1
|
Brooker HR, Baker K, Ezcurra M, Laissue PP, Wang L, Geeves MA, Tullet JM, Mulvihill DP. Conserved Phosphorylation of the Myosin1e TH1 Domain Impacts Membrane Association and Function in Yeast and Worms. Cytoskeleton (Hoboken) 2025. [PMID: 40205688 DOI: 10.1002/cm.22026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025]
Abstract
Cells have an intrinsic ability to rapidly respond to environmental change to regulate cell cycle progression and membrane organisation, thereby affecting cell growth and division. The actin cytoskeleton is a highly dynamic complex of proteins that can rapidly reorganise to change the growth pattern of a cell. Class I myosins are monomeric actin-associated motor proteins that play key roles in diverse cellular functions such as tension sensing and membrane reorganisation, as well as promoting actin polymer nucleation at sites of cell growth. We have analysed the localisation and function of both C. elegans class 1 myosins, HUM-1 (Myo1e) and HUM-5 (Myo1d). Both motors are non-essential. While HUM-1 is expressed in diverse cells and tissues, HUM-5 localises exclusively to a subset of cells in the nervous system. While animals lacking hum-1 displayed a reduced maximal brood size and a delay in embryo release, deleting both hum-1 and hum-5 together shortened C. elegans lifespan. Moreover, we identified that phosphorylation of a conserved serine residue within the Myo1e TH1 domain had an impact on the localisation and function of the motor protein in both C. elegans and the fission yeast, S. pombe, indicating this modification modulates the ability of Myo1e/HUM-1 to interact with phospholipids at the plasma membrane. We conclude that TH1 domain phosphorylation plays a key role in regulating the cellular distribution and function of Myo1e motors across all eukaryotes.
Collapse
Affiliation(s)
- Holly R Brooker
- School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Karen Baker
- School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Marina Ezcurra
- School of Biosciences, University of Kent, Canterbury, Kent, UK
| | | | - Lin Wang
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxford, UK
| | | | | | | |
Collapse
|
2
|
Xiao D, Chen C, Yang P. Computational systems approach towards phosphoproteomics and their downstream regulation. Proteomics 2023; 23:e2200068. [PMID: 35580145 DOI: 10.1002/pmic.202200068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/07/2022]
Abstract
Protein phosphorylation plays an essential role in modulating cell signalling and its downstream transcriptional and translational regulations. Until recently, protein phosphorylation has been studied mostly using low-throughput biochemical assays. The advancement of mass spectrometry (MS)-based phosphoproteomics transformed the field by enabling measurement of proteome-wide phosphorylation events, where tens of thousands of phosphosites are routinely identified and quantified in an experiment. This has brought a significant challenge in analysing large-scale phosphoproteomic data, making computational methods and systems approaches integral parts of phosphoproteomics. Previous works have primarily focused on reviewing the experimental techniques in MS-based phosphoproteomics, yet a systematic survey of the computational landscape in this field is still missing. Here, we review computational methods and tools, and systems approaches that have been developed for phosphoproteomics data analysis. We categorise them into four aspects including data processing, functional analysis, phosphoproteome annotation and their integration with other omics, and in each aspect, we discuss the key methods and example studies. Lastly, we highlight some of the potential research directions on which future work would make a significant contribution to this fast-growing field. We hope this review provides a useful snapshot of the field of computational systems phosphoproteomics and stimulates new research that drives future development.
Collapse
Affiliation(s)
- Di Xiao
- Computational Systems Biology Group, Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Carissa Chen
- Computational Systems Biology Group, Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Pengyi Yang
- Computational Systems Biology Group, Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
High-throughput functional characterization of protein phosphorylation sites in yeast. Nat Biotechnol 2022; 40:382-390. [PMID: 34663920 PMCID: PMC7612524 DOI: 10.1038/s41587-021-01051-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/09/2021] [Indexed: 12/11/2022]
Abstract
Phosphorylation is a critical post-translational modification involved in the regulation of almost all cellular processes. However, fewer than 5% of thousands of recently discovered phosphosites have been functionally annotated. In this study, we devised a chemical genetic approach to study the functional relevance of phosphosites in Saccharomyces cerevisiae. We generated 474 yeast strains with mutations in specific phosphosites that were screened for fitness in 102 conditions, along with a gene deletion library. Of these phosphosites, 42% exhibited growth phenotypes, suggesting that these are more likely functional. We inferred their function based on the similarity of their growth profiles with that of gene deletions and validated a subset by thermal proteome profiling and lipidomics. A high fraction exhibited phenotypes not seen in the corresponding gene deletion, suggestive of a gain-of-function effect. For phosphosites conserved in humans, the severity of the yeast phenotypes is indicative of their human functional relevance. This high-throughput approach allows for functionally characterizing individual phosphosites at scale.
Collapse
|
4
|
Padmanabhan S, Sanyal K, Dubey D. Identification and in silico analysis of the origin recognition complex in the human fungal pathogen Candida albicans. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000465. [PMID: 34568775 PMCID: PMC8456302 DOI: 10.17912/micropub.biology.000465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 11/06/2022]
Abstract
DNA replication in eukaryotes is initiated by the orchestrated assembly and association of initiator proteins (heterohexameric Origin Recognition Complex, ORC) on the replication origins. These functionally conserved proteins play significant roles in diverse cellular processes besides their central role in ignition of DNA replication at origins. Candida albicans, a major human fungal pathogen, is a diploid budding yeast that belongs to Ascomycota. However, C. albicans is significantly diverged from a well-studied model organism Saccharomyces cerevisiae, another ascomycete. The components of the DNA replication machinery in C. albicans remain largely uncharacterized. Identification of factors required for DNA replication is essential for understanding the evolution of the DNA replication machinery. We identified the putative ORC homologs in C. albicans and determined their relatedness with those of other eukaryotes including several yeast species. Our extensive in silico studies demonstrate that the domain architecture of CaORC proteins share similarities with the ORC proteins of S. cerevisiae. We dissect the domain organization of ORC (trans-acting factors) subunits that seem to associate with DNA replication origins in C. albicans. We present a model of the 3D structure of CaORC4 to gain further insights of this protein's function.
Collapse
Affiliation(s)
- Sreedevi Padmanabhan
- Molecular Biology Laboratory, Veer Bahadur Singh Purvanchal University, Jaunpur- 222003, Uttar Pradesh, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, JNCASR, Bangalore - 560064, India.,
Correspondence to: Kaustuv Sanyal (); Dharanidhar Dubey ()
| | - Dharanidhar Dubey
- Molecular Biology Laboratory, Veer Bahadur Singh Purvanchal University, Jaunpur- 222003, Uttar Pradesh, India.,
Correspondence to: Kaustuv Sanyal (); Dharanidhar Dubey ()
| |
Collapse
|
5
|
Wei J, Yang S, Zhou S, Liu S, Cao P, Liu X, Du M, An S. Suppressing calcineurin activity increases the toxicity of Cry2Ab to Helicoverpa armigera. PEST MANAGEMENT SCIENCE 2021; 77:2142-2150. [PMID: 33336541 DOI: 10.1002/ps.6243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Extensive planting of transgenetic Bacillus thuringiensis crops has driven the evolution of pest resistance to Cry1Ac. Adjustment of cropping structures has promoted further outbreak of Helicoverpa armigera in China. To control this pest, a combination of pyramiding RNA interference (RNAi) and Cry2Ab is considered a promising strategy for countering cross-resistance and enhancing the toxicity of Cry2Ab to cotton bollworm. We explored the possibility of using calcineurin (CAN) as a target RNAi gene, because it is involved in cotton bollworm responses to the toxicity of Cry2Ab. RESULTS Cry2Ab treatment led to a significant increase in HaCAN mRNA level and HaCAN activity. Suppression of HaCAN activity due to RNAi-mediated knockdown of HaCAN increased the susceptibility of midgut cells to Cry2Ab. The increase in HaCAN activity shown by heterologous expression of HaCAN reduced the cytotoxicity of Cry2Ab to Sf9 cells. Moreover, ingestion of HaCAN-specific inhibitor FK506 increased the toxicity of Cry2Ab in larvae. Interestingly, HaCAN does not function as a Cry2Ab direct binding protein that participates in Cry2Ab toxicity. CONCLUSIONS The results in this study provide evidence that suppression of HaCAN not only affected the development of the cotton bollworm, but also enhanced the toxicity of Cry2Ab to the pest. HaCAN is therefore an important candidate gene in cotton bollworm that can be targeted for pest control when the pest infests RNAi+Cry2Ab crops. Meanwhile, the mechanism of action of HaCAN in Cry2Ab toxicity suggested that protein dephosphorylation was involved. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jizhen Wei
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shuo Yang
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shuai Zhou
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shaokai Liu
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Pei Cao
- Kaifeng Agricultural Technology Extension Station, Kaifeng, China
| | - Xiaoguang Liu
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Mengfang Du
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shiheng An
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
6
|
Bradley D, Viéitez C, Rajeeve V, Selkrig J, Cutillas PR, Beltrao P. Sequence and Structure-Based Analysis of Specificity Determinants in Eukaryotic Protein Kinases. Cell Rep 2021; 34:108602. [PMID: 33440154 PMCID: PMC7809594 DOI: 10.1016/j.celrep.2020.108602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/03/2020] [Accepted: 12/14/2020] [Indexed: 01/04/2023] Open
Abstract
Protein kinases lie at the heart of cell-signaling processes and are often mutated in disease. Kinase target recognition at the active site is in part determined by a few amino acids around the phosphoacceptor residue. However, relatively little is known about how most preferences are encoded in the kinase sequence or how these preferences evolved. Here, we used alignment-based approaches to predict 30 specificity-determining residues (SDRs) for 16 preferences. These were studied with structural models and were validated by activity assays of mutant kinases. Cancer mutation data revealed that kinase SDRs are mutated more frequently than catalytic residues. We have observed that, throughout evolution, kinase specificity has been strongly conserved across orthologs but can diverge after gene duplication, as illustrated by the G protein-coupled receptor kinase family. The identified SDRs can be used to predict kinase specificity from sequence and aid in the interpretation of evolutionary or disease-related genomic variants.
