1
|
Hashemi M, Fard AA, Pakshad B, Asheghabadi PS, Hosseinkhani A, Hosseini AS, Moradi P, Mohammadbeygi Niye M, Najafi G, Farahzadi M, Khoushab S, Taheriazam A, Farahani N, Mohammadi M, Daneshi S, Nabavi N, Entezari M. Non-coding RNAs and regulation of the PI3K signaling pathway in lung cancer: Recent insights and potential clinical applications. Noncoding RNA Res 2025; 11:1-21. [PMID: 39720352 PMCID: PMC11665378 DOI: 10.1016/j.ncrna.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Lung cancer (LC) is one of the most common causes of cancer-related death worldwide. It has been demonstrated that the prognosis of current drug treatments is affected by a variety of factors, including late stage, tumor recurrence, inaccessibility to appropriate treatments, and, most importantly, chemotherapy resistance. Non-coding RNAs (ncRNAs) contribute to tumor development, with some acting as tumor suppressors and others as oncogenes. The phosphoinositide 3-kinase (PI3Ks)/AKT serine/threonine kinase pathway is one of the most important common targets of ncRNAs in cancer, which is widely applied to modulate the cell cycle and a variety of biological processes, including cell growth, mobility survival, metabolic activity, and protein production. Discovering the biology of ncRNA-PI3K/AKT signaling may lead to advances in cancer diagnosis and treatment. As a result, we investigated the expression and role of PI3K/AKT-related ncRNAs in clinical characteristics of lung cancer, as well as their functions as potential biomarkers in lung cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Asal Abolghasemi Fard
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bita Pakshad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pezhman Shafiei Asheghabadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amineh Hosseinkhani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atena Sadat Hosseini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parham Moradi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammadreza Mohammadbeygi Niye
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ghazal Najafi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohadeseh Farahzadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahya Mohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Paul S, Das S, Banerjea M, Chaudhuri S, Das B. The ATP-dependent DEAD-box RNA helicase Dbp2 regulates the glucose/nitrogen stress response in baker's yeast by modulating reversible nuclear retention and decay of SKS1 mRNA. Genetics 2025; 229:iyae221. [PMID: 39739574 DOI: 10.1093/genetics/iyae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025] Open
Abstract
In Saccharomyces cerevisiae, SKS1 mRNA encoding a glucose-sensing serine/threonine kinase belongs to "nucleus-retained" (NR) mRNAs representing a subset of otherwise normal transcripts, which exhibits slow nuclear export and excessively long nuclear dwell time. Nuclear retention of the SKS1 mRNA triggered by a 202 nt "export-retarding" nuclear zip code element promotes its rapid degradation in the nucleus by the nuclear exosome/CTEXT. In this investigation, we demonstrate that Dbp2p, an ATP-dependent DEAD-box RNA helicase binds to SKS1 and other NR-mRNAs and thereby inhibits their export by antagonizing with the binding of the export factors Mex67p/Yra1p. Consistent with this observation, a significant portion of these NR-mRNAs was found to localize into the cytoplasm in a yeast strain carrying a deletion in the DBP2 gene with the concomitant enhancement of its steady-state level and stability. This observation supports the view that Dbp2p promotes the nuclear retention of NR-mRNAs to trigger their subsequent nuclear degradation. Further analysis revealed that Dbp2p-dependent nuclear retention of SKS1 mRNA is reversible, which plays a crucial role in the adaptability and viability of the yeast cells in low concentrations of glucose/nitrogen in the growth medium. At high nutrient levels when the function of Sks1p is not necessary, SKS1 mRNA is retained in the nucleus and degraded. In contrast, during low glucose/nitrogen levels when Sks1p is vital to respond to such situations, the nuclear retention of SKS1 mRNA is relieved to permit its increased nuclear export and translation leading to a huge burst of cytoplasmic Sks1p.
Collapse
Affiliation(s)
- Soumita Paul
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India
| | - Subhadeep Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India
| | - Mayukh Banerjea
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India
| | - Shouvik Chaudhuri
- Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
3
|
Akirtava C, May G, McManus CJ. Deciphering the landscape of cis-acting sequences in natural yeast transcript leaders. Nucleic Acids Res 2025; 53:gkaf165. [PMID: 40071932 PMCID: PMC11897887 DOI: 10.1093/nar/gkaf165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/15/2025] Open
Abstract
Protein synthesis is a vital process that is highly regulated at the initiation step of translation. Eukaryotic 5' transcript leaders (TLs) contain a variety of cis-acting features that influence translation and messenger RNA stability. However, the relative influences of these features in natural TLs are poorly characterized. To address this, we used massively parallel reporter assays (MPRAs) to quantify RNA levels, ribosome loading, and protein levels from 11,027 natural yeast TLs in vivo and systematically compared the relative impacts of their sequence features on gene expression. We found that yeast TLs influence gene expression over two orders of magnitude. While a leaky scanning model using Kozak contexts (-4 to +1 around the AUG start) and upstream AUGs (uAUGs) explained half of the variance in expression across TLs, the addition of other features explained ∼80% of gene expression variation. Our analyses detected key cis-acting sequence features, quantified their effects in vivo, and compared their roles to motifs reported from an in vitro study of ribosome recruitment. In addition, our work quantitated the effects of alternative transcription start site usage on gene expression in yeast. Thus, our study provides new quantitative insights into the roles of TL cis-acting sequences in regulating gene expression.
Collapse
Affiliation(s)
- Christina Akirtava
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States
- RNA Bioscience Initiative, University of Colorado – Anschutz, Aurora, CO 80045, United States
| | - Gemma E May
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - C Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| |
Collapse
|
4
|
Spealman P, de Santana C, De T, Gresham D. Multilevel Gene Expression Changes in Lineages Containing Adaptive Copy Number Variants. Mol Biol Evol 2025; 42:msaf005. [PMID: 39847535 PMCID: PMC11789944 DOI: 10.1093/molbev/msaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/28/2024] [Accepted: 12/02/2024] [Indexed: 01/25/2025] Open
Abstract
Copy number variants (CNVs) are an important class of genetic variation that can mediate rapid adaptive evolution. Whereas, CNVs can increase the relative fitness of the organism, they can also incur a cost due to the associated increased gene expression and repetitive DNA. We previously evolved populations of Saccharomyces cerevisiae over hundreds of generations in glutamine-limited (Gln-) chemostats and observed the recurrent evolution of CNVs at the GAP1 locus. To understand the role that gene expression plays in adaptation, both in relation to the adaptation of the organism to the selective condition and as a consequence of the CNV, we measured the transcriptome, translatome, and proteome of 4 strains of evolved yeast, each with a unique CNV, and their ancestor in Gln- chemostats. We find CNV-amplified genes correlate with higher mRNA abundance; however, this effect is reduced at the level of the proteome, consistent with post-transcriptional dosage compensation. By normalizing each level of gene expression by the abundance of the preceding step we were able to identify widespread differences in the efficiency of each level of gene expression. Genes with significantly different translational efficiency were enriched for potential regulatory mechanisms including either upstream open reading frames, RNA-binding sites for Ssd1, or both. Genes with lower protein expression efficiency were enriched for genes encoding proteins in protein complexes. Taken together, our study reveals widespread changes in gene expression at multiple regulatory levels in lineages containing adaptive CNVs highlighting the diverse ways in which genome evolution shapes gene expression.
Collapse
Affiliation(s)
- Pieter Spealman
- Center for Genomics and Systems Biology, Department of Biology—New York University, New York, NY, USA
| | - Carolina de Santana
- Laboratório de Microbiologia Ambiental e Saúde Pública—Universidade Estadual de Feira de Santana (UEFS), Bahia, Brazil
| | - Titir De
- Center for Genomics and Systems Biology, Department of Biology—New York University, New York, NY, USA
| | - David Gresham
- Center for Genomics and Systems Biology, Department of Biology—New York University, New York, NY, USA
| |
Collapse
|
5
|
Kundu D, Martoliya Y, Sharma A, Partap Sasan S, Wasi M, Prasad R, Mondal AK. Overexpression of CBK1 or deletion of SSD1 confers fludioxonil resistance in yeast by suppressing Hog1 activation. Gene 2025; 933:148905. [PMID: 39218413 DOI: 10.1016/j.gene.2024.148905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Group III hybrid histidine kinases (HHK3) are known molecular targets of the widely used fungicidal agent fludioxonil which indirectly converts these kinases to a phosphatase form that causes constitutive activation of Hog1 MAPK. To better understand the fungicidal effect of fludioxonil we have screened S. cerevisiae haploid deletion collection for fludioxonil resistant mutant and identified Ssd1 as a critical factor for this. Deletion of SSD1 not only promoted resistance to fludioxonil but also abrogated Hog1 activation and other cellular damages caused by fludioxonil. Our results showed that fludioxonil perturbed the localization of Cbk1 kinase, an essential protein in yeast, at the bud neck triggering the accumulation of Ssd1 in P-bodies. As a result, localized synthesis of Ssd1 bound mRNA encoding cell wall proteins at the polarized growth site was impaired which created a sustained cell wall stress causing constitutive activation of Hog1. Our data, for the first time, clearly indicated the role of Cbk1 upstream of Hog1 and provided a novel paradigm in the mechanism of action of fludioxonil.
Collapse
Affiliation(s)
- Debasree Kundu
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India; School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Yogita Martoliya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anupam Sharma
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Soorya Partap Sasan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mohd Wasi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajendra Prasad
- Amity Institute of Integrative Sciences and Health, Amity University Gurgaon 122413, India
| | - Alok K Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
6
|
Dutcher HA, Gasch AP. Investigating the role of RNA-binding protein Ssd1 in aneuploidy tolerance through network analysis. RNA (NEW YORK, N.Y.) 2024; 31:100-112. [PMID: 39471998 DOI: 10.1261/rna.080199.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024]
Abstract
RNA-binding proteins (RBPs) play critical cellular roles by mediating various stages of RNA life cycles. Ssd1, an RBP with pleiotropic effects, has been implicated in aneuploidy tolerance in Saccharomyces cerevisiae but its mechanistic role remains unclear. Here, we used a network-based approach to inform on Ssd1's role in aneuploidy tolerance, by identifying and experimentally perturbing a network of RBPs that share mRNA targets with Ssd1. We identified RBPs whose bound mRNA targets significantly overlap with Ssd1 targets. For 14 identified RBPs, we then used a genetic approach to generate all combinations of genotypes for euploid and aneuploid yeast with an extra copy of chromosome XII, with and without SSD1 and/or the RBP of interest. Deletion of 10 RBPs either exacerbated or alleviated the sensitivity of wild-type and/or ssd1Δ cells to chromosome XII duplication, in several cases indicating genetic interactions with SSD1 in the context of aneuploidy. We integrated these findings with results from a global overexpression screen that identified genes whose duplication complements ssd1Δ aneuploid sensitivity. The resulting network points to a subgroup of proteins with shared roles in translational repression and P-body formation, implicating these functions in aneuploidy tolerance. Our results reveal a role for new RBPs in aneuploidy tolerance and support a model in which Ssd1 mitigates translation-related stresses in aneuploid cells.
