1
|
Choquet K, Patop IL, Churchman LS. The regulation and function of post-transcriptional RNA splicing. Nat Rev Genet 2025; 26:378-394. [PMID: 40217094 DOI: 10.1038/s41576-025-00836-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2025] [Indexed: 05/23/2025]
Abstract
Eukaryotic RNA transcripts undergo extensive processing before becoming functional messenger RNAs, with splicing being a critical and highly regulated step that occurs both co-transcriptionally and post-transcriptionally. Recent analyses have revealed, with unprecedented spatial and temporal resolution, that up to 40% of mammalian introns are retained after transcription termination and are subsequently removed largely while transcripts remain chromatin-associated. Post-transcriptional splicing has emerged as a key layer of gene expression regulation during development, stress response and disease progression. The control of post-transcriptional splicing regulates protein production through delayed splicing and nuclear export, or nuclear retention and degradation of specific transcript isoforms. Here, we review current methodologies for detecting post-transcriptional splicing, discuss the mechanisms controlling the timing of splicing and examine how this temporal regulation affects gene expression programmes in healthy cells and in disease states.
Collapse
Affiliation(s)
- Karine Choquet
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ines L Patop
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Choquet K, Chaumont LP, Bache S, Baxter-Koenigs AR, Churchman LS. Genetic regulation of nascent RNA maturation revealed by direct RNA nanopore sequencing. Genome Res 2025; 35:712-724. [PMID: 39952678 PMCID: PMC12047268 DOI: 10.1101/gr.279203.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/31/2024] [Indexed: 02/17/2025]
Abstract
Quantitative trait loci analyses have revealed an important role for genetic variants in regulating alternative splicing (AS) and alternative cleavage and polyadenylation (APA) in humans. Yet, these studies are generally performed with mature mRNA, so they report on the outcome rather than the processes of RNA maturation and thus may overlook how variants directly modulate pre-mRNA processing. The order in which the many introns of a human gene are removed can substantially influence AS, while nascent RNA polyadenylation can affect RNA stability and decay. However, how splicing order and poly(A) tail length are regulated by genetic variation has never been explored. Here, we used direct RNA nanopore sequencing to investigate allele-specific pre-mRNA maturation in 12 human lymphoblastoid cell lines. We find frequent splicing order differences between alleles and uncover significant single-nucleotide polymorphism (SNP)-splicing order associations in 17 genes. This includes SNPs located in or near splice sites as well as more distal intronic and exonic SNPs. Moreover, several genes showed allele-specific poly(A) tail lengths, many of which also have a skewed allelic abundance ratio. HLA class I transcripts, which encode proteins that play an essential role in antigen presentation, show the most allele-specific splicing orders, which frequently co-occur with allele-specific AS, APA, or poly(A) tail length differences. Together, our results expose new layers of genetic regulation of pre-mRNA maturation and highlight the power of long-read RNA sequencing for allele-specific analyses.
Collapse
Affiliation(s)
- Karine Choquet
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke J1E 4K8, Canada;
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke J1H 2J7, Canada
| | - Louis-Philippe Chaumont
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke J1E 4K8, Canada
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke J1H 2J7, Canada
| | - Simon Bache
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke J1E 4K8, Canada
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke J1H 2J7, Canada
| | | | - L Stirling Churchman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
3
|
Ullrich S, Nadelson I, Krebs S, Blum H, Leonhardt H, Solovei I. Co-transcriptional splicing is delayed in the highly expressed thyroglobulin gene. J Cell Sci 2025; 138:jcs263872. [PMID: 40105117 PMCID: PMC11959613 DOI: 10.1242/jcs.263872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Transcription of the majority of eukaryotic genes is accompanied by splicing. The timing of splicing varies significantly between introns, transcripts, genes and species. Although quick co-transcriptional intron removal has been demonstrated for many mammalian genes, most splicing events do not occur immediately after intron synthesis. In this study, we utilized the highly expressed Tg gene, which forms exceptionally long transcription loops, providing a convenient model for studying splicing dynamics using advanced light microscopy. Using single-cell oligopainting, we observed a splicing delay occurring several tens of kilobases downstream of a transcribed intron, a finding supported by standard cell population analyses. We speculate that this phenomenon is due to the abnormally high transcriptional rate of the Tg gene, which might lead to a localized deficiency in splicing factors and, consequently, delayed spliceosome assembly on thousands of nascent transcripts decorating the gene. Additionally, we found that, in contrast to what is seen for short introns (<10 kb), the long Tg intron (>50 kb) is spliced promptly, providing further support for the idea that intron length might modulate splicing speed.
Collapse
Affiliation(s)
- Simon Ullrich
- Faculty of Biology, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Iliya Nadelson
- Faculty of Biology, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig Maximilians University Munich, 81377 Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig Maximilians University Munich, 81377 Munich, Germany
| | - Heinrich Leonhardt
- Faculty of Biology, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Irina Solovei
- Faculty of Biology, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
4
|
Jia D, Cui M, Ding X. Visualizing DNA/RNA, Proteins, and Small Molecule Metabolites within Live Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404482. [PMID: 39096065 DOI: 10.1002/smll.202404482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Live cell imaging is essential for obtaining spatial and temporal insights into dynamic molecular events within heterogeneous individual cells, in situ intracellular networks, and in vivo organisms. Molecular tracking in live cells is also a critical and general requirement for studying dynamic physiological processes in cell biology, cancer, developmental biology, and neuroscience. Alongside this context, this review provides a comprehensive overview of recent research progress in live-cell imaging of RNAs, DNAs, proteins, and small-molecule metabolites, as well as their applications in molecular diagnosis, immunodiagnosis, and biochemical diagnosis. A series of advanced live-cell imaging techniques have been introduced and summarized, including high-precision live-cell imaging, high-resolution imaging, low-abundance imaging, multidimensional imaging, multipath imaging, rapid imaging, and computationally driven live-cell imaging methods, all of which offer valuable insights for disease prevention, diagnosis, and treatment. This review article also addresses the current challenges, potential solutions, and future development prospects in this field.
Collapse
Affiliation(s)
- Dongling Jia
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Minhui Cui
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xianting Ding
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
5
|
Merens HE, Choquet K, Baxter-Koenigs AR, Churchman LS. Timing is everything: advances in quantifying splicing kinetics. Trends Cell Biol 2024; 34:968-981. [PMID: 38777664 DOI: 10.1016/j.tcb.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 05/25/2024]
Abstract
Splicing is a highly regulated process critical for proper pre-mRNA maturation and the maintenance of a healthy cellular environment. Splicing events are impacted by ongoing transcription, neighboring splicing events, and cis and trans regulatory factors on the respective pre-mRNA transcript. Within this complex regulatory environment, splicing kinetics have the potential to influence splicing outcomes but have historically been challenging to study in vivo. In this review, we highlight recent technological advancements that have enabled measurements of global splicing kinetics and of the variability of splicing kinetics at single introns. We demonstrate how identifying features that are correlated with splicing kinetics has increased our ability to form potential models for how splicing kinetics may be regulated in vivo.
Collapse
Affiliation(s)
- Hope E Merens
- Harvard University, Department of Genetics, Boston, MA, USA
| | - Karine Choquet
- University of Sherbrooke, Department of Biochemistry and Functional Genomics, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
6
|
Choquet K, Chaumont LP, Bache S, Baxter-Koenigs AR, Churchman LS. Genetic regulation of nascent RNA maturation revealed by direct RNA nanopore sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610338. [PMID: 39257732 PMCID: PMC11383983 DOI: 10.1101/2024.08.29.610338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Quantitative trait loci analyses have revealed an important role for genetic variants in regulating alternative splicing (AS) and alternative cleavage and polyadenylation (APA) in humans. Yet, these studies are generally performed with mature mRNA, so they report on the outcome rather than the processes of RNA maturation and thus may overlook how variants directly modulate pre-mRNA processing. The order in which the many introns of a human gene are removed can substantially influence AS, while nascent RNA polyadenylation can affect RNA stability and decay. However, how splicing order and poly(A) tail length are regulated by genetic variation has never been explored. Here, we used direct RNA nanopore sequencing to investigate allele-specific pre-mRNA maturation in 12 human lymphoblastoid cell lines. We found frequent splicing order differences between alleles and uncovered significant single nucleotide polymorphism (SNP)-splicing order associations in 17 genes. This included SNPs located in or near splice sites as well as more distal intronic and exonic SNPs. Moreover, several genes showed allele-specific poly(A) tail lengths, many of which also had a skewed allelic abundance ratio. HLA class I transcripts, which encode proteins that play an essential role in antigen presentation, showed the most allele-specific splicing orders, which frequently co-occurred with allele-specific AS, APA or poly(A) tail length differences. Together, our results expose new layers of genetic regulation of pre-mRNA maturation and highlight the power of long-read RNA sequencing for allele-specific analyses.
Collapse
Affiliation(s)
- Karine Choquet
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Canada
- Research Centre on Aging, CIUSSS de l’Estrie-CHUS, Sherbrooke, Canada
| | - Louis-Philippe Chaumont
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Canada
- Research Centre on Aging, CIUSSS de l’Estrie-CHUS, Sherbrooke, Canada
| | - Simon Bache
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Canada
- Research Centre on Aging, CIUSSS de l’Estrie-CHUS, Sherbrooke, Canada
| | | | | |
Collapse
|
7
|
Bohrer C, Varon E, Peretz E, Reinitz G, Kinor N, Halle D, Nissan A, Shav-Tal Y. CCAT1 lncRNA is chromatin-retained and post-transcriptionally spliced. Histochem Cell Biol 2024; 162:91-107. [PMID: 38763947 PMCID: PMC11227459 DOI: 10.1007/s00418-024-02294-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Super-enhancers are unique gene expression regulators widely involved in cancer development. Spread over large DNA segments, they tend to be found next to oncogenes. The super-enhancer c-MYC locus forms long-range chromatin looping with nearby genes, which brings the enhancer and the genes into proximity, to promote gene activation. The colon cancer-associated transcript 1 (CCAT1) gene, which is part of the MYC locus, transcribes a lncRNA that is overexpressed in colon cancer cells through activation by MYC. Comparing different types of cancer cell lines using RNA fluorescence in situ hybridization (RNA FISH), we detected very prominent CCAT1 expression in HeLa cells, observed as several large CCAT1 nuclear foci. We found that dozens of CCAT1 transcripts accumulate on the gene locus, in addition to active transcription occurring from the gene. The accumulating transcripts are released from the chromatin during cell division. Examination of CCAT1 lncRNA expression patterns on the single-RNA level showed that unspliced CCAT1 transcripts are released from the gene into the nucleoplasm. Most of these unspliced transcripts were observed in proximity to the active gene but were not associated with nuclear speckles in which unspliced RNAs usually accumulate. At larger distances from the gene, the CCAT1 transcripts appeared spliced, implying that most CCAT1 transcripts undergo post-transcriptional splicing in the zone of the active gene. Finally, we show that unspliced CCAT1 transcripts can be detected in the cytoplasm during splicing inhibition, which suggests that there are several CCAT1 variants, spliced and unspliced, that the cell can recognize as suitable for export.
