1
|
Wang Q, Chen X, Wang YF. Sec61β, a subunit of the Sec61 complex at the endoplasmic reticulum, coordinates with Ocnus in regulating Drosophila spermatogenesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104310. [PMID: 40194670 DOI: 10.1016/j.ibmb.2025.104310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
sec61β encodes a subunit of the Sec61 translocon which is a highly conserved heterotrimer responsible for translocating the nascent polypeptides into the lumen of the endoplasmic reticulum (ER) or onto the ER membrane. In this study, we show that knockdown of sec61β in the early germline leads to male sterility in Drosophila melanogaster. These males exhibit testes that are dramatically reduced in size and devoid of germ cells. However, the somatic cells with hub markers extend abnormally beyond the stem cell niche region. Stat92E-positive cells are also expanded into the posterior region of the small testes and primarily in the nuclei. Through tracking the developmental processes of germ cells, we find that the loss of germ cells occurs during the 3rd instar larval stage. Additionally, studies in Drosophila S2 cells reveal that Sec61β can directly interact with Ocnus (Ocn), likely at the nuclear membrane. Genetically, we show that overexpression of ocn partially restores fertility in sec61β knockdown males, while overexpression of sec61β fails to compensate for the defects in male fertility induced by ocn knockdown. These findings suggest that Sec61β might play a critical role in testis development and spermatogenesis, potentially coordinating with Ocn and involving in the JAK/STAT pathway.
Collapse
Affiliation(s)
- Qian Wang
- School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, China
| | - Xin Chen
- School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, China
| | - Yu-Feng Wang
- School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
2
|
Doerksen AH, Herath NN, Sanders SS. Fat traffic control: S-acylation in axonal transport. Mol Pharmacol 2025; 107:100039. [PMID: 40349611 DOI: 10.1016/j.molpha.2025.100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 05/14/2025] Open
Abstract
Neuronal axons serve as a conduit for the coordinated transport of essential molecular cargo between structurally and functionally distinct subcellular compartments via axonal molecular machinery. Long-distance, efficient axonal transport of membrane-bound organelles enables signal transduction and neuronal homeostasis. Efficient axonal transport is conducted by dynein and kinesin ATPase motors that use a local ATP supply from metabolic enzymes tethered to transport vesicles. Molecular motor adaptor proteins promote the processive motility and cargo selectivity of fast axonal transport. Axonal transport impairments are directly causative or associated with many neurodegenerative diseases and neuropathologies. Cargo specificity, cargo-adaptor proteins, and posttranslational modifications of cargo, adaptor proteins, microtubules, or the motor protein subunits all contribute to the precise regulation of vesicular transit. One posttranslational lipid modification that is particularly important in neurons in regulating protein trafficking, protein-protein interactions, and protein association with lipid membranes is S-acylation. Interestingly, many fast axonal transport cargos, cytoskeletal-associated proteins, motor protein subunits, and adaptors are S-acylated to modulate axonal transport. Here, we review the established regulatory role of S-acylation in fast axonal transport and provide evidence for a broader role of S-acylation in regulating the motor-cargo complex machinery, adaptor proteins, and metabolic enzymes from low-throughput studies and S-acyl-proteomic data sets. We propose that S-acylation regulates fast axonal transport and vesicular motility through localization of the proteins required for the motile cargo-complex machinery and relate how perturbed S-acylation contributes to transport impairments in neurological disorders. SIGNIFICANCE STATEMENT: This review investigates the regulatory role of S-acylation in fast axonal transport and its connection to neurological diseases, with a focus on the emerging connections between S-acylation and the molecular motors, adaptor proteins, and metabolic enzymes that make up the trafficking machinery.
Collapse
Affiliation(s)
- Amelia H Doerksen
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Ontario, Canada
| | - Nisandi N Herath
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Ontario, Canada
| | - Shaun S Sanders
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Ontario, Canada.
| |
Collapse
|
3
|
Abid Ali F, Zwetsloot AJ, Stone CE, Morgan TE, Wademan RF, Carter AP, Straube A. KIF1C activates and extends dynein movement through the FHF cargo adapter. Nat Struct Mol Biol 2025; 32:756-766. [PMID: 39747486 PMCID: PMC11996680 DOI: 10.1038/s41594-024-01418-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/03/2024] [Indexed: 01/04/2025]
Abstract
Cellular cargos move bidirectionally on microtubules by recruiting opposite polarity motors dynein and kinesin. These motors show codependence, where one requires the activity of the other, although the mechanism is unknown. Here we show that kinesin-3 KIF1C acts as both an activator and a processivity factor for dynein, using in vitro reconstitutions of human proteins. Activation requires only a fragment of the KIF1C nonmotor stalk binding the cargo adapter HOOK3. The interaction site is separate from the constitutive factors FTS and FHIP, which link HOOK3 to small G-proteins on cargos. We provide a structural model for the autoinhibited FTS-HOOK3-FHIP1B (an FHF complex) and explain how KIF1C relieves it. Collectively, we explain codependency by revealing how mutual activation of dynein and kinesin occurs through their shared adapter. Many adapters bind both dynein and kinesins, suggesting this mechanism could be generalized to other bidirectional complexes.
Collapse
Affiliation(s)
- Ferdos Abid Ali
- MRC Laboratory of Molecular Biology, Cambridge, UK
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Alexander J Zwetsloot
- Centre for Mechanochemical Cell Biology and Warwick Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Caroline E Stone
- MRC Laboratory of Molecular Biology, Cambridge, UK
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | | | - Anne Straube
- Centre for Mechanochemical Cell Biology and Warwick Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| |
Collapse
|
4
|
Ali MY, Lu H, Fagnant PM, Macfarlane JE, Trybus KM. BicD and MAP7 Collaborate to Activate Homodimeric Drosophila Kinesin-1 by Complementary Mechanisms. Traffic 2025; 26:e70008. [PMID: 40384341 PMCID: PMC12086504 DOI: 10.1111/tra.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/04/2025] [Accepted: 05/06/2025] [Indexed: 05/20/2025]
Abstract
The folded auto-inhibited state of kinesin-1 is stabilized by multiple weak interactions and binds poorly to microtubules. Here we investigate the extent to which homodimeric Drosophila kinesin-1 lacking light chains is activated by the dynein activating adaptor Drosophila BicD. We show that one or two kinesins can bind to the central region of BicD (CC2), a region distinct from that which binds dynein-dynactin (CC1) and cargo-adaptor proteins (CC3). Kinesin light chain significantly reduces the amount of kinesin bound to BicD and thus regulates this interaction. Binding of BicD to kinesin enhances processive motion, suggesting that the adaptor relieves kinesin auto-inhibition. In contrast, the kinesin-binding domain of microtubule-associated protein 7 (MAP7) has minimal impact on the fraction of motors moving processively while full-length MAP7 enhances kinesin-1 recruitment to the microtubule and run length because of its microtubule-binding domain. BicD thus relieves auto-inhibition of kinesin, while MAP7 enhances motor engagement with the microtubules. When BicD and MAP7 are combined, the most robust activation of kinesin-1 occurs, highlighting the crosstalk between adaptors and microtubule-associated proteins in regulating transport.
Collapse
Affiliation(s)
- M. Yusuf Ali
- Department of Molecular Physiology & BiophysicsUniversity of VermontBurlingtonVermontUSA
| | - Hailong Lu
- Department of Molecular Physiology & BiophysicsUniversity of VermontBurlingtonVermontUSA
| | - Patricia M. Fagnant
- Department of Molecular Physiology & BiophysicsUniversity of VermontBurlingtonVermontUSA
| | - Jill E. Macfarlane
- Department of Molecular Physiology & BiophysicsUniversity of VermontBurlingtonVermontUSA
| | - Kathleen M. Trybus
- Department of Molecular Physiology & BiophysicsUniversity of VermontBurlingtonVermontUSA
| |
Collapse
|
5
|
Gillies JP, Little SR, Siva A, Hancock WO, DeSantis ME. Cargo adaptor identity controls the mechanism and kinetics of dynein activation. J Biol Chem 2025; 301:108358. [PMID: 40021125 PMCID: PMC11997335 DOI: 10.1016/j.jbc.2025.108358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/22/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025] Open
Abstract
Cytoplasmic dynein-1 (dynein), the primary retrograde motor in most eukaryotes, supports the movement of hundreds of distinct cargos, each with specific trafficking requirements. To achieve this functional diversity, dynein must bind to the multi-subunit complex dynactin and one of a family of cargo adaptors to be converted into an active, processive motor complex. Very little is known about the dynamic processes that promote the formation of this complex. To delineate the kinetic steps that lead to dynein activation, we developed a single-molecule fluorescence assay to visualize the real-time formation of dynein-dynactin-adaptor complexes in vitro. We found that dynactin and adaptors bind dynein independently rather than cooperatively. We also found that different dynein adaptors promote dynein-dynactin-adaptor assembly with dramatically different kinetics, which results in complex formation occurring via different assembly pathways. Despite differences in association rates or mechanism of assembly, all adaptors tested can generate a population of tripartite complexes that are very stable. Our work provides a model for how modulating the kinetics of dynein-dynactin-adaptor binding can be harnessed to promote differential dynein activation and reveals a new facet of the functional diversity of the dynein motor.
Collapse
Affiliation(s)
- John P Gillies
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Saffron R Little
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Aravintha Siva
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - William O Hancock
- Departments of Biomedical Engineering and Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Morgan E DeSantis
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
6
|
Chang L, Xiang QM, Liao ZT, Zhu JQ, Mu CK, Wang CL, Hou CC. Pt-LIS1 participates nuclear deformation and acrosome formation via regulating Dynein-1 during spermatogenesis in Portunus trituberculatus. Sci Rep 2025; 15:6632. [PMID: 39994263 PMCID: PMC11850704 DOI: 10.1038/s41598-024-83566-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/16/2024] [Indexed: 02/26/2025] Open
Abstract
Spermatogenesis involves complex dynamic mechanisms. Dynein-1 is a key carrier in cellular cargo transport, participating in nuclear deformation and acrosome formation during spermatogenesis. However, the regulatory mechanisms of Dynein-1 during cargo transport remain unknown. In this study, we explored the role of Lissencephaly 1 (LIS1) in spermatogenesis and its impact on Dynein-1 cargo transport in Portunus trituberculatus. LIS1 was known as a Dynein-1 regulator, which is a causative gene of anencephaly syndrome. Pt-Lis1 was cloned from the crab testis, and its highly expression was observed in the testis. Pt-LIS1 dynamically localized around the nucleus and acrosome during spermatogenesis, colocalizing with Dynein-1 subunits, microtubules, mitochondrial markers (PHB), and Acrosin. RNA interference reduced Pt-Lis1 expression, leading to decreased expression of Pt-dhc and Pt-dic. During spermatogenesis, the signals of Pt-LIS1, Pt-DHC, Pt-DIC, and α-Tubulin were weakened and showed disorganized distribution. The colocalization of Pt-LIS1 with Pt-DHC and Pt-DIC decreased, while abnormal colocalization significantly increased. In addition, caspase-3 and p53 expression significantly increased after Pt-Lis1 silencing, indicating association with apoptosis in spermatogenic cells. All these results suggest that LIS1 played a crucial role in crustacean spermatogenesis by regulating nuclear deformation and acrosome formation through modulating Dynein-1 transport cargoes along microtubules.
