids, the latter feature at variance to the established, interactive role of tyrosine not only in ligand-binding but generally at interfaces of protein complexes. The selection for these divergent HHC2 features challenges currently accepted ideas on what determines antibody reactivity and molecular recognition.
Collapse
Affiliation(s)
- Kamala Anumukonda
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Malcolm Francis
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Peter Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Frank Tulenko
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Ellen Hsu
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| |
Collapse
|
6
|
Matz H, Munir D, Logue J, Dooley H. The immunoglobulins of cartilaginous fishes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103873. [PMID: 32979434 PMCID: PMC7708420 DOI: 10.1016/j.dci.2020.103873] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 05/12/2023]
Abstract
Cartilaginous fishes, comprising the chimeras, sharks, skates, and rays, split from the common ancestor with other jawed vertebrates approx. 450 million years ago. Being the oldest extant taxonomic group to possess an immunoglobulin (Ig)-based adaptive immune system, examination of this group has taught us much about the evolution of adaptive immunity, as well as the conserved and taxon-specific characteristics of Igs. Significant progress has been made analyzing sequences from numerous genomic and transcriptomic data sets. These findings have been supported by additional functional studies characterizing the Igs and humoral response of sharks and their relatives. This review will summarize what we have learned about the genomic organization, protein structure, and in vivo function of these Ig isotypes in cartilaginous fishes and highlight the areas where our knowledge is still lacking.
Collapse
Affiliation(s)
- Hanover Matz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Institute of Marine and Environmental Technology, Baltimore, MD, USA
| | - Danish Munir
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - James Logue
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Helen Dooley
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Institute of Marine and Environmental Technology, Baltimore, MD, USA.
| |
Collapse
|
7
|
Ott JA, Harrison J, Flajnik MF, Criscitiello MF. Nurse shark T-cell receptors employ somatic hypermutation preferentially to alter alpha/delta variable segments associated with alpha constant region. Eur J Immunol 2020; 50:1307-1320. [PMID: 32346855 DOI: 10.1002/eji.201948495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/02/2020] [Accepted: 04/24/2020] [Indexed: 12/25/2022]
Abstract
In addition to canonical TCR and BCR, cartilaginous fish assemble noncanonical TCR that employ various B-cell components. For example, shark T cells associate alpha (TCR-α) or delta (TCR-δ) constant (C) regions with Ig heavy chain (H) variable (V) segments or TCR-associated Ig-like V (TAILV) segments to form chimeric IgV-TCR, and combine TCRδC with both Ig-like and TCR-like V segments to form the doubly rearranging NAR-TCR. Activation-induced (cytidine) deaminase-catalyzed somatic hypermutation (SHM), typically used for B-cell affinity maturation, also is used by TCR-α during selection in the shark thymus presumably to salvage failing receptors. Here, we found that the use of SHM by nurse shark TCR varies depending on the particular V segment or C region used. First, SHM significantly alters alpha/delta V (TCRαδV) segments using TCR αC but not δC. Second, mutation to IgHV segments associated with TCR δC was reduced compared to mutation to TCR αδV associated with TCR αC. Mutation was present but limited in V segments of all other TCR chains including NAR-TCR. Unexpectedly, we found preferential rearrangement of the noncanonical IgHV-TCRδC over canonical TCR αδV-TCRδC receptors. The differential use of SHM may reveal how activation-induced (cytidine) deaminase targets V regions.
Collapse
Affiliation(s)
- Jeannine A Ott
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Jenna Harrison
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Martin F Flajnik
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, Baltimore, MD, USA
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.,Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| |
Collapse
|
8
|
Leow HC, Fischer K, Leow YC, Braet K, Cheng Q, McCarthy J. Cytoplasmic and periplasmic expression of recombinant shark VNAR antibody in Escherichia coli. Prep Biochem Biotechnol 2019; 49:315-327. [DOI: 10.1080/10826068.2019.1566145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Herng C. Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Katja Fischer
- Clinical Tropical Medicine Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Yee C. Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Katleen Braet
- Department of Research, BioMARIC, Zwijnaarde, Belgium
| | - Qin Cheng
- Clinical Tropical Medicine Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Department of Drug Resistance Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
| | - James McCarthy
- Clinical Tropical Medicine Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
9
|
Khamlichi AA, Feil R. Parallels between Mammalian Mechanisms of Monoallelic Gene Expression. Trends Genet 2018; 34:954-971. [PMID: 30217559 DOI: 10.1016/j.tig.2018.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/06/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023]
Abstract
Different types of monoallelic gene expression are present in mammals, some of which are highly flexible, whereas others are more rigid. These include allelic exclusion at antigen receptor loci, the expression of olfactory receptor genes, genomic imprinting, X-chromosome inactivation, and random monoallelic expression (MAE). Although these processes play diverse biological roles, and arose through different selective pressures, the underlying epigenetic mechanisms show striking resemblances. Regulatory transcriptional events are important in all systems, particularly in the specification of MAE. Combined with comparative studies between species, this suggests that the different MAE systems found in mammals may have evolved from analogous ancestral processes.
Collapse
Affiliation(s)
- Ahmed Amine Khamlichi
- Institute of Pharmacology and Structural Biology (IPBS), Centre National de la Recherche Scientifique (CNRS) and Paul Sabatier University (UPS), 205 route de Narbonne, 31077 Toulouse, France.
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS and the University of Montpellier, 1919 route de Mende, 34293 Montpellier, France.
| |
Collapse
|
10
|
Abstract
The adaptive immune system arose 500 million years ago in ectothermic (cold-blooded) vertebrates. Classically, the adaptive immune system has been defined by the presence of lymphocytes expressing recombination-activating gene (RAG)-dependent antigen receptors and the MHC. These features are found in all jawed vertebrates, including cartilaginous and bony fish, amphibians and reptiles and are most likely also found in the oldest class of jawed vertebrates, the extinct placoderms. However, with the discovery of an adaptive immune system in jawless fish based on an entirely different set of antigen receptors - the variable lymphocyte receptors - the divergence of T and B cells, and perhaps innate-like lymphocytes, goes back to the origin of all vertebrates. This Review explores how recent developments in comparative immunology have furthered our understanding of the origins and function of the adaptive immune system.