Collapse
Affiliation(s)
- Chaya Bohrer
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Eli Varon
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Eldar Peretz
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Gita Reinitz
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Noa Kinor
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - David Halle
- Biochemistry Laboratory, Samson Assuta Ashdod University Hospital, Ashdod, Israel
| | - Aviram Nissan
- Ziv Medical Center, Safed, Israel
- Surgical Innovation Laboratory, The Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
8
|
Angel M, Fleshler E, Atrash MK, Kinor N, Benichou JC, Shav-Tal Y. Nuclear RNA-related processes modulate the assembly of cytoplasmic RNA granules. Nucleic Acids Res 2024; 52:5356-5375. [PMID: 38366783 PMCID: PMC11109975 DOI: 10.1093/nar/gkae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
Stress granules (SGs) are cytoplasmic assemblies formed under various stress conditions as a consequence of translation arrest. SGs contain RNA-binding proteins, ribosomal subunits and messenger RNAs (mRNAs). It is well known that mRNAs contribute to SG formation; however, the connection between SG assembly and nuclear processes that involve mRNAs is not well established. Here, we examine the effects of inhibiting mRNA transcription, splicing and export on the assembly of SGs and the related cytoplasmic P body (PB). We demonstrate that inhibition of mRNA transcription, splicing and export reduces the formation of canonical SGs in a eukaryotic initiation factor 2α phosphorylation-independent manner, and alters PB size and quantity. We find that the splicing inhibitor madrasin promotes the assembly of stress-like granules. We show that the addition of synthetic mRNAs directly to the cytoplasm is sufficient for SG assembly, and that the assembly of these SGs requires the activation of stress-associated protein synthesis pathways. Moreover, we show that adding an excess of mRNA to cells that do not have active splicing, and therefore have low levels of cytoplasmic mRNAs, promotes SG formation under stress conditions. These findings emphasize the importance of the cytoplasmic abundance of newly transcribed mRNAs in the assembly of SGs.
Collapse
Affiliation(s)
- Mor Angel
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Eden Fleshler
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Mohammad Khaled Atrash
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Noa Kinor
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Jennifer I C Benichou
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
9
|
Coté A, O'Farrell A, Dardani I, Dunagin M, Coté C, Wan Y, Bayatpour S, Drexler HL, Alexander KA, Chen F, Wassie AT, Patel R, Pham K, Boyden ES, Berger S, Phillips-Cremins J, Churchman LS, Raj A. Post-transcriptional splicing can occur in a slow-moving zone around the gene. eLife 2024; 12:RP91357. [PMID: 38577979 PMCID: PMC10997330 DOI: 10.7554/elife.91357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.
Collapse
Affiliation(s)
- Allison Coté
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Aoife O'Farrell
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Ian Dardani
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Margaret Dunagin
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Chris Coté
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Yihan Wan
- School of Life Sciences, Westlake UniversityHangzhouChina
| | - Sareh Bayatpour
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Heather L Drexler
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Katherine A Alexander
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Fei Chen
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Asmamaw T Wassie
- Department of Cell and Molecular Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Rohan Patel
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Kenneth Pham
- Department of Cell and Molecular Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Edward S Boyden
- Departments of Biological Engineering and Brain and Cognitive Sciences, Media Lab and McGovern Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Shelly Berger
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | | | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Arjun Raj
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
10
|
Takakuwa H, Yamazaki T, Souquere S, Adachi S, Yoshino H, Fujiwara N, Yamamoto T, Natsume T, Nakagawa S, Pierron G, Hirose T. Shell protein composition specified by the lncRNA NEAT1 domains dictates the formation of paraspeckles as distinct membraneless organelles. Nat Cell Biol 2023; 25:1664-1675. [PMID: 37932453 DOI: 10.1038/s41556-023-01254-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 09/12/2023] [Indexed: 11/08/2023]
Abstract
Many membraneless organelles (MLOs) formed through phase separation play crucial roles in various cellular processes. Although these MLOs co-exist in cells, how they maintain their independence without coalescence or engulfment remains largely unknown. Here, we investigated the molecular mechanism by which paraspeckles with core-shell architecture scaffolded by NEAT1_2 long noncoding RNAs exist as distinct MLOs. We identified NEAT1 deletion mutants that assemble paraspeckles that are incorporated into nuclear speckles. Several paraspeckle proteins, including SFPQ, HNRNPF and BRG1, prevent this incorporation and thus contribute to the segregation of paraspeckles from nuclear speckles. Shell localization of these proteins in the paraspeckles, which is determined by NEAT1_2 long noncoding RNA domains, is required for this segregation process. Conversely, U2-related spliceosomal proteins are involved in internalizing the paraspeckles into nuclear speckles. This study shows that the paraspeckle shell composition dictates the independence of MLOs in the nucleus, providing insights into the importance of the shell in defining features and functions of MLOs.
Collapse
Affiliation(s)
- Hiro Takakuwa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Yamazaki
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| | | | - Shungo Adachi
- Department of Proteomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hyura Yoshino
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Naoko Fujiwara
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tetsuya Yamamoto
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo, Japan
| | - Tohru Natsume
- Cellular and Molecular Biotechnology Research Institute, National Institute for Advanced Industrial Science and Technology, Tokyo, Japan
| | - Shinichi Nakagawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Gerard Pierron
- Centre National de la Recherche Scientifique, UMR-9196, Gustave Roussy, Villejuif, France
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
| |
Collapse
|
11
|
Eichenberger BT, Griesbach E, Mitchell J, Chao JA. Following the Birth, Life, and Death of mRNAs in Single Cells. Annu Rev Cell Dev Biol 2023; 39:253-275. [PMID: 37843928 DOI: 10.1146/annurev-cellbio-022723-024045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Recent advances in single-molecule imaging of mRNAs in fixed and living cells have enabled the lives of mRNAs to be studied with unprecedented spatial and temporal detail. These approaches have moved beyond simply being able to observe specific events and have begun to allow an understanding of how regulation is coupled between steps in the mRNA life cycle. Additionally, these methodologies are now being applied in multicellular systems and animals to provide more nuanced insights into the physiological regulation of RNA metabolism.
Collapse
Affiliation(s)
- Bastian T Eichenberger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
- University of Basel, Basel, Switzerland
| | - Esther Griesbach
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
| | - Jessica Mitchell
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
| |
Collapse
|
12
|
Hamilton DJ, Hein AE, Wuttke DS, Batey RT. The DNA binding high mobility group box protein family functionally binds RNA. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1778. [PMID: 36646476 PMCID: PMC10349909 DOI: 10.1002/wrna.1778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023]
Abstract
Nucleic acid binding proteins regulate transcription, splicing, RNA stability, RNA localization, and translation, together tailoring gene expression in response to stimuli. Upon discovery, these proteins are typically classified as either DNA or RNA binding as defined by their in vivo functions; however, recent evidence suggests dual DNA and RNA binding by many of these proteins. High mobility group box (HMGB) proteins have a DNA binding HMGB domain, act as transcription factors and chromatin remodeling proteins, and are increasingly understood to interact with RNA as means to regulate gene expression. Herein, multiple layers of evidence that the HMGB family are dual DNA and RNA binding proteins is comprehensively reviewed. For example, HMGB proteins directly interact with RNA in vitro and in vivo, are localized to RNP granules involved in RNA processing, and their protein interactors are enriched in RNA binding proteins involved in RNA metabolism. Importantly, in cell-based systems, HMGB-RNA interactions facilitate protein-protein interactions, impact splicing outcomes, and modify HMGB protein genomic or cellular localization. Misregulation of these HMGB-RNA interactions are also likely involved in human disease. This review brings to light that as a family, HMGB proteins are likely to bind RNA which is essential to HMGB protein biology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
|
13
|
Shenasa H, Bentley DL. Pre-mRNA splicing and its cotranscriptional connections. Trends Genet 2023; 39:672-685. [PMID: 37236814 PMCID: PMC10524715 DOI: 10.1016/j.tig.2023.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Transcription of eukaryotic genes by RNA polymerase II (Pol II) yields RNA precursors containing introns that must be spliced out and the flanking exons ligated together. Splicing is catalyzed by a dynamic ribonucleoprotein complex called the spliceosome. Recent evidence has shown that a large fraction of splicing occurs cotranscriptionally as the RNA chain is extruded from Pol II at speeds of up to 5 kb/minute. Splicing is more efficient when it is tethered to the transcription elongation complex, and this linkage permits functional coupling of splicing with transcription. We discuss recent progress that has uncovered a network of connections that link splicing to transcript elongation and other cotranscriptional RNA processing events.
