1
|
Dobry J, Zhu Z, Zhou Q, Wapstra E, Deakin JE, Ezaz T. The role of unbalanced segmental duplication in sex chromosome evolution in Australian ridge-tailed goannas. Sci Rep 2025; 15:8545. [PMID: 40074818 PMCID: PMC11903900 DOI: 10.1038/s41598-025-93574-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/07/2025] [Indexed: 03/14/2025] Open
Abstract
Varanids are known for conserved sex chromosomes, but there are differences in the size of the W chromosome but not in morphology among species representing varying stages of sex chromosome evolution. We tested for homology of the ZW sex chromosome system with size differences in varanids among four species from two lineages in Australia, the Odatria and the Gouldii. We found that while DNA sequences of the sex chromosomes are conserved in the species we tested, we also identified a homologous region on an enlarged autosomal microchromosome that shares sequences with the W chromosome in some isolated populations of V. acanthurus and V. citrinus from the Odatria lineage. The enlarged microchromosome was unpaired in all individuals tested and is likely an unbalanced segmental duplication translocated between chromosome 1, the W, and another microchromosome. This suggests an ancient balanced duplication homologous to the W and the terminal region of the long arm of chromosome 1. The most parsimonious explanation is that the duplicated region likely originated on chromosome 1. We hypothesised in our reconstruction that genes and related DNA sequences associated with the sex-linkage group have likely originated on an autosome. Subsequently, the sequences may have undergone duplication and translocation to the W chromosome, followed by the accumulation of lineage specific repeat elements and amplifications on the W at different rates in various lineages. Lastly, these sequences are likely to have undergone duplication and translocation to another autosomal microchromosome. Given the role of segmental duplications and translocations as important evolutionary drivers of speciation in other taxa, together with the rapid speciation that has occurred in Australian varanids, our findings provide broader insight into the evolutionary pathway leading to rapid chromosomal and genic divergence of species.
Collapse
Affiliation(s)
- Jason Dobry
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, ACT, 2601, Australia
| | - Zexian Zhu
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Erik Wapstra
- School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Janine E Deakin
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, ACT, 2601, Australia
| | - Tariq Ezaz
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, ACT, 2601, Australia.
| |
Collapse
|
2
|
Jay P, Jeffries D, Hartmann FE, Véber A, Giraud T. Why do sex chromosomes progressively lose recombination? Trends Genet 2024; 40:564-579. [PMID: 38677904 DOI: 10.1016/j.tig.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/29/2024]
Abstract
Progressive recombination loss is a common feature of sex chromosomes. Yet, the evolutionary drivers of this phenomenon remain a mystery. For decades, differences in trait optima between sexes (sexual antagonism) have been the favoured hypothesis, but convincing evidence is lacking. Recent years have seen a surge of alternative hypotheses to explain progressive extensions and maintenance of recombination suppression: neutral accumulation of sequence divergence, selection of nonrecombining fragments with fewer deleterious mutations than average, sheltering of recessive deleterious mutations by linkage to heterozygous alleles, early evolution of dosage compensation, and constraints on recombination restoration. Here, we explain these recent hypotheses and dissect their assumptions, mechanisms, and predictions. We also review empirical studies that have brought support to the various hypotheses.
Collapse
Affiliation(s)
- Paul Jay
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark; Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France.
| | - Daniel Jeffries
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Fanny E Hartmann
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France
| | - Amandine Véber
- Université Paris Cité, CNRS, MAP5, F-75006 Paris, France
| | - Tatiana Giraud
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Balini LC, Fernandes CA, Portela-Castro ALDB, Melo RFD, Zawadzki CH, Borin-Carvalho LA. Initial Steps of XY Sex Chromosome Differentiation in the Armored Catfish Hypostomus albopunctatus (Siluriformes: Loricariidae) Revealed by Heterochromatin Accumulation. Zebrafish 2024; 21:265-273. [PMID: 38386543 DOI: 10.1089/zeb.2023.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
In fish species, heterochromatinization is one process that could trigger sex chromosome differentiation. The present article describes a nascent XX/XY sex chromosome system evidenced by heterochromatin accumulation and microsatellite (GATA)8 in Hypostomus albopunctatus from two populations of the Paraná River basin. The specimens of H. albopunctatus from the Campo and Bossi Rivers share the same karyotype. The species exhibits 74 chromosomes (8m+14sm +16st +36a, fundamental number = 112). The C-banding technique suggests male heterogamety in H. albopunctatus, where the Y-chromosome is morphologically like the X-chromosome but differs from it for having long arms that are entirely heterochromatic. Double fluorescence in situ hybridization (FISH) with 18S and 5S rDNA probes confirmed the Ag-nucleolus organizer region sites in a single pair for both populations, and minor rDNA clusters showed interpopulational variation. FISH with the microsatellite (GATA)8 probe showed a dispersed pattern in the karyotype, accumulating these sequences of sex chromosomes of both populations. FISH with microsatellite (CGC)10 probe showed interpopulational variation. The absence of differentiated sex chromosomes in H. albopunctatus is described previously, and a new variant is documented herein where XY chromosomes can be seen in an early stage of differentiation.
