1
|
Olatunji M, Liu Y. RNA damage and its implications in genome stability. DNA Repair (Amst) 2025; 147:103821. [PMID: 40043352 DOI: 10.1016/j.dnarep.2025.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
Endogenous and environmental stressors can damage DNA and RNA to compromise genome and transcriptome stability and integrity in cells, leading to genetic instability and diseases. Recent studies have demonstrated that RNA damage can also modulate genome stability via RNA-templated DNA synthesis, suggesting that it is essential to maintain RNA integrity for the sustainment of genome stability. However, little is known about RNA damage and repair and their roles in modulating genome stability. Current efforts have mainly focused on revealing RNA surveillance pathways that detect and degrade damaged RNA, while the critical role of RNA repair is often overlooked. Due to their abundance and susceptibility to nucleobase damaging agents, it is essential for cells to evolve robust RNA repair mechanisms that can remove RNA damage, maintaining RNA integrity during gene transcription. This is supported by the discovery of the alkylated RNA nucleobase repair enzyme human AlkB homolog 3 that can directly remove the methyl group on damaged RNA nucleobases, predominantly in the nucleus of human cells, thereby restoring the integrity of the damaged RNA nucleobases. This is further supported by the fact that several DNA repair enzymes can also process RNA damage. In this review, we discuss RNA damage and its effects on cellular function, DNA repair, genome instability, and potential RNA damage repair mechanisms. Our review underscores the necessity for future research on RNA damage and repair and their essential roles in modulating genome stability.
Collapse
Affiliation(s)
- Mustapha Olatunji
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA; Department of Chemistry and Biochemistry, and Florida International University, Miami, FL, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
2
|
Liang J, Wang J, Wang K, Feng H, Huang L. VmRDR2 of Valsa mali mediates the generation of VmR2-siR1 that suppresses apple resistance by RNA interference. THE NEW PHYTOLOGIST 2024; 243:1154-1171. [PMID: 38822646 DOI: 10.1111/nph.19867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Cross-kingdom RNA interference (RNAi) is a crucial mechanism in host-pathogen interactions, with RNA-dependent RNA polymerase (RdRP) playing a vital role in signal amplification during RNAi. However, the role of pathogenic fungal RdRP in siRNAs generation and the regulation of plant-pathogen interactions remains elusive. Using deep sequencing, molecular, genetic, and biochemical approaches, this study revealed that VmRDR2 of Valsa mali regulates VmR2-siR1 to suppress the disease resistance-related gene MdLRP14 in apple. Both VmRDR1 and VmRDR2 are essential for the pathogenicity of V. mali in apple, with VmRDR2 mediating the generation of endogenous siRNAs, including an infection-related siRNA, VmR2-siR1. This siRNA specifically degrades the apple intracellular LRR-RI protein gene MdLRP14 in a sequence-specific manner, and overexpression of MdLRP14 enhances apple resistance against V. mali, which can be suppressed by VmR2-siR1. Conversely, MdLRP14 knockdown reduces resistance. In summary, this study demonstrates that VmRDR2 contributes to the generation of VmR2-siR1, which silences the host's intracellular LRR protein gene, thereby inhibiting host resistance. These findings offer novel insights into the fungi-mediated pathogenicity mechanism through RNAi.
Collapse
Affiliation(s)
- Jiahao Liang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kai Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hao Feng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
3
|
Li P, Yu X. The role of rRNA in maintaining genome stability. DNA Repair (Amst) 2024; 139:103692. [PMID: 38759435 DOI: 10.1016/j.dnarep.2024.103692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Over the past few decades, unbiased approaches such as genetic screening and protein affinity purification have unveiled numerous proteins involved in DNA double-strand break (DSB) repair and maintaining genome stability. However, despite our knowledge of these protein factors, the underlying molecular mechanisms governing key cellular events during DSB repair remain elusive. Recent evidence has shed light on the role of non-protein factors, such as RNA, in several pivotal steps of DSB repair. In this review, we provide a comprehensive summary of these recent findings, highlighting the significance of ribosomal RNA (rRNA) as a critical mediator of DNA damage response, meiosis, and mitosis. Moreover, we discuss potential mechanisms through which rRNA may influence genome integrity.
Collapse
Affiliation(s)
- Peng Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaochun Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Zeng W, Lin J, Xie J, Fu Y, Lin Y, Chen T, Li B, Yu X, Chen W, Jiang D, Cheng J. RNA-dependent RNA polymerases regulate ascospore discharge through the exonic-sRNA-mediated RNAi pathway. mBio 2024; 15:e0037724. [PMID: 38752738 PMCID: PMC11237814 DOI: 10.1128/mbio.00377-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024] Open
Abstract
Ascospores, forcibly released into the air from perithecia, are the primary inoculum for Fusarium head blight. In Fusarium graminearum, the biological functions of four RNA-dependent RNA polymerases (RdRPs) (Fgrdrp1-4) have been reported, but their regulatory mechanisms are poorly understood and the function of Fgrdrp5 is still unknown. In this study, we found that in addition to Fgrdrp1 and Fgrdrp2, Fgrdrp5 also plays an important role in ascospore discharge, and they all participate in the generation of turgor pressure in a polyol-dependent manner. Moreover, these three genes all affect the maturation of ascospores. Deep sequencing and co-analysis of small RNA and mRNA certified that Fgrdrp1, Fgrdrp2, and Fgrdrp5 partly share their functions in the biogenesis and accumulation of exonic small interference RNA (ex-siRNA), and these three RdRPs negatively regulate the expression levels of ex-siRNA corresponding genes, including certain genes associated with ascospore development or discharge. Furthermore, the differentially expressed genes of deletion mutants, those involved in lipid and sugar metabolism or transport as well as sexual development-related transcription factors, may also contribute to the defects in ascospore maturation or ascospore discharge. In conclusion, our study suggested that the components of the dicer-dependent ex-siRNA-mediated RNA interference pathway include at least Fgrdrp1, Fgrdrp2, and Fgrdrp5. IMPORTANCE We found that in addition to Fgrdrp1 and Fgrdrp2, Fgrdrp5 also plays important roles in ascospore maturation and ascospore discharge of Fusarium graminearum. These three RNA-dependent RNA polymerases participate in the biogenesis and accumulation of exonic small interference RNA and then regulate ascospore discharge.
Collapse
Affiliation(s)
- Wenping Zeng
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jing Lin
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiatao Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bo Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weidong Chen
- USA Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, Washington, USA
| | - Daohong Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiasen Cheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Shatskikh AS, Fefelova EA, Klenov MS. Functions of RNAi Pathways in Ribosomal RNA Regulation. Noncoding RNA 2024; 10:19. [PMID: 38668377 PMCID: PMC11054153 DOI: 10.3390/ncrna10020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
Argonaute proteins, guided by small RNAs, play crucial roles in gene regulation and genome protection through RNA interference (RNAi)-related mechanisms. Ribosomal RNAs (rRNAs), encoded by repeated rDNA units, constitute the core of the ribosome being the most abundant cellular transcripts. rDNA clusters also serve as sources of small RNAs, which are loaded into Argonaute proteins and are able to regulate rDNA itself or affect other gene targets. In this review, we consider the impact of small RNA pathways, specifically siRNAs and piRNAs, on rRNA gene regulation. Data from diverse eukaryotic organisms suggest the potential involvement of small RNAs in various molecular processes related to the rDNA transcription and rRNA fate. Endogenous siRNAs are integral to the chromatin-based silencing of rDNA loci in plants and have been shown to repress rDNA transcription in animals. Small RNAs also play a role in maintaining the integrity of rDNA clusters and may function in the cellular response to rDNA damage. Studies on the impact of RNAi and small RNAs on rRNA provide vast opportunities for future exploration.
Collapse
Affiliation(s)
- Aleksei S. Shatskikh
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia;
| | - Elena A. Fefelova
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182 Moscow, Russia
| | - Mikhail S. Klenov
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182 Moscow, Russia
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
6
|
Tsao N, Ashour ME, Mosammaparast N. How RNA impacts DNA repair. DNA Repair (Amst) 2023; 131:103564. [PMID: 37776841 PMCID: PMC11232704 DOI: 10.1016/j.dnarep.2023.103564] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 10/02/2023]
Abstract
The central dogma of molecular biology posits that genetic information flows unidirectionally, from DNA, to RNA, and finally to protein. However, this directionality is broken in some cases, such as reverse transcription where RNA is converted to DNA by retroviruses and certain transposable elements. Our genomes have evolved and adapted to the presence of reverse transcription. Similarly, our genome is continuously maintained by several repair pathways to reverse damage due to various endogenous and exogenous sources. More recently, evidence has revealed that RNA, while in certain contexts may be detrimental for genome stability, is involved in promoting certain types of DNA repair. Depending on the pathway in question, the size of these DNA repair-associated RNAs range from one or a few ribonucleotides to long fragments of RNA. Moreover, RNA is highly modified, and RNA modifications have been revealed to be functionally associated with specific DNA repair pathways. In this review, we highlight aspects of this unexpected layer of genomic maintenance, demonstrating how RNA may influence DNA integrity.