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, USA.
| |
Collapse
|
11
|
Iacoangeli A, Lui A, Haines A, Ohta Y, Flajnik M, Hsu E. Evidence for Ig Light Chain Isotype Exclusion in Shark B Lymphocytes Suggests Ordered Mechanisms. THE JOURNAL OF IMMUNOLOGY 2017; 199:1875-1885. [PMID: 28760881 DOI: 10.4049/jimmunol.1700762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/27/2017] [Indexed: 01/06/2023]
Abstract
Unlike most vertebrates, the shark IgL gene organization precludes secondary rearrangements that delete self-reactive VJ rearranged genes. Nurse sharks express four L chain isotypes, κ, λ, σ, and σ-2, encoded by 35 functional minigenes or clusters. The sequence of gene activation/expression and receptor editing of these isotypes have not been studied. We therefore investigated the extent of isotypic exclusion in separated B cell subpopulations. Surface Ig (sIg)κ-expressing cells, isolated with mAb LK14 that recognizes Cκ, carry predominantly nonproductive rearrangements of other L chain isotypes. Conversely, after depletion with LK14, sIgM+ cells contained largely nonproductive κ and enrichment for in-frame VJ of the others. Because some isotypic inclusion was observed at the mRNA level, expression in the BCR was examined. Functional λ mRNA was obtained, as expected, from the LK14-depleted population, but was also in sIgκ+ splenocytes. Whereas λ somatic mutants from the depleted sample displayed evidence of positive selection, the λ genes in sIgκ+ cells accumulated bystander mutations indicating a failure to express their products at the cell surface in association with the BCR H chain. In conclusion, a shark B cell expresses one L chain isotype at the surface and other isotypes as nonproductive VJ, sterile transcripts, or in-frame VJ whose products may not associate with the H chain. Based on the mRNA content found in the B cell subpopulations, an order of L chain gene activation is suggested as: σ-2 followed by κ, then σ and λ.
Collapse
Affiliation(s)
- Anna Iacoangeli
- Tisch Multiple Sclerosis Research Center of New York, New York, NY 10019
| | - Anita Lui
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203; and
| | - Ashley Haines
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201
| | - Martin Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201
| | - Ellen Hsu
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203; and
| |
Collapse
|
12
|
Hsu E. Assembly and Expression of Shark Ig Genes. THE JOURNAL OF IMMUNOLOGY 2017; 196:3517-23. [PMID: 27183649 DOI: 10.4049/jimmunol.1600164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/04/2016] [Indexed: 11/19/2022]
Abstract
Sharks are modern descendants of the earliest vertebrates possessing Ig superfamily receptor-based adaptive immunity. They respond to immunogen with Abs that, upon boosting, appear more rapidly and show affinity maturation. Specific Abs and immunological memory imply that Ab diversification and clonal selection exist in cartilaginous fish. Shark Ag receptors are generated through V(D)J recombination, and because it is a mechanism known to generate autoreactive receptors, this implies that shark lymphocytes undergo selection. In the mouse, the ∼2.8-Mb IgH and IgL loci require long-range, differential activation of component parts for V(D)J recombination, allelic exclusion, and receptor editing. These processes, including class switching, evolved with and appear inseparable from the complex locus organization. In contrast, shark Igs are encoded by 100-200 autonomously rearranging miniloci. This review describes how the shark primary Ab repertoire is generated in the absence of structural features considered essential in mammalian Ig gene assembly and expression.
Collapse
Affiliation(s)
- Ellen Hsu
- Department of Physiology and Pharmacology, The State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203
| |
Collapse
|
13
|
Mashoof S, Criscitiello MF. Fish Immunoglobulins. BIOLOGY 2016; 5:E45. [PMID: 27879632 PMCID: PMC5192425 DOI: 10.3390/biology5040045] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 01/19/2023]
Abstract
The B cell receptor and secreted antibody are at the nexus of humoral adaptive immunity. In this review, we summarize what is known of the immunoglobulin genes of jawed cartilaginous and bony fishes. We focus on what has been learned from genomic or cDNA sequence data, but where appropriate draw upon protein, immunization, affinity and structural studies. Work from major aquatic model organisms and less studied comparative species are both included to define what is the rule for an immunoglobulin isotype or taxonomic group and what exemplifies an exception.
Collapse
Affiliation(s)
- Sara Mashoof
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, College Station, TX 77807, USA.
| |
Collapse
|
14
|
|
15
|
Iacoangeli A, Lui A, Naik U, Ohta Y, Flajnik M, Hsu E. Biased Immunoglobulin Light Chain Gene Usage in the Shark. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:3992-4000. [PMID: 26342033 PMCID: PMC4592821 DOI: 10.4049/jimmunol.1501426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/04/2015] [Indexed: 12/13/2022]
Abstract
This study of a large family of κ L chain clusters in nurse shark completes the characterization of its classical Ig gene content (two H chain isotypes, μ and ω, and four L chain isotypes, κ, λ, σ, and σ-2). The shark κ clusters are minigenes consisting of a simple VL-JL-CL array, where V to J recombination occurs over an ~500-bp interval, and functional clusters are widely separated by at least 100 kb. Six out of ~39 κ clusters are prerearranged in the germline (germline joined). Unlike the complex gene organization and multistep assembly process of Ig in mammals, each shark Ig rearrangement, somatic or in the germline, appears to be an independent event localized to the minigene. This study examined the expression of functional, nonproductive, and sterile transcripts of the κ clusters compared with the other three L chain isotypes. κ cluster usage was investigated in young sharks, and a skewed pattern of split gene expression was observed, one similar in functional and nonproductive rearrangements. These results show that the individual activation of the spatially distant κ clusters is nonrandom. Although both split and germline-joined κ genes are expressed, the latter are prominent in young animals and wane with age. We speculate that, in the shark, the differential activation of the multiple isotypes can be advantageously used in receptor editing.
Collapse
Affiliation(s)
- Anna Iacoangeli
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203; and
| | - Anita Lui
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203; and
| | - Ushma Naik
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203; and
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201
| | - Martin Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201
| | - Ellen Hsu
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203; and
| |
Collapse
|
16
|
Outters P, Jaeger S, Zaarour N, Ferrier P. Long-Range Control of V(D)J Recombination & Allelic Exclusion: Modeling Views. Adv Immunol 2015; 128:363-413. [PMID: 26477371 DOI: 10.1016/bs.ai.2015.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Allelic exclusion of immunoglobulin (Ig) and T-cell receptor (TCR) genes ensures the development of B and T lymphocytes operating under the mode of clonal selection. This phenomenon associates asynchronous V(D)J recombination events at Ig or TCR alleles and inhibitory feedback control. Despite years of intense research, however, the mechanisms that sustain asymmetric choice in random Ig/TCR dual allele usage and the production of Ig/TCR monoallelic expressing B and T lymphocytes remain unclear and open for debate. In this chapter, we first recapitulate the biological evidence that almost from the start appeared to link V(D)J recombination and allelic exclusion. We review the theoretical models previously proposed to explain this connection. Finally, we introduce our own mathematical modeling views based on how the developmental dynamics of individual lymphoid cells combine to sustain allelic exclusion.