Collapse
Affiliation(s)
- Ligia Carla Balini
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
| | - Carlos Alexandre Fernandes
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
- Limnology, Ichthyology and Aquaculture Research Nucleus (NUPELIA), Biological Sciences Center, State University of Maringá, Maringá, Paraná, Brazil
| | - Ana Luiza de Brito Portela-Castro
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
- Limnology, Ichthyology and Aquaculture Research Nucleus (NUPELIA), Biological Sciences Center, State University of Maringá, Maringá, Paraná, Brazil
| | - Rafael Fernando de Melo
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
| | - Cláudio Henrique Zawadzki
- Limnology, Ichthyology and Aquaculture Research Nucleus (NUPELIA), Biological Sciences Center, State University of Maringá, Maringá, Paraná, Brazil
- Department of Biology, State University of Maringá, Maringá, Paraná, Brazil
| | | |
Collapse
|
4
|
Zhang N, Zhang Y. Y-chromosome Degeneration due to Speciation and Founder Effect. Acta Biotheor 2024; 72:6. [PMID: 38819710 DOI: 10.1007/s10441-024-09482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
The Y chromosome in the XY sex-determination system is often shorter than its X counterpart, a condition attributed to degeneration after Y recombination ceases. Contrary to the traditional view of continuous, gradual degeneration, our study reveals stabilization within large mating populations. In these populations, we demonstrate that both mutant and active alleles on the Y chromosome can reach equilibrium through a mutation-selection balance. However, the emergence of a new species, particularly through the founder effect, can disrupt this equilibrium. Specifically, if the male founders of a new species carry only a mutant allele for a particular Y-linked gene, this allele becomes fixed, leading to the loss of the corresponding active gene on the Y chromosome. Our findings suggest that the rate of Y-chromosome degeneration may be linked to the frequency of speciation events associated with single-male founder events.
Collapse
Affiliation(s)
- Nianqin Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yongjun Zhang
- Science college, Liaoning Technical University, Fuxin, China.
| |
Collapse
|
5
|
Kloas W, Stöck M, Lutz I, Ziková-Kloas A. Endocrine disruption in teleosts and amphibians is mediated by anthropogenic and natural environmental factors: implications for risk assessment. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220505. [PMID: 38310939 PMCID: PMC10838649 DOI: 10.1098/rstb.2022.0505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/07/2023] [Indexed: 02/06/2024] Open
Abstract
Environmental variation in the Anthropocene involves several factors that interfere with endocrine systems of wildlife and humans, presenting a planetary boundary of still unknown dimensions. Here, we focus on chemical compounds and other impacts of anthropogenic and natural origins that are adversely affecting reproduction and development. The main sink of these endocrine disruptors (EDs) is surface waters, where they mostly endanger aquatic vertebrates, like teleost fish and amphibians. For regulatory purposes, EDs are categorized into EATS modalities (oestrogenic, androgenic, thyroidal, steroidogenesis), only addressing endocrine systems being assessable by validated tests. However, there is evidence that non-EATS modalities-and even natural sources, such as decomposition products of plants or parasitic infections-can affect vertebrate endocrine systems. Recently, the disturbance of natural circadian light rhythms by artificial light at night (ALAN) has been identified as another ED. Reviewing the knowledge about EDs affecting teleosts and amphibians leads to implications for risk assessment. The generally accepted WHO-definition for EDs, which focuses exclusively on 'exogenous substances' and neglects parasitic infections or ALAN, seems to require some adaptation. Natural EDs have been involved in coevolutionary processes for ages without resulting in a general loss of biodiversity. Therefore, to address the 'One Health'-principle, future research and regulatory efforts should focus on minimizing anthropogenic factors for endocrine disruption. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Werner Kloas
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
- Department of Endocrinology, Institute of Biology and Albrecht Daniel Thaer Institute, Faculty of Life Sciences, Humboldt University, Unter den Linden 6, 10117 Berlin, Germany
| | - Matthias Stöck