Collapse
Affiliation(s)
- H Auguste Dutcher
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
7
|
Hasan MK, Jeannine Brady L. Nucleic acid-binding KH domain proteins influence a spectrum of biological pathways including as part of membrane-localized complexes. J Struct Biol X 2024; 10:100106. [PMID: 39040530 PMCID: PMC11261784 DOI: 10.1016/j.yjsbx.2024.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
K-Homology domain (KH domain) proteins bind single-stranded nucleic acids, influence protein-protein interactions of proteins that harbor them, and are found in all kingdoms of life. In concert with other functional protein domains KH domains contribute to a variety of critical biological activities, often within higher order machineries including membrane-localized protein complexes. Eukaryotic KH domain proteins are linked to developmental processes, morphogenesis, and growth regulation, and their aberrant expression is often associated with cancer. Prokaryotic KH domain proteins are involved in integral cellular activities including cell division and protein translocation. Eukaryotic and prokaryotic KH domains share structural features, but are differentiated based on their structural organizations. In this review, we explore the structure/function relationships of known examples of KH domain proteins, and highlight cases in which they function within or at membrane surfaces. We also summarize examples of KH domain proteins that influence bacterial virulence and pathogenesis. We conclude the article by discussing prospective research avenues that could be pursued to better investigate this largely understudied protein category.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
8
|
Gresova K, Racek T, Martinek V, Cechak D, Svobodova R, Alexiou P. RBP-Tar - a searchable database for experimental RBP binding sites. F1000Res 2024; 12:755. [PMID: 39911213 PMCID: PMC11795353 DOI: 10.12688/f1000research.131014.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 02/07/2025] Open
Abstract
Background RNA-binding proteins (RBPs) play a critical role in regulating gene expression by binding to specific sites on RNA molecules. Identifying these binding sites is crucial for understanding the many functions of RBPs in cellular function, development and disease. Current experimental methods for identifying RBP binding sites, such as ultra-violet (UV) crosslinking and immunoprecipitation (CLIP), and especially the enhanced CLIP (eCLIP) protocol, were developed to identify authentic RBP binding sites experimentally. Methods To make this data more accessible to the scientific community, we have developed RBP-Tar ( https://ncbr.muni.cz/RBP-Tar ), a web server and database that utilises eCLIP data for 167 RBPs mapped on the human genome. The web server allows researchers to easily search and retrieve binding site information by genomic location and RBP name. Use case Researchers can produce lists of all known RBP binding sites on a gene of interest, or produce lists of binding sites for one RBP on different genomic loci. Conclusions Our future goal is to continue to populate the web server with additional experimental datasets from CLIP experiments as they become available and processed, making it an increasingly valuable resource for the scientific community.
Collapse
Affiliation(s)
- Katarina Gresova
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Tomas Racek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Vlastimil Martinek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - David Cechak
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Radka Svobodova
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Panagiotis Alexiou
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Centre for Molecular Medicine & Biobanking, University of Malta, Msida, Malta
- Department of Applied Biomedical science, University of Malta, Msida, Malta
| |
Collapse
|
9
|
Zigdon I, Carmi M, Brodsky S, Rosenwaser Z, Barkai N, Jonas F. Beyond RNA-binding domains: determinants of protein-RNA binding. RNA (NEW YORK, N.Y.) 2024; 30:1620-1633. [PMID: 39353735 PMCID: PMC11571813 DOI: 10.1261/rna.080026.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
RNA-binding proteins (RBPs) are composed of RNA-binding domains (RBDs) often linked via intrinsically disordered regions (IDRs). Structural and biochemical analyses have shown that disordered linkers contribute to RNA binding by orienting the adjacent RBDs and also characterized certain disordered repeats that directly contact the RNA. However, the relative contribution of IDRs and predicted RBDs to the in vivo binding pattern is poorly explored. Here, we upscaled the RNA-tagging method to map the transcriptome-wide binding of 16 RBPs in budding yeast. We then performed extensive sequence mutations to distinguish binding determinants within predicted RBDs and the surrounding IDRs in eight of these. The majority of the predicted RBDs tested were not individually essential for mRNA binding. However, multiple IDRs that lacked predicted RNA-binding potential appeared essential for binding affinity or specificity. Our results provide new insights into the function of poorly studied RBPs and emphasize the complex and distributed encoding of RBP-RNA interaction in vivo.
Collapse
Affiliation(s)
- Inbal Zigdon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miri Carmi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sagie Brodsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zohar Rosenwaser
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Felix Jonas
- School of Science, Constructor University, 28759 Bremen, Germany
| |
Collapse
|
10
|
Himeno Y, Endo N, Rana V, Akitake N, Suda T, Suda Y, Mizuno T, Irie K. Roles of Pbp1, Mkt1, and Dhh1 in the regulation of gene expression in the medium containing non-fermentative carbon sources. Genes Cells 2024. [PMID: 39460681 DOI: 10.1111/gtc.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Pbp1, a yeast ortholog of human ataxin-2, is important for cell growth in the medium containing non-fermentable carbon sources. We had reported that Pbp1 regulates expression of genes related to glycogenesis via transcriptional regulation and genes related to mitochondrial function through mRNA stability control. To further analyze the role of Pbp1 in gene expression, we first examined the time course of gene expression after transfer from YPD medium containing glucose to YPGlyLac medium containing glycerol and lactate. At 12 h after transfer to YPGlyLac medium, the pbp1∆ mutant showed decreased expression of genes related to mitochondrial function but no decrease in expression of glycogenesis-related genes. We also examined a role of the Pbp1-binding factor, Mkt1. The mkt1∆ mutant, like the pbp1∆ mutant, showed slow growth on YPGlyLac plate and reduced expression of genes related to mitochondrial function. Furthermore, we found that mutation of DHH1 gene encoding a decapping activator exacerbated the growth of the pbp1∆ mutant on YPGlyLac plate. The dhh1∆ mutant showed reduced expression of genes related to mitochondrial function. These results indicate that Pbp1 and Mkt1 regulate the expression of genes related to mitochondrial function and that the decapping activator Dhh1 also regulates the expression of those genes.
Collapse
Affiliation(s)
- Yurika Himeno
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nozomi Endo
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Varsha Rana
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Doctoral Program in Human Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Natsu Akitake
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- College of Medical Sciences, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tomomi Suda
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasuyuki Suda
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Live Cell Super-resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Tomoaki Mizuno
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kenji Irie
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
11
|
Togra C, Dhage R, Rajyaguru PI. Tdh3 and Rom2 are functional modulators of a conserved condensate-resident RNA-binding protein, Scd6, in Saccharomyces cerevisiae. Genetics 2024; 228:iyae127. [PMID: 39093296 DOI: 10.1093/genetics/iyae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/07/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Arginine-glycine-glycine motif proteins play a crucial role in determining mRNA fate. Suppressor of clathrin deficiency 6 (Scd6) is a conserved arginine-glycine-glycine motif containing ribonucleoprotein (RNP) condensate-resident, translation repressor, and decapping activator protein in Saccharomyces cerevisiae. Identifying protein factors that can modulate Scd6 function is critical to understanding the regulation of mRNA fate by Scd6. In this study, using an approach that combined mRNA tethering assay with flow cytometry, we screened 50 genes for their role in modulating the translation repression activity of Scd6. We identified 8 conserved modulators with human homologs. Of these, we further characterized in detail guanine nucleotide exchange factor Rho1 multicopy suppressor 2 (Rom2) and glycolytic enzyme triose phosphate dehydrogenase 3 (Tdh3), which, respectively, impede and promote translation repression activity of Scd6. Our study reveals that Rom2 negatively regulates the arginine methylation of Scd6 and antagonizes its localization to P-bodies. Tdh3, on the other hand, promotes Scd6 interaction with Hmt1, thereby promoting the arginine methylation of Scd6 and enhanced eIF4G1 interaction, which is known to promote its repression activity. Identifying these novel modulators provides exciting new insights into the role of a metabolic enzyme of the glycolytic pathway and guanine nucleotide exchange factor implicated in the cell wall integrity pathway in regulating Scd6 function and, thereby, cytoplasmic mRNA fate.
Collapse
Affiliation(s)
- Chitra Togra
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Riya Dhage
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
12
|
Dutcher HA, Hose J, Howe H, Rojas J, Gasch AP. The response to single-gene duplication implicates translation as a key vulnerability in aneuploid yeast. PLoS Genet 2024; 20:e1011454. [PMID: 39453980 PMCID: PMC11540229 DOI: 10.1371/journal.pgen.1011454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/06/2024] [Accepted: 10/07/2024] [Indexed: 10/27/2024] Open
Abstract
Aneuploidy produces myriad consequences in health and disease, yet models of the deleterious effects of chromosome amplification are still widely debated. To distinguish the molecular determinants of aneuploidy stress, we measured the effects of duplicating individual genes in cells with different chromosome duplications, in wild-type cells (SSD1+) and cells sensitized to aneuploidy by deletion of RNA-binding protein Ssd1 (ssd1Δ). We identified gene duplications that are nearly neutral in wild-type euploid cells but significantly deleterious in euploids lacking SSD1 or in SSD1+ aneuploid cells with different chromosome duplications. Several of the most deleterious genes are linked to translation. In contrast, duplication of other genes benefits multiple ssd1Δ aneuploids over controls, and this group is enriched for translational effectors. Furthermore, both wild-type and especially ssd1Δ aneuploids with different chromosome amplifications show increased sensitivity to translational inhibitor nourseothricin. We used comparative modeling of aneuploid growth defects, based on the cumulative fitness costs measured for single-gene duplication. Our results present a model in which the deleterious effects of aneuploidy emerge from an interaction between the cumulative burden of many amplified genes on a chromosome and a subset of duplicated genes that become toxic in that context. These findings provide a perspective on the dual impact of individual genes and overall genomic burden, offering new avenues for understanding aneuploidy and its cellular consequences.
Collapse
Affiliation(s)
- H. Auguste Dutcher
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hollis Howe
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Julie Rojas
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Audrey P. Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
13
|
Takallou S, Hajikarimlou M, Al-Gafari M, Wang J, Jagadeesan SK, Kazmirchuk TDD, Arnoczki C, Moteshareie H, Said KB, Azad T, Holcik M, Samanfar B, Smith M, Golshani A. Oxidative stress-induced YAP1 expression is regulated by NCE102, CDA2, and BCS1. FEBS J 2024; 291:4602-4618. [PMID: 39102301 DOI: 10.1111/febs.17243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Maintaining cellular homeostasis in the face of stress conditions is vital for the overall well-being of an organism. Reactive oxygen species (ROS) are among the most potent cellular stressors and can disrupt the internal redox balance, giving rise to oxidative stress. Elevated levels of ROS can severely affect biomolecules and have been associated with a range of pathophysiological conditions. In response to oxidative stress, yeast activator protein-1 (Yap1p) undergoes post-translation modification that results in its nuclear accumulation. YAP1 has a key role in oxidative detoxification by promoting transcription of numerous antioxidant genes. In this study, we identified previously undescribed functions for NCE102, CDA2, and BCS1 in YAP1 expression in response to oxidative stress induced by hydrogen peroxide (H2O2). Deletion mutant strains for these candidates demonstrated increased sensitivity to H2O2. Our follow-up investigation linked the activity of these genes to YAP1 expression at the level of translation. Under oxidative stress, global cap-dependent translation is inhibited, prompting stress-responsive genes like YAP1 to employ alternative modes of translation. We provide evidence that NCE102, CDA2, and BCS1 contribute to cap-independent translation of YAP1 under oxidative stress.