Collapse
Affiliation(s)
- Le Chang
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education and Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Qiu Meng Xiang
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education and Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Zai-Tian Liao
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education and Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Jun-Quan Zhu
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education and Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Chang-Kao Mu
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education and Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Chun-Lin Wang
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education and Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Cong-Cong Hou
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education and Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
7
|
Ali MY, Lu H, Fagnant PM, Macfarlane JE, Trybus KM. BicD and MAP7 collaborate to activate homodimeric Drosophila kinesin-1 by complementary mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.11.632512. [PMID: 39868150 PMCID: PMC11761035 DOI: 10.1101/2025.01.11.632512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The folded auto-inhibited state of kinesin-1 is stabilized by multiple weak interactions and binds weakly to microtubules. Here we investigate the extent to which homodimeric Drosophila kinesin-1 lacking light chains is activated by the dynein activating adaptor Drosophila BicD. We show that one or two kinesins can bind to the central region of BicD (CC2), a region distinct from that which binds dynein-dynactin (CC1) and cargo-adaptor proteins (CC3). Kinesin light chain significantly reduces the amount of kinesin bound to BicD and thus regulates this interaction. Binding of kinesin to BicD increases the number of motors bound to the microtubule, the fraction moving processively and the run length, suggesting that BicD relieves kinesin auto-inhibition. In contrast, microtubule-associated protein 7 (MAP7) has minimal impact on the percentage of motors moving processively but enhances both kinesin-1 recruitment to microtubules and run length. BicD relieves auto-inhibition of kinesin, while MAP7 enables activated motors to engage productively with microtubules. When BicD and MAP7 are combined, the most robust activation of kinesin-1 occurs, highlighting the crosstalk between adaptors and microtubule associated proteins in regulating transport. These observations imply that when both dynein and kinesin-1 are simultaneously bound to BicD, the direction the complex moves on MTs will be influenced by MAP7 and the number of bound kinesins.
Collapse
|
8
|
Falnikar A, Quintremil S, Zhao HJ, Cheng HY, Helmer P, Tsai JW, Vallee RB. The nucleoporin Nup153 is the anchor for Kif1a during basal nuclear migration in brain progenitor cells. Cell Rep 2024; 43:115008. [PMID: 39666457 PMCID: PMC11702353 DOI: 10.1016/j.celrep.2024.115008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/14/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024] Open
Abstract
Radial glial progenitors (RGPs) are highly elongated epithelial cells that give rise to most stem cells, neurons, and glia in the vertebrate cerebral cortex. During development, the RGP nuclei exhibit a striking pattern of cell-cycle-dependent oscillatory movements known as interkinetic nuclear migration (INM), which we previously found to be mediated during G1 by the kinesin Kif1a and during G2 by cytoplasmic dynein, recruited to the nuclear envelope by the nucleoporins RanBP2 and Nup133. We now identify Nup153 as a nucleoporin anchor for Kif1a, responsible for G1-specific basal nuclear migration, providing a complete model for the mechanisms underlying this basic but mysterious behavior, with broad implications for understanding brain development.
Collapse
Affiliation(s)
- Aditi Falnikar
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| | - Sebastian Quintremil
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Hung-Jun Zhao
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Haw-Yuan Cheng
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Paige Helmer
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Jin-Wu Tsai
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
9
|
Lima JT, Ferreira JG. Mechanobiology of the nucleus during the G2-M transition. Nucleus 2024; 15:2330947. [PMID: 38533923 DOI: 10.1080/19491034.2024.2330947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Cellular behavior is continuously influenced by mechanical forces. These forces span the cytoskeleton and reach the nucleus, where they trigger mechanotransduction pathways that regulate downstream biochemical events. Therefore, the nucleus has emerged as a regulator of cellular response to mechanical stimuli. Cell cycle progression is regulated by cyclin-CDK complexes. Recent studies demonstrated these biochemical pathways are influenced by mechanical signals, highlighting the interdependence of cellular mechanics and cell cycle regulation. In particular, the transition from G2 to mitosis (G2-M) shows significant changes in nuclear structure and organization, ranging from nuclear pore complex (NPC) and nuclear lamina disassembly to chromosome condensation. The remodeling of these mechanically active nuclear components indicates that mitotic entry is particularly sensitive to forces. Here, we address how mechanical forces crosstalk with the nucleus to determine the timing and efficiency of the G2-M transition. Finally, we discuss how the deregulation of nuclear mechanics has consequences for mitosis.
Collapse
Affiliation(s)
- Joana T Lima
- Epithelial Polarity and Cell Division Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina do Porto, Porto, Portugal
- Programa Doutoral em Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Jorge G Ferreira
- Epithelial Polarity and Cell Division Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina do Porto, Porto, Portugal
| |
Collapse
|
10
|
Del Gobbo GF, Wang X, MacDonald SK, Liang Y, McMillan HJ, Lemire G, Boycott KM. A Novel De Novo Splice Acceptor Variant in BICD2 Is Associated With Spinal Muscular Atrophy. Am J Med Genet A 2024:e63944. [PMID: 39559931 DOI: 10.1002/ajmg.a.63944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024]
Affiliation(s)
- Giulia F Del Gobbo
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - Xueqi Wang
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - Stella K MacDonald
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Yijing Liang
- Centre for Computational Medicine, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hugh J McMillan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neurology, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Gabrielle Lemire
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada
| |
Collapse
|
11
|
Teixeira V, Singh K, Gama JB, Celestino R, Carvalho AX, Pereira P, Abreu CM, Dantas TJ, Carter AP, Gassmann R. CDR2 is a dynein adaptor recruited by kinectin to regulate ER sheet organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622207. [PMID: 39574738 PMCID: PMC11580933 DOI: 10.1101/2024.11.06.622207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The endoplasmic reticulum (ER) relies on the microtubule cytoskeleton for distribution and remodelling of its extended membrane network, but how microtubule-based motors contribute to ER organization remains unclear. Using biochemical and cell-based assays, we identify cerebellar degeneration-related protein 2 (CDR2) and its paralog CDR2-like (CDR2L), onconeural antigens with poorly understood functions, as ER adaptors for cytoplasmic dynein-1 (dynein). We demonstrate that CDR2 is recruited by the integral ER membrane protein kinectin (KTN1) and that double knockout of CDR2 and CDR2L enhances KTN1-dependent ER sheet stacking, reversal of which by exogenous CDR2 requires its dynein-binding CC1 box motif. Exogenous CDR2 expression additionally promotes CC1 box-dependent clustering of ER sheets near centrosomes. CDR2 competes with the eEF1Bβ subunit of translation elongation factor 1 for binding to KTN1, and eEF1Bβ knockdown increases endogenous CDR2 levels on ER sheets, inducing their centrosome-proximal clustering. Our study describes a novel molecular pathway that implicates dynein in ER sheet organization and may be involved in the pathogenesis of paraneoplastic cerebellar degeneration.
Collapse
Affiliation(s)
- Vanessa Teixeira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Kashish Singh
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - José B. Gama
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Ricardo Celestino
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Ana Xavier Carvalho
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Paulo Pereira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Carla M.C. Abreu
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Tiago J. Dantas
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | | | - Reto Gassmann
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| |
Collapse
|
12
|
Gillies JP, Little SR, Hancock WO, DeSantis ME. Cargo adaptor identity controls the mechanism and kinetics of dynein activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617440. [PMID: 39416085 PMCID: PMC11482818 DOI: 10.1101/2024.10.09.617440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cytoplasmic dynein-1 (dynein), the primary retrograde motor in most eukaryotes, supports the movement of hundreds of distinct cargos, each with specific trafficking requirements. To achieve this functional diversity, dynein must bind to the multi-subunit complex dynactin and one of a family of cargo adaptors to be converted into an active, processive motor complex. Very little is known about the dynamic processes that promote the formation of this complex. To delineate the kinetic steps that lead to dynein activation, we developed a single-molecule fluorescence assay to visualize the real-time formation of dynein-dynactin-adaptor complexes in vitro. We found that dynactin and adaptors bind dynein independently rather than cooperatively. We also found that different dynein adaptors promote dynein-dynactin-adaptor assembly with dramatically different kinetics, which results in complex formation occurring via different assembly pathways. Despite differences in association rates or mechanism of assembly, all adaptors tested can generate a population of tripartite complexes that are very stable. Our work provides a model for how modulating the kinetics of dynein-dynactin-adaptor binding can be harnessed to promote differential dynein activation and reveals a new facet of the functional diversity of the dynein motor.
Collapse
Affiliation(s)
- John P. Gillies
- University of Michigan, Department of Molecular, Cellular, and Developmental Biology, Ann Arbor, MI 48109
| | - Saffron R. Little
- University of Michigan, Department of Molecular, Cellular, and Developmental Biology, Ann Arbor, MI 48109
| | - William O. Hancock
- Pennsylvania State University, Departments of Biomedical Engineering and Chemistry, University Park, PA 16802
| | - Morgan E. DeSantis
- University of Michigan, Department of Molecular, Cellular, and Developmental Biology, Ann Arbor, MI 48109
| |
Collapse
|
13
|
Doobin DJ, Helmer P, Carabalona A, Bertipaglia C, Vallee RB. The Role of Nde1 phosphorylation in interkinetic nuclear migration and neural migration during cortical development. Mol Biol Cell 2024; 35:ar129. [PMID: 39167527 PMCID: PMC11481692 DOI: 10.1091/mbc.e24-05-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/18/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
Nde1 is a cytoplasmic dynein regulatory protein with important roles in vertebrate brain development. One noteworthy function is in the nuclear oscillatory behavior in neural progenitor cells, the control and mechanism of which remain poorly understood. Nde1 contains multiple phosphorylation sites for the cell cycle-dependent protein kinase CDK1, though the function of these sites is not well understood. To test their role in brain development, we expressed phosphorylation-state mutant forms of Nde1 in embryonic rat brains using in utero electroporation. We find that Nde1 T215 and T243 phosphomutants block apical interkinetic nuclear migration (INM) and, consequently, mitosis in radial glial progenitor cells. Another Nde1 phosphomutant at T246 also interfered with mitotic entry without affecting INM, suggesting a more direct role for Nde1 T246 in mitotic regulation. We also found that the Nde1 S214F mutation, which is associated with schizophrenia, inhibits Cdk5 phosphorylation at an adjacent residue which causes alterations in neuronal lamination. These results together identify important new roles for Nde1 phosphorylation in neocortical development and disease, and represent the first evidence for Nde1 phosphorylation roles in INM and neuronal lamination.