Collapse
Affiliation(s)
- Ning Tsao
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mohamed E Ashour
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nima Mosammaparast
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
7
|
Gall-Duncan T, Luo J, Jurkovic CM, Fischer LA, Fujita K, Deshmukh AL, Harding RJ, Tran S, Mehkary M, Li V, Leib DE, Chen R, Tanaka H, Mason AG, Lévesque D, Khan M, Razzaghi M, Prasolava T, Lanni S, Sato N, Caron MC, Panigrahi GB, Wang P, Lau R, Castel AL, Masson JY, Tippett L, Turner C, Spies M, La Spada AR, Campos EI, Curtis MA, Boisvert FM, Faull RLM, Davidson BL, Nakamori M, Okazawa H, Wold MS, Pearson CE. Antagonistic roles of canonical and Alternative-RPA in disease-associated tandem CAG repeat instability. Cell 2023; 186:4898-4919.e25. [PMID: 37827155 PMCID: PMC11209935 DOI: 10.1016/j.cell.2023.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 06/30/2023] [Accepted: 09/09/2023] [Indexed: 10/14/2023]
Abstract
Expansions of repeat DNA tracts cause >70 diseases, and ongoing expansions in brains exacerbate disease. During expansion mutations, single-stranded DNAs (ssDNAs) form slipped-DNAs. We find the ssDNA-binding complexes canonical replication protein A (RPA1, RPA2, and RPA3) and Alternative-RPA (RPA1, RPA3, and primate-specific RPA4) are upregulated in Huntington disease and spinocerebellar ataxia type 1 (SCA1) patient brains. Protein interactomes of RPA and Alt-RPA reveal unique and shared partners, including modifiers of CAG instability and disease presentation. RPA enhances in vitro melting, FAN1 excision, and repair of slipped-CAGs and protects against CAG expansions in human cells. RPA overexpression in SCA1 mouse brains ablates expansions, coincident with decreased ATXN1 aggregation, reduced brain DNA damage, improved neuron morphology, and rescued motor phenotypes. In contrast, Alt-RPA inhibits melting, FAN1 excision, and repair of slipped-CAGs and promotes CAG expansions. These findings suggest a functional interplay between the two RPAs where Alt-RPA may antagonistically offset RPA's suppression of disease-associated repeat expansions, which may extend to other DNA processes.
Collapse
Affiliation(s)
- Terence Gall-Duncan
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jennifer Luo
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Laura A Fischer
- Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyota Fujita
- Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Amit L Deshmukh
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rachel J Harding
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Stephanie Tran
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mustafa Mehkary
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Vanessa Li
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - David E Leib
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - Ran Chen
- Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hikari Tanaka
- Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Amanda G Mason
- Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Dominique Lévesque
- Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mahreen Khan
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mortezaali Razzaghi
- Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Tanya Prasolava
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stella Lanni
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nozomu Sato
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marie-Christine Caron
- CHU de Québec-Université Laval, Oncology Division, Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec, QC, Canada
| | - Gagan B Panigrahi
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Peixiang Wang
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rachel Lau
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Jean-Yves Masson
- CHU de Québec-Université Laval, Oncology Division, Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec, QC, Canada
| | - Lynette Tippett
- School of Psychology, University of Auckland, Auckland, New Zealand; University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Maria Spies
- Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Albert R La Spada
- Pathology & Laboratory Medicine, Neurology, and Biological Chemistry, University of California, Irvine School of Medicine, Irvine, CA, USA; Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA; Center for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA
| | - Eric I Campos
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Maurice A Curtis
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand; Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | | | - Richard L M Faull
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand; Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Beverly L Davidson
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - Masayuki Nakamori
- Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hitoshi Okazawa
- Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Marc S Wold
- Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Christopher E Pearson
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
8
|
Mann CWG, Sawyer A, Gardiner DM, Mitter N, Carroll BJ, Eamens AL. RNA-Based Control of Fungal Pathogens in Plants. Int J Mol Sci 2023; 24:12391. [PMID: 37569766 PMCID: PMC10418863 DOI: 10.3390/ijms241512391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Our duty to conserve global natural ecosystems is increasingly in conflict with our need to feed an expanding population. The use of conventional pesticides not only damages the environment and vulnerable biodiversity but can also still fail to prevent crop losses of 20-40% due to pests and pathogens. There is a growing call for more ecologically sustainable pathogen control measures. RNA-based biopesticides offer an eco-friendly alternative to the use of conventional fungicides for crop protection. The genetic modification (GM) of crops remains controversial in many countries, though expression of transgenes inducing pathogen-specific RNA interference (RNAi) has been proven effective against many agronomically important fungal pathogens. The topical application of pathogen-specific RNAi-inducing sprays is a more responsive, GM-free approach to conventional RNAi transgene-based crop protection. The specific targeting of essential pathogen genes, the development of RNAi-nanoparticle carrier spray formulations, and the possible structural modifications to the RNA molecules themselves are crucial to the success of this novel technology. Here, we outline the current understanding of gene silencing pathways in plants and fungi and summarize the pioneering and recent work exploring RNA-based biopesticides for crop protection against fungal pathogens, with a focus on spray-induced gene silencing (SIGS). Further, we discuss factors that could affect the success of RNA-based control strategies, including RNA uptake, stability, amplification, and movement within and between the plant host and pathogen, as well as the cost and design of RNA pesticides.
Collapse
Affiliation(s)
- Christopher W. G. Mann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.W.G.M.); (A.S.); (B.J.C.)
| | - Anne Sawyer
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.W.G.M.); (A.S.); (B.J.C.)
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.M.G.); (N.M.)
| | - Donald M. Gardiner
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.M.G.); (N.M.)
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.M.G.); (N.M.)
| | - Bernard J. Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.W.G.M.); (A.S.); (B.J.C.)
| | - Andrew L. Eamens
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
9
|
Cui R, Li H, Zhao J, Li X, Gan J, Ma J. Structural insights into the dual activities of the two-barrel RNA polymerase QDE-1. Nucleic Acids Res 2022; 50:10169-10186. [PMID: 36039765 PMCID: PMC9508822 DOI: 10.1093/nar/gkac727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/27/2022] [Indexed: 11/19/2022] Open
Abstract
Neurospora crassa protein QDE-1, a member of the two-barrel polymerase superfamily, possesses both DNA- and RNA-dependent RNA polymerase (DdRP and RdRP) activities. The dual activities are essential for the production of double-stranded RNAs (dsRNAs), the precursors of small interfering RNAs (siRNAs) in N. crassa. Here, we report five complex structures of N-terminal truncated QDE-1 (QDE-1ΔN), representing four different reaction states: DNA/RNA-templated elongation, the de novo initiation of RNA synthesis, the first step of nucleotide condensation during de novo initiation and initial NTP loading. The template strand is aligned by a bridge-helix and double-psi beta-barrels 2 (DPBB2), the RNA product is held by DPBB1 and the slab domain. The DNA template unpairs with the RNA product at position –7, but the RNA template remains paired. The NTP analog coordinates with cations and is precisely positioned at the addition site by a rigid trigger loop and a proline-containing loop in the active center. The unique C-terminal tail from the QDE-1 dimer partner inserts into the substrate-binding cleft and plays regulatory roles in RNA synthesis. Collectively, this work elucidates the conserved mechanisms for DNA/RNA-dependent dual activities by QDE-1 and other two-barrel polymerase superfamily members.
Collapse
Affiliation(s)
- Ruixue Cui
- Huashan Hospital affiliated to Fudan University, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute of Complex Systems, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hao Li
- Huashan Hospital affiliated to Fudan University, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute of Complex Systems, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jin Zhao
- Huashan Hospital affiliated to Fudan University, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute of Complex Systems, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xuhang Li
- Huashan Hospital affiliated to Fudan University, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute of Complex Systems, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jinbiao Ma
- Huashan Hospital affiliated to Fudan University, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute of Complex Systems, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
10
|
Jha V, Narjala A, Basu D, T. N. S, Pachamuthu K, Chenna S, Nair A, Shivaprasad PV. Essential role of γ-clade RNA-dependent RNA polymerases in rice development and yield-related traits is linked to their atypical polymerase activities regulating specific genomic regions. THE NEW PHYTOLOGIST 2021; 232:1674-1691. [PMID: 34449900 PMCID: PMC9290346 DOI: 10.1111/nph.17700] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/14/2021] [Indexed: 05/31/2023]
Abstract
RNA-dependent RNA polymerases (RDR) generate double-stranded (ds)RNA triggers for RNA silencing across eukaryotes. Among the three clades, α-clade and β-clade members are key components of RNA silencing and mediators of stress responses across eukaryotes. However, γ-clade members are unusual in that they are represented in phylogenetically distant plants and fungi, and their functions are unknown. Using genetic, bioinformatic and biochemical methods, we show that γ-clade RDRs from Oryza sativa L. are involved in plant development as well as regulation of expression of coding and noncoding RNAs. Overexpression of γ-clade RDRs in transgenic rice and tobacco plants resulted in robust growth phenotype, whereas their silencing in rice displayed strong inhibition of growth. Small (s)RNA and RNA-seq analysis of OsRDR3 mis-expression lines suggested that it is specifically involved in the regulation of repeat-rich regions in the genome. Biochemical analysis confirmed that OsRDR3 has robust polymerase activities on both single stranded (ss)RNA and ssDNA templates similar to the activities reported for α-clade RDRs such as AtRDR6. Our results provide the first evidence of the importance of γ-clade RDRs in plant development, their atypical biochemical activities and their contribution to the regulation of gene expression.
Collapse
Affiliation(s)
- Vikram Jha
- National Centre for Biological SciencesGKVK CampusBangalore560065India
- BIOSS Centre for Biological Signaling StudiesFaculty of BiologyAlbert‐Ludwigs‐Universität FreiburgFreiburg im Breisgau79104Germany
| | - Anushree Narjala
- National Centre for Biological SciencesGKVK CampusBangalore560065India
- SASTRA UniversityThirumalaisamudram, Thanjavur613401India
| | - Debjani Basu
- National Centre for Biological SciencesGKVK CampusBangalore560065India
| | - Sujith T. N.