Collapse
Affiliation(s)
- Pernelle Outters
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Sébastien Jaeger
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Nancy Zaarour
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Pierre Ferrier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France.
| |
Collapse
|
17
|
de los Rios M, Criscitiello MF, Smider VV. Structural and genetic diversity in antibody repertoires from diverse species. Curr Opin Struct Biol 2015; 33:27-41. [PMID: 26188469 DOI: 10.1016/j.sbi.2015.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/09/2015] [Accepted: 06/19/2015] [Indexed: 01/01/2023]
Abstract
The antibody repertoire is the fundamental unit that enables development of antigen specific adaptive immune responses against pathogens. Different species have developed diverse genetic and structural strategies to create their respective antibody repertoires. Here we review the shark, chicken, camel, and cow repertoires as unique examples of structural and genetic diversity. Given the enormous importance of antibodies in medicine and biological research, the novel properties of these antibody repertoires may enable discovery or engineering of antibodies from these non-human species against difficult or important epitopes.
Collapse
Affiliation(s)
- Miguel de los Rios
- Fabrus Inc., A Division of Sevion Therapeutics, San Diego, CA 92121, United States
| | - Michael F Criscitiello
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States
| | - Vaughn V Smider
- Fabrus Inc., A Division of Sevion Therapeutics, San Diego, CA 92121, United States; Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| |
Collapse
|
18
|
Magadan S, Sunyer OJ, Boudinot P. Unique Features of Fish Immune Repertoires: Particularities of Adaptive Immunity Within the Largest Group of Vertebrates. Results Probl Cell Differ 2015; 57:235-64. [PMID: 26537384 PMCID: PMC5124013 DOI: 10.1007/978-3-319-20819-0_10] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Fishes (i.e., teleost fishes) are the largest group of vertebrates. Although their immune system is based on the fundamental receptors, pathways, and cell types found in all groups of vertebrates, fishes show a diversity of particular features that challenge some classical concepts of immunology. In this chapter, we discuss the particularities of fish immune repertoires from a comparative perspective. We examine how allelic exclusion can be achieved when multiple Ig loci are present, how isotypic diversity and functional specificity impact clonal complexity, how loss of the MHC class II molecules affects the cooperation between T and B cells, and how deep sequencing technologies bring new insights about somatic hypermutation in the absence of germinal centers. The unique coexistence of two distinct B-cell lineages respectively specialized in systemic and mucosal responses is also discussed. Finally, we try to show that the diverse adaptations of immune repertoires in teleosts can help in understanding how somatic adaptive mechanisms of immunity evolved in parallel in different lineages across vertebrates.
Collapse
Affiliation(s)
- Susana Magadan
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France.
| | - Oriol J Sunyer
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France.
| |
Collapse
|
19
|
Abstract
As in mammals, cartilaginous and teleost fishes possess adaptive immune systems based on antigen recognition by immunoglobulins (Ig), T cell receptors (TCR), and major histocompatibility complex molecules (MHC) I and MHC II molecules. Also it is well established that fish B cells and mammalian B cells share many similarities, including Ig gene rearrangements, and production of membrane Ig and secreted Ig forms. This chapter provides an overview of the IgH and IgL chains in cartilaginous and bony fish, including their gene organizations, expression, diversity of their isotypes, and development of the primary repertoire. Furthermore, when possible, we have included summaries of key studies on immune mechanisms such as allelic exclusion, somatic hypermutation, affinity maturation, class switching, and mucosal immune responses.
Collapse
Affiliation(s)
- Eva Bengtén
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA.
| | - Melanie Wilson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA.
| |
Collapse
|
20
|
Pettinello R, Dooley H. The immunoglobulins of cold-blooded vertebrates. Biomolecules 2014; 4:1045-69. [PMID: 25427250 PMCID: PMC4279169 DOI: 10.3390/biom4041045] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 12/27/2022] Open
Abstract
Although lymphocyte-like cells secreting somatically-recombining receptors have been identified in the jawless fishes (hagfish and lamprey), the cartilaginous fishes (sharks, skates, rays and chimaera) are the most phylogenetically distant group relative to mammals in which bona fide immunoglobulins (Igs) have been found. Studies of the antibodies and humoral immune responses of cartilaginous fishes and other cold-blooded vertebrates (bony fishes, amphibians and reptiles) are not only revealing information about the emergence and roles of the different Ig heavy and light chain isotypes, but also the evolution of specialised adaptive features such as isotype switching, somatic hypermutation and affinity maturation. It is becoming increasingly apparent that while the adaptive immune response in these vertebrate lineages arose a long time ago, it is most definitely not primitive and has evolved to become complex and sophisticated. This review will summarise what is currently known about the immunoglobulins of cold-blooded vertebrates and highlight the differences, and commonalities, between these and more “conventional” mammalian species.
Collapse
Affiliation(s)
- Rita Pettinello
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Helen Dooley
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
21
|
Majeske AJ, Oren M, Sacchi S, Smith LC. Single sea urchin phagocytes express messages of a single sequence from the diverse Sp185/333 gene family in response to bacterial challenge. THE JOURNAL OF IMMUNOLOGY 2014; 193:5678-88. [PMID: 25355922 DOI: 10.4049/jimmunol.1401681] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immune systems in animals rely on fast and efficient responses to a wide variety of pathogens. The Sp185/333 gene family in the purple sea urchin, Strongylocentrotus purpuratus, consists of an estimated 50 (±10) members per genome that share a basic gene structure but show high sequence diversity, primarily due to the mosaic appearance of short blocks of sequence called elements. The genes show significantly elevated expression in three subpopulations of phagocytes responding to marine bacteria. The encoded Sp185/333 proteins are highly diverse and have central effector functions in the immune system. In this study we report the Sp185/333 gene expression in single sea urchin phagocytes. Sea urchins challenged with heat-killed marine bacteria resulted in a typical increase in coelomocyte concentration within 24 h, which included an increased proportion of phagocytes expressing Sp185/333 proteins. Phagocyte fractions enriched from coelomocytes were used in limiting dilutions to obtain samples of single cells that were evaluated for Sp185/333 gene expression by nested RT-PCR. Amplicon sequences showed identical or nearly identical Sp185/333 amplicon sequences in single phagocytes with matches to six known Sp185/333 element patterns, including both common and rare element patterns. This suggested that single phagocytes show restricted expression from the Sp185/333 gene family and infers a diverse, flexible, and efficient response to pathogens. This type of expression pattern from a family of immune response genes in single cells has not been identified previously in other invertebrates.