Collapse
Affiliation(s)
- Hossein Shenasa
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
14
|
Boumpas P, Merabet S, Carnesecchi J. Integrating transcription and splicing into cell fate: Transcription factors on the block. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1752. [PMID: 35899407 DOI: 10.1002/wrna.1752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022]
Abstract
Transcription factors (TFs) are present in all life forms and conserved across great evolutionary distances in eukaryotes. From yeast to complex multicellular organisms, they are pivotal players of cell fate decision by orchestrating gene expression at diverse molecular layers. Notably, TFs fine-tune gene expression by coordinating RNA fate at both the expression and splicing levels. They regulate alternative splicing, an essential mechanism for cell plasticity, allowing the production of many mRNA and protein isoforms in precise cell and tissue contexts. Despite this apparent role in splicing, how TFs integrate transcription and splicing to ultimately orchestrate diverse cell functions and cell fate decisions remains puzzling. We depict substantial studies in various model organisms underlining the key role of TFs in alternative splicing for promoting tissue-specific functions and cell fate. Furthermore, we emphasize recent advances describing the molecular link between the transcriptional and splicing activities of TFs. As TFs can bind both DNA and/or RNA to regulate transcription and splicing, we further discuss their flexibility and compatibility for DNA and RNA substrates. Finally, we propose several models integrating transcription and splicing activities of TFs in the coordination and diversification of cell and tissue identities. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > Splicing Mechanisms.
Collapse
Affiliation(s)
- Panagiotis Boumpas
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, Lyon, France
| | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, Lyon, France
| | - Julie Carnesecchi
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, Lyon, France
| |
Collapse
|
15
|
Carter ZI, Jacobs RQ, Schneider DA, Lucius AL. Transient-State Kinetic Analysis of the RNA Polymerase II Nucleotide Incorporation Mechanism. Biochemistry 2023; 62:95-108. [PMID: 36525636 PMCID: PMC10069233 DOI: 10.1021/acs.biochem.2c00608] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Eukaryotic RNA polymerase II (Pol II) is an essential enzyme that lies at the core of eukaryotic biology. Due to its pivotal role in gene expression, Pol II has been subjected to a substantial number of investigations. We aim to further our understanding of Pol II nucleotide incorporation by utilizing transient-state kinetic techniques to examine Pol II single nucleotide addition on the millisecond time scale. We analyzed Saccharomyces cerevisiae Pol II incorporation of ATP or an ATP analog, Sp-ATP-α-S. Here we have measured the rate constants governing individual steps of the Pol II transcription cycle in the presence of ATP or Sp-ATP-α-S. These results suggest that Pol II catalyzes nucleotide incorporation by binding the next cognate nucleotide and immediately catalyzes bond formation and bond formation is either followed by a conformational change or pyrophosphate release. By comparing our previously published RNA polymerase I (Pol I) and Pol I lacking the A12 subunit (Pol I ΔA12) results that we collected under the same conditions with the identical technique, we show that Pol II and Pol I ΔA12 exhibit similar nucleotide addition mechanisms. This observation indicates that removal of the A12 subunit from Pol I results in a Pol II like enzyme. Taken together, these data further our collective understanding of Pol II's nucleotide incorporation mechanism and the evolutionary divergence of RNA polymerases across the three domains of life.
Collapse
Affiliation(s)
- Zachariah I Carter
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama35233, United States
| | - Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama35233, United States
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama35233, United States
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama35233, United States
| |
Collapse
|
16
|
Ashkenazy-Titelman A, Atrash MK, Boocholez A, Kinor N, Shav-Tal Y. RNA export through the nuclear pore complex is directional. Nat Commun 2022; 13:5881. [PMID: 36202822 PMCID: PMC9537521 DOI: 10.1038/s41467-022-33572-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/22/2022] [Indexed: 11/10/2022] Open
Abstract
The changes occurring in mRNA organization during nucleo-cytoplasmic transport and export, are not well understood. Moreover, directionality of mRNA passage through the nuclear pore complex (NPC) has not been examined within individual NPCs. Here we find that an mRNP is compact during nucleoplasmic travels compared to a more open structure after transcription and at the nuclear periphery. Compaction levels of nuclear transcripts can be modulated by varying levels of SR proteins and by changing genome organization. Nuclear mRNPs are mostly rod-shaped with distant 5'/3'-ends, although for some, the ends are in proximity. The latter is more abundant in the cytoplasm and can be modified by translation inhibition. mRNAs and lncRNAs exiting the NPC exhibit predominant 5'-first export. In some cases, several adjacent NPCs are engaged in export of the same mRNA suggesting 'gene gating'. Altogether, we show that the mRNP is a flexible structure during travels, with 5'-directionality during export.
Collapse
Affiliation(s)
- Asaf Ashkenazy-Titelman
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Mohammad Khaled Atrash
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Alon Boocholez
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Noa Kinor
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| |
Collapse
|
17
|
A complex epigenome-splicing crosstalk governs epithelial-to-mesenchymal transition in metastasis and brain development. Nat Cell Biol 2022; 24:1265-1277. [PMID: 35941369 DOI: 10.1038/s41556-022-00971-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 06/27/2022] [Indexed: 11/09/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) renders epithelial cells migratory properties. While epigenetic and splicing changes have been implicated in EMT, the mechanisms governing their crosstalk remain poorly understood. Here we discovered that a C2H2 zinc finger protein, ZNF827, is strongly induced during various contexts of EMT, including in brain development and breast cancer metastasis, and is required for the molecular and phenotypic changes underlying EMT in these processes. Mechanistically, ZNF827 mediated these responses by orchestrating a large-scale remodelling of the splicing landscape by recruiting HDAC1 for epigenetic modulation of distinct genomic loci, thereby slowing RNA polymerase II progression and altering the splicing of genes encoding key EMT regulators in cis. Our findings reveal an unprecedented complexity of crosstalk between epigenetic landscape and splicing programme in governing EMT and identify ZNF827 as a master regulator coupling these processes during EMT in brain development and breast cancer metastasis.
Collapse
|
18
|
Faber GP, Nadav-Eliyahu S, Shav-Tal Y. Nuclear speckles - a driving force in gene expression. J Cell Sci 2022; 135:275909. [PMID: 35788677 DOI: 10.1242/jcs.259594] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nuclear speckles are dynamic membraneless bodies located in the cell nucleus. They harbor RNAs and proteins, many of which are splicing factors, that together display complex biophysical properties dictating nuclear speckle formation and maintenance. Although these nuclear bodies were discovered decades ago, only recently has in-depth genomic analysis begun to unravel their essential functions in modulation of gene activity. Major advancements in genomic mapping techniques combined with microscopy approaches have enabled insights into the roles nuclear speckles may play in enhancing gene expression, and how gene positioning to specific nuclear landmarks can regulate gene expression and RNA processing. Some studies have drawn a link between nuclear speckles and disease. Certain maladies either involve nuclear speckles directly or dictate the localization and reorganization of many nuclear speckle factors. This is most striking during viral infection, as viruses alter the entire nuclear architecture and highjack host machinery. As discussed in this Review, nuclear speckles represent a fascinating target of study not only to reveal the links between gene positioning, genome subcompartments and gene activity, but also as a potential target for therapeutics.
Collapse
Affiliation(s)
- Gabriel P Faber
- The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan 5290002, Israel.,Institute of Nanotechnology , Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Shani Nadav-Eliyahu
- The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan 5290002, Israel.,Institute of Nanotechnology , Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan 5290002, Israel.,Institute of Nanotechnology , Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
19
|
Le P, Ahmed N, Yeo GW. Illuminating RNA biology through imaging. Nat Cell Biol 2022; 24:815-824. [PMID: 35697782 PMCID: PMC11132331 DOI: 10.1038/s41556-022-00933-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 05/06/2022] [Indexed: 12/14/2022]
Abstract
RNA processing plays a central role in accurately transmitting genetic information into functional RNA and protein regulators. To fully appreciate the RNA life-cycle, tools to observe RNA with high spatial and temporal resolution are critical. Here we review recent advances in RNA imaging and highlight how they will propel the field of RNA biology. We discuss current trends in RNA imaging and their potential to elucidate unanswered questions in RNA biology.
Collapse
Affiliation(s)
- Phuong Le
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Noorsher Ahmed
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
20
|
Gnan S, Matelot M, Weiman M, Arnaiz O, Guérin F, Sperling L, Bétermier M, Thermes C, Chen CL, Duharcourt S. GC content, but not nucleosome positioning, directly contributes to intron splicing efficiency in Paramecium. Genome Res 2022; 32:699-709. [PMID: 35264448 PMCID: PMC8997360 DOI: 10.1101/gr.276125.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/14/2022] [Indexed: 11/24/2022]
Abstract
Eukaryotic genes are interrupted by introns that must be accurately spliced from mRNA precursors. With an average length of 25 nt, the more than 90,000 introns of Paramecium tetraurelia stand among the shortest introns reported in eukaryotes. The mechanisms specifying the correct recognition of these tiny introns remain poorly understood. Splicing can occur cotranscriptionally, and it has been proposed that chromatin structure might influence splice site recognition. To investigate the roles of nucleosome positioning in intron recognition, we determined the nucleosome occupancy along the P. tetraurelia genome. We show that P. tetraurelia displays a regular nucleosome array with a nucleosome repeat length of ∼151 bp, among the smallest periodicities reported. Our analysis has revealed that introns are frequently associated with inter-nucleosomal DNA, pointing to an evolutionary constraint favoring introns at the AT-rich nucleosome edge sequences. Using accurate splicing efficiency data from cells depleted for nonsense-mediated decay effectors, we show that introns located at the edge of nucleosomes display higher splicing efficiency than those at the center. However, multiple regression analysis indicates that the low GC content of introns, rather than nucleosome positioning, is associated with high splicing efficiency. Our data reveal a complex link between GC content, nucleosome positioning, and intron evolution in Paramecium.