Collapse
Affiliation(s)
- Sarah Takallou
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Maryam Hajikarimlou
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Mustafa Al-Gafari
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Jiashu Wang
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Sasi Kumar Jagadeesan
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Thomas David Daniel Kazmirchuk
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | | | - Houman Moteshareie
- Department of Biology, Carleton University, Ottawa, Canada
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Kamaledin B Said
- Department of Pathology and Microbiology, College of Medicine, University of Hail, Saudi Arabia
| | - Taha Azad
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), Canada
| | - Martin Holcik
- Department of Health Sciences, Carleton University, Ottawa, Canada
| | - Bahram Samanfar
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Canada
| | - Myron Smith
- Department of Biology, Carleton University, Ottawa, Canada
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| |
Collapse
|
14
|
Lin C, Jans A, Wolters JC, Mohamed MR, Van der Vorst EPC, Trautwein C, Bartneck M. Targeting Ligand Independent Tropism of siRNA-LNP by Small Molecules for Directed Therapy of Liver or Myeloid Immune Cells. Adv Healthc Mater 2024; 13:e2202670. [PMID: 36617516 DOI: 10.1002/adhm.202202670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/15/2022] [Indexed: 01/10/2023]
Abstract
Hepatic clearance of lipid nanoparticles (LNP) with encapsulated nucleic acids restricts their therapeutic applicability. Therefore, tools for regulating hepatic clearance are of high interest for nucleic acid delivery. To this end, this work employs wild-type (WT) and low-density lipoprotein receptor (Ldlr)-/- mice pretreated with either a leukotriene B4 receptor inhibitor (BLT1i) or a high-density lipoprotein receptor inhibitor (HDLRi) prior to the injection of siRNA-LNP. This work is able to demonstrate significantly increased hepatic uptake of siRNA-LNP by the BLT1i in Ldlr-/- mice by in vivo imaging and discover an induction of specific uptake-related proteins. Irrespective of the inhibitors and Ldlr deficiency, the siRNA-LNP induced RNA-binding and transport-related proteins in liver, including haptoglobin (HP) that is also identified as most upregulated serum protein. This work observes a downregulation of proteins functioning in hepatic detoxification and of serum opsonins. Most strikingly, the HDLRi reduces hepatic uptake and increases siRNA accumulation in spleen and myeloid immune cells of blood and liver. RNA sequencing demonstrates leukocyte recruitment by the siRNA-LNP and the HDLRi through induction of chemokine ligands in liver tissue. The data provide insights into key mechanisms of siRNA-LNP biodistribution and indicate that the HDLRi has potential for extrahepatic and leukocyte targeting.
Collapse
Affiliation(s)
- Cheng Lin
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
- Department of Rheumatology and Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Alexander Jans
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Justina Clarinda Wolters
- Department of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
| | - Mohamed Ramadan Mohamed
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Emiel P C Van der Vorst
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074, Aachen, Germany
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074, Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336, Munich, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Matthias Bartneck
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
15
|
Khoroshkin M, Buyan A, Dodel M, Navickas A, Yu J, Trejo F, Doty A, Baratam R, Zhou S, Lee SB, Joshi T, Garcia K, Choi B, Miglani S, Subramanyam V, Modi H, Carpenter C, Markett D, Corces MR, Mardakheh FK, Kulakovskiy IV, Goodarzi H. Systematic identification of post-transcriptional regulatory modules. Nat Commun 2024; 15:7872. [PMID: 39251607 PMCID: PMC11385195 DOI: 10.1038/s41467-024-52215-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
In our cells, a limited number of RNA binding proteins (RBPs) are responsible for all aspects of RNA metabolism across the entire transcriptome. To accomplish this, RBPs form regulatory units that act on specific target regulons. However, the landscape of RBP combinatorial interactions remains poorly explored. Here, we perform a systematic annotation of RBP combinatorial interactions via multimodal data integration. We build a large-scale map of RBP protein neighborhoods by generating in vivo proximity-dependent biotinylation datasets of 50 human RBPs. In parallel, we use CRISPR interference with single-cell readout to capture transcriptomic changes upon RBP knockdowns. By combining these physical and functional interaction readouts, along with the atlas of RBP mRNA targets from eCLIP assays, we generate an integrated map of functional RBP interactions. We then use this map to match RBPs to their context-specific functions and validate the predicted functions biochemically for four RBPs. This study provides a detailed map of RBP interactions and deconvolves them into distinct regulatory modules with annotated functions and target regulons. This multimodal and integrative framework provides a principled approach for studying post-transcriptional regulatory processes and enriches our understanding of their underlying mechanisms.
Collapse
Affiliation(s)
- Matvei Khoroshkin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Andrey Buyan
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Martin Dodel
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Albertas Navickas
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Institut Curie, UMR3348 CNRS, Inserm, Orsay, France
| | - Johnny Yu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Fathima Trejo
- College of Arts and Sciences, University of San Francisco, San Francisco, CA, USA
| | - Anthony Doty
- College of Arts and Sciences, University of San Francisco, San Francisco, CA, USA
| | - Rithvik Baratam
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Shaopu Zhou
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Sean B Lee
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Tanvi Joshi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Kristle Garcia
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Benedict Choi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Sohit Miglani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Vishvak Subramanyam
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Hailey Modi
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Christopher Carpenter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Markett
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - M Ryan Corces
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Faraz K Mardakheh
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Ivan V Kulakovskiy
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
16
|
Nafie EH, Abou-Gamra MM, Mossalem HS, Sarhan RM, Hammam OA, Nasr SM, Anwar MM. Evaluation of the prophylactic and therapeutic efficacies of mucus and tissue nucleoproteins extracted from Biomphalaria alexandrina snails on schistosomiasis mansoni. J Parasit Dis 2024; 48:551-569. [PMID: 39145357 PMCID: PMC11319553 DOI: 10.1007/s12639-024-01692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/28/2024] [Indexed: 08/16/2024] Open
Abstract
Schistosomiasis is a neglected tropical disease with considerable morbidity. The lone effective drug, praziquantel (PZQ), is showing emergence of drug resistance hence, searching for new supportive treatment is crucial. This study aimed to evaluate the efficacy of mucus and nucleoproteins (NPs) extracted from Biomphalaria alexandrina (B. alexandrina) snails on miracidia, cercariae and Schistosoma mansoni (S. mansoni) adults in vitro and assess their experimental in vivo effect through parasitological, histopathological, and biochemical parameters. The in vivo study included 90 male Swiss albino mice. Mice were grouped into 9 groups; G1-G5 were infected and treated with; GI: PZQ, GII: mucus, GIII: combined PZQ and mucus, GIV: NPs, GV: combined PZQ and NPs. Control groups; C1: Non infected non treated (negative control), C2: Infected non treated (positive control), C3: Non infected mucus treated and C4: Non infected NPs treated. The in vitro study proved that the mucus had a better lethal effect on cercariae than miracidia, while NPs had better lethal effect on miracidia. The mucus lethal effect on adults surpassed the NPs as 100% and 60%, respectively. The in vivo study proved that the combined NPs or mucus with PZQ added to the effect of individual PZQ resulting in 100% total worm burden (TWB) reduction. As regard oxidative stress markers, the lowest level of nitric oxide (NO) was shown with combined PZQ and NPs. While, the highest glutathione (GSH) level was produced by individual PZQ. The study concluded that mucus and NPs of B. alexandrina had cercaricidal, miracidicidal and anti-schistosomal effect in vitro and that their combination could be considered a contribution to PZQ potentiality in vivo.
Collapse
Affiliation(s)
- Esraa H. Nafie
- Departments of Medical Parasitology Department, Faculty of Medicine, Ain Shams University, Ramsis St., Abbassia, Cairo, 11566 Egypt
| | - Maha M. Abou-Gamra
- Departments of Medical Parasitology Department, Faculty of Medicine, Ain Shams University, Ramsis St., Abbassia, Cairo, 11566 Egypt
| | - Hanan S. Mossalem
- Departments of Medical Malacology, Theodor Bilharz Research Institute, El-Nile St., Warrak El-Hader, P.O. BOX 30, Imbaba, Giza, Egypt
| | - Rania M. Sarhan
- Departments of Medical Parasitology Department, Faculty of Medicine, Ain Shams University, Ramsis St., Abbassia, Cairo, 11566 Egypt
| | - Olfat A. Hammam
- Departments of Pathology, Theodor Bilharz Research Institute, El-Nile St., Warrak El-Hader, P.O. BOX 30, Imbaba, Giza, Egypt
| | - Sami M. Nasr
- Departments of Biochemistry, Theodor Bilharz Research Institute, El-Nile St., Warrak El-Hader, P.O. BOX 30, Imbaba, Giza, Egypt
| | - Mona M. Anwar
- Departments of Medical Parasitology Department, Faculty of Medicine, Ain Shams University, Ramsis St., Abbassia, Cairo, 11566 Egypt
| |
Collapse
|
17
|
Dutcher HA, Gasch AP. Investigating the role of RNA-binding protein Ssd1 in aneuploidy tolerance through network analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604323. [PMID: 39091809 PMCID: PMC11291059 DOI: 10.1101/2024.07.19.604323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
RNA-binding proteins (RBPs) play critical cellular roles by mediating various stages of RNA life cycles. Ssd1, an RBP with pleiotropic effects, has been implicated in aneuploidy tolerance in Saccharomyces cerevisiae but its mechanistic role remains unclear. Here we used a network-based approach to inform on Ssd1's role in aneuploidy tolerance, by identifying and experimentally perturbing a network of RBPs that share mRNA targets with Ssd1. We identified RBPs whose bound mRNA targets significantly overlap with Ssd1 targets. For 14 identified RBPs, we then used a genetic approach to generate all combinations of genotypes for euploid and aneuploid yeast with an extra copy of chromosome XII, with and without SSD1 and/or the RBP of interest. Deletion of 10 RBPs either exacerbated or alleviated the sensitivity of wild-type and/or ssd1 Δ cells to chromosome XII duplication, in several cases indicating genetic interactions with SSD1 in the context of aneuploidy. We integrated these findings with results from a global over-expression screen that identified genes whose duplication complements ssd1 Δ aneuploid sensitivity. The resulting network points to a sub-group of proteins with shared roles in translational repression and p-body formation, implicating these functions in aneuploidy tolerance. Our results reveal a role for new RBPs in aneuploidy tolerance and support a model in which Ssd1 mitigates translation-related stresses in aneuploid cells.
Collapse
|
18
|
Spealman P, de Santana C, De T, Gresham D. Multilevel gene expression changes in lineages containing adaptive copy number variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.20.563336. [PMID: 37961325 PMCID: PMC10634702 DOI: 10.1101/2023.10.20.563336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Copy-number variants (CNVs) are an important class of recurrent variants that mediate adaptive evolution. While CNVs can increase the relative fitness of the organism, they can also incur a cost. We previously evolved populations of Saccharomyces cerevisiae over hundreds of generations in glutamine-limited (Gln-) chemostats and observed the recurrent evolution of CNVs at the GAP1 locus. To understand the role that expression plays in adaptation, both in relation to the adaptation of the organism to the selective condition, and as a consequence of the CNV, we measured the transcriptome, translatome, and proteome of 4 strains of evolved yeast, each with a unique CNV, and their ancestor in Gln- conditions. We find CNV-amplified genes correlate with higher RNA abundance; however, this effect is reduced at the level of the proteome, consistent with post-transcriptional dosage compensation. By normalizing each level of expression by the abundance of the preceding step we were able to identify widespread divergence in the efficiency of each step in the gene in the efficiency of each step in gene expression. Genes with significantly different translational efficiency were enriched for potential regulatory mechanisms including either upstream open reading frames, RNA binding sites for SSD1, or both. Genes with lower protein expression efficiency were enriched for genes encoding proteins in protein complexes. Taken together, our study reveals widespread changes in gene expression at multiple regulatory levels in lineages containing adaptive CNVs highlighting the diverse ways in which adaptive evolution shapes gene expression.