Collapse
Affiliation(s)
| | - Paige Helmer
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
| | - Aurelie Carabalona
- Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| | | | - Richard B. Vallee
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
14
|
Fu DD, Zhang LJ, Tang B, Du L, Li J, Ao J, Zhang ZL, Wang ZG, Liu SL, Pang DW. Quantitatively Dissecting Triple Roles of Dynactin in Dynein-Driven Transport of Influenza Virus by Quantum Dot-Based Single-Virus Tracking. ACS NANO 2024; 18:25893-25905. [PMID: 39214619 DOI: 10.1021/acsnano.4c10564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
After entering host cells by endocytosis, influenza A virus (IAV) is transported along microfilaments and then transported by dynein along microtubules (MTs) to the perinuclear region for genome release. Understanding the mechanisms of dynein-driven transport is significant for a comprehensive understanding of IAV infection. In this work, the roles of dynactin in dynein-driven transport of IAV were quantitatively dissected in situ using quantum dot-based single-virus tracking. It was revealed that dynactin was essential for dynein to transport IAV toward the nucleus. After virus entry, virus-carrying vesicles bound to dynein and dynactin before being delivered to MTs. The attachment of dynein to the vesicles was dependent on dynactin and its subunits, p150Glued and Arp1. Once viruses reached MTs, dynactin-assisted dynein initiates retrograde transport of IAV. Importantly, the retrograde transport of viruses could be initiated at both plus ends (32%) and other regions on MTs (68%). Subsequently, dynactin accompanied and assisted dynein to persistently transport the virus along MTs in the retrograde direction. This study revealed the dynactin-dependent dynein-driven transport process of IAV, enhancing our understanding of IAV infection and providing important insights into the cell's endocytic transport mechanism.
Collapse
Affiliation(s)
- Dan-Dan Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Li-Juan Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Bo Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Lei Du
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Jing Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Jian Ao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
15
|
Iversen LV, Tandrup Nielsen C, Jacobsen S, Hermansen ML, Diederichsen LP, Friis T. Bicaudal D2 autoantibodies are highly specific for systemic sclerosis. Scand J Rheumatol 2024; 53:349-358. [PMID: 38913821 DOI: 10.1080/03009742.2024.2335718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/25/2024] [Indexed: 06/26/2024]
Abstract
OBJECTIVE Autoantibodies directed against the intracellular protein bicaudal D2 (BICD2) have been identified as a specific marker of systemic sclerosis (SSc). Since autoantibodies are of value in predicting disease onset and identifying meaningful clinical subsets, as well as having prognostic value, this study aimed to establish the prevalence of BICD2 autoantibodies (anti-BICD2) in a cohort of patients with connective tissue disease and healthy controls. METHOD In this cross-sectional study, 363 patients with connective tissue disease (121 SSc, 141 systemic lupus erythematosus, 101 myositis, and 100 blood donors) were tested for the presence of anti-BICD2. All SSc patients were tested for specific anti-nuclear antibodies (ANAs), and clinical and laboratory associations were evaluated in the SSc patients, stratified by anti-BICD2 status. RESULTS In the SSc cohort, 35 patients had autoantibodies directed against BICD2. The specificity of anti-BICD2 in SSc patients was 96.5%; however, the sensitivity was only 28.9%. Anti-BICD2 and centromere autoantibodies were present together in 91% of the anti-BICD2-positive SSc patients, and in none of the cases was anti-BICD2 the only antibody present. Anti-BICD2-positive patients had lower forced expiratory volume in 1 s (FEV1) (p = 0.01) and lower carbon monoxide transfer coefficient (KCO) (p = 0.01) than anti-BICD2-negative SSc patients, but they had higher forced vital capacity (p = 0.03). CONCLUSION Autoantibodies against BICD2 were highly specific for SSc patients. Reduced FEV1 and KCO in anti-BICD2-positive patients may indicate that the presence of anti-BICD2 is associated with altered lung function in an unknown pathophysiological manner, which awaits further elucidation.
Collapse
Affiliation(s)
- L V Iversen
- Department of Dermatology, Odense University Hospital, Odense, Denmark
- Department of Dermatology, Bispebjerg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark
| | - C Tandrup Nielsen
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark
- Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - S Jacobsen
- Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - M-Lf Hermansen
- Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - L P Diederichsen
- Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - T Friis
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
16
|
Zhao X, Quintremil S, Rodriguez Castro ED, Cui H, Moraga D, Wang T, Vallee RB, Solmaz SR. Molecular mechanism for recognition of the cargo adapter Rab6 GTP by the dynein adapter BicD2. Life Sci Alliance 2024; 7:e202302430. [PMID: 38719748 PMCID: PMC11077774 DOI: 10.26508/lsa.202302430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Rab6 is a key modulator of protein secretion. The dynein adapter Bicaudal D2 (BicD2) recruits the motors cytoplasmic dynein and kinesin-1 to Rab6GTP-positive vesicles for transport; however, it is unknown how BicD2 recognizes Rab6. Here, we establish a structural model for recognition of Rab6GTP by BicD2, using structure prediction and mutagenesis. The binding site of BicD2 spans two regions of Rab6 that undergo structural changes upon the transition from the GDP- to GTP-bound state, and several hydrophobic interface residues are rearranged, explaining the increased affinity of the active GTP-bound state. Mutations of Rab6GTP that abolish binding to BicD2 also result in reduced co-migration of Rab6GTP/BicD2 in cells, validating our model. These mutations also severely diminished the motility of Rab6-positive vesicles in cells, highlighting the importance of the Rab6GTP/BicD2 interaction for overall motility of the multi-motor complex that contains both kinesin-1 and dynein. Our results provide insights into trafficking of secretory and Golgi-derived vesicles and will help devise therapies for diseases caused by BicD2 mutations, which selectively affect the affinity to Rab6 and other cargoes.
Collapse
Affiliation(s)
- Xiaoxin Zhao
- Department of Chemistry, Binghamton University, Binghamton, NY, USA
| | - Sebastian Quintremil
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | | | - Heying Cui
- Department of Chemistry, Binghamton University, Binghamton, NY, USA
| | - David Moraga
- Department of Chemistry, Binghamton University, Binghamton, NY, USA
| | - Tingyao Wang
- Department of Chemistry, Binghamton University, Binghamton, NY, USA
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Sozanne R Solmaz
- Department of Chemistry, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
17
|
Xiong GJ, Sheng ZH. Presynaptic perspective: Axonal transport defects in neurodevelopmental disorders. J Cell Biol 2024; 223:e202401145. [PMID: 38568173 PMCID: PMC10988239 DOI: 10.1083/jcb.202401145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Disruption of synapse assembly and maturation leads to a broad spectrum of neurodevelopmental disorders. Presynaptic proteins are largely synthesized in the soma, where they are packaged into precursor vesicles and transported into distal axons to ensure precise assembly and maintenance of presynapses. Due to their morphological features, neurons face challenges in the delivery of presynaptic cargos to nascent boutons. Thus, targeted axonal transport is vital to build functional synapses. A growing number of mutations in genes encoding the transport machinery have been linked to neurodevelopmental disorders. Emerging lines of evidence have started to uncover presynaptic mechanisms underlying axonal transport defects, thus broadening the view of neurodevelopmental disorders beyond postsynaptic mechanisms. In this review, we discuss presynaptic perspectives of neurodevelopmental disorders by focusing on impaired axonal transport and disturbed assembly and maintenance of presynapses. We also discuss potential strategies for restoring axonal transport as an early therapeutic intervention.
Collapse
Affiliation(s)
- Gui-Jing Xiong
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Speckhart K, Choi J, DiMaio D, Tsai B. The BICD2 dynein cargo adaptor binds to the HPV16 L2 capsid protein and promotes HPV infection. PLoS Pathog 2024; 20:e1012289. [PMID: 38829892 PMCID: PMC11230635 DOI: 10.1371/journal.ppat.1012289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/08/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024] Open
Abstract
During entry, human papillomavirus (HPV) traffics from the endosome to the trans Golgi network (TGN) and Golgi and then the nucleus to cause infection. Although dynein is thought to play a role in HPV infection, how this host motor recruits the virus to support infection and which entry step(s) requires dynein are unclear. Here we show that the dynein cargo adaptor BICD2 binds to the HPV L2 capsid protein during entry, recruiting HPV to dynein for transport of the virus along the endosome-TGN/Golgi axis to promote infection. In the absence of BICD2 function, HPV accumulates in the endosome and TGN and infection is inhibited. Cell-based and in vitro binding studies identified a short segment near the C-terminus of L2 that can directly interact with BICD2. Our results reveal the molecular basis by which the dynein motor captures HPV to promote infection and identify this virus as a novel cargo of the BICD2 dynein adaptor.
Collapse
Affiliation(s)
- Kaitlyn Speckhart
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jeongjoon Choi
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
19
|
Stephens C, Naghavi MH. The host cytoskeleton: a key regulator of early HIV-1 infection. FEBS J 2024; 291:1835-1848. [PMID: 36527282 PMCID: PMC10272291 DOI: 10.1111/febs.16706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Due to its central role in cell biology, the cytoskeleton is a key regulator of viral infection, influencing nearly every step of the viral life cycle. In this review, we will discuss the role of two key components of the cytoskeleton, namely the actin and microtubule networks in early HIV-1 infection. We will discuss key contributions to processes ranging from the attachment and entry of viral particles at the cell surface to their arrival and import into the nucleus and identify areas where further research into this complex relationship may yield new insights into HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Christopher Stephens
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Mojgan H. Naghavi
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
20
|
Lima JT, Pereira AJ, Ferreira JG. The LINC complex ensures accurate centrosome positioning during prophase. Life Sci Alliance 2024; 7:e202302404. [PMID: 38228373 PMCID: PMC10791920 DOI: 10.26508/lsa.202302404] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
Accurate centrosome separation and positioning during early mitosis relies on force-generating mechanisms regulated by a combination of extracellular, cytoplasmic, and nuclear cues. The identity of the nuclear cues involved in this process remains largely unknown. Here, we investigate how the prophase nucleus contributes to centrosome positioning during the initial stages of mitosis, using a combination of cell micropatterning, high-resolution live-cell imaging, and quantitative 3D cellular reconstruction. We show that in untransformed RPE-1 cells, centrosome positioning is regulated by a nuclear signal, independently of external cues. This nuclear mechanism relies on the linker of nucleoskeleton and cytoskeleton complex that controls the timely loading of dynein on the nuclear envelope (NE), providing spatial cues for robust centrosome positioning on the shortest nuclear axis, before nuclear envelope permeabilization. Our results demonstrate how nuclear-cytoskeletal coupling maintains a robust centrosome positioning mechanism to ensure efficient mitotic spindle assembly.