Collapse
Affiliation(s)
- Stefano Gnan
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3244, Dynamics of Genetic Information, Paris, 75005 France
| | - Mélody Matelot
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Marion Weiman
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Olivier Arnaiz
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Frédéric Guérin
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Linda Sperling
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Mireille Bétermier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Claude Thermes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Chun-Long Chen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3244, Dynamics of Genetic Information, Paris, 75005 France
| | - Sandra Duharcourt
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
21
|
Tammer L, Hameiri O, Keydar I, Roy VR, Ashkenazy-Titelman A, Custódio N, Sason I, Shayevitch R, Rodríguez-Vaello V, Rino J, Lev Maor G, Leader Y, Khair D, Aiden EL, Elkon R, Irimia M, Sharan R, Shav-Tal Y, Carmo-Fonseca M, Ast G. Gene architecture directs splicing outcome in separate nuclear spatial regions. Mol Cell 2022; 82:1021-1034.e8. [PMID: 35182478 DOI: 10.1016/j.molcel.2022.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
How the splicing machinery defines exons or introns as the spliced unit has remained a puzzle for 30 years. Here, we demonstrate that peripheral and central regions of the nucleus harbor genes with two distinct exon-intron GC content architectures that differ in the splicing outcome. Genes with low GC content exons, flanked by long introns with lower GC content, are localized in the periphery, and the exons are defined as the spliced unit. Alternative splicing of these genes results in exon skipping. In contrast, the nuclear center contains genes with a high GC content in the exons and short flanking introns. Most splicing of these genes occurs via intron definition, and aberrant splicing leads to intron retention. We demonstrate that the nuclear periphery and center generate different environments for the regulation of alternative splicing and that two sets of splicing factors form discrete regulatory subnetworks for the two gene architectures. Our study connects 3D genome organization and splicing, thus demonstrating that exon and intron definition modes of splicing occur in different nuclear regions.
Collapse
Affiliation(s)
- Luna Tammer
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Ofir Hameiri
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Ifat Keydar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Vanessa Rachel Roy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Asaf Ashkenazy-Titelman
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Noélia Custódio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Itay Sason
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ronna Shayevitch
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Victoria Rodríguez-Vaello
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain. Universitat Pompeu Fabra (UPF), Barcelona, Spain, ICREA, Barcelona, Spain
| | - José Rino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Galit Lev Maor
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Yodfat Leader
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Doha Khair
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain. Universitat Pompeu Fabra (UPF), Barcelona, Spain, ICREA, Barcelona, Spain
| | - Roded Sharan
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
22
|
Maron MI, Casill AD, Gupta V, Roth JS, Sidoli S, Query CC, Gamble MJ, Shechter D. Type I and II PRMTs inversely regulate post-transcriptional intron detention through Sm and CHTOP methylation. eLife 2022; 11:e72867. [PMID: 34984976 PMCID: PMC8765754 DOI: 10.7554/elife.72867] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/03/2022] [Indexed: 12/26/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) are required for the regulation of RNA processing factors. Type I PRMT enzymes catalyze mono- and asymmetric dimethylation; Type II enzymes catalyze mono- and symmetric dimethylation. To understand the specific mechanisms of PRMT activity in splicing regulation, we inhibited Type I and II PRMTs and probed their transcriptomic consequences. Using the newly developed Splicing Kinetics and Transcript Elongation Rates by Sequencing (SKaTER-seq) method, analysis of co-transcriptional splicing demonstrated that PRMT inhibition resulted in altered splicing rates. Surprisingly, co-transcriptional splicing kinetics did not correlate with final changes in splicing of polyadenylated RNA. This was particularly true for retained introns (RI). By using actinomycin D to inhibit ongoing transcription, we determined that PRMTs post-transcriptionally regulate RI. Subsequent proteomic analysis of both PRMT-inhibited chromatin and chromatin-associated polyadenylated RNA identified altered binding of many proteins, including the Type I substrate, CHTOP, and the Type II substrate, SmB. Targeted mutagenesis of all methylarginine sites in SmD3, SmB, and SmD1 recapitulated splicing changes seen with Type II PRMT inhibition, without disrupting snRNP assembly. Similarly, mutagenesis of all methylarginine sites in CHTOP recapitulated the splicing changes seen with Type I PRMT inhibition. Examination of subcellular fractions further revealed that RI were enriched in the nucleoplasm and chromatin. Taken together, these data demonstrate that, through Sm and CHTOP arginine methylation, PRMTs regulate the post-transcriptional processing of nuclear, detained introns.
Collapse
Affiliation(s)
- Maxim I Maron
- Department of Biochemistry, Albert Einstein College of MedicineBronxUnited States
| | - Alyssa D Casill
- Department of Molecular Pharmacology, Albert Einstein College of MedicineBronxUnited States
| | - Varun Gupta
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | - Jacob S Roth
- Department of Biochemistry, Albert Einstein College of MedicineBronxUnited States
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of MedicineBronxUnited States
| | - Charles C Query
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | - Matthew J Gamble
- Department of Molecular Pharmacology, Albert Einstein College of MedicineBronxUnited States
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
23
|
Biswas J, Li W, Singer RH, Coleman RA. Imaging Organization of RNA Processing within the Nucleus. Cold Spring Harb Perspect Biol 2021; 13:a039453. [PMID: 34127450 PMCID: PMC8635003 DOI: 10.1101/cshperspect.a039453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Within the nucleus, messenger RNA is generated and processed in a highly organized and regulated manner. Messenger RNA processing begins during transcription initiation and continues until the RNA is translated and degraded. Processes such as 5' capping, alternative splicing, and 3' end processing have been studied extensively with biochemical methods and more recently with single-molecule imaging approaches. In this review, we highlight how imaging has helped understand the highly dynamic process of RNA processing. We conclude with open questions and new technological developments that may further our understanding of RNA processing.
Collapse
Affiliation(s)
- Jeetayu Biswas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Weihan Li
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robert A Coleman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
24
|
Ling Y, Mahfouz MM, Zhou S. Pre-mRNA alternative splicing as a modulator for heat stress response in plants. TRENDS IN PLANT SCIENCE 2021; 26:1153-1170. [PMID: 34334317 DOI: 10.1016/j.tplants.2021.07.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 05/11/2023]
Abstract
The molecular responses of plants to the important abiotic stress, heat stress (HS), have been extensively studied at the transcriptional level. Alternative splicing (AS) is a post-transcriptional regulatory process in which an intron-containing gene can generate more than one mRNA variant. The impact of HS on the pre-mRNA splicing process has been reported in various eukaryotes but seldom discussed in-depth, especially in plants. Here, we review AS regulation in response to HS in different plant species. We discuss potential molecular mechanisms controlling heat-inducible AS regulation in plants and hypothesize that AS regulation participates in heat-priming establishment and HS memory maintenance. We propose that the pre-mRNA splicing variation is an important regulator of plant HS responses (HSRs).
Collapse
Affiliation(s)
- Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China; Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, PR China.
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Shuangxi Zhou
- New Zealand Institute for Plant and Food Research Limited, Hawke's Bay 4130, New Zealand
| |
Collapse
|
25
|
De Magistris P. The Great Escape: mRNA Export through the Nuclear Pore Complex. Int J Mol Sci 2021; 22:ijms222111767. [PMID: 34769195 PMCID: PMC8583845 DOI: 10.3390/ijms222111767] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
Nuclear export of messenger RNA (mRNA) through the nuclear pore complex (NPC) is an indispensable step to ensure protein translation in the cytoplasm of eukaryotic cells. mRNA is not translocated on its own, but it forms ribonuclear particles (mRNPs) in association with proteins that are crucial for its metabolism, some of which; like Mex67/MTR2-NXF1/NXT1; are key players for its translocation to the cytoplasm. In this review, I will summarize our current body of knowledge on the basic characteristics of mRNA export through the NPC. To be granted passage, the mRNP cargo needs to bind transport receptors, which facilitate the nuclear export. During NPC transport, mRNPs undergo compositional and conformational changes. The interactions between mRNP and the central channel of NPC are described; together with the multiple quality control steps that mRNPs undergo at the different rings of the NPC to ensure only proper export of mature transcripts to the cytoplasm. I conclude by mentioning new opportunities that arise from bottom up approaches for a mechanistic understanding of nuclear export.
Collapse
|
26
|
Chaudhary S, Jabre I, Syed NH. Epigenetic differences in an identical genetic background modulate alternative splicing in A. thaliana. Genomics 2021; 113:3476-3486. [PMID: 34391867 DOI: 10.1016/j.ygeno.2021.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 11/19/2022]
Abstract
How stable and temperature-dependent variations in DNA methylation and nucleosome occupancy influence alternative splicing (AS) remains poorly understood in plants. To answer this, we generated transcriptome, whole-genome bisulfite, and MNase sequencing data for an epigenetic Recombinant Inbred Line (epiRIL) of A. thaliana at normal and cold temperature. For comparative analysis, the same data sets for the parental ecotype Columbia (Col-0) were also generated, whereas for DNA methylation, previously published high confidence methylation profiles of Col-0 were used. Significant epigenetic differences in an identical genetic background were observed between Col-0 and epiRIL lines under normal and cold temperatures. Our transcriptome data revealed that differential DNA methylation and nucleosome occupancy modulate expression levels of many genes and AS in response to cold. Collectively, DNA methylation and nucleosome levels exhibit characteristic patterns around intron-exon boundaries at normal and cold conditions, and any perturbation in them, in an identical genetic background is sufficient to modulate AS in Arabidopsis.
Collapse
Affiliation(s)
- Saurabh Chaudhary
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, UK; Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| | - Ibtissam Jabre
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, UK; Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Naeem H Syed
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, UK.
| |
Collapse
|
27
|
Muniz L, Nicolas E, Trouche D. RNA polymerase II speed: a key player in controlling and adapting transcriptome composition. EMBO J 2021; 40:e105740. [PMID: 34254686 PMCID: PMC8327950 DOI: 10.15252/embj.2020105740] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
RNA polymerase II (RNA Pol II) speed or elongation rate, i.e., the number of nucleotides synthesized per unit of time, is a major determinant of transcriptome composition. It controls co-transcriptional processes such as splicing, polyadenylation, and transcription termination, thus regulating the production of alternative splice variants, circular RNAs, alternatively polyadenylated transcripts, or read-through transcripts. RNA Pol II speed itself is regulated in response to intra- and extra-cellular stimuli and can in turn affect the transcriptome composition in response to these stimuli. Evidence points to a potentially important role of transcriptome composition modification through RNA Pol II speed regulation for adaptation of cells to a changing environment, thus pointing to a function of RNA Pol II speed regulation in cellular physiology. Analyzing RNA Pol II speed dynamics may therefore be central to fully understand the regulation of physiological processes, such as the development of multicellular organisms. Recent findings also raise the possibility that RNA Pol II speed deregulation can be detrimental and participate in disease progression. Here, we review initial and current approaches to measure RNA Pol II speed, as well as providing an overview of the factors controlling speed and the co-transcriptional processes which are affected. Finally, we discuss the role of RNA Pol II speed regulation in cell physiology.