Collapse
Affiliation(s)
- Pieter Spealman
- Center for Genomics and Systems Biology, Department of Biology, New York University
| | - Carolina de Santana
- Laboratório de Microbiologia Ambiental e Saúde Pública - Universidade Estadual de Feira de Santana (UEFS), Bahia
| | - Titir De
- Center for Genomics and Systems Biology, Department of Biology, New York University
| | - David Gresham
- Center for Genomics and Systems Biology, Department of Biology, New York University
| |
Collapse
|
19
|
Akirtava C, May G, McManus CJ. Deciphering the cis-regulatory landscape of natural yeast Transcript Leaders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601937. [PMID: 39005336 PMCID: PMC11245039 DOI: 10.1101/2024.07.03.601937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Protein synthesis is a vital process that is highly regulated at the initiation step of translation. Eukaryotic 5' transcript leaders (TLs) contain a variety of cis-regulatory features that influence translation and mRNA stability. However, the relative influences of these features in natural TLs are poorly characterized. To address this, we used massively parallel reporter assays (MPRAs) to quantify RNA levels, ribosome loading, and protein levels from 11,027 natural yeast TLs in vivo and systematically compared the relative impacts of their sequence features on gene expression. We found that yeast TLs influence gene expression over two orders of magnitude. While a leaky scanning model using Kozak contexts and uAUGs explained half of the variance in expression across transcript leaders, the addition of other features explained ~70% of gene expression variation. Our analyses detected key cis-acting sequence features, quantified their effects in vivo, and compared their roles to motifs reported from an in vitro study of ribosome recruitment. In addition, our work quantitated the effects of alternative transcription start site usage on gene expression in yeast. Thus, our study provides new quantitative insights into the roles of TL cis-acting sequences in regulating gene expression.
Collapse
Affiliation(s)
- Christina Akirtava
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- RNA Bioscience Initiative, University of Colorado - Anshutz, Aurora, CO, 80045, USA
| | - Gemma May
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - C Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
20
|
Crawford RA, Eastham M, Pool MR, Ashe MP. Orchestrated centers for the production of proteins or "translation factories". WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1867. [PMID: 39048533 DOI: 10.1002/wrna.1867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
The mechanics of how proteins are generated from mRNA is increasingly well understood. However, much less is known about how protein production is coordinated and orchestrated within the crowded intracellular environment, especially in eukaryotic cells. Recent studies suggest that localized sites exist for the coordinated production of specific proteins. These sites have been termed "translation factories" and roles in protein complex formation, protein localization, inheritance, and translation regulation have been postulated. In this article, we review the evidence supporting the translation of mRNA at these sites, the details of their mechanism of formation, and their likely functional significance. Finally, we consider the key uncertainties regarding these elusive structures in cells. This article is categorized under: Translation Translation > Mechanisms RNA Export and Localization > RNA Localization Translation > Regulation.
Collapse
Affiliation(s)
- Robert A Crawford
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Matthew Eastham
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Martin R Pool
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Mark P Ashe
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
21
|
Escalante LE, Hose J, Howe H, Paulsen N, Place M, Gasch AP. Premature aging in aneuploid yeast is caused in part by aneuploidy-induced defects in Ribosome Quality Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.22.600216. [PMID: 38948718 PMCID: PMC11213126 DOI: 10.1101/2024.06.22.600216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Premature aging is a hallmark of Down syndrome, caused by trisomy of human chromosome 21, but the reason is unclear and difficult to study in humans. We used an aneuploid model in wild yeast to show that chromosome amplification disrupts nutrient-induced cell-cycle arrest, quiescence entry, and healthy aging, across genetic backgrounds and amplified chromosomes. We discovered that these defects are due in part to aneuploidy-induced dysfunction in Ribosome Quality Control (RQC). Compared to euploids, aneuploids entering quiescence display aberrant ribosome profiles, accumulate RQC intermediates, and harbor an increased load of protein aggregates. Although they have normal proteasome capacity, aneuploids show signs of ubiquitin dysregulation, which impacts cyclin abundance to disrupt arrest. Remarkably, inducing ribosome stalling in euploids produces similar aberrations, while up-regulating limiting RQC subunits or proteins in ubiquitin metabolism alleviates many of the aneuploid defects. Our results provide implications for other aneuploidy disorders including Down syndrome.
Collapse
Affiliation(s)
- Leah E. Escalante
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - Hollis Howe
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - Norah Paulsen
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706
| | - Audrey P. Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706
| |
Collapse
|
22
|
Maroni P, Pesce NA, Lombardi G. RNA-binding proteins in bone pathophysiology. Front Cell Dev Biol 2024; 12:1412268. [PMID: 38966428 PMCID: PMC11222650 DOI: 10.3389/fcell.2024.1412268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Bone remodelling is a highly regulated process that maintains mineral homeostasis and preserves bone integrity. During this process, intricate communication among all bone cells is required. Indeed, adapt to changing functional situations in the bone, the resorption activity of osteoclasts is tightly balanced with the bone formation activity of osteoblasts. Recent studies have reported that RNA Binding Proteins (RBPs) are involved in bone cell activity regulation. RBPs are critical effectors of gene expression and essential regulators of cell fate decision, due to their ability to bind and regulate the activity of cellular RNAs. Thus, a better understanding of these regulation mechanisms at molecular and cellular levels could generate new knowledge on the pathophysiologic conditions of bone. In this Review, we provide an overview of the basic properties and functions of selected RBPs, focusing on their physiological and pathological roles in the bone.
Collapse
Affiliation(s)
- Paola Maroni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Noemi Anna Pesce
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
23
|
Chakraborty A, Samant D, Sarkar R, Sangeet S, Prusty S, Roy S. RNA's Dynamic Conformational Selection and Entropic Allosteric Mechanism in Controlling Cascade Protein Binding Events. J Phys Chem Lett 2024; 15:6115-6125. [PMID: 38830201 DOI: 10.1021/acs.jpclett.4c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
In the TAR RNA of immunodeficiency viruses, an allosteric communication exists between a distant loop and a bulge. The bulge interacts with the TAT protein vital for transactivating viral RNA, while the loop interacts with cyclin-T1, contingent on TAT binding. Through extensive atomistic and free energy simulations, we investigate TAR-TAT binding in nonpathogenic bovine immunodeficiency virus (BIV) and pathogenic human immunodeficiency virus (HIV). Thermodynamic analysis reveals enthalpically driven binding in BIV and entropically favored binding in HIV. The broader global basin in HIV is attributed to binding-induced loop fluctuation, corroborated by nuclear magnetic resonance (NMR), indicating classical entropic allostery onset. While this loop fluctuation affects the TAT binding affinity, it generates a binding-competent conformation that aids subsequent effector (cyclin-T1) binding. This study underscores how two structurally similar apo-RNA scaffolds adopt distinct conformational selection mechanisms to drive enthalpic and entropic allostery, influencing protein affinity in the signaling cascade.
Collapse
Affiliation(s)
- Amrita Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Dibyamanjaree Samant
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Raju Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Satyam Sangeet
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Sangram Prusty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| |
Collapse
|
24
|
Kumar S, Mashkoor M, Balamurugan P, Grove A. Yeast Crf1p is an activator with different roles in regulation of target genes. Yeast 2024; 41:379-400. [PMID: 38639144 DOI: 10.1002/yea.3939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Under stress conditions, ribosome biogenesis is downregulated. This process requires that expression of ribosomal RNA, ribosomal protein, and ribosome biogenesis genes be controlled in a coordinated fashion. The mechanistic Target of Rapamycin Complex 1 (mTORC1) participates in sensing unfavorable conditions to effect the requisite change in gene expression. In Saccharomyces cerevisiae, downregulation of ribosomal protein genes involves dissociation of the activator Ifh1p in a process that depends on Utp22p, a protein that also functions in pre-rRNA processing. Ifh1p has a paralog, Crf1p, which was implicated in communicating mTORC1 inhibition and hence was perceived as a repressor. We focus here on two ribosomal biogenesis genes, encoding Utp22p and the high mobility group protein Hmo1p, both of which are required for communication of mTORC1 inhibition to target genes. Crf1p functions as an activator on these genes as evidenced by reduced mRNA abundance and RNA polymerase II occupancy in a crf1Δ strain. Inhibition of mTORC1 has distinct effects on expression of HMO1 and UTP22; for example, on UTP22, but not on HMO1, the presence of Crf1p promotes the stable depletion of Ifh1p. Our data suggest that Crf1p functions as a weak activator, and that it may be required to prevent re-binding of Ifh1p to some gene promoters after mTORC1 inhibition in situations when Ifh1p is available. We propose that the inclusion of genes encoding proteins required for mTORC1-mediated downregulation of ribosomal protein genes in the same regulatory circuit as the ribosomal protein genes serves to optimize transcriptional responses during mTORC1 inhibition.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Muneera Mashkoor
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Priya Balamurugan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
25
|
Chen S, Collart MA. Membrane-associated mRNAs: A Post-transcriptional Pathway for Fine-turning Gene Expression. J Mol Biol 2024; 436:168579. [PMID: 38648968 DOI: 10.1016/j.jmb.2024.168579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Gene expression is a fundamental and highly regulated process involving a series of tightly coordinated steps, including transcription, post-transcriptional processing, translation, and post-translational modifications. A growing number of studies have revealed an additional layer of complexity in gene expression through the phenomenon of mRNA subcellular localization. mRNAs can be organized into membraneless subcellular structures within both the cytoplasm and the nucleus, but they can also targeted to membranes. In this review, we will summarize in particular our knowledge on localization of mRNAs to organelles, focusing on important regulators and available techniques for studying organellar localization, and significance of this localization in the broader context of gene expression regulation.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.
| | - Martine A Collart
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.
| |
Collapse
|
26
|
Manzoor Y, Aouida M, Ramadoss R, Moovarkumudalvan B, Ahmed N, Sulaiman AA, Mohanty A, Ali R, Mifsud B, Ramotar D. Loss of the yeast transporter Agp2 upregulates the pleiotropic drug-resistant pump Pdr5 and confers resistance to the protein synthesis inhibitor cycloheximide. PLoS One 2024; 19:e0303747. [PMID: 38776347 PMCID: PMC11111045 DOI: 10.1371/journal.pone.0303747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024] Open
Abstract
The transmembrane protein Agp2, initially shown as a transporter of L-carnitine, mediates the high-affinity transport of polyamines and the anticancer drug bleomycin-A5. Cells lacking Agp2 are hyper-resistant to polyamine and bleomycin-A5. In these earlier studies, we showed that the protein synthesis inhibitor cycloheximide blocked the uptake of bleomycin-A5 into the cells suggesting that the drug uptake system may require de novo synthesis. However, our recent findings demonstrated that cycloheximide, instead, induced rapid degradation of Agp2, and in the absence of Agp2 cells are resistant to cycloheximide. These observations raised the possibility that the degradation of Agp2 may allow the cell to alter its drug resistance network to combat the toxic effects of cycloheximide. In this study, we show that membrane extracts from agp2Δ mutants accentuated several proteins that were differentially expressed in comparison to the parent. Mass spectrometry analysis of the membrane extracts uncovered the pleiotropic drug efflux pump, Pdr5, involved in the efflux of cycloheximide, as a key protein upregulated in the agp2Δ mutant. Moreover, a global gene expression analysis revealed that 322 genes were differentially affected in the agp2Δ mutant versus the parent, including the prominent PDR5 gene and genes required for mitochondrial function. We further show that Agp2 is associated with the upstream region of the PDR5 gene, leading to the hypothesis that cycloheximide resistance displayed by the agp2Δ mutant is due to the derepression of the PDR5 gene.