Collapse
Affiliation(s)
- Audrey J Majeske
- Department of Biological Sciences, George Washington University, Washington, DC 20052
| | - Matan Oren
- Department of Biological Sciences, George Washington University, Washington, DC 20052
| | - Sandro Sacchi
- Department of Biological Sciences, George Washington University, Washington, DC 20052
| | - L Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC 20052
| |
Collapse
|
22
|
Criscitiello MF. What the shark immune system can and cannot provide for the expanding design landscape of immunotherapy. Expert Opin Drug Discov 2014; 9:725-39. [PMID: 24836096 DOI: 10.1517/17460441.2014.920818] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Sharks have successfully lived in marine ecosystems, often atop food chains as apex predators, for nearly one and a half billion years. Throughout this period they have benefitted from an immune system with the same fundamental components found in terrestrial vertebrates like man. Additionally, sharks have some rather extraordinary immune mechanisms which mammals lack. AREAS COVERED In this review the author briefly orients the reader to sharks, their adaptive immunity, and their important phylogenetic position in comparative immunology. The author also differentiates some of the myths from facts concerning these animals, their cartilage, and cancer. From thereon, the author explores some of the more remarkable capabilities and products of shark lymphocytes. Sharks have an isotype of light chain-less antibodies that are useful tools in molecular biology and are moving towards translational use in the clinic. These special antibodies are just one of the several tricks of shark lymphocyte antigen receptor systems. EXPERT OPINION While shark cartilage has not helped oncology patients, shark immunoglobulins and T cell receptors do offer exciting novel possibilities for immunotherapeutics. Much of the clinical immunology developmental pipeline has turned from traditional vaccines to passively delivered monoclonal antibody-based drugs for targeted depletion, activation, blocking and immunomodulation. The immunogenetic tools of shark lymphocytes, battle-tested since the dawn of our adaptive immune system, are well poised to expand the design landscape for the next generation of immunotherapy products.
Collapse
Affiliation(s)
- Michael F Criscitiello
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, Texas A&M Health Science Center, Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology , Mailstop 4467, College Station, TX 77843 , USA +1 979 845 4207 ; +1 979 862 1088 ;
| |
Collapse
|
23
|
Li R, Wang T, Bird S, Zou J, Dooley H, Secombes CJ. B cell receptor accessory molecule CD79α: characterisation and expression analysis in a cartilaginous fish, the spiny dogfish (Squalus acanthias). FISH & SHELLFISH IMMUNOLOGY 2013; 34:1404-15. [PMID: 23454429 PMCID: PMC4034164 DOI: 10.1016/j.fsi.2013.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/08/2013] [Accepted: 02/18/2013] [Indexed: 05/16/2023]
Abstract
CD79α (also known as Igα) is a component of the B cell antigen receptor complex and plays an important role in B cell signalling. The CD79α protein is present on the surface of B cells throughout their life cycle, and is absent on all other healthy cells, making it a highly reliable marker for B cells in mammals. In this study the spiny dogfish (Squalus acanthias) CD79α (SaCD79α) is described and its expression studied under constitutive and stimulated conditions. The spiny dogfish CD79α cDNA contains an open reading frame of 618 bp, encoding a protein of 205 amino acids. Comparison of the SaCD79α gene with that of other species shows that the gross structure (number of exons, exon/intron boundaries, etc.) is highly conserved across phylogeny. Additionally, analysis of the 5' flanking region shows SaCD79α lacks a TATA box and possesses binding sites for multiple transcription factors implicated in its B cell-specific gene transcription in other species. Spiny dogfish CD79α is most highly expressed in immune tissues, such as spleen, epigonal and Leydig organ, and its transcript level significantly correlates with those of spiny dogfish immunoglobulin heavy chains. Additionally, CD79α transcription is up-regulated, to a small but significant degree, in peripheral blood cells following stimulation with pokeweed mitogen. These results strongly indicate that, as in mammals, spiny dogfish CD79α is expressed by shark B cells where it associates with surface-bound immunoglobulin to form a fully functional BCR, and thus may serve as a pan-B cell marker in future shark immunological studies.
Collapse
Affiliation(s)
- Ronggai Li
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Steve Bird
- Department of Biological Sciences, School of Science and Engineering, University of Waikato, New Zealand
| | - Jun Zou
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Helen Dooley
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Christopher J. Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
- Corresponding author. Tel.: +44 1224 278272; fax: +44 (0)1224 272396.
| |
Collapse
|
24
|
Fillatreau S, Six A, Magadan S, Castro R, Sunyer JO, Boudinot P. The astonishing diversity of Ig classes and B cell repertoires in teleost fish. Front Immunol 2013; 4:28. [PMID: 23408183 PMCID: PMC3570791 DOI: 10.3389/fimmu.2013.00028] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/24/2013] [Indexed: 12/17/2022] Open
Abstract
With lymphoid tissue anatomy different than mammals, and diverse adaptations to all aquatic environments, fish constitute a fascinating group of vertebrate to study the biology of B cell repertoires in a comparative perspective. Fish B lymphocytes express immunoglobulin (Ig) on their surface and secrete antigen-specific antibodies in response to immune challenges. Three antibody classes have been identified in fish, namely IgM, IgD, and IgT, while IgG, IgA, and IgE are absent. IgM and IgD have been found in all fish species analyzed, and thus seem to be primordial antibody classes. IgM and IgD are normally co-expressed from the same mRNA through alternative splicing, as in mammals. Tetrameric IgM is the main antibody class found in serum. Some species of fish also have IgT, which seems to exist only in fish and is specialized in mucosal immunity. IgM/IgD and IgT are expressed by two different sub-populations of B cells. The tools available to investigate B cell responses at the cellular level in fish are limited, but the progress of fish genomics has started to unravel a rich diversity of IgH and immunoglobulin light chain locus organization, which might be related to the succession of genome remodelings that occurred during fish evolution. Moreover, the development of deep sequencing techniques has allowed the investigation of the global features of the expressed fish B cell repertoires in zebrafish and rainbow trout, in steady state or after infection. This review provides a description of the organization of fish Ig loci, with a particular emphasis on their heterogeneity between species, and presents recent data on the structure of the expressed Ig repertoire in healthy and infected fish.