Collapse
Affiliation(s)
- Lisa Muniz
- MCDCentre de Biologie Integrative (CBI)CNRSUPSUniversity of ToulouseToulouseFrance
| | - Estelle Nicolas
- MCDCentre de Biologie Integrative (CBI)CNRSUPSUniversity of ToulouseToulouseFrance
| | - Didier Trouche
- MCDCentre de Biologie Integrative (CBI)CNRSUPSUniversity of ToulouseToulouseFrance
| |
Collapse
|
28
|
The upstream 5' splice site remains associated to the transcription machinery during intron synthesis. Nat Commun 2021; 12:4545. [PMID: 34315864 PMCID: PMC8316553 DOI: 10.1038/s41467-021-24774-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/02/2021] [Indexed: 12/28/2022] Open
Abstract
In the earliest step of spliceosome assembly, the two splice sites flanking an intron are brought into proximity by U1 snRNP and U2AF along with other proteins. The mechanism that facilitates this intron looping is poorly understood. Using a CRISPR interference-based approach to halt RNA polymerase II transcription in the middle of introns in human cells, we discovered that the nascent 5′ splice site base pairs with a U1 snRNA that is tethered to RNA polymerase II during intron synthesis. This association functionally corresponds with splicing outcome, involves bona fide 5′ splice sites and cryptic intronic sites, and occurs transcriptome-wide. Overall, our findings reveal that the upstream 5′ splice sites remain attached to the transcriptional machinery during intron synthesis and are thus brought into proximity of the 3′ splice sites; potentially mediating the rapid splicing of long introns. We know that most splicing reactions take place co-transcriptionally, but how the transcription machinery facilitate splicing of introns is unknown. Here the authors show that the 5′ splice site remains associated with the transcription machinery during intron synthesis through U1 snRNP, providing a basis for the rapid splicing reaction of introns.
Collapse
|
29
|
Forero-Quintero LS, Raymond W, Handa T, Saxton MN, Morisaki T, Kimura H, Bertrand E, Munsky B, Stasevich TJ. Live-cell imaging reveals the spatiotemporal organization of endogenous RNA polymerase II phosphorylation at a single gene. Nat Commun 2021; 12:3158. [PMID: 34039974 PMCID: PMC8155019 DOI: 10.1038/s41467-021-23417-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
The carboxyl-terminal domain of RNA polymerase II (RNAP2) is phosphorylated during transcription in eukaryotic cells. While residue-specific phosphorylation has been mapped with exquisite spatial resolution along the 1D genome in a population of fixed cells using immunoprecipitation-based assays, the timing, kinetics, and spatial organization of phosphorylation along a single-copy gene have not yet been measured in living cells. Here, we achieve this by combining multi-color, single-molecule microscopy with fluorescent antibody-based probes that specifically bind to different phosphorylated forms of endogenous RNAP2 in living cells. Applying this methodology to a single-copy HIV-1 reporter gene provides live-cell evidence for heterogeneity in the distribution of RNAP2 along the length of the gene as well as Serine 5 phosphorylated RNAP2 clusters that remain separated in both space and time from nascent mRNA synthesis. Computational models determine that 5 to 40 RNAP2 cluster around the promoter during a typical transcriptional burst, with most phosphorylated at Serine 5 within 6 seconds of arrival and roughly half escaping the promoter in ~1.5 minutes. Taken together, our data provide live-cell support for the notion of efficient transcription clusters that transiently form around promoters and contain high concentrations of RNAP2 phosphorylated at Serine 5.
Collapse
Affiliation(s)
- Linda S Forero-Quintero
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - William Raymond
- Department of Chemical and Biological Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Tetsuya Handa
- Cell Biology Center and World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Matthew N Saxton
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Tatsuya Morisaki
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Hiroshi Kimura
- Cell Biology Center and World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Edouard Bertrand
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Brian Munsky
- Department of Chemical and Biological Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA.
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.
- Institut de Génétique Moléculaire de Montpellier, Montpellier, France.
| |
Collapse
|
30
|
Bedi K, Magnuson BR, Narayanan I, Paulsen M, Wilson TE, Ljungman M. Co-transcriptional splicing efficiencies differ within genes and between cell types. RNA (NEW YORK, N.Y.) 2021; 27:rna.078662.120. [PMID: 33975916 PMCID: PMC8208053 DOI: 10.1261/rna.078662.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/05/2021] [Indexed: 06/01/2023]
Abstract
Pre-mRNA splicing is carried out by the spliceosome and involves splice site recognition, removal of introns, and ligation of exons. Components of the spliceosome have been shown to interact with the elongating RNA polymerase II (RNAPII) which is thought to allow splicing to occur concurrently with transcription. However, little is known about the regulation and efficiency of co-transcriptional splicing in human cells. In this study, we used Bru-seq and BruChase-seq to determine the co-transcriptional splicing efficiencies of 17,000 introns expressed across 6 human cell lines. We found that less than half of all introns across these 6 cell lines were co-transcriptionally spliced. Splicing efficiencies for individual introns showed variations across cell lines, suggesting that splicing may be regulated in a cell-type specific manner. Moreover, the splicing efficiency of introns varied within genes. The efficiency of co-transcriptional splicing did not correlate with gene length, intron position, splice site strengths, or the intron/neighboring exons GC content. However, we identified binding signals from multiple RNA binding proteins (RBPs) that correlated with splicing efficiency, including core spliceosomal machinery components-such as SF3B4, U2AF1 and U2AF2 showing higher binding signals in poorly spliced introns. In addition, multiple RBPs, such as BUD13, PUM1 and SND1, showed preferential binding in exons that flank introns with high splicing efficiencies. The nascent RNA splicing patterns presented here across multiple cell types add to our understanding of the complexity in RNA splicing, wherein RNA-binding proteins may play important roles in determining splicing outcomes in a cell type- and intron-specific manner.
Collapse
|
31
|
Drexler HL, Choquet K, Merens HE, Tang PS, Simpson JT, Churchman LS. Revealing nascent RNA processing dynamics with nano-COP. Nat Protoc 2021; 16:1343-1375. [PMID: 33514943 PMCID: PMC8713461 DOI: 10.1038/s41596-020-00469-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/20/2020] [Indexed: 01/30/2023]
Abstract
During maturation, eukaryotic precursor RNAs undergo processing events including intron splicing, 3'-end cleavage, and polyadenylation. Here we describe nanopore analysis of co-transcriptional processing (nano-COP), a method for probing the timing and patterns of RNA processing. An extension of native elongating transcript sequencing, which quantifies transcription genome-wide through short-read sequencing of nascent RNA 3' ends, nano-COP uses long-read nascent RNA sequencing to observe global patterns of RNA processing. First, nascent RNA is stringently purified through a combination of 4-thiouridine metabolic labeling and cellular fractionation. In contrast to cDNA or short-read-based approaches relying on reverse transcription or amplification, the sample is sequenced directly through nanopores to reveal the native context of nascent RNA. nano-COP identifies both active transcription sites and splice isoforms of single RNA molecules during synthesis, providing insight into patterns of intron removal and the physical coupling between transcription and splicing. The nano-COP protocol yields data within 3 d.
Collapse
Affiliation(s)
- Heather L. Drexler
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Karine Choquet
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Hope E. Merens
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul S. Tang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Jared T. Simpson
- Ontario Institute for Cancer Research and Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
32
|
Jabre I, Chaudhary S, Guo W, Kalyna M, Reddy ASN, Chen W, Zhang R, Wilson C, Syed NH. Differential nucleosome occupancy modulates alternative splicing in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2021; 229:1937-1945. [PMID: 33135169 DOI: 10.1111/nph.17062] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/24/2020] [Indexed: 05/13/2023]
Abstract
Alternative splicing (AS) is a major gene regulatory mechanism in plants. Recent evidence supports co-transcriptional splicing in plants, hence the chromatin state can impact AS. However, how dynamic changes in the chromatin state such as nucleosome occupancy influence the cold-induced AS remains poorly understood. Here, we generated transcriptome (RNA-Seq) and nucleosome positioning (MNase-Seq) data for Arabidopsis thaliana to understand how nucleosome positioning modulates cold-induced AS. Our results show that characteristic nucleosome occupancy levels are strongly associated with the type and abundance of various AS events under normal and cold temperature conditions in Arabidopsis. Intriguingly, exitrons, alternatively spliced internal regions of protein-coding exons, exhibit distinctive nucleosome positioning pattern compared to other alternatively spliced regions. Likewise, nucleosome patterns differ between exitrons and retained introns, pointing to their distinct regulation. Collectively, our data show that characteristic changes in nucleosome positioning modulate AS in plants in response to cold.