Collapse
Affiliation(s)
- Joana T Lima
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
- Departamento de Biomedicina, Faculdade de Medicina do Porto, Unidade de Biologia Experimental, Porto, Portugal
- Programa Doutoral em Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - António J Pereira
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Jorge G Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
- Departamento de Biomedicina, Faculdade de Medicina do Porto, Unidade de Biologia Experimental, Porto, Portugal
| |
Collapse
|
21
|
Mansuri S, Jain A, Singh R, Rawat S, Mondal D, Raychaudhuri S. Widespread nuclear lamina injuries defeat proteostatic purposes of α-synuclein amyloid inclusions. J Cell Sci 2024; 137:jcs261935. [PMID: 38477372 DOI: 10.1242/jcs.261935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Biogenesis of inclusion bodies (IBs) facilitates protein quality control (PQC). Canonical aggresomes execute degradation of misfolded proteins while non-degradable amyloids sequester into insoluble protein deposits. Lewy bodies (LBs) are filamentous amyloid inclusions of α-synuclein, but PQC benefits and drawbacks associated with LB-like IBs remain underexplored. Here, we report that crosstalk between filamentous LB-like IBs and aggresome-like IBs of α-synuclein (Syn-aggresomes) buffer the load, aggregation state, and turnover of the amyloidogenic protein in mouse primary neurons and HEK293T cells. Filamentous LB-like IBs possess unorthodox PQC capacities of self-quarantining α-synuclein amyloids and being degradable upon receding fresh amyloidogenesis. Syn-aggresomes equilibrate biogenesis of filamentous LB-like IBs by facilitating spontaneous degradation of α-synuclein and conditional turnover of disintegrated α-synuclein amyloids. Thus, both types of IB primarily contribute to PQC. Incidentally, the overgrown perinuclear LB-like IBs become degenerative once these are misidentified by BICD2, a cargo-adapter for the cytosolic motor-protein dynein. Microscopy indicates that microtubules surrounding the perinuclear filamentous inclusions are also distorted, misbalancing the cytoskeleton-nucleoskeleton tension leading to widespread lamina injuries. Together, nucleocytoplasmic mixing, DNA damage, and deregulated transcription of stress chaperones defeat the proteostatic purposes of the filamentous amyloids of α-synuclein.
Collapse
Affiliation(s)
- Shemin Mansuri
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Aanchal Jain
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Richa Singh
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Shivali Rawat
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Debodyuti Mondal
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Swasti Raychaudhuri
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
22
|
Hannaford MR, Rusan NM. Positioning centrioles and centrosomes. J Cell Biol 2024; 223:e202311140. [PMID: 38512059 PMCID: PMC10959756 DOI: 10.1083/jcb.202311140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Centrosomes are the primary microtubule organizer in eukaryotic cells. In addition to shaping the intracellular microtubule network and the mitotic spindle, centrosomes are responsible for positioning cilia and flagella. To fulfill these diverse functions, centrosomes must be properly located within cells, which requires that they undergo intracellular transport. Importantly, centrosome mispositioning has been linked to ciliopathies, cancer, and infertility. The mechanisms by which centrosomes migrate are diverse and context dependent. In many cells, centrosomes move via indirect motor transport, whereby centrosomal microtubules engage anchored motor proteins that exert forces on those microtubules, resulting in centrosome movement. However, in some cases, centrosomes move via direct motor transport, whereby the centrosome or centriole functions as cargo that directly binds molecular motors which then walk on stationary microtubules. In this review, we summarize the mechanisms of centrosome motility and the consequences of centrosome mispositioning and identify key questions that remain to be addressed.
Collapse
Affiliation(s)
- Matthew R. Hannaford
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nasser M. Rusan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Glover HL, Mendes M, Gomes-Neto J, Rusilowicz-Jones EV, Rigden DJ, Dittmar G, Urbé S, Clague MJ. Microtubule association of TRIM3 revealed by differential extraction proteomics. J Cell Sci 2024; 137:jcs261522. [PMID: 38149663 PMCID: PMC10917062 DOI: 10.1242/jcs.261522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023] Open
Abstract
The microtubule network is formed from polymerised tubulin subunits and associating proteins, which govern microtubule dynamics and a diverse array of functions. To identify novel microtubule-binding proteins, we have developed an unbiased biochemical assay, which relies on the selective extraction of cytosolic proteins from U2OS cells, while leaving behind the microtubule network. Candidate proteins are linked to microtubules by their sensitivities to the depolymerising drug nocodazole or the microtubule-stabilising drug taxol, which is quantitated by mass spectrometry. Our approach is benchmarked by co-segregation of tubulin and previously established microtubule-binding proteins. We then identify several novel candidate microtubule-binding proteins, from which we have selected the ubiquitin E3 ligase tripartite motif-containing protein 3 (TRIM3) for further characterisation. We map TRIM3 microtubule binding to its C-terminal NHL-repeat region. We show that TRIM3 is required for the accumulation of acetylated tubulin, following treatment with taxol. Furthermore, loss of TRIM3 partially recapitulates the reduction in nocodazole-resistant microtubules characteristic of α-tubulin acetyltransferase 1 (ATAT1) depletion. These results can be explained by a decrease in ATAT1 following depletion of TRIM3 that is independent of transcription.
Collapse
Affiliation(s)
- Hannah L. Glover
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool L69 3BX, UK
| | - Marta Mendes
- Proteomics of Cellular Signalling, Department of Infection and Immunity,Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Joana Gomes-Neto
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool L69 3BX, UK
| | - Emma V. Rusilowicz-Jones
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool L69 3BX, UK
| | - Daniel J. Rigden
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool L69 3BX, UK
| | - Gunnar Dittmar
- Proteomics of Cellular Signalling, Department of Infection and Immunity,Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, 2 Avenue de l'Université, Campus Belval, L-4365 Esch-sur-Alzette, Luxembourg
| | - Sylvie Urbé
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool L69 3BX, UK
| | - Michael J. Clague
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
24
|
Tagay Y, Kheirabadi S, Ataie Z, Singh RK, Prince O, Nguyen A, Zhovmer AS, Ma X, Sheikhi A, Tsygankov D, Tabdanov ED. Dynein-Powered Cell Locomotion Guides Metastasis of Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302229. [PMID: 37726225 PMCID: PMC10625109 DOI: 10.1002/advs.202302229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/20/2023] [Indexed: 09/21/2023]
Abstract
The principal cause of death in cancer patients is metastasis, which remains an unresolved problem. Conventionally, metastatic dissemination is linked to actomyosin-driven cell locomotion. However, the locomotion of cancer cells often does not strictly line up with the measured actomyosin forces. Here, a complementary mechanism of metastatic locomotion powered by dynein-generated forces is identified. These forces arise within a non-stretchable microtubule network and drive persistent contact guidance of migrating cancer cells along the biomimetic collagen fibers. It is also shown that the dynein-powered locomotion becomes indispensable during invasive 3D migration within a tissue-like luminal network formed by spatially confining granular hydrogel scaffolds (GHS) made up of microscale hydrogel particles (microgels). These results indicate that the complementary motricity mediated by dynein is always necessary and, in certain instances, sufficient for disseminating metastatic breast cancer cells. These findings advance the fundamental understanding of cell locomotion mechanisms and expand the spectrum of clinical targets against metastasis.
Collapse
Affiliation(s)
- Yerbol Tagay
- Department of PharmacologyPenn State College of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
| | - Sina Kheirabadi
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Zaman Ataie
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Rakesh K. Singh
- Department of Obstetrics & GynecologyGynecology OncologyUniversity of Rochester Medical CenterRochesterNY14642USA
| | - Olivia Prince
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Ashley Nguyen
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Alexander S. Zhovmer
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Xuefei Ma
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Amir Sheikhi
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
| | - Erdem D. Tabdanov
- Department of PharmacologyPenn State College of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
- Penn State Cancer InstitutePenn State College of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
| |
Collapse
|
25
|
Desgraupes S, Etienne L, Arhel NJ. RANBP2 evolution and human disease. FEBS Lett 2023; 597:2519-2533. [PMID: 37795679 DOI: 10.1002/1873-3468.14749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Ran-binding protein 2 (RANBP2)/Nup358 is a nucleoporin and a key component of the nuclear pore complex. Through its multiple functions (e.g., SUMOylation, regulation of nucleocytoplasmic transport) and subcellular localizations (e.g., at the nuclear envelope, kinetochores, annulate lamellae), it is involved in many cellular processes. RANBP2 dysregulation or mutation leads to the development of human pathologies, such as acute necrotizing encephalopathy 1, cancer, neurodegenerative diseases, and it is also involved in viral infections. The chromosomal region containing the RANBP2 gene is highly dynamic, with high structural variation and recombination events that led to the appearance of a gene family called RANBP2 and GCC2 Protein Domains (RGPD), with multiple gene loss/duplication events during ape evolution. Although RGPD homoplasy and maintenance during evolution suggest they might confer an advantage to their hosts, their functions are still unknown and understudied. In this review, we discuss the appearance and importance of RANBP2 in metazoans and its function-related pathologies, caused by an alteration of its expression levels (through promotor activity, post-transcriptional, or post-translational modifications), its localization, or genetic mutations.
Collapse
Affiliation(s)
- Sophie Desgraupes
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, France
| | - Lucie Etienne
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, France
| | - Nathalie J Arhel
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, France
| |
Collapse
|
26
|
Döhner K, Serrero MC, Sodeik B. The role of nuclear pores and importins for herpes simplex virus infection. Curr Opin Virol 2023; 62:101361. [PMID: 37672874 DOI: 10.1016/j.coviro.2023.101361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
Microtubule transport and nuclear import are functionally connected, and the nuclear pore complex (NPC) can interact with microtubule motors. For several alphaherpesvirus proteins, nuclear localization signals (NLSs) and their interactions with specific importin-α proteins have been characterized. Here, we review recent insights on the roles of microtubule motors, capsid-associated NLSs, and importin-α proteins for capsid transport, capsid docking to NPCs, and genome release into the nucleoplasm, as well as the role of importins for nuclear viral transcription, replication, capsid assembly, genome packaging, and nuclear capsid egress. Moreover, importin-α proteins exert antiviral effects by promoting the nuclear import of transcription factors inducing the expression of interferons (IFN), cytokines, and IFN-stimulated genes, and the IFN-inducible MxB restricts capsid docking to NPCs.
Collapse
Affiliation(s)
- Katinka Döhner
- Institute of Virology, Hannover Medical School, Hannover, Germany; Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany; RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany.
| | - Manutea C Serrero
- Institute of Virology, Hannover Medical School, Hannover, Germany; RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany; RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany; DZIF - German Centre for Infection Research, Braunschweig, Hannover, Germany.
| |
Collapse
|
27
|
Gibson JM, Zhao X, Ali MY, Solmaz SR, Wang C. A Structural Model for the Core Nup358-BicD2 Interface. Biomolecules 2023; 13:1445. [PMID: 37892127 PMCID: PMC10604712 DOI: 10.3390/biom13101445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Dynein motors facilitate the majority of minus-end-directed transport events on microtubules. The dynein adaptor Bicaudal D2 (BicD2) recruits the dynein machinery to several cellular cargo for transport, including Nup358, which facilitates a nuclear positioning pathway that is essential for the differentiation of distinct brain progenitor cells. Previously, we showed that Nup358 forms a "cargo recognition α-helix" upon binding to BicD2; however, the specifics of the BicD2-Nup358 interface are still not well understood. Here, we used AlphaFold2, complemented by two additional docking programs (HADDOCK and ClusPro) as well as mutagenesis, to show that the Nup358 cargo-recognition α-helix binds to BicD2 between residues 747 and 774 in an anti-parallel manner, forming a helical bundle. We identified two intermolecular salt bridges that are important to stabilize the interface. In addition, we uncovered a secondary interface mediated by an intrinsically disordered region of Nup358 that is directly N-terminal to the cargo-recognition α-helix and binds to BicD2 between residues 774 and 800. This is the same BicD2 domain that binds to the competing cargo adapter Rab6, which is important for the transport of Golgi-derived and secretory vesicles. Our results establish a structural basis for cargo recognition and selection by the dynein adapter BicD2, which facilitates transport pathways that are important for brain development.