Collapse
Affiliation(s)
- Yusra Manzoor
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Mustapha Aouida
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Ramya Ramadoss
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, India
| | - Balasubramanian Moovarkumudalvan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, India
- Division of Genomics and Precision Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Nisar Ahmed
- Division of Genomics and Precision Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Abdallah Alhaj Sulaiman
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Ashima Mohanty
- Division of Genomics and Precision Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Reem Ali
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Borbala Mifsud
- Division of Genomics and Precision Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Dindial Ramotar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
27
|
Dutcher HA, Hose J, Howe H, Rojas J, Gasch AP. The response to single-gene duplication implicates translation as a key vulnerability in aneuploid yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589582. [PMID: 38659764 PMCID: PMC11042342 DOI: 10.1101/2024.04.15.589582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Aneuploidy produces myriad consequences in health and disease, yet models of the deleterious effects of chromosome amplification are still widely debated. To distinguish the molecular determinants of aneuploidy stress, we measured the effects of duplicating individual genes in cells with varying chromosome duplications, in wild-type cells and cells sensitized to aneuploidy by deletion of RNA-binding protein Ssd1. We identified gene duplications that are nearly neutral in wild-type euploid cells but significantly deleterious in euploids lacking SSD1 or SSD1+ aneuploid cells with different chromosome duplications. Several of the most deleterious genes are linked to translation; in contrast, duplication of other translational regulators, including eI5Fa Hyp2, benefit ssd1Δ aneuploids over controls. Using modeling of aneuploid growth defects, we propose that the deleterious effects of aneuploidy emerge from an interaction between the cumulative burden of many amplified genes on a chromosome and a subset of duplicated genes that become toxic in that context. Our results suggest that the mechanism behind their toxicity is linked to a key vulnerability in translation in aneuploid cells. These findings provide a perspective on the dual impact of individual genes and overall genomic burden, offering new avenues for understanding aneuploidy and its cellular consequences.
Collapse
|
28
|
Feichtner A, Enzler F, Kugler V, Hoppe K, Mair S, Kremser L, Lindner H, Huber RG, Stelzl U, Stefan E, Torres-Quesada O. Phosphorylation of the compartmentalized PKA substrate TAF15 regulates RNA-protein interactions. Cell Mol Life Sci 2024; 81:162. [PMID: 38568213 PMCID: PMC10991009 DOI: 10.1007/s00018-024-05204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
Spatiotemporal-controlled second messengers alter molecular interactions of central signaling nodes for ensuring physiological signal transmission. One prototypical second messenger molecule which modulates kinase signal transmission is the cyclic-adenosine monophosphate (cAMP). The main proteinogenic cellular effectors of cAMP are compartmentalized protein kinase A (PKA) complexes. Their cell-type specific compositions precisely coordinate substrate phosphorylation and proper signal propagation which is indispensable for numerous cell-type specific functions. Here we present evidence that TAF15, which is implicated in the etiology of amyotrophic lateral sclerosis, represents a novel nuclear PKA substrate. In cross-linking and immunoprecipitation experiments (iCLIP) we showed that TAF15 phosphorylation alters the binding to target transcripts related to mRNA maturation, splicing and protein-binding related functions. TAF15 appears to be one of multiple PKA substrates that undergo RNA-binding dynamics upon phosphorylation. We observed that the activation of the cAMP-PKA signaling axis caused a change in the composition of a collection of RNA species that interact with TAF15. This observation appears to be a broader principle in the regulation of molecular interactions, as we identified a significant enrichment of RNA-binding proteins within endogenous PKA complexes. We assume that phosphorylation of RNA-binding domains adds another layer of regulation to binary protein-RNAs interactions with consequences to RNA features including binding specificities, localization, abundance and composition.
Collapse
Affiliation(s)
- Andreas Feichtner
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Florian Enzler
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innrain 66/66a, 6020, Innsbruck, Austria
| | - Valentina Kugler
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Katharina Hoppe
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Sophia Mair
- Department of Cardiac Surgery, Medical University of Innsbruck, Innrain 66/66a, 6020, Innsbruck, Austria
- Vascage, Center of Clinical Stroke Research, 6020, Innsbruck, Austria
| | - Leopold Kremser
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Roland G Huber
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore, 138671, Singapore
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstrasse 1, 8010, Graz, Austria
| | - Eduard Stefan
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria.
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria.
| | - Omar Torres-Quesada
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria.
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
29
|
Patnaik PK, Barlit H, Labunskyy VM. Manipulating mRNA-binding protein Cth2 function in budding yeast Saccharomyces cerevisiae. STAR Protoc 2024; 5:102807. [PMID: 38165801 PMCID: PMC10797207 DOI: 10.1016/j.xpro.2023.102807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/14/2023] [Accepted: 12/14/2023] [Indexed: 01/04/2024] Open
Abstract
Here, we present a protocol for modulating the function of the Cth2 mRNA-binding protein (RBP) in Saccharomyces cerevisiae. We describe steps to amplify and integrate mutations in Cth2 that affect its stability and function. Next, we detail the functional assay to verify the activity of the wild-type and mutant versions of Cth2 in yeast cells. This protocol can be adopted to modify the function of other RBPs with their respective functional mutations. For complete details on the use and execution of this protocol, please refer to Patnaik et al. (2022).1.
Collapse
Affiliation(s)
- Praveen K Patnaik
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA.
| | - Hanna Barlit
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Vyacheslav M Labunskyy
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
30
|
Sule KC, Nakamura M, Parkhurst SM. Nuclear envelope budding: Getting large macromolecular complexes out of the nucleus. Bioessays 2024; 46:e2300182. [PMID: 38044581 PMCID: PMC10843589 DOI: 10.1002/bies.202300182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Transport of macromolecules from the nucleus to the cytoplasm is essential for nearly all cellular and developmental events, and when mis-regulated, is associated with diseases, tumor formation/growth, and cancer progression. Nuclear Envelope (NE)-budding is a newly appreciated nuclear export pathway for large macromolecular machineries, including those assembled to allow co-regulation of functionally related components, that bypasses canonical nuclear export through nuclear pores. In this pathway, large macromolecular complexes are enveloped by the inner nuclear membrane, transverse the perinuclear space, and then exit through the outer nuclear membrane to release its contents into the cytoplasm. NE-budding is a conserved process and shares many features with nuclear egress mechanisms used by herpesviruses. Despite its biological importance and clinical relevance, little is yet known about the regulatory and structural machineries that allow NE-budding to occur in any system. Here we summarize what is currently known or proposed for this intriguing nuclear export process.
Collapse
Affiliation(s)
- Kevin C. Sule
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Susan M. Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| |
Collapse
|
31
|
Zhan T, Tang S, Du J, Liu J, Yu B, Yang Y, Xie Y, Qiu Y, Li G, Gao Y. Implication of lncRNA MSTRG.81401 in Hippocampal Pyroptosis Induced by P2X7 Receptor in Type 2 Diabetic Rats with Neuropathic Pain Combined with Depression. Int J Mol Sci 2024; 25:1186. [PMID: 38256257 PMCID: PMC10816120 DOI: 10.3390/ijms25021186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Major depressive disorder (MDD) is a common complication of diabetes and is often observed alongside diabetic neuropathic pain (DNP) as a comorbidity in diabetic patients. Long non-coding RNA (lncRNA) plays an important role in various pathophysiological processes. The P2X7 receptor is responsible for triggering inflammatory responses, such as pyroptosis, linked to pain and depression. The aim of this study was to investigate the effect of lncRNA MSTRG.81401 on hippocampal pyroptosis induced by the P2X7 receptor in diabetic rats with DNP combined with MDD (DNP + MDD). Our results showed that the expression of lncRNA MSTRG.81401 was significantly elevated in the hippocampus of DNP + MDD rats compared with the control group. Following the administration of shRNA targeting lncRNA MSTRG.81401, a notable elevation in mechanical and thermal pain thresholds was observed in rats with comorbid DNP and MDD. Additionally, significant improvements in depression-like behaviors were evident in the open-field test (OFT), sucrose preference test (SPT), and forced swim test (FST). In the DNP + MDD rats, elevated levels in hippocampal P2X7 receptor mRNA and protein were observed, along with increased co-expression of P2X7 and the astrocytic marker glial fibrillary acidic protein (GFAP). Meanwhile, in DNP + MDD rats, the heightened mRNA expression of NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), pyroptosis-related protein Gasdermin D (GSDMD), caspase-1, IL-1β, IL-18, and TNF-α was detected, in addition to increased serum levels of IL-1β, IL-18 and TNF-α. After shRNA treatment with lncRNA MSTRG.81401, the above abnormal changes in indicators for pyroptosis and inflammation were improved. Therefore, our study demonstrates that shRNA of lncRNA MSTRG.81401 can alleviate the pain and depression-like behaviors in diabetic rats associated with the comorbidity of DNP and MDD by inhibiting the hippocampal P2X7 receptor-mediated pyroptosis pathway and pro-inflammatory responses. This suggests that the P2X7R/NLRP3/caspase-1 implicated pyroptosis and inflammatory scenario may serve as a potential target for the management of comorbid DNP and MDD in diabetes.
Collapse
Affiliation(s)
- Ting Zhan
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (T.Z.); (S.T.); (J.D.); (Y.Y.); (Y.X.); (Y.Q.); (G.L.)
| | - Shanshan Tang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (T.Z.); (S.T.); (J.D.); (Y.Y.); (Y.X.); (Y.Q.); (G.L.)
| | - Junpei Du
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (T.Z.); (S.T.); (J.D.); (Y.Y.); (Y.X.); (Y.Q.); (G.L.)
| | - Jingshuang Liu
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang University, Nanchang 330006, China;
| | - Bodong Yu
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China;
| | - Yuxin Yang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (T.Z.); (S.T.); (J.D.); (Y.Y.); (Y.X.); (Y.Q.); (G.L.)
| | - Yuting Xie
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (T.Z.); (S.T.); (J.D.); (Y.Y.); (Y.X.); (Y.Q.); (G.L.)
| | - Yanting Qiu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (T.Z.); (S.T.); (J.D.); (Y.Y.); (Y.X.); (Y.Q.); (G.L.)
| | - Guodong Li
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (T.Z.); (S.T.); (J.D.); (Y.Y.); (Y.X.); (Y.Q.); (G.L.)
| | - Yun Gao
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (T.Z.); (S.T.); (J.D.); (Y.Y.); (Y.X.); (Y.Q.); (G.L.)
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, China
| |
Collapse
|
32
|
Feicht J, Jansen RP. The high-density lipoprotein binding protein HDLBP is an unusual RNA-binding protein with multiple roles in cancer and disease. RNA Biol 2024; 21:1-10. [PMID: 38477883 PMCID: PMC10939154 DOI: 10.1080/15476286.2024.2313881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 03/14/2024] Open
Abstract
The high-density lipoprotein binding protein (HDLBP) is the human member of an evolutionarily conserved family of RNA-binding proteins, the vigilin protein family. These proteins are characterized by 14 or 15 RNA-interacting KH (heterologous nuclear ribonucleoprotein K homology) domains. While mainly present at the cytoplasmic face of the endoplasmic reticulum, HDLBP and its homologs are also found in the cytosol and nucleus. HDLBP is involved in various processes, including translation, chromosome segregation, cholesterol transport and carcinogenesis. Especially, its association with the latter two has attracted specific interest in the HDLBP's molecular role. In this review, we give an overview of some of the functions of the protein as well as introduce its impact on different kinds of cancer, its connection to lipid metabolism and its role in viral infection. We also aim at addressing the possible use of HDLBP as a drug target or biomarker and discuss its future implications.