Collapse
Affiliation(s)
- Simon Fillatreau
- Deutsches Rheuma-Forschungszentrum, Leibniz Institute Berlin, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Recombination, transcription, and diversity of a partially germline-joined VH in a mammal. Immunogenetics 2012; 64:713-7. [DOI: 10.1007/s00251-012-0627-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/06/2012] [Indexed: 10/28/2022]
|
26
|
Zhu C, Lee V, Finn A, Senger K, Zarrin AA, Du Pasquier L, Hsu E. Origin of immunoglobulin isotype switching. Curr Biol 2012; 22:872-80. [PMID: 22542103 DOI: 10.1016/j.cub.2012.03.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/02/2012] [Accepted: 03/19/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND From humans to frogs, immunoglobulin class switching introduces different effector functions to antibodies through an intrachromosomal DNA recombination process at the heavy-chain locus. Although there are two conventional antibody classes (IgM, IgW) in sharks, their heavy chains are encoded by 20 to >100 miniloci. These representatives of the earliest jawed vertebrates possess a primordial immunoglobulin gene organization where each gene cluster is autonomous and contains a few rearranging gene segments (VH-D1-D2-JH) with one constant region, μ or ω. RESULTS V(D)J rearrangement always takes place within the μ cluster, but here we show that the VDJ can be expressed with constant regions from different clusters, although IgH genes are spatially distant, at >120 kb. Moreover, reciprocal exchanges take place between Igω and Igμ genes. Switching is augmented with deliberate immunization and is concomitant with somatic hypermutation activity. Because switching occurs independently of the partners' linkage position, some events involve transchromosomal recombination. The switch sites consist of direct joins between two genes in the 3' intron flanking JH. CONCLUSIONS Our data are consistent with a mechanism of cutting or joining of distal DNA lesions initiated by activation-induced cytidine deaminase (AID), in the absence of mammalian-type switch regions. We suggest that, in shark, with its many autonomous IgH targeted by programmed DNA breakage, factors predisposing broken DNA ends to translocate configured the earliest version of class switch recombination.
Collapse
Affiliation(s)
- Catherine Zhu
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Smith LE, Crouch K, Cao W, Müller MR, Wu L, Steven J, Lee M, Liang M, Flajnik MF, Shih HH, Barelle CJ, Paulsen J, Gill DS, Dooley H. Characterization of the immunoglobulin repertoire of the spiny dogfish (Squalus acanthias). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:665-679. [PMID: 22040740 DOI: 10.1016/j.dci.2011.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/10/2011] [Accepted: 10/14/2011] [Indexed: 05/31/2023]
Abstract
The cartilaginous fish (chimeras, sharks, skates and rays) are the oldest group relative to mammals in which an adaptive immune system founded upon immunoglobulins has been found. In this manuscript we characterize the immunoglobulins of the spiny dogfish (Squalus acanthias) at both the molecular and expressed protein levels. Despite the presence of hundreds of IgM clusters in this species the serum levels of this isotype are comparatively low. However, analysis of cDNA sequences and serum protein suggests microheterogeneity in the IgM heavy chains and supports the proposal that different clusters are preferentially used in the two forms (monomer or pentamer) of this isotype. We also found that the IgNAR isotype in this species exists in a previously unknown multimeric format in serum. Finally, we identified a new form of the IgW isotype (the shark IgD orthologue), in which the leader is spliced directly to the first constant domain, resulting in a molecule lacking an antigen-binding domain.
Collapse
Affiliation(s)
- Lauren E Smith
- Global Biotherapeutics Technologies, Pfizer Inc., Foresterhill, Aberdeen AB25 2ZS, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li R, Dooley H, Wang T, Secombes CJ, Bird S. Characterisation and expression analysis of B-cell activating factor (BAFF) in spiny dogfish (Squalus acanthias): cartilaginous fish BAFF has a unique extra exon that may impact receptor binding. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:707-717. [PMID: 22155638 DOI: 10.1016/j.dci.2011.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/23/2011] [Accepted: 11/28/2011] [Indexed: 05/31/2023]
Abstract
B-cell activating factor (BAFF), also known as tumour necrosis factor (TNF) ligand superfamily member 13B, is an important immune regulator with critical roles in B-cell survival, proliferation, differentiation and immunoglobulin secretion. A BAFF gene has been cloned from spiny dogfish (Squalus acanthias) and its expression studied. The dogfish BAFF encodes for an anchored type-II transmembrane protein of 288 aa with a putative furin protease cleavage site and TNF family signature as seen in BAFFs from other species. The identity of dogfish BAFF has also been confirmed by conserved cysteine residues, and phylogenetic tree analysis. The dogfish BAFF gene has an extra exon not seen in teleost fish, birds and mammals that encodes for 29 aa and may impact on receptor binding. The dogfish BAFF is highly expressed in immune tissues, such as spleen, and is up-regulated by PWM in peripheral blood leucocytes, suggesting a potentially important role in the immune system.
Collapse
Affiliation(s)
- Ronggai Li
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland, UK
| | | | | | | | | |
Collapse
|
29
|
Zhu C, Feng W, Weedon J, Hua P, Stefanov D, Ohta Y, Flajnik MF, Hsu E. The multiple shark Ig H chain genes rearrange and hypermutate autonomously. THE JOURNAL OF IMMUNOLOGY 2011; 187:2492-501. [PMID: 21804022 DOI: 10.4049/jimmunol.1101671] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sharks and skates are representatives of the earliest vertebrates with an immune system based on V(D)J rearrangement. They possess a unique Ig gene organization consisting of 15 to >50 individual IgM loci, each with one VH, two DH, one JH, and one set of constant region exons. The present study attempts to understand how multiple Ig genes are regulated with respect to rearrangement initiation and to targeting during somatic hypermutation. The linkage of three single-copy IgH genes was determined, and single-cell genomic PCR studies in a neonatal animal were used to examine any relationship between relative gene position and likelihood of rearrangement. Our results show that one to three IgH genes are activated independently of linkage or allelic position and the data best fit with a probability model based on the hypothesis that V(D)J rearrangement occurs as a sequence of trials within the B cell. In the neonatal cell set, two closely related IgH, G2A, and G2B, rearranged at similar frequencies, and their membrane forms were expressed at similar levels, like in other young animals. However, older animals displayed a bias in favor of the G2A isotype, which suggests that although rearrangement at G2A and G2B was randomly initiated during primary repertoire generation, the two very similar IgM sequences appear to be differentially expressed with age and exposure to Ag. We performed genomic single-cell PCR on B cells from an immunized individual to study activation-induced cytidine deaminase targeting and found that hypermutation, like V(D)J rearrangement, occurred independently among the many shark IgH.