- National Centre for Biological SciencesGKVK CampusBangalore560065India
- University of Trans‐Disciplinary Health Sciences and TechnologyBengaluru560064India
| | - Kannan Pachamuthu
- National Centre for Biological SciencesGKVK CampusBangalore560065India
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersailles78000France
| | - Swetha Chenna
- National Centre for Biological SciencesGKVK CampusBangalore560065India
- SASTRA UniversityThirumalaisamudram, Thanjavur613401India
| | - Ashwin Nair
- National Centre for Biological SciencesGKVK CampusBangalore560065India
- SASTRA UniversityThirumalaisamudram, Thanjavur613401India
| | | |
Collapse
|
11
|
Chen J, Peng Y, Zhang H, Wang K, Tang Y, Gao J, Zhao C, Zhu G, Palli SR, Han Z. Transcript level is a key factor affecting RNAi efficiency. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 176:104872. [PMID: 34119217 DOI: 10.1016/j.pestbp.2021.104872] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Efficiency is the basis for the application of RNA interference (RNAi) technology. Actually, RNAi efficiency varies greatly among insect species, tissues and genes. Previous efforts have revealed the mechanisms for variation among insect species and tissues. Here, we investigated the reason for variable efficiency among the target genes in the same insect. First, we tested the genes sampled randomly from Tribolium castaneum, Locusta migratoria and Drosophila S2 cells for both their expression levels and sensitivity to RNAi. The results indicated that the genes with higher expression levels were more sensitive to RNAi. Statistical analysis showed that the correlation coefficients between transcript levels and knockdown efficiencies were 0.8036 (n = 90), 0.7255 (n = 18) and 0.9505 (n = 13), respectively in T. castaneum, L. migratoria and Drosophila S2 cells. Subsequently, ten genes with varied expression level in different tissues (midgut and carcass without midgut) of T. castaneum were tested. The results indicated that the higher knockdown efficiency was always obtained in the tissue where the target gene expressed higher. In addition, three genes were tested in different developmental stages, larvae and pupae of T. castaneum. The results found that when the expression level increased after insect pupation, these genes became more sensitive to RNAi. Thus, all the proofs support unanimously that transcript level is a key factor affecting RNAi sensitivity. This finding allows for a better understanding of the RNAi efficiency variation and lead to effective or efficient use of RNAi technology.
Collapse
Affiliation(s)
- Jiasheng Chen
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects / Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingchuan Peng
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects / Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hainan Zhang
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects / Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Kangxu Wang
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects / Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Yujie Tang
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects / Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jing Gao
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects / Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunqing Zhao
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects / Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanheng Zhu
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; School of Agriculture, Sun Yat-Sen University, Shenzhen 518107,China
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Zhaojun Han
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects / Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Regulation of DNA break repair by RNA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:23-33. [PMID: 33385412 DOI: 10.1016/j.pbiomolbio.2020.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022]
Abstract
Genomic stability is critical for cell survival and its effective repair when damaged is a vital process for preserving genetic information. Failure to correctly repair the genome can lead to the accumulation of mutations that ultimately drives carcinogenesis. Life has evolved sophisticated surveillance, repair pathways, and mechanisms to recognize and mend genomic lesions to preserve its integrity. Many of these pathways involve a cascade of protein effectors that act to identify the type of damage, such as double-strand (ds) DNA breaks, propagate the damage signal, and recruit an array of other protein factors to resolve the damage without loss of genetic information. It is now becoming increasingly clear that there are a number of RNA processing factors, such as the transcriptional machinery, and microRNA biogenesis components, as well as RNA itself, that facilitate the repair of DNA damage. Here, some of the recent work unravelling the role of RNA in the DNA Damage Response (DDR), in particular the dsDNA break repair pathway, will be reviewed.
Collapse
|
13
|
Drobysheva AV, Panafidina SA, Kolesnik MV, Klimuk EI, Minakhin L, Yakunina MV, Borukhov S, Nilsson E, Holmfeldt K, Yutin N, Makarova KS, Koonin EV, Severinov KV, Leiman PG, Sokolova ML. Structure and function of virion RNA polymerase of a crAss-like phage. Nature 2021; 589:306-309. [PMID: 33208949 DOI: 10.1038/s41586-020-2921-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/08/2020] [Indexed: 01/29/2023]
Abstract
CrAss-like phages are a recently described expansive group of viruses that includes the most abundant virus in the human gut1-3. The genomes of all crAss-like phages encode a large virion-packaged protein2,4 that contains a DFDxD sequence motif, which forms the catalytic site in cellular multisubunit RNA polymerases (RNAPs)5. Here, using Cellulophaga baltica crAss-like phage phi14:2 as a model system, we show that this protein is a DNA-dependent RNAP that is translocated into the host cell along with the phage DNA and transcribes early phage genes. We determined the crystal structure of this 2,180-residue enzyme in a self-inhibited state, which probably occurs before virion packaging. This conformation is attained with the help of a cleft-blocking domain that interacts with the active site and occupies the cavity in which the RNA-DNA hybrid binds. Structurally, phi14:2 RNAP is most similar to eukaryotic RNAPs that are involved in RNA interference6,7, although most of the phi14:2 RNAP structure (nearly 1,600 residues) maps to a new region of the protein fold space. Considering this structural similarity, we propose that eukaryal RNA interference polymerases have their origins in phage, which parallels the emergence of the mitochondrial transcription apparatus8.
Collapse
Affiliation(s)
- Arina V Drobysheva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Sofia A Panafidina
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Matvei V Kolesnik
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Evgeny I Klimuk
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Leonid Minakhin
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Maria V Yakunina
- Peter the Great St Petersburg Polytechnic University, St Petersburg, Russia
| | - Sergei Borukhov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine at Stratford, Stratford, NJ, USA
| | - Emelie Nilsson
- Department of Biology and Environmental Science, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
| | - Karin Holmfeldt
- Department of Biology and Environmental Science, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Konstantin V Severinov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Petr G Leiman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| | - Maria L Sokolova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.
| |
Collapse
|
14
|
Biochemical characterization of the dicing activity of Dicer-like 2 in the model filamentous fungus Neurospora crassa. Fungal Genet Biol 2020; 146:103488. [PMID: 33276093 DOI: 10.1016/j.fgb.2020.103488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/24/2020] [Indexed: 11/23/2022]
Abstract
Dicing of double-stranded RNA (dsRNA) into small RNA is an essential process to trigger transcriptional and post-transcriptional gene silencing. Using cell-free extracts of the model filamentous fungus Neurospora crassa, we successfully detected the dicing activity of one of two N. crassa Dicers NcDCL2. The predominant 23-nucleotide (nt) cleavage product was always detected from 30-nt to 130-nt dsRNA substrates, and additional products of approximately 18 to 28 nt were occasionally produced. The enzymatic properties of NcDCL2 are different from those of insect and plant small interfering RNA (siRNA)-producing Dicers, Drosophila melanogaster Dicer-2 and Arabidopsis thaliana DCL3 and DCL4 (AtDCL3 and AtDCL4). Whereas AtDCL3 and AtDCL4 preferentially cleave short and long dsRNAs, respectively, NcDCL2 cleaved both short and long dsRNAs. These results suggest that N. crassa has a single siRNA-producing Dicer NcDCL2, which is a prototype of plant siRNA-producing Dicers with distinct functions in diverse RNA silencing pathways. The dicing assay reported here is convenient to detect and biochemically characterize the dicing activities of both plant and fungal Dicers, and is likely applicable to other organisms.
Collapse
|
15
|
Role of Non-coding RNAs in Fungal Pathogenesis and Antifungal Drug Responses. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020. [DOI: 10.1007/s40588-020-00151-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Purpose of Review
Non-coding RNAs (ncRNAs), including regulatory small RNAs (sRNAs) and long non-coding RNAs (lncRNAs), constitute a significant part of eukaryotic genomes; however, their roles in fungi are just starting to emerge. ncRNAs have been shown to regulate gene expression in response to varying environmental conditions (like stress) and response to chemicals, including antifungal drugs. In this review, I highlighted recent studies focusing on the functional roles of ncRNAs in pathogenic fungi.
Recent Findings
Emerging evidence suggests sRNAs (small RNAs) and lncRNAs (long non-coding RNAs) play an important role in fungal pathogenesis and antifungal drug response. Their roles include posttranscriptional gene silencing, histone modification, and chromatin remodeling. Fungal pathogens utilize RNA interference (RNAi) mechanisms to regulate pathogenesis-related genes and can also transfer sRNAs inside the host to suppress host immunity genes to increase virulence. Hosts can also transfer sRNAs to induce RNAi in fungal pathogens to reduce virulence. Additionally, sRNAs and lncRNAs also regulate gene expression in response to antifungal drugs increasing resistance (and possibly tolerance) to drugs.
Summary
Herein, I discuss what is known about ncRNAs in fungal pathogenesis and antifungal drug responses. Advancements in genomic technologies will help identify the ncRNA repertoire in fungal pathogens, and functional studies will elucidate their mechanisms. This will advance our understanding of host-fungal interactions and potentially help develop better treatment strategies.
Collapse
|
16
|
A Non-Dicer RNase III and Four Other Novel Factors Required for RNAi-Mediated Transposon Suppression in the Human Pathogenic Yeast Cryptococcus neoformans. G3-GENES GENOMES GENETICS 2019; 9:2235-2244. [PMID: 31092606 PMCID: PMC6643885 DOI: 10.1534/g3.119.400330] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The human pathogenic yeast Cryptococcus neoformans silences transposable elements using endo-siRNAs and an Argonaute, Ago1. Endo-siRNAs production requires the RNA-dependent RNA polymerase, Rdp1, and two partially redundant Dicer enzymes, Dcr1 and Dcr2, but is independent of histone H3 lysine 9 methylation. We describe here an insertional mutagenesis screen for factors required to suppress the mobilization of the C. neoformans HARBINGER family DNA transposon HAR1. Validation experiments uncovered five novel genes (RDE1-5) required for HAR1 suppression and global production of suppressive endo-siRNAs. The RDE genes do not impact transcript levels, suggesting the endo-siRNAs do not act by impacting target transcript synthesis or turnover. RDE3 encodes a non-Dicer RNase III related to S. cerevisiaeRnt1, RDE4 encodes a predicted terminal nucleotidyltransferase, while RDE5 has no strongly predicted encoded domains. Affinity purification-mass spectrometry studies suggest that Rde3 and Rde5 are physically associated. RDE1 encodes a G-patch protein homologous to the S. cerevisiaeSqs1/Pfa1, a nucleolar protein that directly activates the essential helicase Prp43 during rRNA biogenesis. Rde1 copurifies Rde2, another novel protein obtained in the screen, as well as Ago1, a homolog of Prp43, and numerous predicted nucleolar proteins. We also describe the isolation of conditional alleles of PRP43, which are defective in RNAi. This work reveals unanticipated requirements for a non-Dicer RNase III and presumptive nucleolar factors for endo-siRNA biogenesis and transposon mobilization suppression in C. neoformans.