Collapse
Affiliation(s)
- Jonathan Feicht
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Ralf-Peter Jansen
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
33
|
Hayashi S, Iwamoto K, Yoshihisa T. A non-canonical Puf3p-binding sequence regulates CAT5/COQ7 mRNA under both fermentable and respiratory conditions in budding yeast. PLoS One 2023; 18:e0295659. [PMID: 38100455 PMCID: PMC10723686 DOI: 10.1371/journal.pone.0295659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
The Saccharomyces cerevisiae uses a highly glycolytic metabolism, if glucose is available, through appropriately suppressing mitochondrial functions except for some of them such as Fe/S cluster biogenesis. Puf3p, a Pumillio family protein, plays a pivotal role in modulating mitochondrial activity, especially during fermentation, by destabilizing its target mRNAs and/or by repressing their translation. Puf3p preferentially binds to 8-nt conserved binding sequences in the 3'-UTR of nuclear-encoded mitochondrial (nc-mitochondrial) mRNAs, leading to broad effects on gene expression under fermentable conditions. To further explore how Puf3p post-transcriptionally regulates nc-mitochondrial mRNAs in response to cell growth conditions, we initially focused on nc-mitochondrial mRNAs known to be enriched in monosomes in a glucose-rich environment. We unexpectedly found that one of the monosome-enriched mRNAs, CAT5/COQ7 mRNA, directly interacts with Puf3p through its non-canonical Puf3p binding sequence, which is generally less considered as a Puf3p binding site. Western blot analysis showed that Puf3p represses translation of Cat5p, regardless of culture in fermentable or respiratory medium. In vitro binding assay confirmed Puf3p's direct interaction with CAT5 mRNA via this non-canonical Puf3p-binding site. Although cat5 mutants of the non-canonical Puf3p-binding site grow normally, Cat5p expression is altered, indicating that CAT5 mRNA is a bona fide Puf3p target with additional regulatory factors acting through this sequence. Unlike other yeast PUF proteins, Puf3p uniquely regulates Cat5p by destabilizing mRNA and repressing translation, shedding new light on an unknown part of the Puf3p regulatory network. Given that pathological variants of human COQ7 lead to CoQ10 deficiency and yeast cat5Δ can be complemented by hCOQ7, our findings may also offer some insights into clinical aspects of COQ7-related disorders.
Collapse
Affiliation(s)
- Sachiko Hayashi
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo, Japan
| | - Kazumi Iwamoto
- Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo, Japan
| | - Tohru Yoshihisa
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo, Japan
| |
Collapse
|
34
|
Dutta DJ, Sasaki J, Bansal A, Sugai K, Yamashita S, Li G, Lazarski C, Wang L, Sasaki T, Yamashita C, Carryl H, Suzuki R, Odawara M, Imamura Kawasawa Y, Rakic P, Torii M, Hashimoto-Torii K. Alternative splicing events as peripheral biomarkers for motor learning deficit caused by adverse prenatal environments. Proc Natl Acad Sci U S A 2023; 120:e2304074120. [PMID: 38051767 PMCID: PMC10723155 DOI: 10.1073/pnas.2304074120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/25/2023] [Indexed: 12/07/2023] Open
Abstract
Severity of neurobehavioral deficits in children born from adverse pregnancies, such as maternal alcohol consumption and diabetes, does not always correlate with the adversity's duration and intensity. Therefore, biological signatures for accurate prediction of the severity of neurobehavioral deficits, and robust tools for reliable identification of such biomarkers, have an urgent clinical need. Here, we demonstrate that significant changes in the alternative splicing (AS) pattern of offspring lymphocyte RNA can function as accurate peripheral biomarkers for motor learning deficits in mouse models of prenatal alcohol exposure (PAE) and offspring of mother with diabetes (OMD). An aptly trained deep-learning model identified 29 AS events common to PAE and OMD as superior predictors of motor learning deficits than AS events specific to PAE or OMD. Shapley-value analysis, a game-theory algorithm, deciphered the trained deep-learning model's learnt associations between its input, AS events, and output, motor learning performance. Shapley values of the deep-learning model's input identified the relative contribution of the 29 common AS events to the motor learning deficit. Gene ontology and predictive structure-function analyses, using Alphafold2 algorithm, supported existing evidence on the critical roles of these molecules in early brain development and function. The direction of most AS events was opposite in PAE and OMD, potentially from differential expression of RNA binding proteins in PAE and OMD. Altogether, this study posits that AS of lymphocyte RNA is a rich resource, and deep-learning is an effective tool, for discovery of peripheral biomarkers of neurobehavioral deficits in children of diverse adverse pregnancies.
Collapse
Affiliation(s)
- Dipankar J. Dutta
- Center for Neuroscience Research, Children’s National Hospital,Washington, DC20010
| | - Junko Sasaki
- Center for Neuroscience Research, Children’s National Hospital,Washington, DC20010
- Department of Diabetes, Endocrinology and Metabolism, Tokyo Medical University, Tokyo160-8402, Japan
| | - Ankush Bansal
- Center for Neuroscience Research, Children’s National Hospital,Washington, DC20010
| | - Keiji Sugai
- Center for Neuroscience Research, Children’s National Hospital,Washington, DC20010
- Department of Diabetes, Endocrinology and Metabolism, Tokyo Medical University, Tokyo160-8402, Japan
| | - Satoshi Yamashita
- Center for Neuroscience Research, Children’s National Hospital,Washington, DC20010
| | - Guojiao Li
- Department of Diabetes, Endocrinology and Metabolism, Tokyo Medical University, Tokyo160-8402, Japan
| | - Christopher Lazarski
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC20010
| | - Li Wang
- Center for Neuroscience Research, Children’s National Hospital,Washington, DC20010
| | - Toru Sasaki
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo160-8402, Japan
| | - Chiho Yamashita
- Center for Neuroscience Research, Children’s National Hospital,Washington, DC20010
| | - Heather Carryl
- Center for Neuroscience Research, Children’s National Hospital,Washington, DC20010
| | - Ryo Suzuki
- Department of Diabetes, Endocrinology and Metabolism, Tokyo Medical University, Tokyo160-8402, Japan
| | - Masato Odawara
- Department of Diabetes, Endocrinology and Metabolism, Tokyo Medical University, Tokyo160-8402, Japan
| | - Yuka Imamura Kawasawa
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA17033
| | - Pasko Rakic
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT06520
| | - Masaaki Torii
- Center for Neuroscience Research, Children’s National Hospital,Washington, DC20010
- Department of Pediatrics, Pharmacology and Physiology, George Washington University, Washington, DC20010
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children’s National Hospital,Washington, DC20010
- Department of Pediatrics, Pharmacology and Physiology, George Washington University, Washington, DC20010
| |
Collapse
|
35
|
Sun L, Suo C, Zhang T, Shen S, Gu X, Qiu S, Zhang P, Wei H, Ma W, Yan R, Chen R, Jia W, Cao J, Zhang H, Gao P. ENO1 promotes liver carcinogenesis through YAP1-dependent arachidonic acid metabolism. Nat Chem Biol 2023; 19:1492-1503. [PMID: 37500770 DOI: 10.1038/s41589-023-01391-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
Enolase 1 (ENO1) is a glycolytic enzyme that plays essential roles in various pathological activities including cancer development. However, the mechanisms underlying ENO1-contributed tumorigenesis are not well explained. Here, we uncover that ENO1, as an RNA-binding protein, binds to the cytosine-uracil-guanine-rich elements of YAP1 messenger RNA to promote its translation. ENO1 and YAP1 positively regulate alternative arachidonic acid (AA) metabolism by inverse regulation of PLCB1 and HPGD (15-hydroxyprostaglandin dehydrogenase). The YAP1/PLCB1/HPGD axis-mediated activation of AA metabolism and subsequent accumulation of prostaglandin E2 (PGE2) are responsible for ENO1-mediated cancer progression, which can be retarded by aspirin. Finally, aberrant activation of ENO1/YAP1/PLCB1 and decreased HPGD expression in clinical hepatocellular carcinoma samples indicate a potential correlation between ENO1-regulated AA metabolism and cancer development. These findings underline a new function of ENO1 in regulating AA metabolism and tumorigenesis, suggesting a therapeutic potential for aspirin in patients with liver cancer with aberrant expression of ENO1 or YAP1.
Collapse
Affiliation(s)
- Linchong Sun
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Caixia Suo
- Department of Colorectal Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Tong Zhang
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shengqi Shen
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuemei Gu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Shiqiao Qiu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Pinggen Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haoran Wei
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenhao Ma
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ronghui Yan
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rui Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Weidong Jia
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Jie Cao
- Department of Colorectal Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Huafeng Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.
| | - Ping Gao
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
- School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
36
|
Blank HM, Griffith WP, Polymenis M. Targeting APEX2 to the mRNA encoding fatty acid synthase β in yeast identifies interacting proteins that control its abundance in the cell cycle. Mol Biol Cell 2023; 34:br20. [PMID: 37792491 PMCID: PMC10848943 DOI: 10.1091/mbc.e23-05-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023] Open
Abstract
Profiling the repertoire of proteins associated with a given mRNA during the cell cycle is unstudied. Furthermore, it is easier to ask and answer what mRNAs a specific protein might bind to than the other way around. Here, we implemented an RNA-centric proximity labeling technology at different points in the cell cycle in highly synchronous yeast cultures. To understand how the abundance of FAS1, encoding fatty acid synthase, peaks late in the cell cycle, we identified proteins that interact with the FAS1 transcript in a cell cycle-dependent manner. We used dCas13d-APEX2 fusions to target FAS1 and label nearby proteins, which were then identified by mass spectrometry. The glycolytic enzyme Tdh3p, a known RNA-binding protein, interacted with the FAS1 mRNA, and it was necessary for the periodic abundance of Fas1p in the cell cycle. These results point to unexpected connections between major metabolic pathways. They also underscore the role of mRNA-protein interactions for gene expression during cell division.
Collapse
Affiliation(s)
- Heidi M. Blank
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Wendell P. Griffith
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| |
Collapse
|
37
|
Meyer L, Courtin B, Gomard M, Namane A, Permal E, Badis G, Jacquier A, Fromont-Racine M. eIF2A represses cell wall biogenesis gene expression in Saccharomyces cerevisiae. PLoS One 2023; 18:e0293228. [PMID: 38011112 PMCID: PMC10681259 DOI: 10.1371/journal.pone.0293228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/07/2023] [Indexed: 11/29/2023] Open
Abstract
Translation initiation is a complex and highly regulated process that represents an important mechanism, controlling gene expression. eIF2A was proposed as an alternative initiation factor, however, its role and biological targets remain to be discovered. To further gain insight into the function of eIF2A in Saccharomyces cerevisiae, we identified mRNAs associated with the eIF2A complex and showed that 24% of the most enriched mRNAs encode proteins related to cell wall biogenesis and maintenance. In agreement with this result, we showed that an eIF2A deletion sensitized cells to cell wall damage induced by calcofluor white. eIF2A overexpression led to a growth defect, correlated with decreased synthesis of several cell wall proteins. In contrast, no changes were observed in the transcriptome, suggesting that eIF2A controls the expression of cell wall-related proteins at a translational level. The biochemical characterization of the eIF2A complex revealed that it strongly interacts with the RNA binding protein, Ssd1, which is a negative translational regulator, controlling the expression of cell wall-related genes. Interestingly, eIF2A and Ssd1 bind several common mRNA targets and we found that the binding of eIF2A to some targets was mediated by Ssd1. Surprisingly, we further showed that eIF2A is physically and functionally associated with the exonuclease Xrn1 and other mRNA degradation factors, suggesting an additional level of regulation. Altogether, our results highlight new aspects of this complex and redundant fine-tuned regulation of proteins expression related to the cell wall, a structure required to maintain cell shape and rigidity, providing protection against harmful environmental stress.