Collapse
Affiliation(s)
- David Bradley
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Cristina Viéitez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Vinothini Rajeeve
- Integrative Cell Signalling & Proteomics, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Joel Selkrig
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Pedro R Cutillas
- Integrative Cell Signalling & Proteomics, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK.
| |
Collapse
|
7
|
Phosphoregulation of a Conserved Herpesvirus Tegument Protein by a Virally Encoded Protein Kinase in Viral Pathogenicity and Potential Linkage between Its Evolution and Viral Phylogeny. J Virol 2020; 94:JVI.01055-20. [PMID: 32611749 DOI: 10.1128/jvi.01055-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Us3 proteins of herpes simplex virus 1 (HSV-1) and HSV-2 are multifunctional serine-threonine protein kinases. Here, we identified an HSV-2 tegument protein, UL7, as a novel physiological substrate of HSV-2 Us3. Mutations in HSV-2 UL7, which precluded Us3 phosphorylation of the viral protein, significantly reduced mortality, viral replication in the vagina, and development of vaginal disease in mice following vaginal infection. These results indicated that Us3 phosphorylation of UL7 in HSV-2 was required for efficient viral replication and pathogenicity in vivo Of note, this phosphorylation was conserved in UL7 of chimpanzee herpesvirus (ChHV), which phylogenetically forms a monophyletic group with HSV-2 and the resurrected last common ancestral UL7 for HSV-2 and ChHV. In contrast, the phosphorylation was not conserved in UL7s of HSV-1, which belongs to a sister clade of the monophyletic group, the resurrected last common ancestor for HSV-1, HSV-2, and ChHV, and other members of the genus Simplexvirus that are phylogenetically close to these viruses. Thus, evolution of Us3 phosphorylation of UL7 coincided with the phylogeny of simplex viruses. Furthermore, artificially induced Us3 phosphorylation of UL7 in HSV-1, in contrast to phosphorylation in HSV-2, had no effect on viral replication and pathogenicity in mice. Our results suggest that HSV-2 and ChHV have acquired and maintained Us3 phosphoregulation of UL7 during their evolution because the phosphoregulation had an impact on viral fitness in vivo, whereas most other simplex viruses have not because the phosphorylation was not necessary for efficient fitness of the viruses in vivo IMPORTANCE It has been hypothesized that the evolution of protein phosphoregulation drives phenotypic diversity across species of organisms, which impacts fitness during their evolution. However, there is a lack of information regarding linkage between the evolution of viral phosphoregulation and the phylogeny of virus species. In this study, we clarified the novel HSV-2 Us3 phosphoregulation of UL7 in infected cells, which is important for viral replication and pathogenicity in vivo We also showed that the evolution of Us3 phosphoregulation of UL7 was linked to the phylogeny of viruses that are phylogenetically close to HSV-2 and to the phosphorylation requirements for the efficient in vivo viral fitness of HSV-2 and HSV-1, which are representative of viruses that have and have not evolved phosphoregulation, respectively. This study reports the first evidence showing that evolution of viral phosphoregulation coincides with phylogeny of virus species and supports the hypothesis regarding the evolution of viral phosphoregulation during viral evolution.
Collapse
|
8
|
The Ndr/LATS Kinase Cbk1 Regulates a Specific Subset of Ace2 Functions and Suppresses the Hypha-to-Yeast Transition in Candida albicans. mBio 2020; 11:mBio.01900-20. [PMID: 32817109 PMCID: PMC7439482 DOI: 10.1128/mbio.01900-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The regulation of Ace2 and morphogenesis (RAM) pathway is a key regulatory network that plays a role in many aspects of C. albicans pathobiology. In addition to characterizing the transcriptional effects of this pathway, we discovered that Cbk1 and Ace2, a key RAM pathway regulator-effector pair, mediate a specific set of the overall functions of the RAM pathway. We have also discovered a new function for the Cbk1-Ace2 axis: suppression of the hypha-to-yeast transition. Very few regulators of this transition have been described, and our data indicate that maintenance of hyphal morphogenesis requires suppression of yeast phase growth by Cbk1-regulated Ace2. The regulation of Ace2 and morphogenesis (RAM) pathway is an important regulatory network in the human fungal pathogen Candida albicans. The RAM pathway’s two most well-studied components, the NDR/Lats kinase Cbk1 and its putative substrate, the transcription factor Ace2, have a wide range of phenotypes and functions. It is not clear, however, which of these functions are specifically due to the phosphorylation of Ace2 by Cbk1. To address this question, we first compared the transcriptional profiles of CBK1 and ACE2 deletion mutants. This analysis indicates that, of the large number of genes whose expression is affected by deletion of CBK1 and ACE2, only 5.5% of those genes are concordantly regulated. Our data also suggest that Ace2 directly or indirectly represses a large set of genes during hyphal morphogenesis. Second, we generated strains containing ACE2 alleles with alanine mutations at the Cbk1 phosphorylation sites. Phenotypic and transcriptional analysis of these ace2 mutants indicates that, as in Saccharomyces cerevisiae, Cbk1 regulation is important for daughter cell localization of Ace2 and cell separation during yeast-phase growth. In contrast, Cbk1 phosphorylation of Ace2 plays a minor role in C. albicans yeast-to-hypha transition. We have, however, discovered a new function for the Cbk1-Ace2 axis. Specifically, Cbk1 phosphorylation of Ace2 prevents the hypha-to-yeast transition. To our knowledge, this is one of the first regulators of the C. albicans hypha-to-yeast transition to be described. Finally, we present an integrated model for the role of Cbk1 in the regulation of hyphal morphogenesis in C. albicans.
Collapse
|
9
|
Barolo L, Abbriano RM, Commault AS, George J, Kahlke T, Fabris M, Padula MP, Lopez A, Ralph PJ, Pernice M. Perspectives for Glyco-Engineering of Recombinant Biopharmaceuticals from Microalgae. Cells 2020; 9:E633. [PMID: 32151094 PMCID: PMC7140410 DOI: 10.3390/cells9030633] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
Microalgae exhibit great potential for recombinant therapeutic protein production, due to lower production costs, immunity to human pathogens, and advanced genetic toolkits. However, a fundamental aspect to consider for recombinant biopharmaceutical production is the presence of correct post-translational modifications. Multiple recent studies focusing on glycosylation in microalgae have revealed unique species-specific patterns absent in humans. Glycosylation is particularly important for protein function and is directly responsible for recombinant biopharmaceutical immunogenicity. Therefore, it is necessary to fully characterise this key feature in microalgae before these organisms can be established as industrially relevant microbial biofactories. Here, we review the work done to date on production of recombinant biopharmaceuticals in microalgae, experimental and computational evidence for N- and O-glycosylation in diverse microalgal groups, established approaches for glyco-engineering, and perspectives for their application in microalgal systems. The insights from this review may be applied to future glyco-engineering attempts to humanize recombinant therapeutic proteins and to potentially obtain cheaper, fully functional biopharmaceuticals from microalgae.
Collapse
Affiliation(s)
- Lorenzo Barolo
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Raffaela M. Abbriano
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Audrey S. Commault
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Jestin George
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Tim Kahlke
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Michele Fabris
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
- CSIRO Synthetic Biology Future Science Platform, Brisbane, QLD 4001, Australia
| | - Matthew P. Padula
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Sydney, Australia;
| | - Angelo Lopez
- Department of Chemistry, University of York, York, YO10 5DD, UK;
| | - Peter J. Ralph
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| |
Collapse
|
10
|
Deb B, George IA, Sharma J, Kumar P. Phosphoproteomics Profiling to Identify Altered Signaling Pathways and Kinase-Targeted Cancer Therapies. Methods Mol Biol 2020; 2051:241-264. [PMID: 31552632 DOI: 10.1007/978-1-4939-9744-2_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Phosphorylation is one of the most extensively studied posttranslational modifications (PTM), which regulates cellular functions like cell growth, differentiation, apoptosis, and cell signaling. Kinase families cover a wide number of oncoproteins and are strongly associated with cancer. Identification of driver kinases is an intense area of cancer research. Thus, kinases serve as the potential target to improve the efficacy of targeted therapies. Mass spectrometry-based phosphoproteomic approach has paved the way to the identification of a large number of altered phosphorylation events in proteins and signaling cascades that may lead to oncogenic processes in a cell. Alterations in signaling pathways result in the activation of oncogenic processes predominantly regulated by kinases and phosphatases. Therefore, drugs such as kinase inhibitors, which target dysregulated pathways, represent a promising area for cancer therapy.
Collapse
Affiliation(s)
- Barnali Deb
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Irene A George
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Jyoti Sharma
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India. .,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India.
| |
Collapse
|
11
|
Multiplexed proteome profiling of carbon source perturbations in two yeast species with SL-SP3-TMT. J Proteomics 2019; 210:103531. [PMID: 31626996 DOI: 10.1016/j.jprot.2019.103531] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
Saccharomyces cerevisiae and Schizosaccharomyces pombe are the most commonly studied yeast model systems, yet comparisons of global proteome remodeling between these yeast species are scarce. Here, we profile the proteomes of S. cerevisiae and S. pombe cultured with either glucose or pyruvate as the sole carbon source to define common and distinctive alterations in the protein landscape across species. In addition, we develop an updated streamlined-tandem mass tag (SL-TMT) strategy that substitutes chemical-based precipitation with more versatile bead-based protein aggregation method (SP3) prior to enzymatic digestion and TMT labeling. Our new workflow, SL-SP3-TMT, allow for near-complete proteome profiles in a single experiment for each species. The data reveal expected alterations in protein abundance and differences between species, highlighted complete canonical biochemical pathways, and provided insight into previously uncharacterized proteins. The techniques used herein, namely SL-SP3-TMT, can be applied to virtually any experiment aiming to study remodeling of the proteome using a high-throughput, comprehensive, yet streamlined mass spectrometry-based strategy. SIGNIFICANCE: Saccharomyces cerevisiae and Schizosaccharomyces pombe are single-celled eukaryotes that diverged from a common ancestor over a period of 100 million years, such that evolution has driven fundamental differences between the two species. Cellular metabolism and the regulation thereof are vital for living organisms. Here, we hypothesize that large scale proteomic alterations are prevalent upon the substitution of glucose with another carbon source, in this case pyruvate. To efficiently process our samples, we developed an updated streamlined-tandem mass tag (SL-TMT) strategy with more versatile bead-based protein aggregation. The data revealed expected alterations in protein abundance and illustrated differences between species. We highlighted complete canonical biochemical pathways and provided insight into previously uncharacterized proteins.
Collapse
|
12
|
Bantele SCS, Pfander B. Nucleosome Remodeling by Fun30 SMARCAD1 in the DNA Damage Response. Front Mol Biosci 2019; 6:78. [PMID: 31555662 PMCID: PMC6737033 DOI: 10.3389/fmolb.2019.00078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Many cellular pathways are dedicated to maintain the integrity of the genome. In eukaryotes, the underlying DNA transactions occur in the context of chromatin. Cells utilize chromatin and its dynamic nature to regulate those genome integrity pathways. Accordingly, chromatin becomes restructured and modified around DNA damage sites. Here, we review the current knowledge of a chromatin remodeler Fun30SMARCAD1, which plays a key role in genome maintenance. Fun30SMARCAD1 promotes DNA end resection and the repair of DNA double-stranded breaks (DSBs). Notably, however, Fun30SMARCAD1 plays additional roles in maintaining heterochromatin and promoting transcription. Overall, Fun30SMARCAD1 is involved in distinct processes and the specific roles of Fun30SMARCAD1 at DSBs, replication forks and sites of transcription appear discordant at first view. Nonetheless, a picture emerges in which commonalities within these context-dependent roles of Fun30SMARCAD1 exist, which may help to gain a more global understanding of chromatin alterations induced by Fun30SMARCAD1.
Collapse
Affiliation(s)
- Susanne C S Bantele
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
| | - Boris Pfander
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
| |
Collapse
|
13
|
Andreadis C, Hulme L, Wensley K, Liu JL. The TOR pathway modulates cytoophidium formation in Schizosaccharomyces pombe. J Biol Chem 2019; 294:14686-14703. [PMID: 31431504 PMCID: PMC6779450 DOI: 10.1074/jbc.ra119.009913] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/09/2019] [Indexed: 12/30/2022] Open
Abstract
CTP synthase (CTPS) has been demonstrated to form evolutionarily-conserved filamentous structures termed cytoophidia whose exact cellular functions remain unclear, but they may play a role in intracellular compartmentalization. We have previously shown that the mammalian target of rapamycin complex 1 (mTORC1)-S6K1 pathway mediates cytoophidium assembly in mammalian cells. Here, using the fission yeast Schizosaccharomyces pombe as a model of a unicellular eukaryote, we demonstrate that the target of rapamycin (TOR)-signaling pathway regulates cytoophidium formation (from the S. pombe CTPS ortholog Cts1) also in S. pombe Conducting a systematic analysis of all viable single TOR subunit-knockout mutants and of several major downstream effector proteins, we found that Cts1 cytoophidia are significantly shortened and often dissociate when TOR is defective. We also found that the activities of the downstream effector kinases of the TORC1 pathway, Sck1, Sck2, and Psk1 S6, as well as of the S6K/AGC kinase Gad8, the major downstream effector kinase of the TORC2 pathway, are necessary for proper cytoophidium filament formation. Interestingly, we observed that the Crf1 transcriptional corepressor for ribosomal genes is a strong effector of Cts1 filamentation. Our findings connect TOR signaling, a major pathway required for cell growth, with the compartmentalization of the essential nucleotide synthesis enzyme CTPS, and we uncover differences in the regulation of its filamentation among higher multicellular and unicellular eukaryotic systems.