Collapse
|
17
|
K N H, Okabe J, Mathiyalagan P, Khan AW, Jadaan SA, Sarila G, Ziemann M, Khurana I, Maxwell SS, Du XJ, El-Osta A. Sex-Based Mhrt Methylation Chromatinizes MeCP2 in the Heart. iScience 2019; 17:288-301. [PMID: 31323475 PMCID: PMC6639684 DOI: 10.1016/j.isci.2019.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/13/2019] [Accepted: 06/20/2019] [Indexed: 01/15/2023] Open
Abstract
In the heart, primary microRNA-208b (pri-miR-208b) and Myheart (Mhrt) are long non-coding RNAs (lncRNAs) encoded by the cardiac myosin heavy chain genes. Although preclinical studies have shown that lncRNAs regulate gene expression and are protective for pathological hypertrophy, the mechanism underlying sex-based differences remains poorly understood. In this study, we examined DNA- and RNA-methylation-dependent regulation of pri-miR-208b and Mhrt. Expression of pri-miR-208b is elevated in the left ventricle of the female heart. Despite indistinguishable DNA methylation between sexes, the interaction of MeCP2 on chromatin is subject to RNase digestion, highlighting that affinity of the methyl-CG reader is broader than previously thought. A specialized procedure to isolate RNA from soluble cardiac chromatin emphasizes sex-based affinity of an MeCP2 co-repressor complex with Rest and Hdac2. Sex-specific Mhrt methylation chromatinizes MeCP2 at the pri-miR-208b promoter and extends the functional relevance of default transcriptional suppression in the heart. Mechanisms underlying sex-based gene expression are poorly understood Expression of primary miR-208b is independent of DNA methylation in the heart Sex-specific methylation of the long non-coding RNA Mhrt distinguishes MeCP2 Procedures assessing soluble chromatin emphasize RNA-dependent affinities
Collapse
Affiliation(s)
- Harikrishnan K N
- Epigenetics in Human Health and Disease, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC 3004, Australia; Baker Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jun Okabe
- Epigenetics in Human Health and Disease, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC 3004, Australia; Baker Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004, Australia
| | - Prabhu Mathiyalagan
- Baker Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004, Australia
| | - Abdul Waheed Khan
- Epigenetics in Human Health and Disease, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC 3004, Australia; Baker Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sameer A Jadaan
- Epigenetics in Human Health and Disease, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC 3004, Australia; Baker Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Gulcan Sarila
- Epigenetics in Human Health and Disease, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC 3004, Australia; Baker Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004, Australia
| | - Mark Ziemann
- Epigenetics in Human Health and Disease, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC 3004, Australia; Baker Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004, Australia
| | - Ishant Khurana
- Epigenetics in Human Health and Disease, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC 3004, Australia; Baker Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004, Australia
| | - Scott S Maxwell
- Epigenetics in Human Health and Disease, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC 3004, Australia; Baker Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004, Australia
| | - Xiao-Jun Du
- Baker Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC 3004, Australia; Baker Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia; Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, 3/F Lui Che Woo Clinical Sciences Building, 30-32 Ngan Shing Street, Sha Tin, Hong Kong SAR; University College Copenhagen, Faculty of Health, Department of Technology, Biomedical Laboratory Science, Copenhagen, Denmark.
| |
Collapse
|
18
|
Bhattacharjee S, Roche B, Martienssen RA. RNA-induced initiation of transcriptional silencing (RITS) complex structure and function. RNA Biol 2019; 16:1133-1146. [PMID: 31213126 DOI: 10.1080/15476286.2019.1621624] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heterochromatic regions of the genome are epigenetically regulated to maintain a heritable '"silent state"'. In fission yeast and other organisms, epigenetic silencing is guided by nascent transcripts, which are targeted by the RNA interference pathway. The key effector complex of the RNA interference pathway consists of small interfering RNA molecules (siRNAs) associated with Argonaute, assembled into the RNA-induced transcriptional silencing (RITS) complex. This review focuses on our current understanding of how RITS promotes heterochromatin formation, and in particular on the role of Argonaute-containing complexes in many other functions such as quelling, release of RNA polymerases, cellular quiescence and genome defense.
Collapse
Affiliation(s)
- Sonali Bhattacharjee
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| | - Benjamin Roche
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| | - Robert A Martienssen
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| |
Collapse
|
19
|
Michelini F, Jalihal AP, Francia S, Meers C, Neeb ZT, Rossiello F, Gioia U, Aguado J, Jones-Weinert C, Luke B, Biamonti G, Nowacki M, Storici F, Carninci P, Walter NG, d'Adda di Fagagna F. From "Cellular" RNA to "Smart" RNA: Multiple Roles of RNA in Genome Stability and Beyond. Chem Rev 2018; 118:4365-4403. [PMID: 29600857 DOI: 10.1021/acs.chemrev.7b00487] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA biology and genome stability. We start with an account of the emergence of noncoding RNA, and then we discuss the involvement of RNA in DNA damage signaling and repair, telomere maintenance, and genomic rearrangements. We continue with the depiction of single-molecule RNA detection techniques, and we conclude by illustrating the possibilities of RNA modulation in hopes of creating or improving new therapies. The widespread biological functions of RNA have made this molecule a reoccurring theme in basic and translational research, warranting it the transcendence from classically studied "cellular" RNA to "smart" RNA.
Collapse
Affiliation(s)
- Flavia Michelini
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Ameya P Jalihal
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Sofia Francia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Chance Meers
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Zachary T Neeb
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | | | - Ubaldo Gioia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Julio Aguado
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | | | - Brian Luke
- Institute of Developmental Biology and Neurobiology , Johannes Gutenberg University , 55099 Mainz , Germany.,Institute of Molecular Biology (IMB) , 55128 Mainz , Germany
| | - Giuseppe Biamonti
- Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Mariusz Nowacki
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | - Francesca Storici
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Piero Carninci
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku , Yokohama City , Kanagawa 230-0045 , Japan
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Fabrizio d'Adda di Fagagna
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| |
Collapse
|
20
|
Lu WT, Hawley BR, Skalka GL, Baldock RA, Smith EM, Bader AS, Malewicz M, Watts FZ, Wilczynska A, Bushell M. Drosha drives the formation of DNA:RNA hybrids around DNA break sites to facilitate DNA repair. Nat Commun 2018; 9:532. [PMID: 29416038 PMCID: PMC5803274 DOI: 10.1038/s41467-018-02893-x] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/05/2018] [Indexed: 01/08/2023] Open
Abstract
The error-free and efficient repair of DNA double-stranded breaks (DSBs) is extremely important for cell survival. RNA has been implicated in the resolution of DNA damage but the mechanism remains poorly understood. Here, we show that miRNA biogenesis enzymes, Drosha and Dicer, control the recruitment of repair factors from multiple pathways to sites of damage. Depletion of Drosha significantly reduces DNA repair by both homologous recombination (HR) and non-homologous end joining (NHEJ). Drosha is required within minutes of break induction, suggesting a central and early role for RNA processing in DNA repair. Sequencing of DNA:RNA hybrids reveals RNA invasion around DNA break sites in a Drosha-dependent manner. Removal of the RNA component of these structures results in impaired repair. These results show how RNA can be a direct and critical mediator of DNA damage repair in human cells.
Collapse
Affiliation(s)
- Wei-Ting Lu
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | - Ben R Hawley
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | | | - Robert A Baldock
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RQ, UK
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15232, PA, USA
| | - Ewan M Smith
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | - Aldo S Bader
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | | | - Felicity Z Watts
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RQ, UK
| | | | - Martin Bushell
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK.
| |
Collapse
|
21
|
D'Alessandro G, d'Adda di Fagagna F. Transcription and DNA Damage: Holding Hands or Crossing Swords? J Mol Biol 2017; 429:3215-3229. [DOI: 10.1016/j.jmb.2016.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 01/12/2023]
|
22
|
Abstract
In modern molecular biology, RNA has emerged as a versatile macromolecule capable of mediating an astonishing number of biological functions beyond its role as a transient messenger of genetic information. The recent discovery and functional analyses of new classes of noncoding RNAs (ncRNAs) have revealed their widespread use in many pathways, including several in the nucleus. This Review focuses on the mechanisms by which nuclear ncRNAs directly contribute to the maintenance of genome stability. We discuss how ncRNAs inhibit spurious recombination among repetitive DNA elements, repress mobilization of transposable elements (TEs), template or bridge DNA double-strand breaks (DSBs) during repair, and direct developmentally regulated genome rearrangements in some ciliates. These studies reveal an unexpected repertoire of mechanisms by which ncRNAs contribute to genome stability and even potentially fuel evolution by acting as templates for genome modification.
Collapse
|
23
|
Abstract
RNA interference (RNAi) is a mechanism conserved in eukaryotes, including fungi, that represses gene expression by means of small noncoding RNAs (sRNAs) of about 20 to 30 nucleotides. Its discovery is one of the most important scientific breakthroughs of the past 20 years, and it has revolutionized our perception of the functioning of the cell. Initially described and characterized in Neurospora crassa, the RNAi is widespread in fungi, suggesting that it plays important functions in the fungal kingdom. Several RNAi-related mechanisms for maintenance of genome integrity, particularly protection against exogenous nucleic acids such as mobile elements, have been described in several fungi, suggesting that this is the main function of RNAi in the fungal kingdom. However, an increasing number of fungal sRNAs with regulatory functions generated by specific RNAi pathways have been identified. Several mechanistic aspects of the biogenesis of these sRNAs are known, but their function in fungal development and physiology is scarce, except for remarkable examples such as Mucor circinelloides, in which specific sRNAs clearly regulate responses to environmental and endogenous signals. Despite the retention of RNAi in most species, some fungal groups and species lack an active RNAi mechanism, suggesting that its loss may provide some selective advantage. This article summarizes the current understanding of RNAi functions in the fungal kingdom.