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - Ilka Lutz
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - Andrea Ziková-Kloas
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
- Ecotoxicological Laboratory, German Environment Agency, Schichauweg 58, 12307 Berlin, Germany
| |
Collapse
|
6
|
Filipović I, Marshall JM, Rašić G. Finding divergent sequences of homomorphic sex chromosomes via diploidized nanopore-based assembly from a single male. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582759. [PMID: 38464271 PMCID: PMC10925256 DOI: 10.1101/2024.02.29.582759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Although homomorphic sex chromosomes can have non-recombining regions with elevated sequence divergence between its complements, such divergence signals can be difficult to detect bioinformatically. If found in genomes of e.g. insect pests, these sequences could be targeted by the engineered genetic sexing and control systems. Here, we report an approach that can leverage long-read nanopore sequencing of a single XY male to identify divergent regions of homomorphic sex chromosomes. Long-read data are used for de novo genome assembly that is diploidized in a way that maximizes sex-specific differences between its haploid complements. We show that the correct assembly phasing is supported by the mapping of nanopore reads from the male's haploid Y-bearing sperm cells. The approach revealed a highly divergent region (HDR) near the centromere of the homomorphic sex chromosome of Aedes aegypti, the most important arboviral vector, for which there is a great interest in creating new genetic control tools. HDR is located ~5Mb downstream of the known male-determining locus on chromosome 1 and is significantly enriched for ovary-biased genes. While recombination in HDR ceased relatively recently (~1.4 MYA), HDR gametologs have divergent exons and introns of protein coding genes, and most lncRNA genes became X-specific. Megabases of previously invisible sex-linked sequences provide new putative targets for engineering the genetic systems to control this deadly mosquito. Broadly, our approach expands the toolbox for studying cryptic structure of sex chromosomes.
Collapse
Affiliation(s)
- Igor Filipović
- Mosquito Genomics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston QLD 4006, Australia
- The University of Queensland, School of Biological Sciences, St Lucia, QLD, Australia
| | - John M Marshall
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Gordana Rašić
- Mosquito Genomics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston QLD 4006, Australia
| |
Collapse
|
7
|
Long X, Charlesworth D, Qi J, Wu R, Chen M, Wang Z, Xu L, Fu H, Zhang X, Chen X, He L, Zheng L, Huang Z, Zhou Q. Independent Evolution of Sex Chromosomes and Male Pregnancy-Related Genes in Two Seahorse Species. Mol Biol Evol 2022; 40:6964685. [PMID: 36578180 PMCID: PMC9851323 DOI: 10.1093/molbev/msac279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/14/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Unlike birds and mammals, many teleosts have homomorphic sex chromosomes, and changes in the chromosome carrying the sex-determining locus, termed "turnovers", are common. Recent turnovers allow studies of several interesting questions. One question is whether the new sex-determining regions evolve to become completely non-recombining, and if so, how and why. Another is whether (as predicted) evolutionary changes that benefit one sex accumulate in the newly sex-linked region. To study these questions, we analyzed the genome sequences of two seahorse species of the Syngnathidae, a fish group in which many species evolved a unique structure, the male brood pouch. We find that both seahorse species have XY sex chromosome systems, but their sex chromosome pairs are not homologs, implying that at least one turnover event has occurred. The Y-linked regions occupy 63.9% and 95.1% of the entire sex chromosome of the two species and do not exhibit extensive sequence divergence with their X-linked homologs. We find evidence for occasional recombination between the extant sex chromosomes that may account for their homomorphism. We argue that these Y-linked regions did not evolve by recombination suppression after the turnover, but by the ancestral nature of the low crossover rates in these chromosome regions. With such an ancestral crossover landscape, a turnover can instantly create an extensive Y-linked region. Finally, we test for adaptive evolution of male pouch-related genes after they became Y-linked in the seahorse.