Collapse
Affiliation(s)
- Christos Andreadis
- School of Life Sciences and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Lydia Hulme
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Katherine Wensley
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Ji-Long Liu
- School of Life Sciences and Technology, ShanghaiTech University, 201210 Shanghai, China .,MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
14
|
Macossay-Castillo M, Marvelli G, Guharoy M, Jain A, Kihara D, Tompa P, Wodak SJ. The Balancing Act of Intrinsically Disordered Proteins: Enabling Functional Diversity while Minimizing Promiscuity. J Mol Biol 2019; 431:1650-1670. [PMID: 30878482 DOI: 10.1016/j.jmb.2019.03.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 10/27/2022]
Abstract
Intrinsically disordered proteins (IDPs) or regions (IDRs) perform diverse cellular functions, but are also prone to forming promiscuous and potentially deleterious interactions. We investigate the extent to which the properties of, and content in, IDRs have adapted to enable functional diversity while limiting interference from promiscuous interactions in the crowded cellular environment. Information on protein sequences, their predicted intrinsic disorder, and 3D structure contents is related to data on protein cellular concentrations, gene co-expression, and protein-protein interactions in the well-studied yeast Saccharomyces cerevisiae. Results reveal that both the protein IDR content and the frequency of "sticky" amino acids in IDRs (those more frequently involved in protein interfaces) decrease with increasing protein cellular concentration. This implies that the IDR content and the amino acid composition of IDRs experience negative selection as the protein concentration increases. In the S. cerevisiae protein-protein interaction network, the higher a protein's IDR content, the more frequently it interacts with IDR-containing partners, and the more functionally diverse the partners are. Employing a clustering analysis of Gene Ontology terms, we newly identify ~600 putative multifunctional proteins in S. cerevisiae. Strikingly, these proteins are enriched in IDRs and contribute significantly to all the observed trends. In particular, IDRs of multi-functional proteins feature more sticky amino acids than IDRs of their non-multifunctional counterparts, or the surfaces of structured yeast proteins. This property likely affords sufficient binding affinity for the functional interactions, commonly mediated by short IDR segments, thereby counterbalancing the loss in overall IDR conformational entropy upon binding.
Collapse
Affiliation(s)
- Mauricio Macossay-Castillo
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Giulio Marvelli
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Mainak Guharoy
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Aashish Jain
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, Hockmeyer Structural Biology Building, 249 S. Martin Jischke Dr West Lafayette, IN 47907, USA
| | - Peter Tompa
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudosok korutja 2, 1117 Budapest, Hungary
| | - Shoshana J Wodak
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
15
|
Han Q, Wang N, Yao G, Mu C, Wang Y, Sang J. Blocking β-1,6-glucan synthesis by deleting KRE6 and SKN1 attenuates the virulence of Candida albicans. Mol Microbiol 2019; 111:604-620. [PMID: 30507002 DOI: 10.1111/mmi.14176] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2018] [Indexed: 12/24/2022]
Abstract
β-1,6-glucan is an important component of the fungal cell wall. The β-1,6-glucan synthase gene KRE6 was thought to be essential in the fungal pathogen Candida albicans because it could not be deleted in previous efforts. Also, the role of its homolog SKN1 was unclear because its deletion caused no defects. Here, we report the construction and characterization of kre6Δ/Δ, skn1Δ/Δ and kre6Δ/Δ skn1Δ/Δ mutants in C. albicans. While deleting KRE6 or SKN1 had no obvious phenotypic consequence, deleting both caused slow growth, cell separation failure, cell wall abnormalities, diminished hyphal growth, poor biofilm formation and loss of virulence in mice. Furthermore, the GPI-linked cell surface proteins Hwp1 and the invasin Als3 or Ssa1 were not detected in kre6Δ/Δ skn1Δ/Δ mutant. In GMM medium, RT-qPCR and western blotting revealed a constitutive expression of KRE6 and growth conditions-associated activation of SKN1. Like many hypha-specific genes, SKN1 is repressed by Nrg1, but its activation does not involve the transcription factor Efg1. Dysregulation of SKN1 reduces C. albicans ability to damage epithelial and endothelial cells and attenuates its virulence. Given the vital role of β-1,6-glucan synthesis in C. albicans physiology and virulence, Kre6 and Skn1 are worthy targets for developing antifungal agents.
Collapse
Affiliation(s)
- Qi Han
- Key Laboratory of Cell Proliferation and Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Na Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Guangyin Yao
- Key Laboratory of Cell Proliferation and Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Chunhua Mu
- Key Laboratory of Cell Proliferation and Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yue Wang
- Agency for Science, Technology and Research, Institute of Molecular and Cell Biology, Singapore, Singapore.,Depatment of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jianli Sang
- Key Laboratory of Cell Proliferation and Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
16
|
Ghorai P, Irfan M, Narula A, Datta A. A comprehensive analysis of Candida albicans phosphoproteome reveals dynamic changes in phosphoprotein abundance during hyphal morphogenesis. Appl Microbiol Biotechnol 2018; 102:9731-9743. [PMID: 30121747 DOI: 10.1007/s00253-018-9303-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/18/2022]
Abstract
The morphological plasticity of Candida albicans is a virulence determinant as the hyphal form has significant roles in the infection process. Recently, phosphoregulation of proteins through phosphorylation and dephosphorylation events has gained importance in studying the regulation of pathogenicity at the molecular level. To understand the importance of phosphorylation in hyphal morphogenesis, global analysis of the phosphoproteome was performed after hyphal induction with elevated temperature, serum, and N-acetyl-glucosamine (GlcNAc) treatments. The study identified 60, 20, and 53 phosphoproteins unique to elevated temperature-, serum-, and GlcNAc-treated conditions, respectively. Distribution of unique phosphorylation sites sorted by the modified amino acids revealed that predominant phosphorylation occurs in serine, followed by threonine and tyrosine residues in all the datasets. However, the frequency distribution of phosphorylation sites in the proteins varied with treatment conditions. Further, interaction network-based functional annotation of protein kinases of C. albicans as well as identified phosphoproteins was performed, which demonstrated the interaction of kinases with phosphoproteins during filamentous growth. Altogether, the present findings will serve as a base for further functional studies in the aspects of protein kinase-target protein interaction in effectuating phosphorylation of target proteins, and delineating the downstream signaling networks linked to virulence characteristics of C. albicans.
Collapse
Affiliation(s)
- Priyanka Ghorai
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.,Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Mohammad Irfan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Alka Narula
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
17
|
Miao B, Xiao Q, Chen W, Li Y, Wang Z. Evaluation of functionality for serine and threonine phosphorylation with different evolutionary ages in human and mouse. BMC Genomics 2018; 19:431. [PMID: 29866046 PMCID: PMC5987384 DOI: 10.1186/s12864-018-4661-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/12/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Rapid evolution of phosphorylation sites could provide raw materials of natural selection to fit the environment by rewiring the regulation of signal pathways. However, a large part of phosphorylation sites was suggested to be non-functional. Although the new-arising phosphorylation sites with little functional implications prevailed in fungi, the evolutionary performance of vertebrate phosphorylation sites remained elusive. RESULTS In this study, we evaluated the functionality of human and mouse phosphorylation sites by dividing them into old, median and young age groups based on the phylogeny of vertebrates. We found the sites in the old group were more likely to be functional and involved in signaling pathways than those in the young group. A smaller proportion of sites in the young group originated from aspartate/glutamate, which could restore the ancestral functions. In addition, both the phosphorylation level and breadth was increased with the evolutionary age. Similar to cases in fungi, these results implied that the newly emerged phosphorylation sites in vertebrates were also more likely to be non-functional, especially for serine and threonine phosphorylation in disordered regions. CONCLUSIONS This study provided not only insights into the dynamics of phosphorylation evolution in vertebrates, but also new clues to identify the functional phosphorylation sites from massive noisy data.
Collapse
Affiliation(s)
- Benpeng Miao
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Qingyu Xiao
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Weiran Chen
- School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
| | - Yixue Li
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
- Shanghai Center for Bioinformation Technology, Shanghai Industrial Technology Institute, Shanghai, People’s Republic of China
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, People’s Republic of China
| | - Zhen Wang
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| |
Collapse
|
18
|
Jiang P, Zheng S, Lu L. Mitotic-Spindle Organizing Protein MztA Mediates Septation Signaling by Suppressing the Regulatory Subunit of Protein Phosphatase 2A-ParA in Aspergillus nidulans. Front Microbiol 2018; 9:988. [PMID: 29774021 PMCID: PMC5951981 DOI: 10.3389/fmicb.2018.00988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022] Open
Abstract
The proper timing and positioning of cytokinesis/septation is crucial for hyphal growth and conidiation in Aspergillus nidulans. The septation initiation network (SIN) components are a conserved spindle pole body (SPB) localized signaling cascade and the terminal kinase complex SidB-MobA, which must localize on the SPB in this pathway to trigger septation/cytokinesis. The regulatory subunit of phosphatase PP2A-ParA has been identified to be a negative regulator capable of inactivating the SIN. However, little is known about how ParA regulates the SIN pathway and whether ParA regulates the septum formation process through affecting the SPB-localized SIN proteins. In this study, through RNA-Seq and genetic approaches, we identified a new positive septation regulator, a putative mitotic-spindle organizing protein and a yeast Mzt1 homolog MztA, which acts antagonistically toward PP2A-ParA to coordinately regulate the SPB-localized SIN proteins SidB-MobA during septation. These findings imply that regulators, phosphatase PP2A-ParA and MztA counteract the septation function probably through balancing the polymerization and depolymerization of microtubules at the SPB.
Collapse
Affiliation(s)
- Ping Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shujun Zheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
19
|
Evolution, dynamics and dysregulation of kinase signalling. Curr Opin Struct Biol 2018; 48:133-140. [DOI: 10.1016/j.sbi.2017.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022]
|
20
|
Chemogenomic Profiling of the Fungal Pathogen Candida albicans. Antimicrob Agents Chemother 2018; 62:AAC.02365-17. [PMID: 29203491 PMCID: PMC5786791 DOI: 10.1128/aac.02365-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 11/30/2017] [Indexed: 12/19/2022] Open
Abstract
There is currently a small number of classes of antifungal drugs, and these drugs are known to target a very limited set of cellular functions. We derived a set of approximately 900 nonessential, transactivator-defective disruption strains from the tetracycline-regulated GRACE collection of strains of the fungal pathogen Candida albicans This strain set was screened against classic antifungal drugs to identify gene inactivations that conferred either enhanced sensitivity or increased resistance to the compounds. We examined two azoles, fluconazole and posaconazole; two echinocandins, caspofungin and anidulafungin; and a polyene, amphotericin B. Overall, the chemogenomic profiles within drug classes were highly similar, but there was little overlap between classes, suggesting that the different drug classes interacted with discrete networks of genes in C. albicans We also tested two pyridine amides, designated GPI-LY7 and GPI-C107; these drugs gave very similar profiles that were distinct from those of the echinocandins, azoles, or polyenes, supporting the idea that they target a distinct cellular function. Intriguingly, in cases where these gene sets can be compared to genetic disruptions conferring drug sensitivity in other fungi, we find very little correspondence in genes. Thus, even though the drug targets are the same in the different species, the specific genetic profiles that can lead to drug sensitivity are distinct. This implies that chemogenomic screens of one organism may be poorly predictive of the profiles found in other organisms and that drug sensitivity and resistance profiles can differ significantly among organisms even when the apparent target of the drug is the same.