Collapse
Affiliation(s)
- James M. Gibson
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Xiaoxin Zhao
- Department of Chemistry, Binghamton University, P.O. Box 6000, Binghamton, NY 13902, USA;
| | - M. Yusuf Ali
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA;
| | - Sozanne R. Solmaz
- Department of Chemistry, Binghamton University, P.O. Box 6000, Binghamton, NY 13902, USA;
| | - Chunyu Wang
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| |
Collapse
|
28
|
Theile L, Li X, Dang H, Mersch D, Anders S, Schiebel E. Centrosome linker diversity and its function in centrosome clustering and mitotic spindle formation. EMBO J 2023; 42:e109738. [PMID: 37401899 PMCID: PMC10476278 DOI: 10.15252/embj.2021109738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
The centrosome linker joins the two interphase centrosomes of a cell into one microtubule organizing center. Despite increasing knowledge on linker components, linker diversity in different cell types and their role in cells with supernumerary centrosomes remained unexplored. Here, we identified Ninein as a C-Nap1-anchored centrosome linker component that provides linker function in RPE1 cells while in HCT116 and U2OS cells, Ninein and Rootletin link centrosomes together. In interphase, overamplified centrosomes use the linker for centrosome clustering, where Rootletin gains centrosome linker function in RPE1 cells. Surprisingly, in cells with centrosome overamplification, C-Nap1 loss prolongs metaphase through persistent activation of the spindle assembly checkpoint indicated by BUB1 and MAD1 accumulation at kinetochores. In cells lacking C-Nap1, the reduction of microtubule nucleation at centrosomes and the delay in nuclear envelop rupture in prophase probably cause mitotic defects like multipolar spindle formation and chromosome mis-segregation. These defects are enhanced when the kinesin HSET, which normally clusters multiple centrosomes in mitosis, is partially inhibited indicating a functional interplay between C-Nap1 and centrosome clustering in mitosis.
Collapse
Affiliation(s)
- Laura Theile
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)‐ZMBH AllianzUniversität HeidelbergHeidelbergGermany
- Heidelberg Biosciences International Graduate School (HBIGS)Universität HeidelbergHeidelbergGermany
| | - Xue Li
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)‐ZMBH AllianzUniversität HeidelbergHeidelbergGermany
- Present address:
Laboratory for Cell Polarity RegulationRIKEN Center for Biosystems Dynamics ResearchOsakaJapan
| | - Hairuo Dang
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)‐ZMBH AllianzUniversität HeidelbergHeidelbergGermany
- Cell Biology and Biophysics UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | | | - Simon Anders
- Bioquant CenterUniversity of HeidelbergHeidelbergGermany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)‐ZMBH AllianzUniversität HeidelbergHeidelbergGermany
| |
Collapse
|
29
|
Monteiro P, Yeon B, Wallis SS, Godinho SA. Centrosome amplification fine tunes tubulin acetylation to differentially control intracellular organization. EMBO J 2023; 42:e112812. [PMID: 37403793 PMCID: PMC10425843 DOI: 10.15252/embj.2022112812] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023] Open
Abstract
Intracellular organelle organization is conserved in eukaryotic cells and is primarily achieved through active transport by motor proteins along the microtubule cytoskeleton. Microtubule post-translational modifications (PTMs) can contribute to microtubule diversity and differentially regulate motor-mediated transport. Here, we show that centrosome amplification, commonly observed in cancer and shown to promote aneuploidy and invasion, induces a global change in organelle positioning towards the cell periphery and facilitates nuclear migration through confined spaces. This reorganization requires kinesin-1 and is analogous to the loss of dynein. Cells with amplified centrosomes display increased levels of acetylated tubulin, a PTM that could enhance kinesin-1-mediated transport. Depletion of α-tubulin acetyltransferase 1 (αTAT1) to block tubulin acetylation rescues the displacement of centrosomes, mitochondria, and vimentin but not Golgi or endosomes. Analyses of the distribution of total and acetylated microtubules indicate that the polarized distribution of modified microtubules, rather than levels alone, plays an important role in the positioning of specific organelles, such as the centrosome. We propose that increased tubulin acetylation differentially impacts kinesin-1-mediated organelle displacement to regulate intracellular organization.
Collapse
Affiliation(s)
- Pedro Monteiro
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
- Institut Curie, Paris Sciences and Lettres Research UniversityCentre National de la Recherche Scientifique, UMR144ParisFrance
| | - Bongwhan Yeon
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Samuel S Wallis
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Susana A Godinho
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| |
Collapse
|
30
|
Li P, Messina G, Lehner CF. Nuclear elongation during spermiogenesis depends on physical linkage of nuclear pore complexes to bundled microtubules by Drosophila Mst27D. PLoS Genet 2023; 19:e1010837. [PMID: 37428798 PMCID: PMC10359004 DOI: 10.1371/journal.pgen.1010837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023] Open
Abstract
Spermatozoa in animal species are usually highly elongated cells with a long motile tail attached to a head that contains the haploid genome in a compact and often elongated nucleus. In Drosophila melanogaster, the nucleus is compacted two hundred-fold in volume during spermiogenesis and re-modeled into a needle that is thirty-fold longer than its diameter. Nuclear elongation is preceded by a striking relocalization of nuclear pore complexes (NPCs). While NPCs are initially located throughout the nuclear envelope (NE) around the spherical nucleus of early round spermatids, they are later confined to one hemisphere. In the cytoplasm adjacent to this NPC-containing NE, the so-called dense complex with a strong bundle of microtubules is assembled. While this conspicuous proximity argued for functional significance of NPC-NE and microtubule bundle, experimental confirmation of their contributions to nuclear elongation has not yet been reported. Our functional characterization of the spermatid specific Mst27D protein now resolves this deficit. We demonstrate that Mst27D establishes physical linkage between NPC-NE and dense complex. The C-terminal region of Mst27D binds to the nuclear pore protein Nup358. The N-terminal CH domain of Mst27D, which is similar to that of EB1 family proteins, binds to microtubules. At high expression levels, Mst27D promotes bundling of microtubules in cultured cells. Microscopic analyses indicated co-localization of Mst27D with Nup358 and with the microtubule bundles of the dense complex. Time-lapse imaging revealed that nuclear elongation is accompanied by a progressive bundling of microtubules into a single elongated bundle. In Mst27D null mutants, this bundling process does not occur and nuclear elongation is abnormal. Thus, we propose that Mst27D permits normal nuclear elongation by promoting the attachment of the NPC-NE to the microtubules of the dense complex, as well as the progressive bundling of these microtubules.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Giovanni Messina
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Christian F Lehner
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Saadi SM, Cali E, Khalid LB, Yousaf H, Zafar G, Khan HN, Sher M, Vona B, Abdullah U, Malik NA, Klar J, Efthymiou S, Dahl N, Houlden H, Toft M, Baig SM, Fatima A, Iqbal Z. Genetic Investigation of Consanguineous Pakistani Families Segregating Rare Spinocerebellar Disorders. Genes (Basel) 2023; 14:1404. [PMID: 37510308 PMCID: PMC10379343 DOI: 10.3390/genes14071404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Spinocerebellar disorders are a vast group of rare neurogenetic conditions, generally characterized by overlapping clinical symptoms including progressive cerebellar ataxia, spastic paraparesis, cognitive deficiencies, skeletal/muscular and ocular abnormalities. The objective of the present study is to identify the underlying genetic causes of the rare spinocerebellar disorders in the Pakistani population. Herein, nine consanguineous families presenting different spinocerebellar phenotypes have been investigated using whole exome sequencing. Sanger sequencing was performed for segregation analysis in all the available individuals of each family. The molecular analysis of these families identified six novel pathogenic/likely pathogenic variants; ZFYVE26: c.1093del, SACS: c.1201C>T, BICD2: c.2156A>T, ALS2: c.2171-3T>G, ALS2: c.3145T>A, and B4GALNT1: c.334_335dup, and three already reported pathogenic variants; FA2H: c.159_176del, APTX: c.689T>G, and SETX: c.5308_5311del. The clinical features of all patients in each family are concurrent with the already reported cases. Hence, the current study expands the mutation spectrum of rare spinocerebellar disorders and implies the usefulness of next-generation sequencing in combination with clinical investigation for better diagnosis of these overlapping phenotypes.
Collapse
Affiliation(s)
- Saadia Maryam Saadi
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Elisa Cali
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Lubaba Bintee Khalid
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
| | - Hammad Yousaf
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
| | - Ghazala Zafar
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
| | - Haq Nawaz Khan
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
| | - Muhammad Sher
- Department of Allied Health Sciences, Iqra National University Swat Campus, Swat 19200, Pakistan
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Uzma Abdullah
- University Institute of Biochemistry and Biotechnology (UIBB), Pir Mehr Ali Shah Arid Agriculture University Rawalpindi (PMAS-AAUR), Rawalpindi 46300, Pakistan
| | - Naveed Altaf Malik
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
| | - Joakim Klar
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, P.O. Box 815, 751 08 Uppsala, Sweden
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, P.O. Box 815, 751 08 Uppsala, Sweden
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mathias Toft
- Institute of Clinical Medicine, University of Oslo, P.O. Box 1171, N-0318 Oslo, Norway
- Department of Neurology, Oslo University Hospital, P.O. Box 4950 Nydalen, N-0424 Oslo, Norway
| | - Shahid Mahmood Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
| | - Ambrin Fatima
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
| | - Zafar Iqbal
- Department of Neurology, Oslo University Hospital, P.O. Box 4950 Nydalen, N-0424 Oslo, Norway
| |
Collapse
|
32
|
Wimmer R, Baffet AD. The microtubule cytoskeleton of radial glial progenitor cells. Curr Opin Neurobiol 2023; 80:102709. [PMID: 37003105 DOI: 10.1016/j.conb.2023.102709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 04/01/2023]
Abstract
A high number of genetic mutations associated with cortical malformations are found in genes coding for microtubule-related factors. This has stimulated research to understand how the various microtubule-based processes are regulated to build a functional cerebral cortex. Here, we focus our review on the radial glial progenitor cells, the stem cells of the developing neocortex, summarizing research mostly performed in rodents and humans. We highlight how the centrosomal and acentrosomal microtubule networks are organized during interphase to support polarized transport and proper attachment of the apical and basal processes. We describe the molecular mechanism for interkinetic nuclear migration (INM), a microtubule-dependent oscillation of the nucleus. Finally, we describe how the mitotic spindle is built to ensure proper chromosome segregation, with a strong focus on factors mutated in microcephaly.