Collapse
Affiliation(s)
- Catherine Zhu
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Both jawless vertebrates, such as lampreys and hagfish, and jawed vertebrates (encompassing species as diverse as sharks and humans) have an adaptive immune system that is based on somatically diversified and clonally expressed antigen receptors. Although the molecular nature of the antigen receptors and the mechanisms of their assembly are different, recent findings suggest that the general design principles underlying the two adaptive immune systems are surprisingly similar. The identification of such commonalities promises to further our understanding of the mammalian immune system and to inspire the development of new strategies for medical interventions targeting the consequences of faulty immune functions.
Collapse
Affiliation(s)
- Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, D-79108 Freiburg, Germany.
| |
Collapse
|
31
|
Das S, Hirano M, McCallister C, Tako R, Nikolaidis N. Comparative genomics and evolution of immunoglobulin-encoding loci in tetrapods. Adv Immunol 2011; 111:143-78. [PMID: 21970954 DOI: 10.1016/b978-0-12-385991-4.00004-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The immunoglobulins (Igs or antibodies) as an integral part of the tetrapod adaptive immune response system have evolved toward producing highly diversified molecules that recognize a remarkably large number of different antigens. Antibodies and their respective encoding loci have been shaped by different and often contrasting evolutionary forces, some of which aim to conserve an established pattern or mechanism and others to generate alternative and diversified structural and functional configurations. The genomic organization, gene content, ratio between functional genes and pseudogenes, number and position of recombining genetic elements, and the different levels of divergence present at the germline of the Ig-encoding loci have been evolutionarily shaped and optimized in a lineage- and, in some cases, species-specific mode aiming to increase organismal fitness. Further, evolution favored the development of multiple mechanisms of primary and secondary antibody diversification, such as V(D)J recombination, class switch recombination, isotype exclusion, somatic hypermutation, and gene conversion. Diverse tetrapod species, based on their specific germline configurations, use these mechanisms in several different combinations to effectively generate a vast array of distinct antibody types and structures. This chapter summarizes our current knowledge on the Ig-encoding loci in tetrapods and discusses the different evolutionary mechanisms that shaped their diversification.
Collapse
Affiliation(s)
- Sabyasachi Das
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, School of Medicine, Emory University, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
32
|
Subrahmanyam R, Sen R. RAGs' eye view of the immunoglobulin heavy chain gene locus. Semin Immunol 2010; 22:337-45. [PMID: 20864355 DOI: 10.1016/j.smim.2010.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 08/12/2010] [Indexed: 10/19/2022]
Abstract
The immunoglobulin heavy chain (IgH) gene locus is activated at a precise stage of B lymphocyte development to undergo gene rearrangements that assemble the functional gene. In this review we summarize our current understanding of the chromatin state of the IgH as it appears just prior to the initiation of V(D)J recombination, and the implications of this structure for regulation of recombination. We also examine the role of the intron enhancer, Eμ, in establishing the pre-rearrangement chromatin structure. The emerging picture shows that the IgH locus consists of independently regulated domains, each of which requires multiple levels of epigenetic changes to reach the fully activated state.
Collapse
Affiliation(s)
- Ramesh Subrahmanyam
- Gene Regulation Section, Laboratory of Cellular and Molecular Biology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd., Room 06C214, Baltimore, MD 21224, United States
| | | |
Collapse
|
33
|
Zhu C, Hsu E. Error-prone DNA repair activity during somatic hypermutation in shark B lymphocytes. THE JOURNAL OF IMMUNOLOGY 2010; 185:5336-47. [PMID: 20921520 DOI: 10.4049/jimmunol.1000779] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sharks are representatives of the earliest vertebrates that possess an immune system utilizing V(D)J recombination to generate Ag receptors. Their Ab repertoire diversity is based in part on a somatic hypermutation process that introduces adjacent nucleotide substitutions of 2-5 bp. We have isolated mutant nonfunctional Ig rearrangements and intronic flank sequences to characterize the nonselected, intrinsic properties of this phenomenon; changes unique to shark were observed. Duplications and deletions were associated with N additions, suggesting participation of a DNA polymerase with some degree of template independence during the repair of DNA breaks initiated by activation-induced cytidine deaminase. Other mutations were consistent with some in vitro activities of mammalian translesion DNA polymerase η: tandem base substitutions, strand slippage, and small insertions/deletions. The nature of substitution patterns shows that DNA lesions at shark Ig genes recruit DNA repair factors with a species-specific repertoire of activities. We speculate that the tandem mutations are introduced by direct sequential misinsertions and that, in shark B cells, the mispairs tend to be extended rather than proofread. Despite extensive changes undergone by some mutants, the physical range of mutational activity remained restricted to VDJ and within the first 2-kb portion of the 6.8-kb J-C intron, perhaps a self-regulating aspect of activation-induced cytidine deaminase action that is conserved in evolution.
Collapse
Affiliation(s)
- Catherine Zhu
- Department of Physiology and Pharmacology, State University of New York, Health Science Center at Brooklyn, Brooklyn, NY 11203-2098, USA
| | | |
Collapse
|
34
|
Abstract
V(D)J recombination assembles antigen receptor genes from germline V, D and J segments during lymphocyte development. In αβT-cells, this leads to the subsequent expression of T-cell receptor (TCR) β and α chains. Generally, V(D)J recombination is closely controlled at various levels, including cell-type and cell-stage specificities, order of locus/gene segment recombination, and allele usage to mediate allelic exclusion. Many of these controls rely on the modulation of gene accessibility to the recombination machinery, involving not only biochemical changes in chromatin arrangement and structural modifications of chromosomal organization and positioning, but also the refined composition of the recombinase targets, the so-called recombination signal sequences. Here, we summarize current knowledge regarding the regulation of V(D)J recombination at the Tcrb gene locus, certainly one for which these various levels of control and regulatory components have been most extensively investigated.
Collapse
|
35
|
Abstract
Adaptive immunity is mediated through numerous genetic and cellular processes that generate favourable somatic variants of antigen-binding receptors under evolutionary selection pressure by pathogens and other factors. Advances in our understanding of immunity in mammals and other model organisms are revealing the underlying basis and complexity of this remarkable system. Although the evolution of adaptive immunity has been thought to occur by the acquisition of novel molecular capabilities, an increasing amount of information from new model systems suggest that co-option and redirection of pre-existing systems are the main source of innovation. We combine evidence from a wide range of organisms to obtain an integrated view of the origins and patterns of divergence in adaptive immunity.