Collapse
Affiliation(s)
- Ibtissam Jabre
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
- School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7XH, UK
| | - Saurabh Chaudhary
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
- Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Wenbin Guo
- Computational Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| | - Maria Kalyna
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences - BOKU, Muthgasse 18, 1190, Vienna, Austria
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | - Weizhong Chen
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853-2703, USA
| | - Runxuan Zhang
- Computational Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| | - Cornelia Wilson
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Naeem H Syed
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| |
Collapse
|
33
|
Tellier M, Maudlin I, Murphy S. Transcription and splicing: A two-way street. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1593. [PMID: 32128990 DOI: 10.1002/wrna.1593] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/18/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
Abstract
RNA synthesis by RNA polymerase II and RNA processing are closely coupled during the transcription cycle of protein-coding genes. This coupling affords opportunities for quality control and regulation of gene expression and the effects can go in both directions. For example, polymerase speed can affect splice site selection and splicing can increase transcription and affect the chromatin landscape. Here we review the many ways that transcription and splicing influence one another, including how splicing "talks back" to transcription. We will also place the connections between transcription and splicing in the context of other RNA processing events that define the exons that will make up the final mRNA. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Isabella Maudlin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Alkalay E, Gam Ze Letova Refael C, Shoval I, Kinor N, Sarid R, Shav-Tal Y. The Sub-Nuclear Localization of RNA-Binding Proteins in KSHV-Infected Cells. Cells 2020; 9:cells9091958. [PMID: 32854341 PMCID: PMC7564026 DOI: 10.3390/cells9091958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins, particularly splicing factors, localize to sub-nuclear domains termed nuclear speckles. During certain viral infections, as the nucleus fills up with replicating virus compartments, host cell chromatin distribution changes, ending up condensed at the nuclear periphery. In this study we wished to determine the fate of nucleoplasmic RNA-binding proteins and nuclear speckles during the lytic cycle of the Kaposi's sarcoma associated herpesvirus (KSHV). We found that nuclear speckles became fewer and dramatically larger, localizing at the nuclear periphery, adjacent to the marginalized chromatin. Enlarged nuclear speckles contained splicing factors, whereas other proteins were nucleoplasmically dispersed. Polyadenylated RNA, typically found in nuclear speckles under regular conditions, was also found in foci separated from nuclear speckles in infected cells. Poly(A) foci did not contain lncRNAs known to colocalize with nuclear speckles but contained the poly(A)-binding protein PABPN1. Examination of the localization of spliced viral RNAs revealed that some spliced transcripts could be detected within the nuclear speckles. Since splicing is required for the maturation of certain KSHV transcripts, we suggest that the infected cell does not dismantle nuclear speckles but rearranges their components at the nuclear periphery to possibly serve in splicing and transport of viral RNAs into the cytoplasm.
Collapse
|
35
|
Hasenson SE, Shav‐Tal Y. Speculating on the Roles of Nuclear Speckles: How RNA‐Protein Nuclear Assemblies Affect Gene Expression. Bioessays 2020; 42:e2000104. [DOI: 10.1002/bies.202000104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Sarah E. Hasenson
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials Bar‐Ilan University Ramat Gan 4481400 Israel
| | - Yaron Shav‐Tal
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials Bar‐Ilan University Ramat Gan 4481400 Israel
| |
Collapse
|
36
|
Jia J, Long Y, Zhang H, Li Z, Liu Z, Zhao Y, Lu D, Jin X, Deng X, Xia R, Cao X, Zhai J. Post-transcriptional splicing of nascent RNA contributes to widespread intron retention in plants. NATURE PLANTS 2020; 6:780-788. [PMID: 32541953 DOI: 10.1038/s41477-020-0688-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/08/2020] [Indexed: 05/21/2023]
Abstract
In eukaryotes, genes are transcribed by RNA polymerase-II (Pol-II) and introns are removed by the spliceosome largely cotranscriptionally1-3; analysis using long-read sequencing revealed that splicing occurs immediately after Pol-II passes introns in yeast4,5. Here, we developed a Nanopore-based method to profile chromatin-bound RNA that enables the simultaneous detection of splicing status, Pol-II position and polyadenylation at the genome-wide scale in Arabidopsis. We found that more than half of the introns remain unspliced after Pol-II transcribes 1 kb past the 3' splice site, which is much slower than the rate of splicing reported in yeast4,5. Many of the full-length chromatin-bound RNA molecules are polyadenylated, yet still contain unspliced introns at specific positions. These introns are nearly absent in the cytoplasm and are resistant to nonsense-mediated decay, suggesting that they are post-transcriptionally spliced before the transcripts are released into the cytoplasm; we therefore termed these introns post-transcriptionally spliced introns (pts introns). Analysis of around 6,500 public RNA-sequencing libraries found that the splicing of pts introns requires the function of splicing-related proteins such as PRMT5 and SKIP, and is also influenced by various environmental signals. The majority of the intron retention events in Arabidopsis are at pts introns, suggesting that chromatin-tethered post-transcriptional splicing is a major contributor to the widespread intron retention that is observed in plants, and could be a mechanism to produce fully spliced functional mRNAs for rapid response.
Collapse
Affiliation(s)
- Jinbu Jia
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yanping Long
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
- Institute for Advanced Studies and College of Life Science, Wuhan University, Wuhan, China
| | - Hong Zhang
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zhuowen Li
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zhijian Liu
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yan Zhao
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Dongdong Lu
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xianhao Jin
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Rui Xia
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jixian Zhai
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
37
|
Markey FB, Parashar V, Batish M. Methods for spatial and temporal imaging of the different steps involved in RNA processing at single-molecule resolution. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1608. [PMID: 32543077 DOI: 10.1002/wrna.1608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/26/2022]
Abstract
RNA plays a quintessential role as a messenger of information from genotype (DNA) to phenotype (proteins), as well as acts as a regulatory molecule (noncoding RNAs). All steps in the journey of RNA from synthesis (transcription), splicing, transport, localization, translation, to its eventual degradation, comprise important steps in gene expression, thereby controlling the fate of the cell. This lifecycle refers to the majority of RNAs (primarily mRNAs), but not other RNAs such as tRNAs. Imaging these processes in fixed cells and in live cells has been an important tool in developing an understanding of the regulatory steps in RNAs journey. Single-cell and single-molecule imaging techniques enable a much deeper understanding of cellular biology, which is not possible with bulk studies involving RNA isolated from a large pool of cells. Classic techniques, such as fluorescence in situ hybridization (FISH), as well as more recent aptamer-based approaches, have provided detailed insights into RNA localization, and have helped to predict the functions carried out by many RNA species. However, there are still certain processing steps that await high-resolution imaging, which is an exciting and upcoming area of research. In this review, we will discuss the methods that have revolutionized single-molecule resolution imaging in general, the steps of RNA processing in which these methods have been used, and new emerging technologies. This article is categorized under: RNA Export and Localization > RNA Localization RNA Methods > RNA Analyses in Cells RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions.
Collapse
Affiliation(s)
- Fatu Badiane Markey
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Vijay Parashar
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Mona Batish
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.,Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
38
|
Sebbag-Sznajder N, Brody Y, Hochberg-Laufer H, Shav-Tal Y, Sperling J, Sperling R. Dynamic Supraspliceosomes Are Assembled on Different Transcripts Regardless of Their Intron Number and Splicing State. Front Genet 2020; 11:409. [PMID: 32499811 PMCID: PMC7243799 DOI: 10.3389/fgene.2020.00409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/31/2020] [Indexed: 11/13/2022] Open
Abstract
Splicing and alternative splicing of pre-mRNA are key sources in the formation of diversity in the human proteome. These processes have a central role in the regulation of the gene expression pathway. Yet, how spliceosomes are assembled on a multi-intronic pre-mRNA is at present not well understood. To study the spliceosomes assembled in vivo on transcripts with variable number of introns, we examined a series of three related transcripts derived from the β-globin gene, where two transcript types contained increasing number of introns, while one had only an exon. Each transcript had multiple MS2 sequence repeats that can be bound by the MS2 coat protein. Using our protocol for isolation of endogenous spliceosomes under native conditions from cell nuclei, we show that all three transcripts are found in supraspliceosomes – 21 MDa dynamic complexes, sedimenting at 200S in glycerol gradients, and composed of four native spliceosomes connected by the transcript. Affinity purification of complexes assembled on the transcript with most introns (termed E6), using the MS2 tag, confirmed the assembly of E6 in supraspliceosomes with components such as Sm proteins and PSF. Furthermore, splicing inhibition by spliceostatin A did not inhibit the assembly of supraspliceosomes on the E6 transcript, yet increased the percentage of E6 pre-mRNA supraspliceosomes. These findings were corroborated in intact cells, using RNA FISH to detect the MS2-tagged E6 mRNA, together with GFP-tagged splicing factors, showing the assembly of splicing factors SRSF2, U1-70K, and PRP8 onto the E6 transcripts under normal conditions and also when splicing was inhibited. This study shows that different transcripts with different number of introns, or lacking an intron, are assembled in supraspliceosomes even when splicing is inhibited. This assembly starts at the site of transcription and can continue during the life of the transcript in the nucleoplasm. This study further confirms the dynamic and universal nature of supraspliceosomes that package RNA polymerase II transcribed pre-mRNAs into complexes composed of four native spliceosomes connected by the transcript, independent of their length, number of introns, or splicing state.