Collapse
Affiliation(s)
- Ryszard Wimmer
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France. https://twitter.com/RyWim
| | - Alexandre D Baffet
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France; Institut national de la santé et de la recherche médicale (INSERM), France.
| |
Collapse
|
33
|
Yoshida MW, Hakozaki M, Goshima G. Armadillo repeat-containing kinesin represents the versatile plus-end-directed transporter in Physcomitrella. NATURE PLANTS 2023; 9:733-748. [PMID: 37142749 DOI: 10.1038/s41477-023-01397-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/21/2023] [Indexed: 05/06/2023]
Abstract
Kinesin-1, also known as conventional kinesin, is widely used for microtubule plus-end-directed (anterograde) transport of various cargos in animal cells. However, a motor functionally equivalent to the conventional kinesin has not been identified in plants, which lack the kinesin-1 genes. Here we show that plant-specific armadillo repeat-containing kinesin (ARK) is the long sought-after versatile anterograde transporter in plants. In ARK mutants of the moss Physcomitrium patens, the anterograde motility of nuclei, chloroplasts, mitochondria and secretory vesicles was suppressed. Ectopic expression of non-motile or tail-deleted ARK did not restore organelle distribution. Another prominent macroscopic phenotype of ARK mutants was the suppression of cell tip growth. We showed that this defect was attributed to the mislocalization of actin regulators, including RopGEFs; expression and forced apical localization of RopGEF3 partially rescued the growth phenotype of the ARK mutant. The mutant phenotypes were partially rescued by ARK homologues in Arabidopsis thaliana, suggesting the conservation of ARK functions in plants.
Collapse
Affiliation(s)
- Mari W Yoshida
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Maya Hakozaki
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Gohta Goshima
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, Japan.
| |
Collapse
|
34
|
Garner KE, Salter A, Lau CK, Gurusaran M, Villemant CM, Granger EP, McNee G, Woodman PG, Davies OR, Burke BE, Allan VJ. The meiotic LINC complex component KASH5 is an activating adaptor for cytoplasmic dynein. J Cell Biol 2023; 222:e202204042. [PMID: 36946995 PMCID: PMC10071310 DOI: 10.1083/jcb.202204042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/15/2022] [Accepted: 02/10/2023] [Indexed: 03/23/2023] Open
Abstract
Cytoplasmic dynein-driven movement of chromosomes during prophase I of mammalian meiosis is essential for synapsis and genetic exchange. Dynein connects to chromosome telomeres via KASH5 and SUN1 or SUN2, which together span the nuclear envelope. Here, we show that KASH5 promotes dynein motility in vitro, and cytosolic KASH5 inhibits dynein's interphase functions. KASH5 interacts with a dynein light intermediate chain (DYNC1LI1 or DYNC1LI2) via a conserved helix in the LIC C-terminal, and this region is also needed for dynein's recruitment to other cellular membranes. KASH5's N-terminal EF-hands are essential as the interaction with dynein is disrupted by mutation of key calcium-binding residues, although it is not regulated by cellular calcium levels. Dynein can be recruited to KASH5 at the nuclear envelope independently of dynactin, while LIS1 is essential for dynactin incorporation into the KASH5-dynein complex. Altogether, we show that the transmembrane protein KASH5 is an activating adaptor for dynein and shed light on the hierarchy of assembly of KASH5-dynein-dynactin complexes.
Collapse
Affiliation(s)
- Kirsten E.L. Garner
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Anna Salter
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- A*STAR Institute of Medical Biology, Singapore, Singapore
| | - Clinton K. Lau
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Manickam Gurusaran
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Cécile M. Villemant
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Elizabeth P. Granger
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gavin McNee
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Philip G. Woodman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Owen R. Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Brian E. Burke
- A*STAR Institute of Medical Biology, Singapore, Singapore
| | - Victoria J. Allan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- A*STAR Institute of Medical Biology, Singapore, Singapore
| |
Collapse
|
35
|
Gallisà-Suñé N, Sànchez-Fernàndez-de-Landa P, Zimmermann F, Serna M, Regué L, Paz J, Llorca O, Lüders J, Roig J. BICD2 phosphorylation regulates dynein function and centrosome separation in G2 and M. Nat Commun 2023; 14:2434. [PMID: 37105961 PMCID: PMC10140047 DOI: 10.1038/s41467-023-38116-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The activity of dynein is regulated by a number of adaptors that mediate its interaction with dynactin, effectively activating the motor complex while also connecting it to different cargos. The regulation of adaptors is consequently central to dynein physiology but remains largely unexplored. We now describe that one of the best-known dynein adaptors, BICD2, is effectively activated through phosphorylation. In G2, phosphorylation of BICD2 by CDK1 promotes its interaction with PLK1. In turn, PLK1 phosphorylation of a single residue in the N-terminus of BICD2 results in a structural change that facilitates the interaction with dynein and dynactin, allowing the formation of active motor complexes. Moreover, modified BICD2 preferentially interacts with the nucleoporin RanBP2 once RanBP2 has been phosphorylated by CDK1. BICD2 phosphorylation is central for dynein recruitment to the nuclear envelope, centrosome tethering to the nucleus and centrosome separation in the G2 and M phases of the cell cycle. This work reveals adaptor activation through phosphorylation as crucial for the spatiotemporal regulation of dynein activity.
Collapse
Affiliation(s)
- Núria Gallisà-Suñé
- Department of Cells and Tissues, Molecular Biology Institute of Barcelona (IBMB-CSIC), Baldiri i Reixac 10-12, 08028, Barcelona, Spain
| | - Paula Sànchez-Fernàndez-de-Landa
- Department of Cells and Tissues, Molecular Biology Institute of Barcelona (IBMB-CSIC), Baldiri i Reixac 10-12, 08028, Barcelona, Spain
- Aging and Metabolism Programme, IRB Barcelona, Barcelona, Spain
| | - Fabian Zimmermann
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Marina Serna
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Laura Regué
- Department of Cells and Tissues, Molecular Biology Institute of Barcelona (IBMB-CSIC), Baldiri i Reixac 10-12, 08028, Barcelona, Spain
| | - Joel Paz
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Jens Lüders
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Joan Roig
- Department of Cells and Tissues, Molecular Biology Institute of Barcelona (IBMB-CSIC), Baldiri i Reixac 10-12, 08028, Barcelona, Spain.
| |
Collapse
|
36
|
Hernandez-Perez I, Rubio J, Baumann A, Girao H, Ferrando M, Rebollo E, Aragay AM, Geli MI. Kazrin promotes dynein/dynactin-dependent traffic from early to recycling endosomes. eLife 2023; 12:e83793. [PMID: 37096882 PMCID: PMC10181827 DOI: 10.7554/elife.83793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/24/2023] [Indexed: 04/26/2023] Open
Abstract
Kazrin is a protein widely expressed in vertebrates whose depletion causes a myriad of developmental defects, in part derived from altered cell adhesion and migration, as well as failure to undergo epidermal to mesenchymal transition. However, the primary molecular role of kazrin, which might contribute to all these functions, has not been elucidated yet. We previously identified one of its isoforms, kazrin C, as a protein that potently inhibits clathrin-mediated endocytosis when overexpressed. We now generated kazrin knock-out mouse embryonic fibroblasts to investigate its endocytic function. We found that kazrin depletion delays juxtanuclear enrichment of internalized material, indicating a role in endocytic traffic from early to recycling endosomes. Consistently, we found that the C-terminal domain of kazrin C, predicted to be an intrinsically disordered region, directly interacts with several early endosome (EE) components, and that kazrin depletion impairs retrograde motility of these organelles. Further, we noticed that the N-terminus of kazrin C shares homology with dynein/dynactin adaptors and that it directly interacts with the dynactin complex and the dynein light intermediate chain 1. Altogether, the data indicate that one of the primary kazrin functions is to facilitate endocytic recycling by promoting dynein/dynactin-dependent transport of EEs or EE-derived transport intermediates to the recycling endosomes.
Collapse
Affiliation(s)
- Ines Hernandez-Perez
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Javier Rubio
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Adrian Baumann
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Henrique Girao
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Miriam Ferrando
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Elena Rebollo
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Anna M Aragay
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - María Isabel Geli
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| |
Collapse
|
37
|
Romero DM, Zaidi D, Cifuentes-Diaz C, Maillard C, Grannec G, Selloum M, Birling MC, Bahi-Buisson N, Francis F. A human dynein heavy chain mutation impacts cortical progenitor cells causing developmental defects, reduced brain size and altered brain architecture. Neurobiol Dis 2023; 180:106085. [PMID: 36933672 DOI: 10.1016/j.nbd.2023.106085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Dynein heavy chain (DYNC1H1) mutations can either lead to severe cerebral cortical malformations, or alternatively may be associated with the development of spinal muscular atrophy with lower extremity predominance (SMA-LED). To assess the origin of such differences, we studied a new Dync1h1 knock-in mouse carrying the cortical malformation p.Lys3334Asn mutation. Comparing with an existing neurodegenerative Dync1h1 mutant (Legs at odd angles, Loa, +/p.Phe580Tyr), we assessed Dync1h1's roles in cortical progenitor and especially radial glia functions during embryogenesis, and assessed neuronal differentiation. p.Lys3334Asn /+ mice exhibit reduced brain and body size. Embryonic brains show increased and disorganized radial glia: interkinetic nuclear migration occurs in mutants, however there are increased basally positioned cells and abventricular mitoses. The ventricular boundary is disorganized potentially contributing to progenitor mislocalization and death. Morphologies of mitochondria and Golgi apparatus are perturbed in vitro, with different effects also in Loa mice. Perturbations of neuronal migration and layering are also observed in p.Lys3334Asn /+ mutants. Overall, we identify specific developmental effects due to a severe cortical malformation mutation in Dync1h1, highlighting the differences with a mutation known instead to primarily affect motor function.
Collapse
Affiliation(s)
- Delfina M Romero
- INSERM UMR-S 1270, F-75005 Paris, France; Sorbonne University, F-75005 Paris, France; Institut du Fer à Moulin, F-75005 Paris, France
| | - Donia Zaidi
- INSERM UMR-S 1270, F-75005 Paris, France; Sorbonne University, F-75005 Paris, France; Institut du Fer à Moulin, F-75005 Paris, France
| | - Carmen Cifuentes-Diaz
- INSERM UMR-S 1270, F-75005 Paris, France; Sorbonne University, F-75005 Paris, France; Institut du Fer à Moulin, F-75005 Paris, France
| | - Camille Maillard
- Laboratory of Genetics and Development of the Cerebral Cortex, INSERM UMR-S 1163, Imagine Institute, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Gael Grannec
- INSERM UMR-S 1270, F-75005 Paris, France; Sorbonne University, F-75005 Paris, France; Institut du Fer à Moulin, F-75005 Paris, France
| | - Mohammed Selloum
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964 Illkirch, France; Université de Strasbourg, Illkirch, France; CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Illkirch-Graffenstaden, France
| | - Marie-Christine Birling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964 Illkirch, France; Université de Strasbourg, Illkirch, France; CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Illkirch-Graffenstaden, France
| | - Nadia Bahi-Buisson
- Laboratory of Genetics and Development of the Cerebral Cortex, INSERM UMR-S 1163, Imagine Institute, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; Pediatric Neurology APHP- Necker Enfants Malades University Hospital, Paris, France.; Centre de Référence, Déficiences Intellectuelles de Causes Rares, APHP- Necker Enfants Malades University Hospital, Paris, France
| | - Fiona Francis
- INSERM UMR-S 1270, F-75005 Paris, France; Sorbonne University, F-75005 Paris, France; Institut du Fer à Moulin, F-75005 Paris, France.