Collapse
|
21
|
|
22
|
Sanchez A, Gadaleta MC, Limbo O, Russell P. Lingering single-strand breaks trigger Rad51-independent homology-directed repair of collapsed replication forks in the polynucleotide kinase/phosphatase mutant of fission yeast. PLoS Genet 2017; 13:e1007013. [PMID: 28922417 PMCID: PMC5626526 DOI: 10.1371/journal.pgen.1007013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/03/2017] [Accepted: 09/08/2017] [Indexed: 11/19/2022] Open
Abstract
The DNA repair enzyme polynucleotide kinase/phosphatase (PNKP) protects genome integrity by restoring ligatable 5'-phosphate and 3'-hydroxyl termini at single-strand breaks (SSBs). In humans, PNKP mutations underlie the neurological disease known as MCSZ, but these individuals are not predisposed for cancer, implying effective alternative repair pathways in dividing cells. Homology-directed repair (HDR) of collapsed replication forks was proposed to repair SSBs in PNKP-deficient cells, but the critical HDR protein Rad51 is not required in PNKP-null (pnk1Δ) cells of Schizosaccharomyces pombe. Here, we report that pnk1Δ cells have enhanced requirements for Rad3 (ATR/Mec1) and Chk1 checkpoint kinases, and the multi-BRCT domain protein Brc1 that binds phospho-histone H2A (γH2A) at damaged replication forks. The viability of pnk1Δ cells depends on Mre11 and Ctp1 (CtIP/Sae2) double-strand break (DSB) resection proteins, Rad52 DNA strand annealing protein, Mus81-Eme1 Holliday junction resolvase, and Rqh1 (BLM/WRN/Sgs1) DNA helicase. Coupled with increased sister chromatid recombination and Rad52 repair foci in pnk1Δ cells, these findings indicate that lingering SSBs in pnk1Δ cells trigger Rad51-independent homology-directed repair of collapsed replication forks. From these data, we propose models for HDR-mediated tolerance of persistent SSBs with 3' phosphate in pnk1Δ cells.
Collapse
Affiliation(s)
- Arancha Sanchez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Mariana C. Gadaleta
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Oliver Limbo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Paul Russell
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
23
|
Abstract
Cellular signaling, predominantly mediated by phosphorylation through protein kinases, is found to be deregulated in most cancers. Accordingly, protein kinases have been subject to intense investigations in cancer research, to understand their role in oncogenesis and to discover new therapeutic targets. Despite great advances, an understanding of kinase dysfunction in cancer is far from complete.A powerful tool to investigate phosphorylation is mass-spectrometry (MS)-based phosphoproteomics, which enables the identification of thousands of phosphorylated peptides in a single experiment. Since every phosphorylation event results from the activity of a protein kinase, high-coverage phosphoproteomics data should indirectly contain comprehensive information about the activity of protein kinases.In this chapter, we discuss the use of computational methods to predict kinase activity scores from MS-based phosphoproteomics data. We start with a short explanation of the fundamental features of the phosphoproteomics data acquisition process from the perspective of the computational analysis. Next, we briefly review the existing databases with experimentally verified kinase-substrate relationships and present a set of bioinformatic tools to discover novel kinase targets. We then introduce different methods to infer kinase activities from phosphoproteomics data and these kinase-substrate relationships. We illustrate their application with a detailed protocol of one of the methods, KSEA (Kinase Substrate Enrichment Analysis). This method is implemented in Python within the framework of the open-source Kinase Activity Toolbox (kinact), which is freely available at http://github.com/saezlab/kinact/ .
Collapse
Affiliation(s)
- Jakob Wirbel
- Joint Research Center for Computational Biomedicine (JRC-COMBINE), Faculty of Medicine, RWTH Aachen University, MTZ Pauwelsstrasse 19, D-52074, Aachen, Germany
- Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, 69120, Heidelberg, Germany
| | - Pedro Cutillas
- Barts Cancer Institute, Queen Mary University of London, London, UK.
| | - Julio Saez-Rodriguez
- Joint Research Center for Computational Biomedicine (JRC-COMBINE), Faculty of Medicine, RWTH Aachen University, MTZ Pauwelsstrasse 19, D-52074, Aachen, Germany.
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge, UK.
| |
Collapse
|
24
|
Vlastaridis P, Kyriakidou P, Chaliotis A, Van de Peer Y, Oliver SG, Amoutzias GD. Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. Gigascience 2017; 6:1-11. [PMID: 28327990 PMCID: PMC5466708 DOI: 10.1093/gigascience/giw015] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/20/2016] [Indexed: 12/03/2022] Open
Abstract
Background Phosphorylation is the most frequent post-translational modification made to proteins and may regulate protein activity as either a molecular digital switch or a rheostat. Despite the cornucopia of high-throughput (HTP) phosphoproteomic data in the last decade, it remains unclear how many proteins are phosphorylated and how many phosphorylation sites (p-sites) can exist in total within a eukaryotic proteome. We present the first reliable estimates of the total number of phosphoproteins and p-sites for four eukaryotes (human, mouse, Arabidopsis, and yeast). Results In all, 187 HTP phosphoproteomic datasets were filtered, compiled, and studied along with two low-throughput (LTP) compendia. Estimates of the number of phosphoproteins and p-sites were inferred by two methods: Capture-Recapture, and fitting the saturation curve of cumulative redundant vs. cumulative non-redundant phosphoproteins/p-sites. Estimates were also adjusted for different levels of noise within the individual datasets and other confounding factors. We estimate that in total, 13 000, 11 000, and 3000 phosphoproteins and 230 000, 156 000, and 40 000 p-sites exist in human, mouse, and yeast, respectively, whereas estimates for Arabidopsis were not as reliable. Conclusions Most of the phosphoproteins have been discovered for human, mouse, and yeast, while the dataset for Arabidopsis is still far from complete. The datasets for p-sites are not as close to saturation as those for phosphoproteins. Integration of the LTP data suggests that current HTP phosphoproteomics appears to be capable of capturing 70 % to 95 % of total phosphoproteins, but only 40 % to 60 % of total p-sites.
Collapse
Affiliation(s)
- Panayotis Vlastaridis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, 41500, Greece
| | - Pelagia Kyriakidou
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, 41500, Greece
| | - Anargyros Chaliotis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, 41500, Greece
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.,Bioinformatics Institute Ghent, Technologiepark 927, B-9052 Ghent, Belgium.,Department of Genetics, Genomics Research Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Stephen G Oliver
- Cambridge Systems Biology Centre & Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Grigoris D Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, 41500, Greece
| |
Collapse
|
25
|
The Pivotal Role of Protein Phosphorylation in the Control of Yeast Central Metabolism. G3-GENES GENOMES GENETICS 2017; 7:1239-1249. [PMID: 28250014 PMCID: PMC5386872 DOI: 10.1534/g3.116.037218] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein phosphorylation is the most frequent eukaryotic post-translational modification and can act as either a molecular switch or rheostat for protein functions. The deliberate manipulation of protein phosphorylation has great potential for regulating specific protein functions with surgical precision, rather than the gross effects gained by the over/underexpression or complete deletion of a protein-encoding gene. In order to assess the impact of phosphorylation on central metabolism, and thus its potential for biotechnological and medical exploitation, a compendium of highly confident protein phosphorylation sites (p-sites) for the model organism Saccharomyces cerevisiae has been analyzed together with two more datasets from the fungal pathogen Candida albicans. Our analysis highlights the global properties of the regulation of yeast central metabolism by protein phosphorylation, where almost half of the enzymes involved are subject to this sort of post-translational modification. These phosphorylated enzymes, compared to the nonphosphorylated ones, are more abundant, regulate more reactions, have more protein–protein interactions, and a higher fraction of them are ubiquitinated. The p-sites of metabolic enzymes are also more conserved than the background p-sites, and hundreds of them have the potential for regulating metabolite production. All this integrated information has allowed us to prioritize thousands of p-sites in terms of their potential phenotypic impact. This multi-source compendium should enable the design of future high-throughput (HTP) mutation studies to identify key molecular switches/rheostats for the manipulation of not only the metabolism of yeast, but also that of many other biotechnologically and medically important fungi and eukaryotes.
Collapse
|
26
|
Selection maintains signaling function of a highly diverged intrinsically disordered region. Proc Natl Acad Sci U S A 2017; 114:E1450-E1459. [PMID: 28167781 DOI: 10.1073/pnas.1614787114] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Intrinsically disordered regions (IDRs) are characterized by their lack of stable secondary or tertiary structure and comprise a large part of the eukaryotic proteome. Although these regions play a variety of signaling and regulatory roles, they appear to be rapidly evolving at the primary sequence level. To understand the functional implications of this rapid evolution, we focused on a highly diverged IDR in Saccharomyces cerevisiae that is involved in regulating multiple conserved MAPK pathways. We hypothesized that under stabilizing selection, the functional output of orthologous IDRs could be maintained, such that diverse genotypes could lead to similar function and fitness. Consistent with the stabilizing selection hypothesis, we find that diverged, orthologous IDRs can mostly recapitulate wild-type function and fitness in S. cerevisiae We also find that the electrostatic charge of the IDR is correlated with signaling output and, using phylogenetic comparative methods, find evidence for selection maintaining this quantitative molecular trait despite underlying genotypic divergence.
Collapse
|
27
|
Abstract
Post-translational modifications (PTMs) are an important source of protein regulation; they fine-tune the function, localization, and interaction with other molecules of the majority of proteins and are partially responsible for their multifunctionality. Usually, proteins have several potential modification sites, and their patterns of occupancy are associated with certain functional states. These patterns imply cross talk among PTMs within and between proteins, the majority of which are still to be discovered. Several methods detect associations between PTMs; these have recently combined into a global resource, the PTMcode database, which contains already known and predicted functional associations between pairs of PTMs from more than 45,000 proteins in 19 eukaryotic species.
Collapse
Affiliation(s)
- Pablo Minguez
- Department of Genetics and Genomics, Instituto de Investigacion Sanitaria-University Hospital Fundacion Jimenez Diaz (IIS-FJD), Avda. Reyes Católicos 2, 28040, Madrid, Spain.