Collapse
Affiliation(s)
| | - Yehuda Brody
- The Mina and Everard Goodman Faculty of Life Sciences and The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Hodaya Hochberg-Laufer
- The Mina and Everard Goodman Faculty of Life Sciences and The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences and The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Joseph Sperling
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Sperling
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
39
|
Victorino JF, Fox MJ, Smith-Kinnaman WR, Peck Justice SA, Burriss KH, Boyd AK, Zimmerly MA, Chan RR, Hunter GO, Liu Y, Mosley AL. RNA Polymerase II CTD phosphatase Rtr1 fine-tunes transcription termination. PLoS Genet 2020; 16:e1008317. [PMID: 32187185 PMCID: PMC7105142 DOI: 10.1371/journal.pgen.1008317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 03/30/2020] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
RNA Polymerase II (RNAPII) transcription termination is regulated by the phosphorylation status of the C-terminal domain (CTD). The phosphatase Rtr1 has been shown to regulate serine 5 phosphorylation on the CTD; however, its role in the regulation of RNAPII termination has not been explored. As a consequence of RTR1 deletion, interactions within the termination machinery and between the termination machinery and RNAPII were altered as quantified by Disruption-Compensation (DisCo) network analysis. Of note, interactions between RNAPII and the cleavage factor IA (CF1A) subunit Pcf11 were reduced in rtr1Δ, whereas interactions with the CTD and RNA-binding termination factor Nrd1 were increased. Globally, rtr1Δ leads to decreases in numerous noncoding RNAs that are linked to the Nrd1, Nab3 and Sen1 (NNS) -dependent RNAPII termination pathway. Genome-wide analysis of RNAPII and Nrd1 occupancy suggests that loss of RTR1 leads to increased termination at noncoding genes. Additionally, premature RNAPII termination increases globally at protein-coding genes with a decrease in RNAPII occupancy occurring just after the peak of Nrd1 recruitment during early elongation. The effects of rtr1Δ on RNA expression levels were lost following deletion of the exosome subunit Rrp6, which works with the NNS complex to rapidly degrade a number of noncoding RNAs following termination. Overall, these data suggest that Rtr1 restricts the NNS-dependent termination pathway in WT cells to prevent premature termination of mRNAs and ncRNAs. Rtr1 facilitates low-level elongation of noncoding transcripts that impact RNAPII interference thereby shaping the transcriptome. Many cellular RNAs including those that encode for proteins are produced by the enzyme RNA Polymerase II. In this work, we have defined a new role for the phosphatase Rtr1 in the regulation of RNA Polymerase II progression from the start of transcription to the 3’ end of the gene where the nascent RNA from protein-coding genes is typically cleaved and polyadenylated. Deletion of the gene that encodes RTR1 leads to changes in the interactions between RNA polymerase II and the termination machinery. Rtr1 loss also causes early termination of RNA Polymerase II at many of its target gene types, including protein coding genes and noncoding RNAs. Evidence suggests that the premature termination observed in RTR1 knockout cells occurs through the termination factor and RNA binding protein Nrd1 and its binding partner Nab3. Deletion of RRP6, a known component of the Nrd1-Nab3 termination coupled RNA degradation pathway, is epistatic to RTR1 suggesting that Rrp6 is required to terminate and/or degrade many of the noncoding RNAs that have increased turnover in RTR1 deletion cells. These findings suggest that Rtr1 normally promotes elongation of RNA Polymerase II transcripts through prevention of Nrd1-directed termination.
Collapse
Affiliation(s)
- Jose F. Victorino
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Melanie J. Fox
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Whitney R. Smith-Kinnaman
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sarah A. Peck Justice
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Katlyn H. Burriss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Asha K. Boyd
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Megan A. Zimmerly
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Rachel R. Chan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Gerald O. Hunter
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
40
|
Bressin RK, Osman S, Pohorilets I, Basu U, Koide K. Total Synthesis of Meayamycin B. J Org Chem 2020; 85:4637-4647. [DOI: 10.1021/acs.joc.9b03370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Robert K. Bressin
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Sami Osman
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Ivanna Pohorilets
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Upamanyu Basu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
41
|
Drexler HL, Choquet K, Churchman LS. Splicing Kinetics and Coordination Revealed by Direct Nascent RNA Sequencing through Nanopores. Mol Cell 2020; 77:985-998.e8. [PMID: 31839405 PMCID: PMC7060811 DOI: 10.1016/j.molcel.2019.11.017] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/17/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023]
Abstract
Understanding how splicing events are coordinated across numerous introns in metazoan RNA transcripts requires quantitative analyses of transient RNA processing events in living cells. We developed nanopore analysis of co-transcriptional processing (nano-COP), in which nascent RNAs are directly sequenced through nanopores, exposing the dynamics and patterns of RNA splicing without biases introduced by amplification. Long nano-COP reads reveal that, in human and Drosophila cells, splicing occurs after RNA polymerase II transcribes several kilobases of pre-mRNA, suggesting that metazoan splicing transpires distally from the transcription machinery. Inhibition of the branch-site recognition complex SF3B rapidly diminished global co-transcriptional splicing. We found that splicing order does not strictly follow the order of transcription and is associated with cis-acting elements, alternative splicing, and RNA-binding factors. Further, neighboring introns in human cells tend to be spliced concurrently, implying that splicing of these introns occurs cooperatively. Thus, nano-COP unveils the organizational complexity of RNA processing.
Collapse
Affiliation(s)
- Heather L Drexler
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Karine Choquet
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
42
|
King JG. Developmental and comparative perspectives on mosquito immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103458. [PMID: 31377103 DOI: 10.1016/j.dci.2019.103458] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Diseases spread by mosquitoes have killed more people than those spread by any other group of arthropod vectors and remain an important factor in determining global health and economic stability. The mosquito innate immune system can act to either modulate infection with human pathogens or fight off entomopathogens and increase the fitness and longevity of infected mosquitoes. While work remains towards understanding the larval immune system and the development of the mosquito immune system, it has recently become clearer that environmental factors heavily shape the developing mosquito immune system and continue to influence the adult immune system as well. The adult immune system has been well-studied and is known to involve multiple tissues and diverse molecular mechanisms. This review summarizes and synthesizes what is currently understood about the development of the mosquito immune system and includes comparisons of immune components unique to mosquitoes among the blood-feeding arthropods as well as important distinguishing factors between the anopheline and culicine mosquitoes. An explanation is included for how mosquito immunity factors into vector competence and vectorial capacity is presented along with a model for the interrelationships between nutrition, microbiome, pathogen interactions and behavior as they relate to mosquito development, immune status, adult female fitness and ultimately, vectorial capacity. Novel discoveries in the fields of mosquito ecoimmunology, neuroimmunology, and intracellular antiviral responses are highlighted.
Collapse
Affiliation(s)
- Jonas G King
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, 32 Creelman Street, Dorman 402, Mississippi State, MS 39762, USA.
| |
Collapse
|
43
|
Pichon X, Robert MC, Bertrand E, Singer RH, Tutucci E. New Generations of MS2 Variants and MCP Fusions to Detect Single mRNAs in Living Eukaryotic Cells. Methods Mol Biol 2020; 2166:121-144. [PMID: 32710406 DOI: 10.1007/978-1-0716-0712-1_7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Live imaging of single RNA from birth to death brought important advances in our understanding of the spatiotemporal regulation of gene expression. These studies have provided a comprehensive understanding of RNA metabolism by describing the process step by step. Most of these studies used for live imaging a genetically encoded RNA-tagging system fused to fluorescent proteins. One of the best characterized RNA-tagging systems is derived from the bacteriophage MS2 and it allows single RNA imaging in real-time and live cells. This system has been successfully used to track the different steps of mRNA processing in many living organisms. The recent development of optimized MS2 and MCP variants now allows the labeling of endogenous RNAs and their imaging without modifying their behavior. In this chapter, we discuss the improvements in detecting single mRNAs with different variants of MCP and fluorescent proteins that we tested in yeast and mammalian cells. Moreover, we describe protocols using MS2-MCP systems improved for real-time imaging of single mRNAs and transcription dynamics in S. cerevisiae and mammalian cells, respectively.
Collapse
Affiliation(s)
- Xavier Pichon
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France.,Equipe labélisée Ligue Nationale Contre le Cancer, Montpellier, France
| | - Marie-Cécile Robert
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France.,Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Janelia Research Campus of the HHMI, Ashburn, VA, USA
| | - Evelina Tutucci
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
44
|
Hochberg-Laufer H, Neufeld N, Brody Y, Nadav-Eliyahu S, Ben-Yishay R, Shav-Tal Y. Availability of splicing factors in the nucleoplasm can regulate the release of mRNA from the gene after transcription. PLoS Genet 2019; 15:e1008459. [PMID: 31765392 PMCID: PMC6901260 DOI: 10.1371/journal.pgen.1008459] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 12/09/2019] [Accepted: 10/04/2019] [Indexed: 11/18/2022] Open
Abstract
Gene expression dynamics can be measured in single living cells. Using a detectable transcriptionally active gene in living cells, we previously found that an mRNA undergoing several splicing events was retained at this gene after transcription until completion of mRNA processing. To determine the reason for this delay in release and whether mRNA retention on the gene might depend on splicing factor availability, we modulated the levels of splicing factors in the nucleus. Increasing the abundance of the diffusing fraction of splicing factors by their overexpression or by Clk1 kinase overexpression to disassemble nuclear speckles, led to a reduction in splicing factor residence times on the active gene, and the retained mRNA was rapidly released from the gene. Other treatments such as overexpression of a mutant inactive Clk1, the downregulation of MALAT1 lncRNA or of the Son protein, or the overexpression of the splicing factor import factor TNPO3, did not affect the dynamics of mRNA release from the gene. We found that the faster release of the mRNA from the gene mediated by increased availability of splicing factors, was dependent on the RS domain of the splicing factors and its phosphorylation state. We propose that the relative abundancies of splicing factors in the nucleoplasm can affect their availability for the splicing events taking place, and regulate the kinetics of mRNA release from the gene after processing. Genetic information is contained in the cell nucleus and encodes proteins. However, protein production takes place in the cytoplasm, and so a molecule is needed to connect between the nucleus and cytoplasm. This messenger molecule is called messenger RNA (mRNA). It is produced and copied from the DNA, and after some processing will travel to the cytoplasm to encode proteins. This study focuses on the timing of mRNA release from the gene after it is copied from the DNA. Processing of mRNA includes the removal of some of its pieces and the stitching back of the remaining parts. This is called splicing. We found that mRNAs undergoing many splicing events are retained on the gene until splicing has completed, and examined what is the cause for this delay. We found that the factors performing the splicing might be limiting the process if their levels are not high enough at the gene locus. By increasing splicing factor levels in the nucleus we show that their abundance increases the rate at which mRNA is released. This means that the cell can regulate gene expression rates by limiting the availability of splicing factors that are free to take part in the processing of mRNA.