| |
Collapse
|
38
|
Wu J, Larreategui-Aparicio A, Lambers MLA, Bodor DL, Klaasen SJ, Tollenaar E, de Ruijter-Villani M, Kops GJPL. Microtubule nucleation from the fibrous corona by LIC1-pericentrin promotes chromosome congression. Curr Biol 2023; 33:912-925.e6. [PMID: 36720222 PMCID: PMC10017265 DOI: 10.1016/j.cub.2023.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/17/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023]
Abstract
Error-free chromosome segregation in mitosis and meiosis relies on the assembly of a microtubule-based spindle that interacts with kinetochores to guide chromosomes to the cell equator before segregation in anaphase. Microtubules sprout from nucleation sites such as centrosomes, but kinetochores can also promote microtubule formation. It is unclear, however, how kinetochore-derived microtubules are generated and what their role is in chromosome segregation. Here, we show that the transient outer-kinetochore meshwork known as the fibrous corona serves as an autonomous microtubule nucleation platform. The fibrous corona is essential for the nucleation of kinetochore-derived microtubules, and when dissociated from the core kinetochore, it retains microtubule nucleation capacity. Nucleation relies on a fibrous-corona-bound pool of the LIC1 subunit of the dynein motor complex, which interacts with the γ-tubulin-tethering protein pericentrin (PCNT). PCNT is essential for microtubule nucleation from fibrous coronas, and in centrosome-depleted cells, where nearly all mitotic nucleation occurs at fibrous coronas, chromosome congression is fully dependent on PCNT. We further show that chromosomes in bovine oocytes, which naturally lack centrosomes, have highly expanded fibrous coronas that drive chromosome-derived microtubule nucleation. Preventing fibrous corona expansion in these cells impairs chromosome congression and causes spindle assembly defects. Our results show that fibrous coronas are autonomous microtubule-organizing centers that are important for spindle assembly, which may be especially relevant in acentrosomal cells such as oocytes.
Collapse
Affiliation(s)
- Jingchao Wu
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521AL Utrecht, the Netherlands
| | - Ainhoa Larreategui-Aparicio
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, the Netherlands
| | - Maaike L A Lambers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521AL Utrecht, the Netherlands
| | - Dani L Bodor
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521AL Utrecht, the Netherlands
| | - Sjoerd J Klaasen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521AL Utrecht, the Netherlands
| | - Eveline Tollenaar
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, the Netherlands
| | - Marta de Ruijter-Villani
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, the Netherlands; Division of Woman and Baby, Department of Obstetrics and Gynecology, University Medical Centre Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Geert J P L Kops
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521AL Utrecht, the Netherlands.
| |
Collapse
|
39
|
Yi J, Zhao X, Noell CR, Helmer P, Solmaz SR, Vallee RB. Role of Nesprin-2 and RanBP2 in BICD2-associated brain developmental disorders. PLoS Genet 2023; 19:e1010642. [PMID: 36930595 PMCID: PMC10022797 DOI: 10.1371/journal.pgen.1010642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/28/2023] [Indexed: 03/18/2023] Open
Abstract
Bicaudal D2 (BICD2) is responsible for recruiting cytoplasmic dynein to diverse forms of subcellular cargo for their intracellular transport. Mutations in the human BICD2 gene have been found to cause an autosomal dominant form of spinal muscular atrophy (SMA-LED2), and brain developmental defects. Whether and how the latter mutations are related to roles we and others have identified for BICD2 in brain development remains little understood. BICD2 interacts with the nucleoporin RanBP2 to recruit dynein to the nuclear envelope (NE) of Radial Glial Progenitor cells (RGPs) to mediate their well-known but mysterious cell-cycle-regulated interkinetic nuclear migration (INM) behavior, and their subsequent differentiation to form cortical neurons. We more recently found that BICD2 also mediates NE dynein recruitment in migrating post-mitotic neurons, though via a different interactor, Nesprin-2. Here, we report that Nesprin-2 and RanBP2 compete for BICD2-binding in vitro. To test the physiological implications of this behavior, we examined the effects of known BICD2 mutations using in vitro biochemical and in vivo electroporation-mediated brain developmental assays. We find a clear relationship between the ability of BICD2 to bind RanBP2 vs. Nesprin-2 in controlling of nuclear migration and neuronal migration behavior. We propose that mutually exclusive RanBP2-BICD2 vs. Nesprin-2-BICD2 interactions at the NE play successive, critical roles in INM behavior in RGPs and in post-mitotic neuronal migration and errors in these processes contribute to specific human brain malformations.
Collapse
Affiliation(s)
- Julie Yi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Xiaoxin Zhao
- Department of Chemistry, Binghamton University, Binghamton, New York, New York, United States of America
| | - Crystal R. Noell
- Department of Chemistry, Binghamton University, Binghamton, New York, New York, United States of America
| | - Paige Helmer
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Sozanne R. Solmaz
- Department of Chemistry, Binghamton University, Binghamton, New York, New York, United States of America
| | - Richard B. Vallee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
40
|
Remsburg CM, Konrad KD, Song JL. RNA localization to the mitotic spindle is essential for early development and is regulated by kinesin-1 and dynein. J Cell Sci 2023; 136:jcs260528. [PMID: 36751992 PMCID: PMC10038151 DOI: 10.1242/jcs.260528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
Mitosis is a fundamental and highly regulated process that acts to faithfully segregate chromosomes into two identical daughter cells. Localization of gene transcripts involved in mitosis to the mitotic spindle might be an evolutionarily conserved mechanism to ensure that mitosis occurs in a timely manner. We identified many RNA transcripts that encode proteins involved in mitosis localized at the mitotic spindles in dividing sea urchin embryos and mammalian cells. Disruption of microtubule polymerization, kinesin-1 or dynein results in lack of spindle localization of these transcripts in the sea urchin embryo. Furthermore, results indicate that the cytoplasmic polyadenylation element (CPE) within the 3'UTR of the Aurora B transcript, a recognition sequence for CPEB, is essential for RNA localization to the mitotic spindle in the sea urchin embryo. Blocking this sequence results in arrested development during early cleavage stages, suggesting that RNA localization to the mitotic spindle might be a regulatory mechanism of cell division that is important for early development.
Collapse
Affiliation(s)
- Carolyn M. Remsburg
- University of Delaware, Department of Biological Sciences, Newark, DE 19716, USA
| | - Kalin D. Konrad
- University of Delaware, Department of Biological Sciences, Newark, DE 19716, USA
| | - Jia L. Song
- University of Delaware, Department of Biological Sciences, Newark, DE 19716, USA
| |
Collapse
|
41
|
In vitro characterization of the full-length human dynein-1 cargo adaptor BicD2. Structure 2022; 30:1470-1478.e3. [PMID: 36150379 DOI: 10.1016/j.str.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022]
Abstract
Cargo adaptors are crucial in coupling motor proteins with their respective cargos and regulatory proteins. BicD2 is a prominent example within the cargo adaptor family. BicD2 is able to recruit the microtubule motor dynein to RNA, viral particles, and nuclei. The BicD2-mediated interaction between the nucleus and dynein is implicated in mitosis, interkinetic nuclear migration (INM) in radial glial progenitor cells, and neuron precursor migration during embryonic neocortex development. In vitro studies involving full-length cargo adaptors are difficult to perform due to the hydrophobic character, low-expression levels, and intrinsic flexibility of cargo adaptors. Here, we report the recombinant production of full-length human BicD2 and confirm its biochemical activity by interaction studies with RanBP2. We also describe pH-dependent conformational changes of BicD2 using cryoelectron microscopy (cryo-EM), template-free structure predictions, and biophysical tools. Our results will help define the biochemical parameters for the in vitro reconstitution of higher-order BicD2 protein complexes.
Collapse
|
42
|
Spriggs CC, Cha G, Li J, Tsai B. Components of the LINC and NPC complexes coordinately target and translocate a virus into the nucleus to promote infection. PLoS Pathog 2022; 18:e1010824. [PMID: 36067270 PMCID: PMC9481172 DOI: 10.1371/journal.ppat.1010824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/16/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Nuclear entry represents the final and decisive infection step for most DNA viruses, although how this is accomplished by some viruses is unclear. Polyomavirus SV40 transports from the cell surface through the endosome, the endoplasmic reticulum, and the cytosol from where it enters the nucleus to cause infection. Here we elucidate the nuclear entry mechanism of SV40. Our results show that cytosol-localized SV40 is targeted to the nuclear envelope by directly engaging Nesprin-2 of the linker of nucleoskeleton and cytoskeleton (LINC) nuclear membrane complex. Additionally, we identify the NUP188 subunit of the nuclear pore complex (NPC) as a new Nesprin-2-interacting partner. This physical proximity positions the NPC to capture SV40 upon release from Nesprin-2, enabling the channel to facilitate nuclear translocation of the virus. Strikingly, SV40 disassembles during nuclear entry, generating a viral genome-VP1-VP3 subcomplex that efficiently crosses the NPC to enter the nucleus. Our results reveal how two major nuclear membrane protein complexes are exploited to promote targeting and translocation of a virus into the nucleus.
Collapse
Affiliation(s)
- Chelsey C. Spriggs
- Department of Cell and Developmental Biology, University of Michigan Medical School Ann Arbor, Michigan, United States of America
- * E-mail: (CCS); (BT)
| | - Grace Cha
- Department of Cell and Developmental Biology, University of Michigan Medical School Ann Arbor, Michigan, United States of America
| | - Jiaqian Li
- Department of Cell and Developmental Biology, University of Michigan Medical School Ann Arbor, Michigan, United States of America
- Department of Biological Chemistry, University of Michigan Medical School Ann Arbor, Michigan, United States of America
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School Ann Arbor, Michigan, United States of America
- * E-mail: (CCS); (BT)
| |
Collapse
|
43
|
Kalukula Y, Stephens AD, Lammerding J, Gabriele S. Mechanics and functional consequences of nuclear deformations. Nat Rev Mol Cell Biol 2022; 23:583-602. [PMID: 35513718 PMCID: PMC9902167 DOI: 10.1038/s41580-022-00480-z] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 02/08/2023]
Abstract
As the home of cellular genetic information, the nucleus has a critical role in determining cell fate and function in response to various signals and stimuli. In addition to biochemical inputs, the nucleus is constantly exposed to intrinsic and extrinsic mechanical forces that trigger dynamic changes in nuclear structure and morphology. Emerging data suggest that the physical deformation of the nucleus modulates many cellular and nuclear functions. These functions have long been considered to be downstream of cytoplasmic signalling pathways and dictated by gene expression. In this Review, we discuss an emerging perspective on the mechanoregulation of the nucleus that considers the physical connections from chromatin to nuclear lamina and cytoskeletal filaments as a single mechanical unit. We describe key mechanisms of nuclear deformations in time and space and provide a critical review of the structural and functional adaptive responses of the nucleus to deformations. We then consider the contribution of nuclear deformations to the regulation of important cellular functions, including muscle contraction, cell migration and human disease pathogenesis. Collectively, these emerging insights shed new light on the dynamics of nuclear deformations and their roles in cellular mechanobiology.