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, 13125, Berlin, Germany
| |
Collapse
|
28
|
Bandyopadhyay M, Arbet S, Bishop CP, Bidwai AP. Drosophila Protein Kinase CK2: Genetics, Regulatory Complexity and Emerging Roles during Development. Pharmaceuticals (Basel) 2016; 10:E4. [PMID: 28036067 PMCID: PMC5374408 DOI: 10.3390/ph10010004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 01/06/2023] Open
Abstract
CK2 is a Ser/Thr protein kinase that is highly conserved amongst all eukaryotes. It is a well-known oncogenic kinase that regulates vital cell autonomous functions and animal development. Genetic studies in the fruit fly Drosophila are providing unique insights into the roles of CK2 in cell signaling, embryogenesis, organogenesis, neurogenesis, and the circadian clock, and are revealing hitherto unknown complexities in CK2 functions and regulation. Here, we review Drosophila CK2 with respect to its structure, subunit diversity, potential mechanisms of regulation, developmental abnormalities linked to mutations in the gene encoding CK2 subunits, and emerging roles in multiple aspects of eye development. We examine the Drosophila CK2 "interaction map" and the eye-specific "transcriptome" databases, which raise the prospect that this protein kinase has many additional targets in the developing eye. We discuss the possibility that CK2 functions during early retinal neurogenesis in Drosophila and mammals bear greater similarity than has been recognized, and that this conservation may extend to other developmental programs. Together, these studies underscore the immense power of the Drosophila model organism to provide new insights and avenues to further investigate developmentally relevant targets of this protein kinase.
Collapse
Affiliation(s)
| | - Scott Arbet
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.
| | - Clifton P Bishop
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.
| | - Ashok P Bidwai
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
29
|
Xing L, An Y, Shi G, Yan J, Xie P, Qu Z, Zhang Z, Liu Z, Pan D, Xu Y. Correlated evolution between CK1δ Protein and the Serine-rich Motif Contributes to Regulating the Mammalian Circadian Clock. J Biol Chem 2016; 292:161-171. [PMID: 27879317 DOI: 10.1074/jbc.m116.751214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/21/2016] [Indexed: 11/06/2022] Open
Abstract
Understanding the mechanism underlying the physiological divergence of species is a long-standing issue in evolutionary biology. The circadian clock is a highly conserved system existing in almost all organisms that regulates a wide range of physiological and behavioral events to adapt to the day-night cycle. Here, the interactions between hCK1ϵ/δ/DBT (Drosophila ortholog of CK1δ/ϵ) and serine-rich (SR) motifs from hPER2 (ortholog of Drosophila per) were reconstructed in a Drosophila circadian system. The results indicated that in Drosophila, the SR mutant form hPER2S662G does not recapitulate the mouse or human mutant phenotype. However, introducing hCK1δ (but not DBT) shortened the circadian period and restored the SR motif function. We found that hCK1δ is catalytically more efficient than DBT in phosphorylating the SR motif, which demonstrates that the evolution of CK1δ activity is required for SR motif modulation. Moreover, an abundance of phosphorylatable SR motifs and the striking emergence of putative SR motifs in vertebrate proteins were observed, which provides further evidence that the correlated evolution between kinase activity and its substrates set the stage for functional diversity in vertebrates. It is possible that such correlated evolution may serve as a biomarker associated with the adaptive benefits of diverse organisms. These results also provide a concrete example of how functional synthesis can be achieved through introducing evolutionary partners in vivo.
Collapse
Affiliation(s)
- Lijuan Xing
- From the Cambridge-Suda Genomic Resource Center, Soochow University, 199 Renai Road, Suzhou 215123 and
| | - Yang An
- the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Guangsen Shi
- From the Cambridge-Suda Genomic Resource Center, Soochow University, 199 Renai Road, Suzhou 215123 and
| | - Jie Yan
- From the Cambridge-Suda Genomic Resource Center, Soochow University, 199 Renai Road, Suzhou 215123 and
| | - Pancheng Xie
- the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Zhipeng Qu
- the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Zhihui Zhang
- the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Zhiwei Liu
- From the Cambridge-Suda Genomic Resource Center, Soochow University, 199 Renai Road, Suzhou 215123 and
| | - Dejing Pan
- From the Cambridge-Suda Genomic Resource Center, Soochow University, 199 Renai Road, Suzhou 215123 and
| | - Ying Xu
- From the Cambridge-Suda Genomic Resource Center, Soochow University, 199 Renai Road, Suzhou 215123 and .,the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| |
Collapse
|
30
|
McSkimming DI, Dastgheib S, Baffi TR, Byrne DP, Ferries S, Scott ST, Newton AC, Eyers CE, Kochut KJ, Eyers PA, Kannan N. KinView: a visual comparative sequence analysis tool for integrated kinome research. MOLECULAR BIOSYSTEMS 2016; 12:3651-3665. [PMID: 27731453 PMCID: PMC5508867 DOI: 10.1039/c6mb00466k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multiple sequence alignments (MSAs) are a fundamental analysis tool used throughout biology to investigate relationships between protein sequence, structure, function, evolutionary history, and patterns of disease-associated variants. However, their widespread application in systems biology research is currently hindered by the lack of user-friendly tools to simultaneously visualize, manipulate and query the information conceptualized in large sequence alignments, and the challenges in integrating MSAs with multiple orthogonal data such as cancer variants and post-translational modifications, which are often stored in heterogeneous data sources and formats. Here, we present the Multiple Sequence Alignment Ontology (MSAOnt), which represents a profile or consensus alignment in an ontological format. Subsets of the alignment are easily selected through the SPARQL Protocol and RDF Query Language for downstream statistical analysis or visualization. We have also created the Kinome Viewer (KinView), an interactive integrative visualization that places eukaryotic protein kinase cancer variants in the context of natural sequence variation and experimentally determined post-translational modifications, which play central roles in the regulation of cellular signaling pathways. Using KinView, we identified differential phosphorylation patterns between tyrosine and serine/threonine kinases in the activation segment, a major kinase regulatory region that is often mutated in proliferative diseases. We discuss cancer variants that disrupt phosphorylation sites in the activation segment, and show how KinView can be used as a comparative tool to identify differences and similarities in natural variation, cancer variants and post-translational modifications between kinase groups, families and subfamilies. Based on KinView comparisons, we identify and experimentally characterize a regulatory tyrosine (Y177PLK4) in the PLK4 C-terminal activation segment region termed the P+1 loop. To further demonstrate the application of KinView in hypothesis generation and testing, we formulate and validate a hypothesis explaining a novel predicted loss-of-function variant (D523NPKCβ) in the regulatory spine of PKCβ, a recently identified tumor suppressor kinase. KinView provides a novel, extensible interface for performing comparative analyses between subsets of kinases and for integrating multiple types of residue specific annotations in user friendly formats.
Collapse
Affiliation(s)
| | - Shima Dastgheib
- Department of Computer Science, University of Georgia, Athens, GA 30602, USA
| | - Timothy R Baffi
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Dominic P Byrne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Samantha Ferries
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Steven Thomas Scott
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Claire E Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Krzysztof J Kochut
- Department of Computer Science, University of Georgia, Athens, GA 30602, USA
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA. and Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
31
|
Sebé-Pedrós A, Peña MI, Capella-Gutiérrez S, Antó M, Gabaldón T, Ruiz-Trillo I, Sabidó E. High-Throughput Proteomics Reveals the Unicellular Roots of Animal Phosphosignaling and Cell Differentiation. Dev Cell 2016; 39:186-197. [PMID: 27746046 DOI: 10.1016/j.devcel.2016.09.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 07/17/2016] [Accepted: 09/16/2016] [Indexed: 10/20/2022]
Abstract
Cell-specific regulation of protein levels and activity is essential for the distribution of functions among multiple cell types in animals. The finding that many genes involved in these regulatory processes have a premetazoan origin raises the intriguing possibility that the mechanisms required for spatially regulated cell differentiation evolved prior to the appearance of animals. Here, we use high-throughput proteomics in Capsaspora owczarzaki, a close unicellular relative of animals, to characterize the dynamic proteome and phosphoproteome profiles of three temporally distinct cell types in this premetazoan species. We show that life-cycle transitions are linked to extensive proteome and phosphoproteome remodeling and that they affect key genes involved in animal multicellularity, such as transcription factors and tyrosine kinases. The observation of shared features between Capsaspora and metazoans indicates that elaborate and conserved phosphosignaling and proteome regulation supported temporal cell-type differentiation in the unicellular ancestor of animals.
Collapse
Affiliation(s)
- Arnau Sebé-Pedrós
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Marcia Ivonne Peña
- Proteomics Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Salvador Capella-Gutiérrez
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain; CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 LT Utrecht, the Netherlands
| | - Meritxell Antó
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain; ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain; Departament de Genètica, Microbilogia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain.
| | - Eduard Sabidó
- Proteomics Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
32
|
Global Phosphoproteomic Analysis Reveals the Involvement of Phosphorylation in Aflatoxins Biosynthesis in the Pathogenic Fungus Aspergillus flavus. Sci Rep 2016; 6:34078. [PMID: 27667718 PMCID: PMC5036175 DOI: 10.1038/srep34078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/05/2016] [Indexed: 01/17/2023] Open
Abstract
Aspergillus flavus is a pathogenic fungus that produces toxic and carcinogenic aflatoxins and is the causative agent of aflatoxicosis. A growing body of evidence indicates that reversible phosphorylation plays important roles in regulating diverse functions in this pathogen. However, only a few phosphoproteins of this fungus have been identified, which hampers our understanding of the roles of phosphorylation in A. flavus. So we performed a global and site-specific phosphoproteomic analysis of A. flavus. A total of 598 high-confidence phosphorylation sites were identified in 283 phosphoproteins. The identified phosphoproteins were involved in various biological processes, including signal transduction and aflatoxins biosynthesis. Five identified phosphoproteins associated with MAPK signal transduction and aflatoxins biosynthesis were validated by immunoblotting using phospho-specific antibodies. Further functional studies revealed that phosphorylation of the MAP kinase kinase kinase Ste11 affected aflatoxins biosynthesis in A. flavus. Our data represent the results of the first global survey of protein phosphorylation in A. flavus and reveal previously unappreciated roles for phosphorylation in the regulation of aflatoxins production. The generated dataset can serve as an important resource for the functional analysis of protein phosphorylation in A. flavus and facilitate the elucidation of phosphorylated signaling networks in this pathogen.
Collapse
|
33
|
Wang Z, Shen Y. Antifungal compound honokiol triggers oxidative stress responsive signalling pathway and modulates central carbon metabolism. Mycology 2016; 7:124-133. [PMID: 30123624 PMCID: PMC6059109 DOI: 10.1080/21501203.2016.1221862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/01/2016] [Indexed: 02/07/2023] Open
Abstract
The fast growing evidences have shown that the plant-derived compound honokiol is a promising candidate for treating multiple human diseases, such as inflammation and cancer. However, the mode-of-action (MoA) of honokiol remains largely unclear. Here, we studied the antifungal activity of honokiol in fission yeast model, with the goal of understanding the honokiol's mechanism of action from the molecular level. We found that honokiol can inhibit the yeast growth at a dose-dependent way. Microarray analysis showed that honokiol has wide impacts on the fission yeast transcription levels (in total, 512 genes are up-regulated, and 42 genes are down-regulated). Gene set enrichment analysis indicated that over 45% up-regulated genes belong to the core environmental stress responses category. Moreover, network analysis suggested that there are extensive gene-gene interactions amongst the co-expression gene lists, which can assemble several biofunctionally important modules. It is noteworthy that several key components of central carbon metabolism, such as glucose transporters and metabolic enzymes of glycolysis, are involved in honokiol's MoA. The complexity of the honokiol's MoA displayed in previous studies and this work demonstrates that multiple omics approaches and bioinformatics tools should be applied together to achieve the complete scenario of honokiol's antifungal function.