Collapse
|
24
|
Torres-Martínez S, Ruiz-Vázquez RM. The RNAi Universe in Fungi: A Varied Landscape of Small RNAs and Biological Functions. Annu Rev Microbiol 2017; 71:371-391. [PMID: 28657888 DOI: 10.1146/annurev-micro-090816-093352] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA interference (RNAi) is a conserved eukaryotic mechanism that uses small RNA molecules to suppress gene expression through sequence-specific messenger RNA degradation, translational repression, or transcriptional inhibition. In filamentous fungi, the protective function of RNAi in the maintenance of genome integrity is well known. However, knowledge of the regulatory role of RNAi in fungi has had to wait until the recent identification of different endogenous small RNA classes, which are generated by distinct RNAi pathways. In addition, RNAi research on new fungal models has uncovered the role of small RNAs and RNAi pathways in the regulation of diverse biological functions. In this review, we give an up-to-date overview of the different classes of small RNAs and RNAi pathways in fungi and their roles in the defense of genome integrity and regulation of fungal physiology and development, as well as in the interaction of fungi with biotic and abiotic environments.
Collapse
|
25
|
Liu X, Dang Y, Matsu-Ura T, He Y, He Q, Hong CI, Liu Y. DNA Replication Is Required for Circadian Clock Function by Regulating Rhythmic Nucleosome Composition. Mol Cell 2017. [PMID: 28648778 DOI: 10.1016/j.molcel.2017.05.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although the coupling between circadian and cell cycles allows circadian clocks to gate cell division and DNA replication in many organisms, circadian clocks were thought to function independently of cell cycle. Here, we show that DNA replication is required for circadian clock function in Neurospora. Genetic and pharmacological inhibition of DNA replication abolished both overt and molecular rhythmicities by repressing frequency (frq) gene transcription. DNA replication is essential for the rhythmic changes of nucleosome composition at the frq promoter. The FACT complex, known to be involved in histone disassembly/reassembly, is required for clock function and is recruited to the frq promoter in a replication-dependent manner to promote replacement of histone H2A.Z by H2A. Finally, deletion of H2A.Z uncoupled the dependence of the circadian clock on DNA replication. Together, these results establish circadian clock and cell cycle as interdependent coupled oscillators and identify DNA replication as a critical process in the circadian mechanism.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Yunkun Dang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Toru Matsu-Ura
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yubo He
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA; Department of Biochemistry and Cell Biology, McMurtry College, Rice University, Houston, TX 77005, USA
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Christian I Hong
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA.
| |
Collapse
|
26
|
The emerging role of RNAs in DNA damage repair. Cell Death Differ 2017; 24:580-587. [PMID: 28234355 PMCID: PMC5384027 DOI: 10.1038/cdd.2017.16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 12/25/2022] Open
Abstract
Many surveillance and repair mechanisms exist to maintain the integrity of our genome. All of the pathways described to date are controlled exclusively by proteins, which through their enzymatic activities identify breaks, propagate the damage signal, recruit further protein factors and ultimately resolve the break with little to no loss of genetic information. RNA is known to have an integral role in many cellular pathways, but, until very recently, was not considered to take part in the DNA repair process. Several reports demonstrated a conserved critical role for RNA-processing enzymes and RNA molecules in DNA repair, but the biogenesis of these damage-related RNAs and their mechanisms of action remain unknown. We will explore how these new findings challenge the idea of proteins being the sole participants in the response to DNA damage and reveal a new and exciting aspect of both DNA repair and RNA biology.
Collapse
|
27
|
Villalobos-Escobedo JM, Herrera-Estrella A, Carreras-Villaseñor N. The interaction of fungi with the environment orchestrated by RNAi. Mycologia 2017; 108:556-71. [DOI: 10.3852/15-246] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/07/2016] [Indexed: 11/10/2022]
Affiliation(s)
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad. Cinvestav Campus Guanajuato. Km 9.6 Libramiento Norte, carretera Irapuato-León. 36821 Irapuato, Guanajuato, Mexico
| | - Nohemí Carreras-Villaseñor
- StelaGenomics México, S de RL de CV, Av. Camino Real de Guanajuato S/N, 36821 Irapuato, Guanajuato, Mexico
| |
Collapse
|
28
|
Armas-Tizapantzi A, Montiel-González AM. RNAi silencing: A tool for functional genomics research on fungi. FUNGAL BIOL REV 2016. [DOI: 10.1016/j.fbr.2016.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Torres-Martínez S, Ruiz-Vázquez RM. RNAi pathways in Mucor: A tale of proteins, small RNAs and functional diversity. Fungal Genet Biol 2016; 90:44-52. [DOI: 10.1016/j.fgb.2015.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/10/2015] [Accepted: 11/14/2015] [Indexed: 12/30/2022]
|
30
|
Su X, Schmitz G, Zhang M, Mackie RI, Cann IKO. Heterologous gene expression in filamentous fungi. ADVANCES IN APPLIED MICROBIOLOGY 2016; 81:1-61. [PMID: 22958526 DOI: 10.1016/b978-0-12-394382-8.00001-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi.
Collapse
Affiliation(s)
- Xiaoyun Su
- Energy Biosciences Institute, University of Illinois, Urbana, IL, USA; Institute for Genomic Biology, University of Illinois, Urbana, IL, USA; Equal contribution
| | | | | | | | | |
Collapse
|
31
|
Feretzaki M, Billmyre RB, Clancey SA, Wang X, Heitman J. Gene Network Polymorphism Illuminates Loss and Retention of Novel RNAi Silencing Components in the Cryptococcus Pathogenic Species Complex. PLoS Genet 2016; 12:e1005868. [PMID: 26943821 PMCID: PMC4778953 DOI: 10.1371/journal.pgen.1005868] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/25/2016] [Indexed: 11/18/2022] Open
Abstract
RNAi is a ubiquitous pathway that serves central functions throughout eukaryotes, including maintenance of genome stability and repression of transposon expression and movement. However, a number of organisms have lost their RNAi pathways, including the model yeast Saccharomyces cerevisiae, the maize pathogen Ustilago maydis, the human pathogen Cryptococcus deuterogattii, and some human parasite pathogens, suggesting there may be adaptive benefits associated with both retention and loss of RNAi. By comparing the RNAi-deficient genome of the Pacific Northwest Outbreak C. deuterogattii strain R265 with the RNAi-proficient genomes of the Cryptococcus pathogenic species complex, we identified a set of conserved genes that were lost in R265 and all other C. deuterogattii isolates examined. Genetic and molecular analyses reveal several of these lost genes play roles in RNAi pathways. Four novel components were examined further. Znf3 (a zinc finger protein) and Qip1 (a homolog of N. crassa Qip) were found to be essential for RNAi, while Cpr2 (a constitutive pheromone receptor) and Fzc28 (a transcription factor) are involved in sex-induced but not mitosis-induced silencing. Our results demonstrate that the mitotic and sex-induced RNAi pathways rely on the same core components, but sex-induced silencing may be a more specific, highly induced variant that involves additional specialized or regulatory components. Our studies further illustrate how gene network polymorphisms involving known components of key cellular pathways can inform identification of novel elements and suggest that RNAi loss may have been a core event in the speciation of C. deuterogattii and possibly contributed to its pathogenic trajectory. Genome instability and mutations provoked by transposon movement are counteracted by novel defense mechanisms in organisms as diverse as fungi, plants, and mammals. In the human fungal pathogen Cryptococcus neoformans, an RNAi silencing pathway operates to defend the genome against mobile elements and transgene repeats. RNAi silencing pathways are conserved in the Cryptococcus pathogenic species complex and are mediated by canonical RNAi components. Surprisingly, several of these components are missing from all analyzed C. deuterogattii VGII strains, the molecular type responsible for the North American Pacific Northwest outbreak. To identify novel components of the RNAi pathways, we surveyed the reference genomes of C. deuterogattii, C. gattii, C. neoformans, and C. deneoformans. We identified 14 otherwise conserved genes missing in R265, including the RDP1, AGO1, and DCR1 canonical RNAi components, and focused on four potentially novel RNAi components: ZNF3, QIP1, CPR2, and FZC28. We found that Znf3 and Qip1 are both required for mitotic- and sex-induced silencing, while Cpr2 and Fzc28 contribute to sex-induced but not mitosis-induced silencing. Our studies reveal elements of RNAi pathways that operate to defend the genome during sexual development and vegetative growth and illustrate the power of network polymorphisms to illuminate novel components of biological pathways.
Collapse
Affiliation(s)
- Marianna Feretzaki
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - R. Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Shelly Applen Clancey
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Xuying Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
32
|
Qian X, Hamid FM, El Sahili A, Darwis DA, Wong YH, Bhushan S, Makeyev EV, Lescar J. Functional Evolution in Orthologous Cell-encoded RNA-dependent RNA Polymerases. J Biol Chem 2016; 291:9295-309. [PMID: 26907693 PMCID: PMC4861493 DOI: 10.1074/jbc.m115.685933] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 12/15/2022] Open
Abstract
Many eukaryotic organisms encode more than one RNA-dependent RNA polymerase (RdRP) that probably emerged as a result of gene duplication. Such RdRP paralogs often participate in distinct RNA silencing pathways and show characteristic repertoires of enzymatic activities in vitro However, to what extent members of individual paralogous groups can undergo functional changes during speciation remains an open question. We show that orthologs of QDE-1, an RdRP component of the quelling pathway in Neurospora crassa, have rapidly diverged in evolution at the amino acid sequence level. Analyses of purified QDE-1 polymerases from N. crassa (QDE-1(Ncr)) and related fungi, Thielavia terrestris (QDE-1(Tte)) and Myceliophthora thermophila (QDE-1(Mth)), show that all three enzymes can synthesize RNA, but the precise modes of their action differ considerably. Unlike their QDE-1(Ncr) counterpart favoring processive RNA synthesis, QDE-1(Tte) and QDE-1(Mth) produce predominantly short RNA copies via primer-independent initiation. Surprisingly, a 3.19 Å resolution crystal structure of QDE-1(Tte) reveals a quasisymmetric dimer similar to QDE-1(Ncr) Further electron microscopy analyses confirm that QDE-1(Tte) occurs as a dimer in solution and retains this status upon interaction with a template. We conclude that divergence of orthologous RdRPs can result in functional innovation while retaining overall protein fold and quaternary structure.