Collapse
Affiliation(s)
- Yohalie Kalukula
- University of Mons, Soft Matter and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, Place du Parc, 20 B-7000 Mons, Belgium
| | - Andrew D. Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sylvain Gabriele
- University of Mons, Soft Matter and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, Place du Parc, 20 B-7000 Mons, Belgium
| |
Collapse
|
44
|
Elevated BICD2 DNA methylation in blood of major depressive disorder patients and reduction of depressive-like behaviors in hippocampal Bicd2-knockdown mice. Proc Natl Acad Sci U S A 2022; 119:e2201967119. [PMID: 35858435 PMCID: PMC9335189 DOI: 10.1073/pnas.2201967119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Major depressive disorder (MDD) is a prevalent and devastating mental illness. To date, the diagnosis of MDD is largely dependent on clinical interviews and questionnaires and still lacks a reliable biomarker. DNA methylation has a stable and reversible nature and is likely associated with the course and therapeutic efficacy of complex diseases, which may play an important role in the etiology of a disease. Here, we identified and validated a DNA methylation biomarker for MDD from four independent cohorts of the Chinese Han population. First, we integrated the analysis of the DNA methylation microarray (n = 80) and RNA expression microarray data (n = 40) and identified BICD2 as the top-ranked gene. In the replication phase, we employed the Sequenom MassARRAY method to confirm the DNA hypermethylation change in a large sample size (n = 1,346) and used the methylation-sensitive restriction enzymes and a quantitative PCR approach (MSE-qPCR) and qPCR method to confirm the correlation between DNA hypermethylation and mRNA down-regulation of BICD2 (n = 60). The results were replicated in the peripheral blood of mice with depressive-like behaviors, while in the hippocampus of mice, Bicd2 showed DNA hypomethylation and mRNA/protein up-regulation. Hippocampal Bicd2 knockdown demonstrates antidepressant action in the chronic unpredictable mild stress (CUMS) mouse model of depression, which may be mediated by increased BDNF expression. Our study identified a potential DNA methylation biomarker and investigated its functional implications, which could be exploited to improve the diagnosis and treatment of MDD.
Collapse
|
45
|
Chen F, Wu J, Iwanski MK, Jurriens D, Sandron A, Pasolli M, Puma G, Kromhout JZ, Yang C, Nijenhuis W, Kapitein LC, Berger F, Akhmanova A. Self-assembly of pericentriolar material in interphase cells lacking centrioles. eLife 2022; 11:77892. [PMID: 35787744 PMCID: PMC9307276 DOI: 10.7554/elife.77892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
The major microtubule-organizing center (MTOC) in animal cells, the centrosome, comprises a pair of centrioles surrounded by pericentriolar material (PCM), which nucleates and anchors microtubules. Centrosome assembly depends on PCM binding to centrioles, PCM self-association and dynein-mediated PCM transport, but the self-assembly properties of PCM components in interphase cells are poorly understood. Here, we used experiments and modeling to study centriole-independent features of interphase PCM assembly. We showed that when centrioles are lost due to PLK4 depletion or inhibition, dynein-based transport and self-clustering of PCM proteins are sufficient to form a single compact MTOC, which generates a dense radial microtubule array. Interphase self-assembly of PCM components depends on γ-tubulin, pericentrin, CDK5RAP2 and ninein, but not NEDD1, CEP152, or CEP192. Formation of a compact acentriolar MTOC is inhibited by AKAP450-dependent PCM recruitment to the Golgi or by randomly organized CAMSAP2-stabilized microtubules, which keep PCM mobile and prevent its coalescence. Linking of CAMSAP2 to a minus-end-directed motor leads to the formation of an MTOC, but MTOC compaction requires cooperation with pericentrin-containing self-clustering PCM. Our data reveal that interphase PCM contains a set of components that can self-assemble into a compact structure and organize microtubules, but PCM self-organization is sensitive to motor- and microtubule-based rearrangement.
Collapse
Affiliation(s)
- Fangrui Chen
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Jingchao Wu
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | | | - Daphne Jurriens
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Arianna Sandron
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Milena Pasolli
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Gianmarco Puma
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | | | - Chao Yang
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Wilco Nijenhuis
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | | | - Florian Berger
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Anna Akhmanova
- Department of Biology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
46
|
Abstract
Dominant missense mutations in RanBP2/Nup358 cause Acute Necrotizing Encephalopathy (ANE), a pediatric disease where seemingly healthy individuals develop a cytokine storm that is restricted to the central nervous system in response to viral infection. Untreated, this condition leads to seizures, coma, long-term neurological damage and a high rate of mortality. The exact mechanism by which RanBP2 mutations contribute to the development of ANE remains elusive. In November 2021, a number of clinicians and basic scientists presented their work on this disease and on the interactions between RanBP2/Nup358, viral infections, the innate immune response and other cellular processes.
Collapse
Affiliation(s)
| | - Jomon Joseph
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Ming Lim
- Children's Neurosciences, Evelina London Children's Hospital, and the Department of Women and Children's Health, King's College London, London, UK
| | - Kiran T Thakur
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York
| |
Collapse
|
47
|
Garrott SR, Gillies JP, DeSantis ME. Nde1 and Ndel1: Outstanding Mysteries in Dynein-Mediated Transport. Front Cell Dev Biol 2022; 10:871935. [PMID: 35493069 PMCID: PMC9041303 DOI: 10.3389/fcell.2022.871935] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cytoplasmic dynein-1 (dynein) is the primary microtubule minus-end directed molecular motor in most eukaryotes. As such, dynein has a broad array of functions that range from driving retrograde-directed cargo trafficking to forming and focusing the mitotic spindle. Dynein does not function in isolation. Instead, a network of regulatory proteins mediate dynein’s interaction with cargo and modulate dynein’s ability to engage with and move on the microtubule track. A flurry of research over the past decade has revealed the function and mechanism of many of dynein’s regulators, including Lis1, dynactin, and a family of proteins called activating adaptors. However, the mechanistic details of two of dynein’s important binding partners, the paralogs Nde1 and Ndel1, have remained elusive. While genetic studies have firmly established Nde1/Ndel1 as players in the dynein transport pathway, the nature of how they regulate dynein activity is unknown. In this review, we will compare Ndel1 and Nde1 with a focus on discerning if the proteins are functionally redundant, outline the data that places Nde1/Ndel1 in the dynein transport pathway, and explore the literature supporting and opposing the predominant hypothesis about Nde1/Ndel1’s molecular effect on dynein activity.
Collapse
Affiliation(s)
- Sharon R. Garrott
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - John P. Gillies
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Morgan E. DeSantis
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Morgan E. DeSantis,
| |
Collapse
|
48
|
In Mitosis You Are Not: The NIMA Family of Kinases in Aspergillus, Yeast, and Mammals. Int J Mol Sci 2022; 23:ijms23074041. [PMID: 35409400 PMCID: PMC8999480 DOI: 10.3390/ijms23074041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
The Never in mitosis gene A (NIMA) family of serine/threonine kinases is a diverse group of protein kinases implicated in a wide variety of cellular processes, including cilia regulation, microtubule dynamics, mitotic processes, cell growth, and DNA damage response. The founding member of this family was initially identified in Aspergillus and was found to play important roles in mitosis and cell division. The yeast family has one member each, Fin1p in fission yeast and Kin3p in budding yeast, also with functions in mitotic processes, but, overall, these are poorly studied kinases. The mammalian family, the main focus of this review, consists of 11 members named Nek1 to Nek11. With the exception of a few members, the functions of the mammalian Neks are poorly understood but appear to be quite diverse. Like the prototypical NIMA, many members appear to play important roles in mitosis and meiosis, but their functions in the cell go well beyond these well-established activities. In this review, we explore the roles of fungal and mammalian NIMA kinases and highlight the most recent findings in the field.
Collapse
|
49
|
Gibson JM, Cui H, Ali MY, Zhao X, Debler EW, Zhao J, Trybus KM, Solmaz SR, Wang C. Coil-to-α-helix transition at the Nup358-BicD2 interface activates BicD2 for dynein recruitment. eLife 2022; 11:74714. [PMID: 35229716 PMCID: PMC8956292 DOI: 10.7554/elife.74714] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Nup358, a protein of the nuclear pore complex, facilitates a nuclear positioning pathway that is essential for many biological processes, including neuromuscular and brain development. Nup358 interacts with the dynein adaptor Bicaudal D2 (BicD2), which in turn recruits the dynein machinery to position the nucleus. However, the molecular mechanisms of the Nup358/BicD2 interaction and the activation of transport remain poorly understood. Here for the first time, we show that a minimal Nup358 domain activates dynein/dynactin/BicD2 for processive motility on microtubules. Using nuclear magnetic resonance titration and chemical exchange saturation transfer, mutagenesis, and circular dichroism spectroscopy, a Nup358 α-helix encompassing residues 2162–2184 was identified, which transitioned from a random coil to an α-helical conformation upon BicD2 binding and formed the core of the Nup358-BicD2 interface. Mutations in this region of Nup358 decreased the Nup358/BicD2 interaction, resulting in decreased dynein recruitment and impaired motility. BicD2 thus recognizes Nup358 through a ‘cargo recognition α-helix,’ a structural feature that may stabilize BicD2 in its activated state and promote processive dynein motility.
Collapse
Affiliation(s)
- James M Gibson
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
| | - Heying Cui
- Department of Chemistry, Binghamton University, Binghamton, United States
| | - M Yusuf Ali
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
| | - Xioaxin Zhao
- Department of Biological Sciences, Binghamton University, Binghamton, United States
| | - Erik W Debler
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, United States
| | - Jing Zhao
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
| | - Sozanne R Solmaz
- Department of Chemistry, Binghamton University, Binghamton, United States
| | - Chunyu Wang
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
| |
Collapse
|
50
|
Cunningham NHJ, Bouhlel IB, Conduit PT. Daughter centrioles assemble preferentially towards the nuclear envelope in Drosophila syncytial embryos. Open Biol 2022; 12:210343. [PMID: 35042404 PMCID: PMC8767211 DOI: 10.1098/rsob.210343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Centrosomes are important organizers of microtubules within animal cells. They comprise a pair of centrioles surrounded by the pericentriolar material, which nucleates and organizes the microtubules. To maintain centrosome numbers, centrioles must duplicate once and only once per cell cycle. During S-phase, a single new ‘daughter’ centriole is built orthogonally on one side of each radially symmetric ‘mother’ centriole. Mis-regulation of duplication can result in the simultaneous formation of multiple daughter centrioles around a single mother centriole, leading to centrosome amplification, a hallmark of cancer. It remains unclear how a single duplication site is established. It also remains unknown whether this site is pre-defined or randomly positioned around the mother centriole. Here, we show that within Drosophila syncytial embryos daughter centrioles preferentially assemble on the side of the mother facing the nuclear envelope, to which the centrosomes are closely attached. This positional preference is established early during duplication and remains stable throughout daughter centriole assembly, but is lost in centrosomes forced to lose their connection to the nuclear envelope. This shows that non-centrosomal cues influence centriole duplication and raises the possibility that these external cues could help establish a single duplication site.
Collapse
Affiliation(s)
- Neil H J Cunningham
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Imène B Bouhlel
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Paul T Conduit
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.,Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France
| |
Collapse
|