Collapse
Affiliation(s)
- Gary W Litman
- Department of Molecular Genetics, All Children's Hospital, St. Petersburg, Florida 33701, USA.
| | | | | |
Collapse
|
36
|
Criscitiello MF, Ohta Y, Saltis M, McKinney EC, Flajnik MF. Evolutionarily conserved TCR binding sites, identification of T cells in primary lymphoid tissues, and surprising trans-rearrangements in nurse shark. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:6950-60. [PMID: 20488795 PMCID: PMC3222143 DOI: 10.4049/jimmunol.0902774] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cartilaginous fish are the oldest animals that generate RAG-based Ag receptor diversity. We have analyzed the genes and expressed transcripts of the four TCR chains for the first time in a cartilaginous fish, the nurse shark (Ginglymostoma cirratum). Northern blotting found TCR mRNA expression predominantly in lymphoid and mucosal tissues. Southern blotting suggested translocon-type loci encoding all four chains. Based on diversity of V and J segments, the expressed combinatorial diversity for gamma is similar to that of human, alpha and beta may be slightly lower, and delta diversity is the highest of any organism studied to date. Nurse shark TCRdelta have long CDR3 loops compared with the other three chains, creating binding site topologies comparable to those of mammalian TCR in basic paratope structure; additionally, nurse shark TCRdelta CDR3 are more similar to IgH CDR3 in length and heterogeneity than to other TCR chains. Most interestingly, several cDNAs were isolated that contained IgM or IgW V segments rearranged to other gene segments of TCRdelta and alpha. Finally, in situ hybridization experiments demonstrate a conservation of both alpha/beta and gamma/delta T cell localization in the thymus across 450 million years of vertebrate evolution, with gamma/delta TCR expression especially high in the subcapsular region. Collectively, these data make the first cellular identification of TCR-expressing lymphocytes in a cartilaginous fish.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Blotting, Southern
- Conserved Sequence
- Gene Expression
- Gene Expression Profiling
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor/genetics
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor/immunology
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor/genetics
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor/immunology
- Humans
- In Situ Hybridization
- Lymphoid Tissue/immunology
- Molecular Sequence Data
- Phylogeny
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- Sharks/genetics
- Sharks/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Michael F Criscitiello
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
37
|
Regulation of antigen-receptor gene assembly in hagfish. EMBO Rep 2010; 11:126-32. [PMID: 20075989 DOI: 10.1038/embor.2009.274] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 11/25/2009] [Accepted: 12/01/2009] [Indexed: 12/31/2022] Open
Abstract
Variable lymphocyte receptors (VLRs) are antigen receptors in the jawless vertebrates lamprey and hagfish. VLR genes are classified into VLRA and VLRB, and lymphocytes expressing VLRA are T-cell-like, whereas those expressing VLRB are B-cell-like in the sea lamprey. Diverse VLR genes are assembled somatically in lymphocytes; however, how the assembly is regulated is still largely unknown. Here, we analyse VLR gene assembly at the single-cell level in the inshore hagfish (Eptatretus burgeri). Each lymphocyte assembles and transcribes only one type of VLR gene, either VLRA or VLRB. In general, monoallelic assembly of VLR was observed, but diallelic assembly was found in some cases--in many of which, one allele was functional and the other was defective. In fact, all VLR-assembled lymphocytes contained at least one functional VLR gene. Together, these results indicate a feedback inhibition of VLR assembly and selection of VLR-positive lymphocytes.
Collapse
|
38
|
Of pungency, pain, and naked mole rats: chili peppers revisited. J Biosci 2009; 34:349-51. [PMID: 19805895 DOI: 10.1007/s12038-009-0040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Wei Z, Wu Q, Ren L, Hu X, Guo Y, Warr GW, Hammarström L, Li N, Zhao Y. Expression of IgM, IgD, and IgY in a reptile, Anolis carolinensis. THE JOURNAL OF IMMUNOLOGY 2009; 183:3858-64. [PMID: 19717516 DOI: 10.4049/jimmunol.0803251] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The reptiles are the last major group of jawed vertebrates in which the organization of the IGH locus and its encoded Ig H chain isotypes have not been well characterized. In this study, we show that the green anole lizard (Anolis carolinensis) expresses three Ig H chain isotypes (IgM, IgD, and IgY) but no IgA. The presence of the delta gene in the lizard demonstrates an evolutionary continuity of IgD from fishes to mammals. Although the germline delta gene contains 11 C(H) exons, only the first 4 are used in the expressed IgD membrane-bound form. The mu chain lacks the cysteine in C(H)1 that forms a disulfide bond between H and L chains, suggesting that (as in IgM of some amphibians) the H and L polypeptide chains are not covalently associated. Although conventional IgM transcripts (four C(H) domains) encoding both secreted and membrane-bound forms were detected, alternatively spliced transcripts encoding a short membrane-bound form were also observed and shown to lack the first two C(H) domains (VDJ-C(H)3-C(H)4-transmembrane region). Similar to duck IgY, lizard IgY H chain (upsilon) transcripts encoding both full-length and truncated (IgYDeltaFc) forms (with two C(H) domains) were observed. The absence of an IgA-encoding gene in the lizard IGH locus suggests a complex evolutionary history for IgA in the saurian lineage leading to modern birds, lizards, and their relatives.