Collapse
Affiliation(s)
- Laura Meyer
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Baptiste Courtin
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Maïté Gomard
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Abdelkader Namane
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Emmanuelle Permal
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Gwenael Badis
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Alain Jacquier
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Micheline Fromont-Racine
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| |
Collapse
|
38
|
Moss ND, Wells KL, Theis A, Kim YK, Spigelman AF, Liu X, MacDonald PE, Sussel L. Modulation of insulin secretion by RBFOX2-mediated alternative splicing. Nat Commun 2023; 14:7732. [PMID: 38007492 PMCID: PMC10676425 DOI: 10.1038/s41467-023-43605-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023] Open
Abstract
Insulin secretion is a tightly regulated process that is vital for maintaining blood glucose homeostasis. Although the molecular components of insulin granule trafficking and secretion are well established, how they are regulated to rapidly fine-tune secretion in response to changing environmental conditions is not well characterized. Recent studies have determined that dysregulation of RNA-binding proteins (RBPs) and aberrant mRNA splicing occurs at the onset of diabetes. We demonstrate that the RBP, RBFOX2, is a critical regulator of insulin secretion through the alternative splicing of genes required for insulin granule docking and exocytosis. Conditional mutation of Rbfox2 in the mouse pancreas results in decreased insulin secretion and impaired blood glucose homeostasis. Consistent with defects in secretion, we observe reduced insulin granule docking and corresponding splicing defects in the SNARE complex components. These findings identify an additional mechanism for modulating insulin secretion in both healthy and dysfunctional pancreatic β cells.
Collapse
Affiliation(s)
- Nicole D Moss
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristen L Wells
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandra Theis
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yong-Kyung Kim
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aliya F Spigelman
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Xiong Liu
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
39
|
Kershaw CJ, Nelson MG, Castelli LM, Jennings MD, Lui J, Talavera D, Grant CM, Pavitt GD, Hubbard SJ, Ashe MP. Translation factor and RNA binding protein mRNA interactomes support broader RNA regulons for posttranscriptional control. J Biol Chem 2023; 299:105195. [PMID: 37633333 PMCID: PMC10562868 DOI: 10.1016/j.jbc.2023.105195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023] Open
Abstract
The regulation of translation provides a rapid and direct mechanism to modulate the cellular proteome. In eukaryotes, an established model for the recruitment of ribosomes to mRNA depends upon a set of conserved translation initiation factors. Nevertheless, how cells orchestrate and define the selection of individual mRNAs for translation, as opposed to other potential cytosolic fates, is poorly understood. We have previously found significant variation in the interaction between individual mRNAs and an array of translation initiation factors. Indeed, mRNAs can be separated into different classes based upon these interactions to provide a framework for understanding different modes of translation initiation. Here, we extend this approach to include new mRNA interaction profiles for additional proteins involved in shaping the cytoplasmic fate of mRNAs. This work defines a set of seven mRNA clusters, based on their interaction profiles with 12 factors involved in translation and/or RNA binding. The mRNA clusters share both physical and functional characteristics to provide a rationale for the interaction profiles. Moreover, a comparison with mRNA interaction profiles from a host of RNA binding proteins suggests that there are defined patterns in the interactions of functionally related mRNAs. Therefore, this work defines global cytoplasmic mRNA binding modules that likely coordinate the synthesis of functionally related proteins.
Collapse
Affiliation(s)
- Christopher J Kershaw
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Michael G Nelson
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Lydia M Castelli
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Martin D Jennings
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Jennifer Lui
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - David Talavera
- Division of Cardiovascular Sciences, School of Medical Sciences, The University of Manchester, Manchester, UK
| | - Chris M Grant
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK.
| | - Simon J Hubbard
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK.
| | - Mark P Ashe
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
40
|
Liu H, Luo Z, Rao Y. Manipulation of fungal cell wall integrity to improve production of fungal natural products. ADVANCES IN APPLIED MICROBIOLOGY 2023; 125:49-78. [PMID: 38783724 DOI: 10.1016/bs.aambs.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Fungi, as an important industrial microorganism, play an essential role in the production of natural products (NPs) due to their advantages of utilizing cheap raw materials as substrates and strong protein secretion ability. Although many metabolic engineering strategies have been adopted to enhance the biosynthetic pathway of NPs in fungi, the fungal cell wall as a natural barrier tissue is the final and key step that affects the efficiency of NPs synthesis. To date, many important progresses have been achieved in improving the synthesis of NPs by regulating the cell wall structure of fungi. In this review, we systematically summarize and discuss various strategies for modifying the cell wall structure of fungi to improve the synthesis of NPs. At first, the cell wall structure of different types of fungi is systematically described. Then, strategies to disrupt cell wall integrity (CWI) by regulating the synthesis of cell wall polysaccharides and binding proteins are summarized, which have been applied to improve the synthesis of NPs. In addition, we also summarize the studies on the regulation of CWI-related signaling pathway and the addition of exogenous components for regulating CWI to improve the synthesis of NPs. Finally, we propose the current challenges and essential strategies to usher in an era of more extensive manipulation of fungal CWI to improve the production of fungal NPs.
Collapse
Affiliation(s)
- Huiling Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P.R. China
| | - Zhengshan Luo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P.R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P.R. China.
| |
Collapse
|
41
|
Yan J, Ding Y, Peng Z, Qin L, Gu J, Wan C. Systematic Proteomics Study on the Embryonic Development of Danio rerio. J Proteome Res 2023; 22:2814-2826. [PMID: 37500539 DOI: 10.1021/acs.jproteome.3c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The early development of zebrafish (Danio rerio) is a complex and dynamic physiological process involving cell division, differentiation, and movement. Currently, the genome and transcriptome techniques have been widely used to study the embryonic development of zebrafish. However, the research of proteomics based on proteins that directly execute functions is relatively vacant. In this work, we apply label-free quantitative proteomics to explore protein profiling during zebrafish's embryogenesis, and a total of 5961 proteins were identified at 10 stages of zebrafish's early development. The identified proteins were divided into 11 modules according to weighted gene coexpression network analysis (WGCNA), and the characteristics between modules were significantly different. For example, mitochondria-related functions enriched the early development of zebrafish. Primordial germ cell-related proteins were identified at the 4-cell stage, while the eye development event is dominated at 5 days post fertilization (dpf). By combining with published transcriptomics data, we discovered some proteins that may be involved in activating zygotic genes. Meanwhile, 137 novel proteins were identified. This study comprehensively analyzed the dynamic processes in the embryonic development of zebrafish from the perspective of proteomics. It provided solid data support for further understanding of the molecular mechanism of its development.
Collapse
Affiliation(s)
- Jiahao Yan
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China
| | - Yuhe Ding
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China
| | - Zhao Peng
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China
| | - Lu Qin
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China
| | - Jingyu Gu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China
| | - Cuihong Wan
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China
| |
Collapse
|
42
|
Xia A, Zheng L, Wang Z, Wang Q, Lu M, Cui Z, He Y. The RHW1-ZCN4 regulatory pathway confers natural variation of husk leaf width in maize. THE NEW PHYTOLOGIST 2023; 239:2367-2381. [PMID: 37403373 DOI: 10.1111/nph.19116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023]
Abstract
Maize husk leaf - the outer leafy layers covering the ear - modulates kernel yield and quality. Despite its importance, however, the genetic controls underlying husk leaf development remain elusive. Our previous genome-wide association study identified a single nucleotide polymorphism located in the gene RHW1 (Regulator of Husk leaf Width) that is significantly associated with husk leaf-width diversity in maize. Here, we further demonstrate that a polymorphic 18-bp InDel (insertion/deletion) variant in the 3' untranslated region of RHW1 alters its protein abundance and accounts for husk leaf width variation. RHW1 encodes a putative MYB-like transcriptional repressor. Disruption of RHW1 altered cell proliferation and resulted in a narrower husk leaf, whereas RHW1 overexpression yielded a wider husk leaf. RHW1 positively regulated the expression of ZCN4, a well-known TFL1-like protein involved in maize ear development. Dysfunction of ZCN4 reduced husk leaf width even in the context of RHW1 overexpression. The InDel variant in RHW1 is subject to selection and is associated with maize husk leaf adaption from tropical to temperate regions. Overall, our results identify that RHW1-ZCN4 regulates a pathway conferring husk leaf width variation at a very early stage of husk leaf development in maize.
Collapse
Affiliation(s)
- Aiai Xia
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Leiming Zheng
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Zi Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Qi Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Ming Lu
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, China
| | - Zhenhai Cui
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| |
Collapse
|
43
|
Sun B, Chen L. Mapping genetic variants for nonsense-mediated mRNA decay regulation across human tissues. Genome Biol 2023; 24:164. [PMID: 37434206 PMCID: PMC10337212 DOI: 10.1186/s13059-023-03004-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/30/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Nonsense-mediated mRNA decay (NMD) was originally conceived as an mRNA surveillance mechanism to prevent the production of potentially deleterious truncated proteins. Research also shows NMD is an important post-transcriptional gene regulation mechanism selectively targeting many non-aberrant mRNAs. However, how natural genetic variants affect NMD and modulate gene expression remains elusive. RESULTS Here we elucidate NMD regulation of individual genes across human tissues through genetical genomics. Genetic variants corresponding to NMD regulation are identified based on GTEx data through unique and robust transcript expression modeling. We identify genetic variants that influence the percentage of NMD-targeted transcripts (pNMD-QTLs), as well as genetic variants regulating the decay efficiency of NMD-targeted transcripts (dNMD-QTLs). Many such variants are missed in traditional expression quantitative trait locus (eQTL) mapping. NMD-QTLs show strong tissue specificity especially in the brain. They are more likely to overlap with disease single-nucleotide polymorphisms (SNPs). Compared to eQTLs, NMD-QTLs are more likely to be located within gene bodies and exons, especially the penultimate exons from the 3' end. Furthermore, NMD-QTLs are more likely to be found in the binding sites of miRNAs and RNA binding proteins. CONCLUSIONS We reveal the genome-wide landscape of genetic variants associated with NMD regulation across human tissues. Our analysis results indicate important roles of NMD in the brain. The preferential genomic positions of NMD-QTLs suggest key attributes for NMD regulation. Furthermore, the overlap with disease-associated SNPs and post-transcriptional regulatory elements implicates regulatory roles of NMD-QTLs in disease manifestation and their interactions with other post-transcriptional regulators.
Collapse
Affiliation(s)
- Bo Sun
- Department of Quantitative and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA
| | - Liang Chen
- Department of Quantitative and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA.
| |
Collapse
|
44
|
Fradera-Sola A, Nischwitz E, Bayer ME, Luck K, Butter F. RNA-dependent interactome allows network-based assignment of RNA-binding protein function. Nucleic Acids Res 2023; 51:5162-5176. [PMID: 37070168 PMCID: PMC10250244 DOI: 10.1093/nar/gkad245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 04/19/2023] Open
Abstract
RNA-binding proteins (RBPs) form highly diverse and dynamic ribonucleoprotein complexes, whose functions determine the molecular fate of the bound RNA. In the model organism Sacchromyces cerevisiae, the number of proteins identified as RBPs has greatly increased over the last decade. However, the cellular function of most of these novel RBPs remains largely unexplored. We used mass spectrometry-based quantitative proteomics to systematically identify protein-protein interactions (PPIs) and RNA-dependent interactions (RDIs) to create a novel dataset for 40 RBPs that are associated with the mRNA life cycle. Domain, functional and pathway enrichment analyses revealed an over-representation of RNA functionalities among the enriched interactors. Using our extensive PPI and RDI networks, we revealed putative new members of RNA-associated pathways, and highlighted potential new roles for several RBPs. Our RBP interactome resource is available through an online interactive platform as a community tool to guide further in-depth functional studies and RBP network analysis (https://www.butterlab.org/RINE).