Collapse
Affiliation(s)
- Zhe Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yan Shen
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Groves B, Khakhar A, Nadel CM, Gardner RG, Seelig G. Rewiring MAP kinases in Saccharomyces cerevisiae to regulate novel targets through ubiquitination. eLife 2016; 5. [PMID: 27525484 PMCID: PMC5019841 DOI: 10.7554/elife.15200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 08/14/2016] [Indexed: 12/18/2022] Open
Abstract
Evolution has often copied and repurposed the mitogen-activated protein kinase (MAPK) signaling module. Understanding how connections form during evolution, in disease and across individuals requires knowledge of the basic tenets that govern kinase-substrate interactions. We identify criteria sufficient for establishing regulatory links between a MAPK and a non-native substrate. The yeast MAPK Fus3 and human MAPK ERK2 can be functionally redirected if only two conditions are met: the kinase and substrate contain matching interaction domains and the substrate includes a phospho-motif that can be phosphorylated by the kinase and recruit a downstream effector. We used a panel of interaction domains and phosphorylation-activated degradation motifs to demonstrate modular and scalable retargeting. We applied our approach to reshape the signaling behavior of an existing kinase pathway. Together, our results demonstrate that a MAPK can be largely defined by its interaction domains and compatible phospho-motifs and provide insight into how MAPK-substrate connections form. DOI:http://dx.doi.org/10.7554/eLife.15200.001 Nature has evolved a number of ways to link signals from a cell’s environment, like the concentration of a hormone, to the behavior of that cell. These new connections often form by reusing certain common signaling components, such as mitogen-activated protein kinases. These enzymes – referred to as MAPKs for short – are activated by specific signals and alter the activity of target proteins in the cell by adding a phosphate group to them: a process called phosphorylation. These connections thus dictate how cells respond to their environments – and consequently, disruptions to the connections are a common source of disease. Groves, Khakhar et al. set out to understand how connections can be made between a MAPK and a new target protein to gain insights into how these links emerge through evolution and how they might break in disease. Their approach focused on one of the ways that phosphorylation can alter the activity of a target protein: marking it for degradation. Experiments with budding yeast showed that a MAPK could only achieve this if two conditions are met. First, the target protein and kinase need to bind to each other. Second, the target needs to contain a site that when phosphorylated is subsequently recognized by the cell’s protein degradation machinery. By engineering proteins so that they fulfilled these two criteria, Groves, Khakhar et al. created new connections between a yeast MAPK called Fus3 or a human MAPK called ERK2 and a variety of targets. The results showed that the parts of the proteins involved in the interaction step could be completely separate from the parts that are involved in the phosphorylation step. This suggests that connections between kinases and their targets can be rewired simple by mixing together parts of other existing proteins. Finally, Groves, Khakhar et al. confirmed that engineered connections between kinases and targets could predictably change how yeast cells responded to a hormone that normally controls the yeast’s reproductive cycle. Together these results bring us one step closer to understanding how cells assemble the signaling pathways that they use to process information. However further work is needed to see if these findings can be generalized to other signaling components, and if so, to explore if new connections can be built to yield more complicated cellular behaviors. DOI:http://dx.doi.org/10.7554/eLife.15200.002
Collapse
Affiliation(s)
- Benjamin Groves
- Department of Electrical Engineering, University of Washington, Seattle, United States
| | - Arjun Khakhar
- Department of Bioengineering, University of Washington, Seattle, United States
| | - Cory M Nadel
- Department of Pharmacology, University of Washington, Seattle, United States
| | - Richard G Gardner
- Department of Pharmacology, University of Washington, Seattle, United States
| | - Georg Seelig
- Department of Electrical Engineering, University of Washington, Seattle, United States.,Department of Computer Science and Engineering, University of Washington, Seattle, United States
| |
Collapse
|
35
|
McCartney RR, Garnar-Wortzel L, Chandrashekarappa DG, Schmidt MC. Activation and inhibition of Snf1 kinase activity by phosphorylation within the activation loop. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1518-28. [PMID: 27524664 DOI: 10.1016/j.bbapap.2016.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/30/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
The AMP-activated protein kinase is a metabolic regulator that transduces information about energy and nutrient availability. In yeast, the AMP-activated protein kinase, called Snf1, is activated when energy and nutrients are scarce. Earlier studies have demonstrated that activation of Snf1 requires the phosphorylation of the activation loop on threonine 210. Here we examined the regulation of Snf1 kinase activity in response to phosphorylation at other sites. Phosphoproteomic studies have identified numerous phosphorylation sites within the Snf1 kinase enzyme. We made amino acid substitutions in the Snf1 protein that were either non-phosphorylatable (serine to alanine) or phospho-mimetic (serine to glutamate) and examined the effects of these changes on Snf1 kinase function in vivo and on its catalytic activity in vitro. We found that changes to most of the phosphorylation sites had no effect on Snf1 kinase function. However, changes to serine 214, a site within the kinase activation loop, inhibited Snf1 kinase activity. Snf1-activating kinase 1 still phosphorylates Snf1-S214E on threonine 210 but the S214E enzyme is non-functional in vivo and catalytically inactive in vitro. We conclude that yeast have developed two distinct pathways for down-regulating Snf1 activity. The first is through direct dephosphorylation of the conserved activation loop threonine. The second is through phosphorylation of serine 214.
Collapse
Affiliation(s)
- Rhonda R McCartney
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Leopold Garnar-Wortzel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Dakshayini G Chandrashekarappa
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Martin C Schmidt
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
36
|
Martin-Yken H, François JM, Zerbib D. Knr4: a disordered hub protein at the heart of fungal cell wall signalling. Cell Microbiol 2016; 18:1217-27. [PMID: 27199081 DOI: 10.1111/cmi.12618] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/14/2016] [Accepted: 05/17/2016] [Indexed: 02/05/2023]
Abstract
The most highly connected proteins in protein-protein interactions networks are called hubs; they generally connect signalling pathways. In Saccharomyces cerevisiae, Knr4 constitutes a connecting node between the two main signal transmission pathways involved in cell wall maintenance upon stress: the cell wall integrity and the calcium-calcineurin pathway. Knr4 is required to enable the cells to resist many cell wall-affecting stresses, and KNR4 gene deletion is synthetic lethal with the simultaneous deletion of numerous other genes involved in morphogenesis and cell wall biogenesis. Knr4 has been shown to engage in multiple physical interactions, an ability conferred by the intrinsic structural adaptability of major disordered regions present in the N-terminal and C-terminal parts of the protein. Taking all together, Knr4 is an intrinsically disordered hub protein. Available data from other fungi indicate the conservation of Knr4 homologs cellular function and localization at sites of polarized growth among fungal species, including pathogenic species. Because of their particular role in morphogenesis control and of their fungal specificity, these proteins could constitute interesting new pharmaceutical drug targets for antifungal combination therapy.
Collapse
Affiliation(s)
- Hélène Martin-Yken
- LISBP, Université Fédérale de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Jean Marie François
- LISBP, Université Fédérale de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Didier Zerbib
- LISBP, Université Fédérale de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, F-31077, Toulouse, France.,Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, F-31077, Toulouse, France
| |
Collapse
|
37
|
von Stechow L, Francavilla C, Olsen JV. Recent findings and technological advances in phosphoproteomics for cells and tissues. Expert Rev Proteomics 2016; 12:469-87. [PMID: 26400465 PMCID: PMC4819829 DOI: 10.1586/14789450.2015.1078730] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Site-specific phosphorylation is a fast and reversible covalent post-translational modification that is tightly regulated in cells. The cellular machinery of enzymes that write, erase and read these modifications (kinases, phosphatases and phospho-binding proteins) is frequently deregulated in different diseases, including cancer. Large-scale studies of phosphoproteins – termed phosphoproteomics – strongly rely on the use of high-performance mass spectrometric instrumentation. This powerful technology has been applied to study a great number of phosphorylation-based phenotypes. Nevertheless, many technical and biological challenges have to be overcome to identify biologically relevant phosphorylation sites in cells and tissues. This review describes different technological strategies to identify and quantify phosphorylation sites with high accuracy, without significant loss of analysis speed and reproducibility in tissues and cells. Moreover, computational tools for analysis, integration and biological interpretation of phosphorylation events are discussed.
Collapse
Affiliation(s)
- Louise von Stechow
- a Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Chiara Francavilla
- a Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | | |
Collapse
|
38
|
Xiao Q, Miao B, Bi J, Wang Z, Li Y. Prioritizing functional phosphorylation sites based on multiple feature integration. Sci Rep 2016; 6:24735. [PMID: 27090940 PMCID: PMC4835696 DOI: 10.1038/srep24735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/04/2016] [Indexed: 12/15/2022] Open
Abstract
Protein phosphorylation is an important type of post-translational modification that is involved in a variety of biological activities. Most phosphorylation events occur on serine, threonine and tyrosine residues in eukaryotes. In recent years, many phosphorylation sites have been identified as a result of advances in mass-spectrometric techniques. However, a large percentage of phosphorylation sites may be non-functional. Systematically prioritizing functional sites from a large number of phosphorylation sites will be increasingly important for the study of their biological roles. This study focused on exploring the intrinsic features of functional phosphorylation sites to predict whether a phosphosite is likely to be functional. We found significant differences in the distribution of evolutionary conservation, kinase association, disorder score, and secondary structure between known functional and background phosphorylation datasets. We built four different types of classifiers based on the most representative features and found that their performances were similar. We also prioritized 213,837 human phosphorylation sites from a variety of phosphorylation databases, which will be helpful for subsequent functional studies. All predicted results are available for query and download on our website (Predict Functional Phosphosites, PFP, http://pfp.biosino.org/).
Collapse
Affiliation(s)
- Qingyu Xiao
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Benpeng Miao
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jie Bi
- University of Chinese Academy of Sciences, Beijing, P. R. China.,Key Lab of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Zhen Wang
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yixue Li
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P. R. China.,Shanghai Center for Bioinformation Technology, Shanghai Industrial Technology Institute, Shanghai, P. R. China
| |
Collapse
|
39
|
Wang ZK, Wang J, Liu J, Ying SH, Peng XJ, Feng MG. Proteomic and Phosphoproteomic Insights into a Signaling Hub Role for Cdc14 in Asexual Development and Multiple Stress Responses in Beauveria bassiana. PLoS One 2016; 11:e0153007. [PMID: 27055109 PMCID: PMC4824431 DOI: 10.1371/journal.pone.0153007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/22/2016] [Indexed: 11/18/2022] Open
Abstract
Cdc14 is a dual-specificity phosphatase that regulates nuclear behavior by dephosphorylating phosphotyrosine and phosphoserine/phosphothreonine in fungi. Previously, Cdc14 was shown to act as a positive regulator of cytokinesis, asexual development and multiple stress responses in Beauveria bassiana, a fungal insect pathogen. This study seeks to gain deep insight into a pivotal role of Cdc14 in the signaling network of B. bassiana by analyzing the Cdc14-specific proteome and phosphoproteome generated by the 8-plex iTRAQ labeling and MS/MS analysis of peptides and phosphopeptides. Under normal conditions, 154 proteins and 86 phosphorylation sites in 67 phosphoproteins were upregulated in Δcdc14 versus wild-type, whereas 117 proteins and 85 phosphorylation sites in 58 phosphoproteins were significantly downregulated. Co-cultivation of Δcdc14 with NaCl (1 M), H2O2 (3 mM) and Congo red (0.15 mg/ml) resulted in the upregulation / downregulation of 23/63, 41/39 and 79/79 proteins and of 127/112, 52/47 and 105/226 phosphorylation sites in 85/92, 45/36 and 79/146 phosphoproteins, respectively. Bioinformatic analyses revealed that Cdc14 could participate in many biological and cellular processes, such as carbohydrate metabolism, glycerophospholipid metabolism, the MAP Kinase signaling pathway, and DNA conformation, by regulating protein expression and key kinase phosphorylation in response to different environmental cues. These indicate that in B. bassiana, Cdc14 is a vital regulator of not only protein expression but also many phosphorylation events involved in developmental and stress-responsive pathways. Fourteen conserved and novel motifs were identified in the fungal phosphorylation events.