Collapse
Affiliation(s)
- Xinlei Qian
- From the Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 138673 Singapore, Singapore
| | - Fursham M Hamid
- From the Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 138673 Singapore, Singapore
| | - Abbas El Sahili
- From the Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 138673 Singapore, Singapore
| | - Dina Amallia Darwis
- From the Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 138673 Singapore, Singapore
| | - Yee Hwa Wong
- From the Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 138673 Singapore, Singapore
| | - Shashi Bhushan
- From the Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 138673 Singapore, Singapore
| | - Eugene V Makeyev
- From the Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 138673 Singapore, Singapore, the Medical Research Council Centre for Developmental Neurobiology, King's College, London SE1 1UL, United Kingdom, and
| | - Julien Lescar
- From the Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 138673 Singapore, Singapore, UPMC UMRS CR7-CNRS ERL 8255-INSERM U1135 Centre d' Immunologie et des Maladies Infectieuses, Faculté de Médecine Pierre et Marie Curie, Centre Hospitalier Universitaire Pitié-Salpêtrière, 75031 Paris, France
| |
Collapse
|
33
|
Genome-wide redistribution of H3K27me3 is linked to genotoxic stress and defective growth. Proc Natl Acad Sci U S A 2015; 112:E6339-48. [PMID: 26578794 DOI: 10.1073/pnas.1511377112] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
H3K9 methylation directs heterochromatin formation by recruiting multiple heterochromatin protein 1 (HP1)-containing complexes that deacetylate histones and methylate cytosine bases in DNA. In Neurospora crassa, a single H3K9 methyltransferase complex, called the DIM-5,-7,-9, CUL4, DDB1 Complex (DCDC), is required for normal growth and development. DCDC-deficient mutants are hypersensitive to the genotoxic agent methyl methanesulfonate (MMS), but the molecular basis of genotoxic stress is unclear. We found that both the MMS sensitivity and growth phenotypes of DCDC-deficient strains are suppressed by mutation of embryonic ectoderm development or Su-(var)3-9; E(z); Trithorax (set)-7, encoding components of the H3K27 methyltransferase Polycomb repressive complex-2 (PRC2). Trimethylated histone H3K27 (H3K27me3) undergoes genome-wide redistribution to constitutive heterochromatin in DCDC- or HP1-deficient mutants, and introduction of an H3K27 missense mutation is sufficient to rescue phenotypes of DCDC-deficient strains. Accumulation of H3K27me3 in heterochromatin does not compensate for silencing; rather, strains deficient for both DCDC and PRC2 exhibit synthetic sensitivity to the topoisomerase I inhibitor Camptothecin and accumulate γH2A at heterochromatin. Together, these data suggest that PRC2 modulates the response to genotoxic stress.
Collapse
|
34
|
Abstract
Repetitive DNA loci are a major source for the production of eukaryotic small RNAs, but how these small RNAs are produced is not clear. Yang et al. show that DNA tandem repeats and double-strand breaks are necessary and, when both are present, sufficient to trigger gene silencing and siRNA production. In addition to siRNA production, the quelling pathway also maintains tandem repeats by regulating homologous recombination. RNAi is a conserved genome defense mechanism in eukaryotes that protects against deleterious effects of transposons and viral invasion. Repetitive DNA loci are a major source for the production of eukaryotic small RNAs, but how these small RNAs are produced is not clear. Quelling in Neurospora is one of the first known RNAi-related phenomena and is triggered by the presence of multiple copies of transgenes. Here we showed that DNA tandem repeats and double-strand breaks are necessary and, when both are present, sufficient to trigger gene silencing and siRNA production. Introduction of a site-specific double-strand break or DNA fragile site resulted in homologous recombination of repetitive sequences, which is required for gene silencing. In addition to siRNA production, the quelling pathway also maintains tandem repeats by regulating homologous recombination. Our study identified the mechanistic trigger for siRNA production from repetitive DNA and established a role for siRNA in maintaining genome stability.
Collapse
Affiliation(s)
- Qiuying Yang
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Qiaohong Anne Ye
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
35
|
Carradec Q, Götz U, Arnaiz O, Pouch J, Simon M, Meyer E, Marker S. Primary and secondary siRNA synthesis triggered by RNAs from food bacteria in the ciliate Paramecium tetraurelia. Nucleic Acids Res 2015; 43:1818-33. [PMID: 25593325 PMCID: PMC4330347 DOI: 10.1093/nar/gku1331] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In various organisms, an efficient RNAi response can be triggered by feeding cells with bacteria producing double-stranded RNA (dsRNA) against an endogenous gene. However, the detailed mechanisms and natural functions of this pathway are not well understood in most cases. Here, we studied siRNA biogenesis from exogenous RNA and its genetic overlap with endogenous RNAi in the ciliate Paramecium tetraurelia by high-throughput sequencing. Using wild-type and mutant strains deficient for dsRNA feeding we found that high levels of primary siRNAs of both strands are processed from the ingested dsRNA trigger by the Dicer Dcr1, the RNA-dependent RNA polymerases Rdr1 and Rdr2 and other factors. We further show that this induces the synthesis of secondary siRNAs spreading along the entire endogenous mRNA, demonstrating the occurrence of both 3′-to-5′ and 5′-to-3′ transitivity for the first time in the SAR clade of eukaryotes (Stramenopiles, Alveolates, Rhizaria). Secondary siRNAs depend on Rdr2 and show a strong antisense bias; they are produced at much lower levels than primary siRNAs and hardly contribute to RNAi efficiency. We further provide evidence that the Paramecium RNAi machinery also processes single-stranded RNAs from its bacterial food, broadening the possible natural functions of exogenously induced RNAi in this organism.
Collapse
Affiliation(s)
- Quentin Carradec
- Institut de Biologie de l'ENS, IBENS, Ecole Normale Supérieure, Inserm, U1024, CNRS, UMR 8197, 75005 Paris, France UPMC, IFD, Sorbonne Universités, 4 place Jussieu, 75252 Paris cedex 05, France
| | - Ulrike Götz
- Zentrum für Human- und Molekularbiologie, Molekulare Zelldynamik, Universität des Saarlandes, Campus A2 4, 66123 Saarbrücken, Germany
| | - Olivier Arnaiz
- Centre de Génétique Moléculaire, CNRS UPR3404, 91198 Gif-sur-Yvette cedex, France
| | - Juliette Pouch
- Institut de Biologie de l'ENS, IBENS, Ecole Normale Supérieure, Inserm, U1024, CNRS, UMR 8197, 75005 Paris, France
| | - Martin Simon
- Zentrum für Human- und Molekularbiologie, Molekulare Zelldynamik, Universität des Saarlandes, Campus A2 4, 66123 Saarbrücken, Germany
| | - Eric Meyer
- Institut de Biologie de l'ENS, IBENS, Ecole Normale Supérieure, Inserm, U1024, CNRS, UMR 8197, 75005 Paris, France
| | - Simone Marker
- Institut de Biologie de l'ENS, IBENS, Ecole Normale Supérieure, Inserm, U1024, CNRS, UMR 8197, 75005 Paris, France Zentrum für Human- und Molekularbiologie, Molekulare Zelldynamik, Universität des Saarlandes, Campus A2 4, 66123 Saarbrücken, Germany
| |
Collapse
|
36
|
Abstract
Diverse classes of RNA, ranging from small to long non-coding RNAs, have emerged as key regulators of gene expression, genome stability and defence against foreign genetic elements. Small RNAs modify chromatin structure and silence transcription by guiding Argonaute-containing complexes to complementary nascent RNA scaffolds and then mediating the recruitment of histone and DNA methyltransferases. In addition, recent advances suggest that chromatin-associated long non-coding RNA scaffolds also recruit chromatin-modifying complexes independently of small RNAs. These co-transcriptional silencing mechanisms form powerful RNA surveillance systems that detect and silence inappropriate transcription events, and provide a memory of these events via self-reinforcing epigenetic loops.
Collapse
Affiliation(s)
- Daniel Holoch
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Danesh Moazed
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
37
|
|
38
|
Nonstructural protein 5A (NS5A) and human replication protein A increase the processivity of hepatitis C virus NS5B polymerase activity in vitro. J Virol 2014; 89:165-80. [PMID: 25320291 DOI: 10.1128/jvi.01677-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED The precise role(s) and topological organization of different factors in the hepatitis C virus (HCV) RNA replication complex are not well understood. In order to elucidate the role of viral and host proteins in HCV replication, we have developed a novel in vitro replication system that utilizes a rolling-circle RNA template. Under close-to-physiological salt conditions, HCV NS5BΔ21, an RNA-dependent RNA polymerase, has poor affinity for the RNA template. Human replication protein A (RPA) and HCV NS5A recruit NS5BΔ21 to the template. Subsequently, NS3 is recruited to the replication complex by NS5BΔ21, resulting in RNA synthesis stimulation by helicase. Both RPA and NS5A(S25-C447), but not NS5A(S25-K215), enabled the NS5BΔ21-NS3 helicase complex to be stably associated with the template and synthesize RNA product in a highly processive manner in vitro. This new in vitro HCV replication system is a useful tool that may facilitate the study of other replication factors and aid in the discovery of novel inhibitors of HCV replication. IMPORTANCE The molecular mechanism of hepatitis C virus (HCV) replication is not fully understood, but viral and host proteins collaborate in this process. Using a rolling-circle RNA template, we have reconstituted an in vitro HCV replication system that allows us to interrogate the role of viral and host proteins in HCV replication and delineate the molecular interactions. We showed that HCV NS5A(S25-C447) and cellular replication protein A (RPA) functionally cooperate as a processivity factor to stimulate HCV replication by HCV NS5BΔ21 polymerase and NS3 helicase. This system paves the way to test other proteins and may be used as an assay for discovery of HCV inhibitors.