Collapse
Affiliation(s)
- Hodaya Hochberg-Laufer
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Noa Neufeld
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Yehuda Brody
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Shani Nadav-Eliyahu
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Rakefet Ben-Yishay
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
- * E-mail:
| |
Collapse
|
45
|
Jabre I, Reddy ASN, Kalyna M, Chaudhary S, Khokhar W, Byrne LJ, Wilson CM, Syed NH. Does co-transcriptional regulation of alternative splicing mediate plant stress responses? Nucleic Acids Res 2019; 47:2716-2726. [PMID: 30793202 PMCID: PMC6451118 DOI: 10.1093/nar/gkz121] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/15/2022] Open
Abstract
Plants display exquisite control over gene expression to elicit appropriate responses under normal and stress conditions. Alternative splicing (AS) of pre-mRNAs, a process that generates two or more transcripts from multi-exon genes, adds another layer of regulation to fine-tune condition-specific gene expression in animals and plants. However, exactly how plants control splice isoform ratios and the timing of this regulation in response to environmental signals remains elusive. In mammals, recent evidence indicate that epigenetic and epitranscriptome changes, such as DNA methylation, chromatin modifications and RNA methylation, regulate RNA polymerase II processivity, co-transcriptional splicing, and stability and translation efficiency of splice isoforms. In plants, the role of epigenetic modifications in regulating transcription rate and mRNA abundance under stress is beginning to emerge. However, the mechanisms by which epigenetic and epitranscriptomic modifications regulate AS and translation efficiency require further research. Dynamic changes in the chromatin landscape in response to stress may provide a scaffold around which gene expression, AS and translation are orchestrated. Finally, we discuss CRISPR/Cas-based strategies for engineering chromatin architecture to manipulate AS patterns (or splice isoforms levels) to obtain insight into the epigenetic regulation of AS.
Collapse
Affiliation(s)
- Ibtissam Jabre
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Maria Kalyna
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences - BOKU, Muthgasse 18, 1190 Vienna, Austria
| | - Saurabh Chaudhary
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Waqas Khokhar
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Lee J Byrne
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Cornelia M Wilson
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Naeem H Syed
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| |
Collapse
|
46
|
Greenberg E, Hochberg-Laufer H, Blanga S, Kinor N, Shav-Tal Y. Cytoplasmic DNA can be detected by RNA fluorescence in situ hybridization. Nucleic Acids Res 2019; 47:e109. [PMID: 31340014 PMCID: PMC6765201 DOI: 10.1093/nar/gkz645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 06/26/2019] [Accepted: 07/15/2019] [Indexed: 01/15/2023] Open
Abstract
Fluorescence in situ hybridization (FISH) can be used for the intracellular detection of DNA or RNA molecules. The detection of DNA sequences by DNA FISH requires the denaturation of the DNA double helix to allow the hybridization of the fluorescent probe with DNA in a single stranded form. These hybridization conditions require high temperature and low pH that can damage RNA, and therefore RNA is not typically detectable by DNA FISH. In contrast, RNA FISH does not require a denaturation step since RNA is single stranded, and therefore DNA molecules are not detectable by RNA FISH. Hence, DNA FISH and RNA FISH are mutually exclusive. In this study, we show that plasmid DNA transiently transfected into cells is readily detectable in the cytoplasm by RNA FISH without need for denaturation, shortly after transfection and for several hours. The plasmids, however, are usually not detectable in the nucleus except when the plasmids are efficiently directed into the nucleus, which may imply a more open packaging state for DNA after transfection. This detection of plasmid DNA in the cytoplasm has implications for RNA FISH experiments and opens a window to study conditions when DNA is present in the cytoplasm.
Collapse
Affiliation(s)
- Eliraz Greenberg
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Hodaya Hochberg-Laufer
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Shalev Blanga
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Noa Kinor
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
47
|
Ben-Yishay R, Mor A, Shraga A, Ashkenazy-Titelman A, Kinor N, Schwed-Gross A, Jacob A, Kozer N, Kumar P, Garini Y, Shav-Tal Y. Imaging within single NPCs reveals NXF1's role in mRNA export on the cytoplasmic side of the pore. J Cell Biol 2019; 218:2962-2981. [PMID: 31375530 PMCID: PMC6719458 DOI: 10.1083/jcb.201901127] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/21/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
Translocation of mRNA through the nuclear pore complex (NPC) requires interactions with different NPC regions. To determine the interactions that are crucial for effective mRNA export in living cells, we examined mRNA export within individual pores by applying various types of mRNA export blocks that stalled mRNPs at different stages of transition. Focusing on the major mRNA export factor NXF1, we found that initial mRNP binding to the NPC did not require NXF1 in the NPC, whereas release into the cytoplasm did. NXF1 localization in the NPC did not require RNA or RNA binding. Superresolution microscopy showed that NXF1 consistently occupied positions on the cytoplasmic side of the NPC. Interactions with specific nucleoporins were pinpointed using FLIM-FRET for measuring protein-protein interactions inside single NPCs, showing that Dbp5 helicase activity of mRNA release is conserved in yeast and humans. Altogether, we find that specific interactions on the cytoplasmic side of the NPC are fundamental for the directional flow of mRNA export.
Collapse
Affiliation(s)
- Rakefet Ben-Yishay
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Amir Mor
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Amit Shraga
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Asaf Ashkenazy-Titelman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Noa Kinor
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Avital Schwed-Gross
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Avi Jacob
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Noga Kozer
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Pramod Kumar
- Department of Physics, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Yuval Garini
- Department of Physics, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel .,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
48
|
Gu J, Xia Z, Luo Y, Jiang X, Qian B, Xie H, Zhu JK, Xiong L, Zhu J, Wang ZY. Spliceosomal protein U1A is involved in alternative splicing and salt stress tolerance in Arabidopsis thaliana. Nucleic Acids Res 2019; 46:1777-1792. [PMID: 29228330 PMCID: PMC5829640 DOI: 10.1093/nar/gkx1229] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
Soil salinity is a significant threat to sustainable agricultural production worldwide. Plants must adjust their developmental and physiological processes to cope with salt stress. Although the capacity for adaptation ultimately depends on the genome, the exceptional versatility in gene regulation provided by the spliceosome-mediated alternative splicing (AS) is essential in these adaptive processes. However, the functions of the spliceosome in plant stress responses are poorly understood. Here, we report the in-depth characterization of a U1 spliceosomal protein, AtU1A, in controlling AS of pre-mRNAs under salt stress and salt stress tolerance in Arabidopsis thaliana. The atu1a mutant was hypersensitive to salt stress and accumulated more reactive oxygen species (ROS) than the wild-type under salt stress. RNA-seq analysis revealed that AtU1A regulates AS of many genes, presumably through modulating recognition of 5′ splice sites. We showed that AtU1A is associated with the pre-mRNA of the ROS detoxification-related gene ACO1 and is necessary for the regulation of ACO1 AS. ACO1 is important for salt tolerance because ectopic expression of ACO1 in the atu1a mutant can partially rescue its salt hypersensitive phenotype. Our findings highlight the critical role of AtU1A as a regulator of pre-mRNA processing and salt tolerance in plants.
Collapse
Affiliation(s)
- Jinbao Gu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| | - Zhiqiang Xia
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Yuehua Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| | - Xingyu Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| | - Bilian Qian
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - He Xie
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA.,Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liming Xiong
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences & Engineering Division, Thuwal 23955-6900, Saudi Arabia
| | - Jianhua Zhu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Zhen-Yu Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
49
|
Glaich O, Leader Y, Lev Maor G, Ast G. Histone H1.5 binds over splice sites in chromatin and regulates alternative splicing. Nucleic Acids Res 2019; 47:6145-6159. [PMID: 31076740 PMCID: PMC6614845 DOI: 10.1093/nar/gkz338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 04/17/2019] [Accepted: 04/27/2019] [Indexed: 12/11/2022] Open
Abstract
Chromatin organization and epigenetic markers influence splicing, though the magnitudes of these effects and the mechanisms are largely unknown. Here, we demonstrate that linker histone H1.5 influences mRNA splicing. We observed that linker histone H1.5 binds DNA over splice sites of short exons in human lung fibroblasts (IMR90 cells). We found that association of H1.5 with these splice sites correlated with the level of inclusion of alternatively spliced exons. Exons marked by H1.5 had more RNA polymerase II (RNAP II) stalling near the 3' splice site than did exons not associated with H1.5. In cells depleted of H1.5, we showed that the inclusion of five exons evaluated decreased and that RNAP II levels over these exons were also reduced. Our findings indicate that H1.5 is involved in regulation of splice site selection and alternative splicing, a function not previously demonstrated for linker histones.
Collapse
Affiliation(s)
- Ohad Glaich
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Yodfat Leader
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Galit Lev Maor
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
50
|
Hochberg-Laufer H, Schwed-Gross A, Neugebauer KM, Shav-Tal Y. Uncoupling of nucleo-cytoplasmic RNA export and localization during stress. Nucleic Acids Res 2019; 47:4778-4797. [PMID: 30864659 PMCID: PMC6511838 DOI: 10.1093/nar/gkz168] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 12/25/2022] Open
Abstract
Eukaryotic cells contain sub-cellular compartments that are not membrane bound. Some structures are always present, such as nuclear speckles that contain RNA-binding proteins (RBPs) and poly(A)+ RNAs. Others, like cytoplasmic stress granules (SGs) that harbor mRNAs and RBPs, are induced upon stress. When we examined the formation and composition of nuclear speckles during stress induction with tubercidin, an adenosine analogue previously shown to affect nuclear speckle composition, we unexpectedly found that it also led to the formation of SGs and to the inhibition of several crucial steps of RNA metabolism in cells, thereby serving as a potent inhibitor of the gene expression pathway. Although transcription and splicing persisted under this stress, RBPs and mRNAs were mislocalized in the nucleus and cytoplasm. Specifically, lncRNA and RBP localization to nuclear speckles was disrupted, exon junction complex (EJC) recruitment to mRNA was reduced, mRNA export was obstructed, and cytoplasmic poly(A)+ RNAs localized in SGs. Furthermore, nuclear proteins that participate in mRNA export, such as nucleoporins and mRNA export adaptors, were mislocalized to SGs. This study reveals structural aspects of granule assembly in cells, and describes how the flow of RNA from the nucleus to the cytoplasm is severed under stress.
Collapse
Affiliation(s)
- Hodaya Hochberg-Laufer
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Avital Schwed-Gross
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|