Collapse
Affiliation(s)
- Albert Fradera-Sola
- Quantitative Proteomics, Institute of Molecular Biology, D-55128 Mainz, Germany
| | - Emily Nischwitz
- Quantitative Proteomics, Institute of Molecular Biology, D-55128 Mainz, Germany
| | | | - Katja Luck
- Integrative Systems Biology, Institute of Molecular Biology, D-55128 Mainz, Germany
| | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology, D-55128 Mainz, Germany
| |
Collapse
|
45
|
Wolin E, Guo JK, Blanco MR, Perez AA, Goronzy IN, Abdou AA, Gorhe D, Guttman M, Jovanovic M. SPIDR: a highly multiplexed method for mapping RNA-protein interactions uncovers a potential mechanism for selective translational suppression upon cellular stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543769. [PMID: 37333139 PMCID: PMC10274648 DOI: 10.1101/2023.06.05.543769] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
RNA binding proteins (RBPs) play crucial roles in regulating every stage of the mRNA life cycle and mediating non-coding RNA functions. Despite their importance, the specific roles of most RBPs remain unexplored because we do not know what specific RNAs most RBPs bind. Current methods, such as crosslinking and immunoprecipitation followed by sequencing (CLIP-seq), have expanded our knowledge of RBP-RNA interactions but are generally limited by their ability to map only one RBP at a time. To address this limitation, we developed SPIDR (Split and Pool Identification of RBP targets), a massively multiplexed method to simultaneously profile global RNA binding sites of dozens to hundreds of RBPs in a single experiment. SPIDR employs split-pool barcoding coupled with antibody-bead barcoding to increase the throughput of current CLIP methods by two orders of magnitude. SPIDR reliably identifies precise, single-nucleotide RNA binding sites for diverse classes of RBPs simultaneously. Using SPIDR, we explored changes in RBP binding upon mTOR inhibition and identified that 4EBP1 acts as a dynamic RBP that selectively binds to 5'-untranslated regions of specific translationally repressed mRNAs only upon mTOR inhibition. This observation provides a potential mechanism to explain the specificity of translational regulation controlled by mTOR signaling. SPIDR has the potential to revolutionize our understanding of RNA biology and both transcriptional and post-transcriptional gene regulation by enabling rapid, de novo discovery of RNA-protein interactions at an unprecedented scale.
Collapse
Affiliation(s)
- Erica Wolin
- Department of Biological Sciences, Columbia University, New York City, New York 10027, USA
| | - Jimmy K. Guo
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Mario R. Blanco
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | - Andrew A. Perez
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | - Isabel N. Goronzy
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | - Ahmed A. Abdou
- Department of Biological Sciences, Columbia University, New York City, New York 10027, USA
| | - Darvesh Gorhe
- Department of Biological Sciences, Columbia University, New York City, New York 10027, USA
| | - Mitchell Guttman
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York City, New York 10027, USA
| |
Collapse
|
46
|
Reynaud K, McGeachy AM, Noble D, Meacham ZA, Ingolia NT. Surveying the global landscape of post-transcriptional regulators. Nat Struct Mol Biol 2023; 30:740-752. [PMID: 37231154 PMCID: PMC10279529 DOI: 10.1038/s41594-023-00999-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
Numerous proteins regulate gene expression by modulating mRNA translation and decay. To uncover the full scope of these post-transcriptional regulators, we conducted an unbiased survey that quantifies regulatory activity across the budding yeast proteome and delineates the protein domains responsible for these effects. Our approach couples a tethered function assay with quantitative single-cell fluorescence measurements to analyze ~50,000 protein fragments and determine their effects on a tethered mRNA. We characterize hundreds of strong regulators, which are enriched for canonical and unconventional mRNA-binding proteins. Regulatory activity typically maps outside the RNA-binding domains themselves, highlighting a modular architecture that separates mRNA targeting from post-transcriptional regulation. Activity often aligns with intrinsically disordered regions that can interact with other proteins, even in core mRNA translation and degradation factors. Our results thus reveal networks of interacting proteins that control mRNA fate and illuminate the molecular basis for post-transcriptional gene regulation.
Collapse
Affiliation(s)
- Kendra Reynaud
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Anna M McGeachy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - David Noble
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Zuriah A Meacham
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Nicholas T Ingolia
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
47
|
Piao W, Li C, Sun P, Yang M, Ding Y, Song W, Jia Y, Yu L, Lu Y, Jin H. Identification of RNA-Binding Protein Targets with HyperTRIBE in Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:ijms24109033. [PMID: 37240377 DOI: 10.3390/ijms24109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
As a master regulator in cells, RNA-binding protein (RBP) plays critical roles in organismal development, metabolism and various diseases. It regulates gene expression at various levels mostly by specific recognition of target RNA. The traditional CLIP-seq method to detect transcriptome-wide RNA targets of RBP is less efficient in yeast due to the low UV transmissivity of their cell walls. Here, we established an efficient HyperTRIBE (Targets of RNA-binding proteins Identified By Editing) in yeast, by fusing an RBP to the hyper-active catalytic domain of human RNA editing enzyme ADAR2 and expressing the fusion protein in yeast cells. The target transcripts of RBP were marked with new RNA editing events and identified by high-throughput sequencing. We successfully applied HyperTRIBE to identifying the RNA targets of two yeast RBPs, KHD1 and BFR1. The antibody-free HyperTRIBE has competitive advantages including a low background, high sensitivity and reproducibility, as well as a simple library preparation procedure, providing a reliable strategy for RBP target identification in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Weilan Piao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Chong Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Pengkun Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Miaomiao Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Yansong Ding
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Wei Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Yunxiao Jia
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Liqun Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Yanming Lu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Hua Jin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| |
Collapse
|
48
|
Zhang Q, Xie J, Zhu X, Ma X, Yang T, Khan NU, Zhang S, Liu M, Li L, Liang Y, Pan Y, Li D, Li J, Li Z, Zhang H, Zhang Z. Natural variation in Tiller Number 1 affects its interaction with TIF1 to regulate tillering in rice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1044-1057. [PMID: 36705337 PMCID: PMC10106862 DOI: 10.1111/pbi.14017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2022] [Accepted: 01/23/2023] [Indexed: 05/04/2023]
Abstract
Tiller number per plant-a cardinal component of ideal plant architecture-affects grain yield potential. Thus, alleles positively affecting tillering must be mined to promote genetic improvement. Here, we report a Tiller Number 1 (TN1) protein harbouring a bromo-adjacent homology domain and RNA recognition motifs, identified through genome-wide association study of tiller numbers. Natural variation in TN1 affects its interaction with TIF1 (TN1 interaction factor 1) to affect DWARF14 expression and negatively regulate tiller number in rice. Further analysis of variations in TN1 among indica genotypes according to geographical distribution revealed that low-tillering varieties with TN1-hapL are concentrated in Southeast Asia and East Asia, whereas high-tillering varieties with TN1-hapH are concentrated in South Asia. Taken together, these results indicate that TN1 is a tillering regulatory factor whose alleles present apparent preferential utilization across geographical regions. Our findings advance the molecular understanding of tiller development.
Collapse
Affiliation(s)
- Quan Zhang
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jianyin Xie
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xiaoyang Zhu
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xiaoqian Ma
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Tao Yang
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Najeeb Ullah Khan
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Shuyang Zhang
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Miaosong Liu
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Lin Li
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yuntao Liang
- Guangxi Key Laboratory of Rice Genetics and BreedingRice Research Institute of Guangxi Academy of Agricultural SciencesNanningGuangxiChina
| | - Yinghua Pan
- Guangxi Key Laboratory of Rice Genetics and BreedingRice Research Institute of Guangxi Academy of Agricultural SciencesNanningGuangxiChina
| | - Danting Li
- Guangxi Key Laboratory of Rice Genetics and BreedingRice Research Institute of Guangxi Academy of Agricultural SciencesNanningGuangxiChina
| | - Jinjie Li
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Zichao Li
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Hongliang Zhang
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
- Sanya Nanfan Research Institute of Hainan UniversitySanyaChina
| | - Zhanying Zhang
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
49
|
Szpotkowski K, Wójcik K, Kurzyńska-Kokorniak A. Structural studies of protein-nucleic acid complexes: A brief overview of the selected techniques. Comput Struct Biotechnol J 2023; 21:2858-2872. [PMID: 37216015 PMCID: PMC10195699 DOI: 10.1016/j.csbj.2023.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Protein-nucleic acid complexes are involved in all vital processes, including replication, transcription, translation, regulation of gene expression and cell metabolism. Knowledge of the biological functions and molecular mechanisms beyond the activity of the macromolecular complexes can be determined from their tertiary structures. Undoubtably, performing structural studies of protein-nucleic acid complexes is challenging, mainly because these types of complexes are often unstable. In addition, their individual components may display extremely different surface charges, causing the complexes to precipitate at higher concentrations used in many structural studies. Due to the variety of protein-nucleic acid complexes and their different biophysical properties, no simple and universal guideline exists that helps scientists chose a method to successfully determine the structure of a specific protein-nucleic acid complex. In this review, we provide a summary of the following experimental methods, which can be applied to study the structures of protein-nucleic acid complexes: X-ray and neutron crystallography, nuclear magnetic resonance (NMR) spectroscopy, cryogenic electron microscopy (cryo-EM), atomic force microscopy (AFM), small angle scattering (SAS) methods, circular dichroism (CD) and infrared (IR) spectroscopy. Each method is discussed regarding its historical context, advancements over the past decades and recent years, and weaknesses and strengths. When a single method does not provide satisfactory data on the selected protein-nucleic acid complex, a combination of several methods should be considered as a hybrid approach; thus, specific structural problems can be solved when studying protein-nucleic acid complexes.
Collapse
Affiliation(s)
- Kamil Szpotkowski
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Klaudia Wójcik
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Anna Kurzyńska-Kokorniak
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
50
|
Bresson S, Shchepachev V, Tollervey D. A posttranscriptional pathway regulates cell wall mRNA expression in budding yeast. Cell Rep 2023; 42:112184. [PMID: 36862555 DOI: 10.1016/j.celrep.2023.112184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/05/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
The fungal cell wall provides protection and structure and is an important target for antifungal compounds. A mitogen-activated protein (MAP) kinase cascade termed the cell wall integrity (CWI) pathway regulates transcriptional responses to cell wall damage. Here, we describe a posttranscriptional pathway that plays an important complementary role. We report that the RNA-binding proteins (RBPs) Mrn1 and Nab6 specifically target the 3' UTRs of a largely overlapping set of cell wall-related mRNAs. These mRNAs are downregulated in the absence of Nab6, indicating a function in target mRNA stabilization. Nab6 acts in parallel to CWI signaling to maintain appropriate expression of cell wall genes during stress. Cells lacking both pathways are hypersensitive to antifungal compounds targeting the cell wall. Deletion of MRN1 partially alleviates growth defects associated with Δnab6, and Mrn1 has an opposing function in mRNA destabilization. Our results uncover a posttranscriptional pathway that mediates cellular resistance to antifungal compounds.
Collapse
Affiliation(s)
- Stefan Bresson
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK.
| | - Vadim Shchepachev
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - David Tollervey
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|