Collapse
|
39
|
Sohn SH, Frost J, Kim YH, Choi SK, Lee Y, Seo MS, Lim SH, Choi Y, Kim KH, Lomonossoff G. Cell-autonomous-like silencing of GFP-partitioned transgenic Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4271-83. [PMID: 24868037 DOI: 10.1093/jxb/eru200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We previously reported the novel partitioning of regional GFP-silencing on leaves of 35S-GFP transgenic plants, coining the term "partitioned silencing". We set out to delineate the mechanism of partitioned silencing. Here, we report that the partitioned plants were hemizygous for the transgene, possessing two direct-repeat copies of 35S-GFP. The detection of both siRNA expression (21 and 24 nt) and DNA methylation enrichment specifically at silenced regions indicated that both post-transcriptional gene silencing (PTGS) and transcriptional gene silencing (TGS) were involved in the silencing mechanism. Using in vivo agroinfiltration of 35S-GFP/GUS and inoculation of TMV-GFP RNA, we demonstrate that PTGS, not TGS, plays a dominant role in the partitioned silencing, concluding that the underlying mechanism of partitioned silencing is analogous to RNA-directed DNA methylation (RdDM). The initial pattern of partitioned silencing was tightly maintained in a cell-autonomous manner, although partitioned-silenced regions possess a potential for systemic spread. Surprisingly, transcriptome profiling through next-generation sequencing demonstrated that expression levels of most genes involved in the silencing pathway were similar in both GFP-expressing and silenced regions although a diverse set of region-specific transcripts were detected.This suggests that partitioned silencing can be triggered and regulated by genes other than the genes involved in the silencing pathway.
Collapse
Affiliation(s)
- Seong-Han Sohn
- National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA), Suwon 441-707, Korea
| | - Jennifer Frost
- College of Natural Resources, University of California, Berkeley CA94720, USA
| | - Yoon-Hee Kim
- National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA), Suwon 441-707, Korea
| | - Seung-Kook Choi
- National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA), Suwon 441-707, Korea
| | - Yi Lee
- College of Agricultural, Life and Environmental Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Mi-Suk Seo
- National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA), Suwon 441-707, Korea
| | - Sun-Hyung Lim
- National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA), Suwon 441-707, Korea
| | - Yeonhee Choi
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Kook-Hyung Kim
- College of Agriculture and Life Sciences (CALS), Seoul National University, Seoul 151-747, Korea
| | - George Lomonossoff
- Department of Biological Chemistry, John Innes Centre (JIC), Colney Lane, Norwich NR4 7UH, UK
| |
Collapse
|
40
|
Mönttinen HAM, Ravantti JJ, Stuart DI, Poranen MM. Automated structural comparisons clarify the phylogeny of the right-hand-shaped polymerases. Mol Biol Evol 2014; 31:2741-52. [PMID: 25063440 DOI: 10.1093/molbev/msu219] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Polymerases are essential for life, being responsible for replication, transcription, and the repair of nucleic acid molecules. Those that share a right-hand-shaped fold and catalytic site structurally similar to the DNA polymerase I of Escherichia coli may catalyze RNA- or DNA-dependent RNA polymerization, reverse transcription, or DNA replication in eukarya, archaea, bacteria, and their viruses. We have applied novel computational methods for structure-based clustering and phylogenetic analyses of this functionally diverse polymerase superfamily, which currently comprises six families. We identified a structural core common to all right-handed polymerases, composed of 57 amino acid residues, harboring two positionally and chemically conserved residues, the catalytic aspartates. The structural conservation within each of the six families is considerable, for example, the structural core shared by family Y DNA polymerases covers over 90% of the polymerase domain of the Sulfolobus solfataricus Dpo4. Our phylogenetic analyses propose an early separation of RNA-dependent polymerases that use primers from those that are primer-independent. Furthermore, the exchange of polymerase genes between viruses and their hosts is evident. Because of this horizontal gene transfer, the phylogeny of polymerases does not always reflect the evolutionary history of the corresponding organisms.
Collapse
Affiliation(s)
- Heli A M Mönttinen
- Department of Biosciences, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| | - Janne J Ravantti
- Department of Biosciences, Viikki Biocenter, University of Helsinki, Helsinki, Finland Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| | - David I Stuart
- Division of Structural Biology and the Oxford Protein Production Facility, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom Diamond Light Source Limited, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| | - Minna M Poranen
- Department of Biosciences, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Abstract
RNAi is conserved and has been studied in a broad cross-section of the fungal kingdom, including Neurospora crassa, Schizosaccharomyces pombe, Cryptococcus neoformans, and Mucor circinelloides. And yet well known species, including the model yeast Saccharomyces cerevisiae and the plant pathogen Ustilago maydis, have lost RNAi, providing insights and opportunities to illuminate benefits conferred both by the presence of RNAi and its loss. Some of the earliest studies of RNAi were conducted in Neurospora, contemporaneously with the elucidation of RNAi in Caenorhabditis elegans. RNAi is a key epigenetic mechanism for maintaining genomic stability and integrity, as well as to defend against viruses, and given its ubiquity was likely present in the last eukaryotic common ancestor. In this review, we describe the diversity of RNAi mechanisms found in the fungi, highlighting recent work in Neurospora, S. pombe, and Cryptococcus. Finally, we consider frequent, independent losses of RNAi in diverse fungal lineages and both review and speculate on evolutionary forces that may drive the losses or result therefrom.
Collapse
|
42
|
Bilichak A, Yao Y, Kovalchuk I. Transient down-regulation of the RNA silencing machinery increases efficiency of Agrobacterium-mediated transformation of Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:590-600. [PMID: 24472037 DOI: 10.1111/pbi.12165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/15/2013] [Indexed: 06/03/2023]
Abstract
Agrobacterium tumefaciens is a plant pathogen that is widely used in plant transformation. As the process of transgenesis includes the delivery of single-stranded T-DNA molecule, we hypothesized that transformation rate may negatively correlate with the efficiency of the RNA-silencing machinery. Using mutants compromised in either the transcriptional or post-transcriptional gene-silencing pathways, two inhibitors of stable transformation were revealed-AGO2 and NRPD1a. Furthermore, an immunoprecipitation experiment has shown that NRPD1, a subunit of Pol IV, directly interacts with Agrobacterium T-DNA in planta. Using the Tobacco rattle virus (TRV)--based virus-induced gene silencing (VIGS) technique, we demonstrated that the transient down-regulation of the expression of either AGO2 or NRPD1a genes in reproductive organs of Arabidopsis, leads to an increase in transformation rate. We observed a 6.0- and 3.5-fold increase in transformation rate upon transient downregulation of either AGO2 or NRPD1a genes, respectively. This is the first report demonstrating the increase in the plant transformation rate via VIGS-mediated transient down-regulation of the components of epigenetic machinery in reproductive tissue.
Collapse
MESH Headings
- Agrobacterium/physiology
- Arabidopsis/genetics
- Arabidopsis/microbiology
- Arabidopsis Proteins/metabolism
- Blotting, Southern
- DNA Breaks, Double-Stranded
- DNA Methylation/genetics
- DNA, Bacterial/genetics
- DNA-Directed RNA Polymerases/metabolism
- Down-Regulation
- Epigenesis, Genetic
- Genes, Plant
- Genetic Loci
- Models, Genetic
- Mutation/genetics
- Plants, Genetically Modified
- Protein Binding
- Protein Subunits/metabolism
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Reverse Genetics
- Transformation, Genetic
Collapse
Affiliation(s)
- Andriy Bilichak
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | | | | |
Collapse
|
43
|
Zhang Z, Yang Q, Sun G, Chen S, He Q, Li S, Liu Y. Histone H3K56 acetylation is required for quelling-induced small RNA production through its role in homologous recombination. J Biol Chem 2014; 289:9365-71. [PMID: 24554705 DOI: 10.1074/jbc.m113.528521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Quelling and DNA damage-induced small RNA (qiRNA) production are RNA interference (RNAi)-related phenomenon from repetitive genomic loci in Neurospora. We have recently proposed that homologous recombination from repetitive DNA loci allows the RNAi pathway to recognize repetitive DNA to produce small RNA. However, the mechanistic detail of this pathway remains largely unclear. By systematically screening the Neurospora knock-out library, we identified RTT109 as a novel component required for small RNA production. RTT109 is a histone acetyltransferase for histone H3 lysine 56 (H3K56) and H3K56 acetylation is essential for the small RNA biogenesis pathway. Furthermore, we showed that RTT109 is required for homologous recombination and H3K56Ac is enriched around double strand break, which overlaps with RAD51 binding. Taken together, our results suggest that H3K56 acetylation is required for small RNA production through its role in homologous recombination.
Collapse
Affiliation(s)
- Zhenyu Zhang
- From the Department of Physiology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | | | | | | | | | | | | |
Collapse
|
44
|
Dumesic PA, Madhani HD. Recognizing the enemy within: licensing RNA-guided genome defense. Trends Biochem Sci 2013; 39:25-34. [PMID: 24280023 DOI: 10.1016/j.tibs.2013.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/26/2013] [Accepted: 10/28/2013] [Indexed: 02/06/2023]
Abstract
How do cells distinguish normal genes from transposons? Although much has been learned about RNAi-related RNA silencing pathways responsible for genome defense, this fundamental question remains. The literature points to several classes of mechanisms. In some cases, double-stranded RNA (dsRNA) structures produced by transposon inverted repeats or antisense integration trigger endogenous small interfering RNA (siRNA) biogenesis. In other instances, DNA features associated with transposons--such as their unusual copy number, chromosomal arrangement, and/or chromatin environment--license RNA silencing. Finally, recent studies have identified improper transcript processing events, such as stalled pre-mRNA splicing, as signals for siRNA production. Thus, the suboptimal gene expression properties of selfish elements can enable their identification by RNA silencing pathways.