Collapse
Affiliation(s)
- Zhi-Kang Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jie Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Liu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Jun Peng
- Jingjie PTM Biolabs (Hangzhou) Co., Ltd., Hangzhou, 310018, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- * E-mail:
| |
Collapse
|
40
|
Skelly DA, Magwene PM. Population perspectives on functional genomic variation in yeast. Brief Funct Genomics 2015; 15:138-46. [PMID: 26467711 DOI: 10.1093/bfgp/elv044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Advances in high-throughput sequencing have facilitated large-scale surveys of genomic variation in the budding yeast,Saccharomyces cerevisiae These surveys have revealed extensive sequence variation between yeast strains. However, much less is known about how such variation influences the amount and nature of variation for functional genomic traits within and between yeast lineages. We review population-level studies of functional genomic variation, with a particular focus on how population functional genomic approaches can provide insights into both genome function and the evolutionary process. Although variation in functional genomics phenotypes is pervasive, our understanding of the consequences of this variation, either in physiological or evolutionary terms, is still rudimentary and thus motivates increased attention to appropriate null models. To date, much of the focus of population functional genomic studies has been on gene expression variation, but other functional genomic data types are just as likely to reveal important insights at the population level, suggesting a pressing need for more studies that go beyond transcription. Finally, we discuss how a population functional genomic perspective can be a powerful approach for developing a mechanistic understanding of the processes that link genomic variation to organismal phenotypes through gene networks.
Collapse
|
41
|
Johnson JR, Santos SD, Johnson T, Pieper U, Strumillo M, Wagih O, Sali A, Krogan NJ, Beltrao P. Prediction of Functionally Important Phospho-Regulatory Events in Xenopus laevis Oocytes. PLoS Comput Biol 2015; 11:e1004362. [PMID: 26312481 PMCID: PMC4552029 DOI: 10.1371/journal.pcbi.1004362] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 05/27/2015] [Indexed: 01/10/2023] Open
Abstract
The African clawed frog Xenopus laevis is an important model organism for studies in developmental and cell biology, including cell-signaling. However, our knowledge of X. laevis protein post-translational modifications remains scarce. Here, we used a mass spectrometry-based approach to survey the phosphoproteome of this species, compiling a list of 2636 phosphosites. We used structural information and phosphoproteomic data for 13 other species in order to predict functionally important phospho-regulatory events. We found that the degree of conservation of phosphosites across species is predictive of sites with known molecular function. In addition, we predicted kinase-protein interactions for a set of cell-cycle kinases across all species. The degree of conservation of kinase-protein interactions was found to be predictive of functionally relevant regulatory interactions. Finally, using comparative protein structure models, we find that phosphosites within structured domains tend to be located at positions with high conformational flexibility. Our analysis suggests that a small class of phosphosites occurs in positions that have the potential to regulate protein conformation.
Collapse
Affiliation(s)
- Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, United States of America
| | - Silvia D Santos
- Quantitative Cell Biology group, MRC Clinical Sciences Centre, Imperial College, London, United Kingdom
| | - Tasha Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, United States of America
| | - Ursula Pieper
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, Byers Hall at Mission Bay, University of California, San Francisco, San Francisco, California, United States of America; Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall at Mission Bay, University of California, San Francisco, San Francisco, California, United States of America
| | - Marta Strumillo
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany and European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Omar Wagih
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany and European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, Byers Hall at Mission Bay, University of California, San Francisco, San Francisco, California, United States of America; Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall at Mission Bay, University of California, San Francisco, San Francisco, California, United States of America
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, United States of America; Gladstone Institutes, San Francisco, California, United States of America
| | - Pedro Beltrao
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany and European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom; iBiMED and Department of Health Sciences, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
42
|
Chamberlain MD, Wells LA, Lisovsky A, Guo H, Isserlin R, Talior-Volodarsky I, Mahou R, Emili A, Sefton MV. Unbiased phosphoproteomic method identifies the initial effects of a methacrylic acid copolymer on macrophages. Proc Natl Acad Sci U S A 2015; 112:10673-8. [PMID: 26261332 PMCID: PMC4553830 DOI: 10.1073/pnas.1508826112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
An unbiased phosphoproteomic method was used to identify biomaterial-associated changes in the phosphorylation patterns of macrophage-like cells. The phosphorylation differences between differentiated THP1 (dTHP1) cells treated for 10, 20, or 30 min with a vascular regenerative methacrylic acid (MAA) copolymer or a control methyl methacrylate (MM) copolymer were determined by MS. There were 1,470 peptides (corresponding to 729 proteins) that were differentially phosphorylated in dTHP1 cells treated with the two materials with a greater cellular response to MAA treatment. In addition to identifying pathways (such as integrin signaling and cytoskeletal arrangement) that are well known to change with cell-material interaction, previously unidentified pathways, such as apoptosis and mRNA splicing, were also discovered.
Collapse
Affiliation(s)
- Michael Dean Chamberlain
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada M5S 3G9
| | - Laura A Wells
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada M5S 3G9
| | - Alexandra Lisovsky
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada M5S 3G9
| | - Hongbo Guo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada M5S 3G9
| | - Ruth Isserlin
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada M5S 3G9
| | - Ilana Talior-Volodarsky
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada M5S 3G9
| | - Redouan Mahou
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada M5S 3G9
| | - Andrew Emili
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada M5S 3G9
| | - Michael V Sefton
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada M5S 3G9; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada M5S 3G9
| |
Collapse
|
43
|
Preechasuth K, Anderson JC, Peck SC, Brown AJP, Gow NAR, Lenardon MD. Cell wall protection by the Candida albicans class I chitin synthases. Fungal Genet Biol 2015; 82:264-76. [PMID: 26257018 PMCID: PMC4557417 DOI: 10.1016/j.fgb.2015.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 01/20/2023]
Abstract
Candida albicans has four chitin synthases from three different enzyme classes which deposit chitin in the cell wall, including at the polarized tips of growing buds and hyphae, and sites of septation. The two class I enzymes, Chs2 and Chs8, are responsible for most of the measurable chitin synthase activity in vitro, but their precise biological functions in vivo remain obscure. In this work, detailed phenotypic analyses of a chs2Δchs8Δ mutant have shown that C. albicans class I chitin synthases promote cell integrity during early polarized growth in yeast and hyphal cells. This was supported by live cell imaging of YFP-tagged versions of the class I chitin synthases which revealed that Chs2-YFP was localized at sites of polarized growth. Furthermore, a unique and dynamic pattern of localization of the class I enzymes at septa of yeast and hyphae was revealed. Phosphorylation of Chs2 on the serine at position 222 was shown to regulate the amount of Chs2 that is localized to sites of polarized growth and septation. Independently from this post-translational modification, specific cell wall stresses were also shown to regulate the amount of Chs2 that localizes to specific sites in cells, and this was linked to the ability of the class I enzymes to reinforce cell wall integrity during early polarized growth in the presence of these stresses.
Collapse
Affiliation(s)
- Kanya Preechasuth
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom.
| | - Jeffrey C Anderson
- Division of Biochemistry, 271H Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | - Scott C Peck
- Division of Biochemistry, 271H Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | - Alistair J P Brown
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom.
| | - Neil A R Gow
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom.
| | - Megan D Lenardon
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom.
| |
Collapse
|
44
|
Frades I, Resjö S, Andreasson E. Comparison of phosphorylation patterns across eukaryotes by discriminative N-gram analysis. BMC Bioinformatics 2015. [PMID: 26224486 PMCID: PMC4520095 DOI: 10.1186/s12859-015-0657-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background How protein phosphorylation relates to kingdom/phylum divergence is largely unknown and the amino acid residues surrounding the phosphorylation site have profound importance on protein kinase–substrate interactions. Standard motif analysis is not adequate for large scale comparative analysis because each phophopeptide is assigned to a unique motif and perform poorly with the unbalanced nature of the input datasets. Results First the discriminative n-grams of five species from five different kingdom/phyla were identified. A signature with 5540 discriminative n-grams that could be found in other species from the same kingdoms/phyla was created. Using a test data set, the ability of the signature to classify species in their corresponding kingdom/phylum was confirmed using classification methods. Lastly, ortholog proteins among proteins with n-grams were identified in order to determine to what degree was the identity of the detected n-grams a property of phosphosites rather than a consequence of species-specific or kingdom/phylum-specific protein inventory. The motifs were grouped in clusters of equal physico-chemical nature and their distribution was similar between species in the same kingdom/phylum while clear differences were found among species of different kingdom/phylum. For example, the animal-specific top discriminative n-grams contained many basic amino acids and the plant-specific motifs were mainly acidic. Secondary structure prediction methods show that the discriminative n-grams in the majority of the cases lack from a regular secondary structure as on average they had 88 % of random coil compared to 66 % found in the phosphoproteins they were derived from. Conclusions The discriminative n-grams were able to classify organisms in their corresponding kingdom/phylum, they show different patterns among species of different kingdom/phylum and these regions can contribute to evolutionary divergence as they are in disordered regions that can evolve rapidly. The differences found possibly reflect group-specific differences in the kinomes of the different groups of species. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0657-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Itziar Frades
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, SE-230 53, Sweden.
| | - Svante Resjö
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, SE-230 53, Sweden.
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, SE-230 53, Sweden.
| |
Collapse
|
45
|
Gupta R, Sadhale PP, Vijayraghavan U. SUB1 Plays a Negative Role during Starvation Induced Sporulation Program in Saccharomyces cerevisiae. PLoS One 2015; 10:e0132350. [PMID: 26147804 PMCID: PMC4492983 DOI: 10.1371/journal.pone.0132350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/14/2015] [Indexed: 01/29/2023] Open
Abstract
Saccharomyces cerevisiae Sub1 is involved in several cellular processes such as, transcription initiation, elongation, mRNA processing and DNA repair. It has also been reported to provide cellular resistance during conditions of oxidative DNA damage and osmotic stress. Here, we report a novel role of SUB1 during starvation stress-induced sporulation, which leads to meiosis and spore formation in diploid yeast cells. Deletion of SUB1 gene significantly increased sporulation efficiency as compared to the wild-type cells in S288c genetic background. Whereas, the sporulation functions of the sub1(Y66A) missense mutant were similar to Sub1. SUB1 transcript and protein levels are downregulated during sporulation, in highly synchronized and sporulation proficient wild-type SK1 cells. The changes in Sub1 levels during sporulation cascade correlate with the induction of middle sporulation gene expression. Deletion of SUB1 increased middle sporulation gene transcript levels with no effect on their induction kinetics. In wild-type cells, Sub1 associates with chromatin at these loci in a temporal pattern that correlates with their enhanced gene expression seen in sub1Δ cells. We show that SUB1 genetically interacts with HOS2, which led us to speculate that Sub1 might function with Set3 repressor complex during sporulation. Positive Cofactor 4, human homolog of Sub1, complemented the sub1Δ sporulation phenotype, suggesting conservation of function. Taken together, our results suggest that SUB1 acts as a negative regulator of sporulation.