Collapse
Affiliation(s)
- Zhiguo Wei
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, Peoples Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Because of their extreme importance to human health, we probably know more about the structure and function of antibodies than practically any other molecule. Despite all the knowledge that has been accrued in the understanding of antibodies, modern approaches, especially comparative genomics, continue to yield novel findings regarding their underlying biology and evolution. In this review, we describe recent research that led to these revelations, and discuss the broad evolutionary implications of these findings. We have restricted our discussion to three vignettes. Considerable attention has been paid to the recent discovery that the teleost IgH locus is highly similar in organization to the Tcra-Tcrd locus, implicating an evolutionary common ancestor and parallels between the functions of B and T cells during development. Second, we discuss how a new type of antibody, recently discovered in jawless vertebrates, composed not of immunoglobulins but leucine-rich repeats, sheds new light on the overall forces driving evolution of all adaptive antigen receptors. Lastly, we discuss how accumulation of genomic sequences of various human subpopulations leads to better understanding of the directionality of antibody evolution. There is always more to learn from the unfolding saga of antibodies.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|
41
|
Characterization of arrangement and expression of the T cell receptor gamma locus in the sandbar shark. Proc Natl Acad Sci U S A 2009; 106:8591-6. [PMID: 19439654 DOI: 10.1073/pnas.0811283106] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ig and T cell receptor (TCR) genes consist of separate genomic elements, which must undergo rearrangement and joining before a functional protein can be expressed. Considerable plasticity in the genomic arrangement of these elements has occurred during the evolution of the immune system. In tetrapods, all Ig and TCR chain elements are arranged as translocons. In teleosts, the Ig heavy and TCR chains are translocons, but light chain genes may occur as clusters. However, in chondrichthyes, all of the Ig light and heavy chain genes are arranged as clusters. These clusters vary in number from <10 to several hundred, depending on isotype and species. Here, we report that the germ-line gene for the TCR gamma chain in a chondrichthyan, the sandbar shark (Carcharhinus plumbeus), is present as a single locus arranged in a classic translocon pattern. Thus, the shark utilizes 2 types of genomic arrangements, the unique cluster organization for Ig genes and the "conventional" translocon organization for TCR genes. The TCR gamma translocon contains at least 5 V region genes, 3 J segment genes, and 1 C segment. As expected, the third hypervariable segment (CDR3), formed by the rearrangement of the Vgamma and Jgamma segments, contributed the major variability in the intact V region structure. Our data also suggest that diversity may be generated by mutation in the V regions.
Collapse
|
42
|
Barelle C, Gill DS, Charlton K. Shark novel antigen receptors--the next generation of biologic therapeutics? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 655:49-62. [PMID: 20047035 DOI: 10.1007/978-1-4419-1132-2_6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over recent decades we have witnessed a revolution in health care as new classes of therapeutics based on natural biological molecules have become available to medical practitioners. These promised to target some of the most serious conditions that had previously evaded traditional small molecule drugs, such as cancers and to alleviate many of the concerns of patients and doctors alike regarding adverse side effects and impaired quality of life that are often associated with chemo-therapeutics. Many early 'biologics' were based on antibodies, Nature's answer to invading pathogens and malignancies, derived from rodents and in many ways failed to live up to expectations. Most of these issues were subsequently negated by technological advances that saw the introduction of human or "humanized' antibodies and have resulted in a number of commercial 'block-busters'. Today, most of the large pharmaceutical companies have product pipelines that include an increasing proportion of biologic as opposed to small molecule compounds. The limitations of antibodies or other large protein drugs are now being realized however and ever more inventive solutions are being sought to develop equally efficacious but smaller, more soluble, more stable and less costly alternatives to broaden the range of drug-able targets and therapeutic options. The aim of this chapter is to introduce the reader to one such novel approach that seeks to exploit a unique antibody-like protein evolved by ancestral sharks over 450 M years ago and that may lead to a host of new therapeutic opportunities and help us to tackle some of the pressing clinical demands of the 21 st century.
Collapse
Affiliation(s)
- Caroline Barelle
- Wyeth Research, Cornhill Road, Foresterhill, Aberdeen, AB25 2ZS, Scotland, UK
| | | | | |
Collapse
|
43
|
Abstract
The adaptive immune system of jawed vertebrates is based on a vast, anticipatory repertoire of specific antigen receptors, immunoglobulins (Ig) in B-lymphocytes and T-cell receptors (TCR) in T-lymphocytes. The Ig and TCRdiversity is generated by a process called V(D)J recombination, which is initiated by the RAG recombinase. Although RAG activity is very well conserved, the regulated accessibility of the antigen receptor genes to RAG has evolved with the species' organizational structure, which differs most significantly between fishes and tetrapods. V(D)J recombination was primarily characterized in developing lymphocytes of mice and human beings and is often described as an ordered, two-stage program. Studies in rabbit, chicken and shark show that this process does not have to be ordered, nor does it need to take place in two stages to generate a diverse repertoire and enable the expression of a single species of antigen receptor per cell, a restriction called allelic exclusion.
Collapse
|
44
|
Lee V, Huang JL, Lui MF, Malecek K, Ohta Y, Mooers A, Hsu E. The evolution of multiple isotypic IgM heavy chain genes in the shark. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:7461-70. [PMID: 18490746 PMCID: PMC2590587 DOI: 10.4049/jimmunol.180.11.7461] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The IgM H chain gene organization of cartilaginous fishes consists of 15-200 miniloci, each with a few gene segments (V(H)-D1-D2-J(H)) and one C gene. This is a gene arrangement ancestral to the complex IgH locus that exists in all other vertebrate classes. To understand the molecular evolution of this system, we studied the nurse shark, which has relatively fewer loci, and characterized the IgH isotypes for organization, functionality, and the somatic diversification mechanisms that act upon them. Gene numbers differ slightly between individuals ( approximately 15), but five active IgM subclasses are always present. Each gene undergoes rearrangement that is strictly confined within the minilocus; in B cells there is no interaction between adjacent loci located > or =120 kb apart. Without combinatorial events, the shark IgM H chain repertoire is based on junctional diversity and, subsequently, somatic hypermutation. We suggest that the significant contribution by junctional diversification reflects the selected novelty introduced by RAG in the early vertebrate ancestor, whereas combinatorial diversity coevolved with the complex translocon organization. Moreover, unlike other cartilaginous fishes, there are no germline-joined VDJ at any nurse shark mu locus, and we suggest that such genes, when functional, are species-specific and may have specialized roles. With an entire complement of IgM genes available for the first time, phylogenetic analyses were performed to examine how the multiple Ig loci evolved. We found that all domains changed at comparable rates, but V(H) appears to be under strong positive selection for increased amino acid sequence diversity, and surprisingly, so does Cmicro2.
Collapse
Affiliation(s)
- Victor Lee
- Department of Physiology and Pharmacology, State University of New York Health Science Center, Brooklyn, NY 11203
| | - Jing Li Huang
- Department of Physiology and Pharmacology, State University of New York Health Science Center, Brooklyn, NY 11203
| | - Ming Fai Lui
- Department of Physiology and Pharmacology, State University of New York Health Science Center, Brooklyn, NY 11203
| | - Karolina Malecek
- Department of Physiology and Pharmacology, State University of New York Health Science Center, Brooklyn, NY 11203
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201
| | - Arne Mooers
- Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ellen Hsu
- Department of Physiology and Pharmacology, State University of New York Health Science Center, Brooklyn, NY 11203
| |
Collapse
|