Collapse
Affiliation(s)
- Phillip A Dumesic
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
45
|
Aramayo R, Selker EU. Neurospora crassa, a model system for epigenetics research. Cold Spring Harb Perspect Biol 2013; 5:a017921. [PMID: 24086046 DOI: 10.1101/cshperspect.a017921] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The filamentous fungus Neurospora crassa has provided a rich source of knowledge on epigenetic phenomena that would have been difficult or impossible to gain from other systems. Neurospora sports features found in higher eukaryotes but absent in both budding and fission yeast, including DNA methylation and H3K27 methylation, and also has distinct RNA interference (RNAi)-based silencing mechanisms operating in mitotic and meiotic cells. This has provided an unexpected wealth of information on gene silencing systems. One silencing mechanism, named repeat-induced point mutation (RIP), has both epigenetic and genetic aspects and provided the first example of a homology-based genome defense system. A second silencing mechanism, named quelling, is an RNAi-based mechanism that results in silencing of transgenes and their native homologs. A third, named meiotic silencing, is also RNAi-based but is distinct from quelling in its time of action, targets, and apparent purpose.
Collapse
Affiliation(s)
- Rodolfo Aramayo
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | | |
Collapse
|
46
|
Ohsawa R, Seol JH, Tyler JK. At the intersection of non-coding transcription, DNA repair, chromatin structure, and cellular senescence. Front Genet 2013; 4:136. [PMID: 23967007 PMCID: PMC3744812 DOI: 10.3389/fgene.2013.00136] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/26/2013] [Indexed: 01/23/2023] Open
Abstract
It is well accepted that non-coding RNAs play a critical role in regulating gene expression. Recent paradigm-setting studies are now revealing that non-coding RNAs, other than microRNAs, also play intriguing roles in the maintenance of chromatin structure, in the DNA damage response, and in adult human stem cell aging. In this review, we will discuss the complex inter-dependent relationships among non-coding RNA transcription, maintenance of genomic stability, chromatin structure, and adult stem cell senescence. DNA damage-induced non-coding RNAs transcribed in the vicinity of the DNA break regulate recruitment of the DNA damage machinery and DNA repair efficiency. We will discuss the correlation between non-coding RNAs and DNA damage repair efficiency and the potential role of changing chromatin structures around double-strand break sites. On the other hand, induction of non-coding RNA transcription from the repetitive Alu elements occurs during human stem cell aging and hinders efficient DNA repair causing entry into senescence. We will discuss how this fine balance between transcription and genomic instability may be regulated by the dramatic changes to chromatin structure that accompany cellular senescence.
Collapse
Affiliation(s)
- Ryosuke Ohsawa
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center Houston, TX, USA
| | | | | |
Collapse
|
47
|
Nicolás FE, Ruiz-Vázquez RM. Functional diversity of RNAi-associated sRNAs in fungi. Int J Mol Sci 2013; 14:15348-60. [PMID: 23887655 PMCID: PMC3759863 DOI: 10.3390/ijms140815348] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 12/21/2022] Open
Abstract
Yeast and filamentous fungi have been essential model systems for unveiling the secrets of RNA interference (RNAi). Research on these organisms has contributed to identifying general mechanisms and conserved eukaryotic RNAi machinery that can be found from fungi to mammals. The development of deep sequencing technologies has brought on the last wave of studies on RNAi in fungi, which has been focused on the identification of new types of functional small RNAs (sRNAs). These studies have discovered an unexpected diversity of sRNA, biogenesis pathways and new functions that are the focus of this review.
Collapse
Affiliation(s)
- Francisco E. Nicolás
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain; E-Mail:
- Regional Campus of International Excellence “Campus Mare Nostrum”, Murcia 30100, Spain
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-868-887135; Fax: +34-868-883963
| | - Rosa M. Ruiz-Vázquez
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain; E-Mail:
| |
Collapse
|
48
|
Dumesic PA, Natarajan P, Chen C, Drinnenberg IA, Schiller BJ, Thompson J, Moresco JJ, Yates JR, Bartel DP, Madhani HD. Stalled spliceosomes are a signal for RNAi-mediated genome defense. Cell 2013; 152:957-68. [PMID: 23415457 DOI: 10.1016/j.cell.2013.01.046] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 11/13/2012] [Accepted: 01/17/2013] [Indexed: 11/29/2022]
Abstract
Using the yeast Cryptococcus neoformans, we describe a mechanism by which transposons are initially targeted for RNAi-mediated genome defense. We show that intron-containing mRNA precursors template siRNA synthesis. We identify a Spliceosome-Coupled And Nuclear RNAi (SCANR) complex required for siRNA synthesis and demonstrate that it physically associates with the spliceosome. We find that RNAi target transcripts are distinguished by suboptimal introns and abnormally high occupancy on spliceosomes. Functional investigations demonstrate that the stalling of mRNA precursors on spliceosomes is required for siRNA accumulation. Lariat debranching enzyme is also necessary for siRNA production, suggesting a requirement for processing of stalled splicing intermediates. We propose that recognition of mRNA precursors by the SCANR complex is in kinetic competition with splicing, thereby promoting siRNA production from transposon transcripts stalled on spliceosomes. Disparity in the strength of expression signals encoded by transposons versus host genes offers an avenue for the evolution of genome defense.
Collapse
Affiliation(s)
- Phillip A Dumesic
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhang Z, Chang SS, Zhang Z, Xue Z, Zhang H, Li S, Liu Y. Homologous recombination as a mechanism to recognize repetitive DNA sequences in an RNAi pathway. Genes Dev 2013; 27:145-50. [PMID: 23322299 DOI: 10.1101/gad.209494.112] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Quelling is an RNAi-related phenomenon that post-transcriptionally silences repetitive DNA and transposons in Neurospora. We previously identified a type of DNA damage-induced small RNA called qiRNA that originates from ribosomal DNA. To understand how small RNAs are generated from repetitive DNA, we carried out a genetic screen to identify genes required for qiRNA biogenesis. Factors directly involved in homologous recombination (HR) and chromatin remodeling factors required for HR are essential for qiRNA production. HR is also required for quelling, and quelling is also the result of DNA damage, indicating that quelling and qiRNA production share a common mechanism. Together, our results suggest that DNA damage-triggered HR-based recombination allows the RNAi pathway to recognize repetitive DNA to produce small RNA.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Wang X, Wang P, Sun S, Darwiche S, Idnurm A, Heitman J. Transgene induced co-suppression during vegetative growth in Cryptococcus neoformans. PLoS Genet 2012; 8:e1002885. [PMID: 22916030 PMCID: PMC3420925 DOI: 10.1371/journal.pgen.1002885] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/22/2012] [Indexed: 11/23/2022] Open
Abstract
Introduction of DNA sequences into the genome often results in homology-dependent gene silencing in organisms as diverse as plants, fungi, flies, nematodes, and mammals. We previously showed in Cryptococcus neoformans that a repeat transgene array can induce gene silencing at a high frequency during mating (∼50%), but at a much lower frequency during vegetative growth (∼0.2%). Here we report a robust asexual co-suppression phenomenon triggered by the introduction of a cpa1::ADE2 transgene. Multiple copies of the cpa1::ADE2 transgene were ectopically integrated into the genome, leading to silencing of the endogenous CPA1 and CPA2 genes encoding the cyclosporine A target protein cyclophilin A. Given that CPA1-derived antisense siRNAs were detected in the silenced isolates, and that RNAi components (Rdp1, Ago1, and Dcr2) are required for silencing, we hypothesize that an RNAi pathway is involved, in which siRNAs function as trans factors to silence both the CPA1 and the CPA2 genes. The silencing efficiency of the CPA1 and CPA2 genes is correlated with the transgene copy number and reached ∼90% in the presence of >25 copies of the transgene. We term this transgene silencing phenomenon asexual co-suppression to distinguish it from the related sex-induced silencing (SIS) process. We further show that replication protein A (RPA), a single-stranded DNA binding complex, is required for transgene silencing, suggesting that RPA might play a similar role in aberrant RNA production as observed for quelling in Neurospora crassa. Interestingly, we also observed that silencing of the ADE2 gene occurred at a much lower frequency than the CPA1/2 genes even though it is present in the same transgene array, suggesting that factors in addition to copy number influence silencing. Taken together, our results illustrate that a transgene induced co-suppression process operates during C. neoformans vegetative growth that shares mechanistic features with quelling. The development of gene transfer methods allows the production of transgenic lines in myriad eukaryotes. Frequently, transgenic DNA is integrated into the genome and transmitted as a heritable Mendelian trait. However, the introduced transgenes are in some cases not expressed (silenced). In addition, transgenes can also provoke silencing of endogenous genes with which they share sequence homology. This phenomenon was first observed in plants and named co-suppression. In fungi the best-documented co-suppression phenomenon occurs in vegetative tissue of the filamentous fungus Neurospora crassa and is termed quelling. Here we report a robust asexual co-suppression pathway that operates in the pathogenic fungus Cryptococcus neoformans and shares molecular components with quelling. Compared with the sex induced silencing (SIS) phenomenon previously discovered in C. neoformans, which efficiently silences genes during mating (∼50%) but not during vegetative growth (∼0.2%), asexual co-suppression operates efficiently during vegetative growth to suppress transgene expression and may also silence transposons and other repetitive sequences.
Collapse
Affiliation(s)
- Xuying Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ping Wang
- The Research Institute for Children, Children's Hospital, New Orleans, Louisiana, United States of America
- Department of Pediatrics and Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sabrina Darwiche
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Alexander Idnurm
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri–Kansas City, Kansas City, Missouri, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|