Collapse
Affiliation(s)
- Ritu Gupta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Parag P. Sadhale
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Usha Vijayraghavan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
- * E-mail:
| |
Collapse
|
46
|
Materne P, Anandhakumar J, Migeot V, Soriano I, Yague-Sanz C, Hidalgo E, Mignion C, Quintales L, Antequera F, Hermand D. Promoter nucleosome dynamics regulated by signalling through the CTD code. eLife 2015; 4:e09008. [PMID: 26098123 PMCID: PMC4502402 DOI: 10.7554/elife.09008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/19/2015] [Indexed: 12/26/2022] Open
Abstract
The phosphorylation of the RNA polymerase II C-terminal domain (CTD) plays a key role in delineating transcribed regions within chromatin by recruiting histone methylases and deacetylases. Using genome-wide nucleosome mapping, we show that CTD S2 phosphorylation controls nucleosome dynamics in the promoter of a subset of 324 genes, including the regulators of cell differentiation ste11 and metabolic adaptation inv1. Mechanistic studies on these genes indicate that during gene activation a local increase of phospho-S2 CTD nearby the promoter impairs the phospho-S5 CTD-dependent recruitment of Set1 and the subsequent recruitment of specific HDACs, which leads to nucleosome depletion and efficient transcription. The early increase of phospho-S2 results from the phosphorylation of the CTD S2 kinase Lsk1 by MAP kinase in response to cellular signalling. The artificial tethering of the Lsk1 kinase at the ste11 promoter is sufficient to activate transcription. Therefore, signalling through the CTD code regulates promoter nucleosomes dynamics. DOI:http://dx.doi.org/10.7554/eLife.09008.001 The process of activating genes—known as gene expression—involves a number of steps. During the first step, the gene's DNA is copied or ‘transcribed’ to produce a molecule of messenger RNA. However, most of the DNA in a cell is wrapped around proteins called histones to make structures known as nucleosomes, and the DNA has to be unpacked to allow the enzymes that make messenger RNA to access it. Cells regulate how the DNA is packed by attaching chemical groups to the histone proteins. Adding acetyl groups to histones usually causes the nucleosomes to unwrap and creates loosely packed DNA that helps with gene expression. On the other hand, the addition of methyl groups has the opposite effect. RNA polymerase II is the enzyme that carries out transcription of messenger RNAs in all eukaryotic cells—that is, the cells of organisms like plants, animals, and fungi. Like all enzymes, RNA polymerase II is made of smaller building blocks called amino acids. One end of the RNA polymerase II enzyme, called the C-terminal domain (or CTD), contains a unique sequence of amino acids that serves as a scaffold to recruit other proteins involved in transcription and histone modifications. Different amino acids in this region of RNA polymerase II can be modified by the addition of phosphate groups. The pattern of these modifications is often thought of as a code and can influence which other proteins get recruited. It remains poorly understood how RNA polymerase II regulates nucleosomes to allow transcription to occur. Materne, Anandhakumar et al. have now addressed this issue by engineering mutant yeast cells in which phosphate groups cannot be added to specific amino acids in the RNA polymerase II enzyme. Most genes were expressed as normal in these yeast cells, but a few hundred genes were not expressed. Materne, Anandhakumar et al. then used a technique called MNase-Seq to map the position of nucleosomes across the genome and found that there were more nucleosomes near to start of these down-regulated genes. Further experiments showed that the addition of phosphate groups onto the RNA polymerase II is required to deplete the nucleosomes at the start of a gene called ste11, which allows transcription to occur. Materne, Anandhakumar et al. also found that artificially tethering the enzyme that adds phosphate groups to the C-terminal domain to the start of the ste11 gene was sufficient to oust nucleosomes and activate transcription by RNA polymerase II. Future work will address if this newly discovered mechanism is implicated in the activation of specific patterns of gene expression during the development of more complex organisms. DOI:http://dx.doi.org/10.7554/eLife.09008.002
Collapse
Affiliation(s)
- Philippe Materne
- URPHYM-GEMO, Namur Research College, University of Namur, Namur, Belgium
| | | | - Valerie Migeot
- URPHYM-GEMO, Namur Research College, University of Namur, Namur, Belgium
| | - Ignacio Soriano
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| | - Carlo Yague-Sanz
- URPHYM-GEMO, Namur Research College, University of Namur, Namur, Belgium
| | - Elena Hidalgo
- Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Carole Mignion
- URPHYM-GEMO, Namur Research College, University of Namur, Namur, Belgium
| | - Luis Quintales
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| | - Francisco Antequera
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| | - Damien Hermand
- URPHYM-GEMO, Namur Research College, University of Namur, Namur, Belgium
| |
Collapse
|
47
|
Strumillo M, Beltrao P. Towards the computational design of protein post-translational regulation. Bioorg Med Chem 2015; 23:2877-82. [PMID: 25956846 PMCID: PMC4673319 DOI: 10.1016/j.bmc.2015.04.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 12/19/2022]
Abstract
Protein post-translational modifications (PTMs) are a fast and versatility mechanism used by the cell to regulate the function of proteins in response to changing conditions. PTMs can alter the activity of proteins by allosteric regulation or by controlling protein interactions, localization and abundance. Recent advances in proteomics have revealed the extent of regulation by PTMs and the different mechanisms used in nature to exert control over protein function via PTMs. These developments can serve as the foundation for the rational design of protein regulation. Here we review the advances in methods to determine the function of PTMs, protein allosteric control and examples of rational design of PTM regulation. These advances create an opportunity to move synthetic biology forward by making use of a level of regulation that is of yet unexplored.
Collapse
Affiliation(s)
- Marta Strumillo
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK; iBiMED and Department of Health Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
48
|
Ölmezer G, Klein D, Rass U. DNA repair defects ascribed to pby1 are caused by disruption of Holliday junction resolvase Mus81-Mms4. DNA Repair (Amst) 2015; 33:17-23. [PMID: 26068713 DOI: 10.1016/j.dnarep.2015.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/28/2015] [Accepted: 05/13/2015] [Indexed: 01/06/2023]
Abstract
PBY1 continues to be linked with DNA repair through functional genomics studies in yeast. Using the yeast knockout (YKO) strain collection, high-throughput genetic interaction screens have identified a large set of negative interactions between PBY1 and genes involved in genome stability. In drug sensitivity screens, the YKO collection pby1Δ strain exhibits a sensitivity profile typical for genes involved in DNA replication and repair. We show that these findings are not related to loss of Pby1. On the basis of genetic interaction profile similarity, we pinpoint disruption of Holliday junction resolvase Mus81-Mms4 as the mutation responsible for DNA repair phenotypes currently ascribed to pby1. The finding that Pby1 is not a DNA repair factor reconciles discrepancies in the data available for PBY1, and indirectly supports a role for Pby1 in mRNA metabolism. Data that has been collected using the YKO collection pby1Δ strain confirms and expands the chemical-genetic interactome of MUS81-MMS4.
Collapse
Affiliation(s)
- Gizem Ölmezer
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Dominique Klein
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Ulrich Rass
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| |
Collapse
|
49
|
Franck WL, Gokce E, Randall SM, Oh Y, Eyre A, Muddiman DC, Dean RA. Phosphoproteome Analysis Links Protein Phosphorylation to Cellular Remodeling and Metabolic Adaptation during Magnaporthe oryzae Appressorium Development. J Proteome Res 2015; 14:2408-24. [PMID: 25926025 PMCID: PMC4838196 DOI: 10.1021/pr501064q] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The rice pathogen, Magnaporthe oryzae, undergoes a complex developmental process leading to formation of an appressorium prior to plant infection. In an effort to better understand phosphoregulation during appressorium development, a mass spectrometry based phosphoproteomics study was undertaken. A total of 2924 class I phosphosites were identified from 1514 phosphoproteins from mycelia, conidia, germlings, and appressoria of the wild type and a protein kinase A (PKA) mutant. Phosphoregulation during appressorium development was observed for 448 phosphosites on 320 phosphoproteins. In addition, a set of candidate PKA targets was identified encompassing 253 phosphosites on 227 phosphoproteins. Network analysis incorporating regulation from transcriptomic, proteomic, and phosphoproteomic data revealed new insights into the regulation of the metabolism of conidial storage reserves and phospholipids, autophagy, actin dynamics, and cell wall metabolism during appressorium formation. In particular, protein phosphorylation appears to play a central role in the regulation of autophagic recycling and actin dynamics during appressorium formation. Changes in phosphorylation were observed in multiple components of the cell wall integrity pathway providing evidence that this pathway is highly active during appressorium development. Several transcription factors were phosphoregulated during appressorium formation including the bHLH domain transcription factor MGG_05709. Functional analysis of MGG_05709 provided further evidence for the role of protein phosphorylation in regulation of glycerol metabolism and the metabolic reprogramming characteristic of appressorium formation. The data presented here represent a comprehensive investigation of the M. oryzae phosphoproteome and provide key insights on the role of protein phosphorylation during infection-related development.
Collapse
Affiliation(s)
- William L. Franck
- Center for Integrated Fungal Research, North Carolina State University, Raleigh, North Carolina, 27606
| | - Emine Gokce
- W.M. Keck Fourier Transform-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27606
| | - Shan M. Randall
- W.M. Keck Fourier Transform-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27606
| | - Yeonyee Oh
- Center for Integrated Fungal Research, North Carolina State University, Raleigh, North Carolina, 27606
| | - Alex Eyre
- Center for Integrated Fungal Research, North Carolina State University, Raleigh, North Carolina, 27606
| | - David C. Muddiman
- W.M. Keck Fourier Transform-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27606
| | - Ralph A. Dean
- Center for Integrated Fungal Research, North Carolina State University, Raleigh, North Carolina, 27606
| |
Collapse
|
50
|
Genetic Interaction Landscape Reveals Critical Requirements for Schizosaccharomyces pombe Brc1 in DNA Damage Response Mutants. G3-GENES GENOMES GENETICS 2015; 5:953-62. [PMID: 25795664 PMCID: PMC4426379 DOI: 10.1534/g3.115.017251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Brc1, which was first identified as a high-copy, allele-specific suppressor of a mutation impairing the Smc5-Smc6 holocomplex in Schizosaccharomyces pombe, protects genome integrity during normal DNA replication and when cells are exposed to toxic compounds that stall or collapse replication forks. The C-terminal tandem BRCT (BRCA1 C-terminus) domain of fission yeast Brc1 docks with phosphorylated histone H2A (γH2A)-marked chromatin formed by ATR/Rad3 checkpoint kinase at arrested and damaged replication forks; however, how Brc1 functions in relation to other genome protection modules remains unclear. Here, an epistatic mini-array profile reveals critical requirements for Brc1 in mutants that are defective in multiple DNA damage response pathways, including checkpoint signaling by Rad3-Rad26/ATR-ATRIP kinase, DNA repair by Smc5-Smc6 holocomplex, replication fork stabilization by Mrc1/claspin and Swi1-Swi3/Timeless-Tipin, and control of ubiquitin-regulated proteolysis by the COP9 signalosome (CSN). Exogenous genotoxins enhance these negative genetic interactions. Rad52 and RPA foci are increased in CSN-defective cells, and loss of γH2A increases genotoxin sensitivity, indicating a critical role for the γH2A-Brc1 module in stabilizing replication forks in CSN-defective cells. A negative genetic interaction with the Nse6 subunit of Smc5-Smc6 holocomplex indicates that the DNA repair functions of Brc1 and Smc5-Smc6 holocomplex are at least partially independent. Rtt107, the Brc1 homolog in Saccharomyces cerevisiae, has a very different pattern of genetic interactions, indicating evolutionary divergence of functions and DNA damage responses.
Collapse
|