Collapse
Affiliation(s)
- Xin Long
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China,Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou 311100, China
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3LF, UK
| | - Jianfei Qi
- Department of Aquaculture, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Ruiqiong Wu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Meiling Chen
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Zongji Wang
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Luohao Xu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Honggao Fu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Xueping Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Xinxin Chen
- Department of Aquaculture, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Libin He
- Department of Aquaculture, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | | | | | - Qi Zhou
- Corresponding authors: E-mails: ; ;
| |
Collapse
|
8
|
Ma W, Rovatsos M. Sex chromosome evolution: The remarkable diversity in the evolutionary rates and mechanisms. J Evol Biol 2022; 35:1581-1588. [DOI: 10.1111/jeb.14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 12/03/2022]
Affiliation(s)
- Wen‐Juan Ma
- Department of Molecular Biosciences University of Kansas Lawrence Kansas USA
| | | |
Collapse
|
9
|
Wang D, Li Y, Li M, Yang W, Ma X, Zhang L, Wang Y, Feng Y, Zhang Y, Zhou R, Sanderson BJ, Keefover-Ring K, Yin T, Smart LB, DiFazio SP, Liu J, Olson M, Ma T. Repeated turnovers keep sex chromosomes young in willows. Genome Biol 2022; 23:200. [PMID: 36151581 PMCID: PMC9502649 DOI: 10.1186/s13059-022-02769-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/08/2022] [Indexed: 01/10/2023] Open
Abstract
Background Salicaceae species have diverse sex determination systems and frequent sex chromosome turnovers. However, compared with poplars, the diversity of sex determination in willows is poorly understood, and little is known about the evolutionary forces driving their turnover. Here, we characterized the sex determination in two Salix species, S. chaenomeloides and S. arbutifolia, which have an XY system on chromosome 7 and 15, respectively. Results Based on the assemblies of their sex determination regions, we found that the sex determination mechanism of willows may have underlying similarities with poplars, both involving intact and/or partial homologs of a type A cytokinin response regulator (RR) gene. Comparative analyses suggested that at least two sex turnover events have occurred in Salix, one preserving the ancestral pattern of male heterogamety, and the other changing heterogametic sex from XY to ZW, which could be partly explained by the “deleterious mutation load” and “sexually antagonistic selection” theoretical models. We hypothesize that these repeated turnovers keep sex chromosomes of willow species in a perpetually young state, leading to limited degeneration. Conclusions Our findings further improve the evolutionary trajectory of sex chromosomes in Salicaceae species, explore the evolutionary forces driving the repeated turnovers of their sex chromosomes, and provide a valuable reference for the study of sex chromosomes in other species. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02769-w.
Collapse
Affiliation(s)
- Deyan Wang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Yiling Li
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Mengmeng Li
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Wenlu Yang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Xinzhi Ma
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Lei Zhang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Yubo Wang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Yanlin Feng
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Yuanyuan Zhang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Ran Zhou
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Brian J Sanderson
- Department of Biology, West Virginia University, Morgantown, WV, USA.,Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin-Madison, Madison, WI, USA
| | - Tongming Yin
- The Key Laboratory of Tree Genetics and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, Nanjing, China
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Jianquan Liu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China.
| | - Matthew Olson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
| | - Tao Ma
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Heterogeneous Evolution of Sex Chromosomes in the Torrent Frog Genus Amolops. Int J Mol Sci 2022; 23:ijms231911146. [PMID: 36232446 PMCID: PMC9570394 DOI: 10.3390/ijms231911146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
In sharp contrast to birds and mammals, in numerous cold-blooded vertebrates, sex chromosomes have been described as homomorphic. This sex chromosome homomorphy has been suggested to result from the high turnovers often observed across deeply diverged clades. However, little is known about the tempo and mode of sex chromosome evolution among the most closely related species. Here, we examined the evolution of sex chromosome among nine species of the torrent frog genus Amolops. We analyzed male and female GBS and RAD-seq from 182 individuals and performed PCR verification for 176 individuals. We identified signatures of sex chromosomes involving two pairs of chromosomes. We found that sex-chromosome homomorphy results from both turnover and X–Y recombination in the Amolops species, which simultaneously exhibits heterogeneous evolution on homologous and non-homologous sex chromosomes. A low turnover rate of non-homologous sex chromosomes exists in these torrent frogs. The ongoing X–Y recombination in homologous sex chromosomes will act as an indispensable force in preventing sex chromosomes from differentiating.
Collapse
|
11
|
Meisel RP. Ecology and the evolution of sex chromosomes. J Evol Biol 2022; 35:1601-1618. [PMID: 35950939 DOI: 10.1111/jeb.14074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Sex chromosomes are common features of animal genomes, often carrying a sex determination gene responsible for initiating the development of sexually dimorphic traits. The specific chromosome that serves as the sex chromosome differs across taxa as a result of fusions between sex chromosomes and autosomes, along with sex chromosome turnover-autosomes becoming sex chromosomes and sex chromosomes 'reverting' back to autosomes. In addition, the types of genes on sex chromosomes frequently differ from the autosomes, and genes on sex chromosomes often evolve faster than autosomal genes. Sex-specific selection pressures, such as sexual antagonism and sexual selection, are hypothesized to be responsible for sex chromosome turnovers, the unique gene content of sex chromosomes and the accelerated evolutionary rates of genes on sex chromosomes. Sex-specific selection has pronounced effects on sex chromosomes because their sex-biased inheritance can tilt the balance of selection in favour of one sex. Despite the general consensus that sex-specific selection affects sex chromosome evolution, most population genetic models are agnostic as to the specific sources of these sex-specific selection pressures, and many of the details about the effects of sex-specific selection remain unresolved. Here, I review the evidence that ecological factors, including variable selection across heterogeneous environments and conflicts between sexual and natural selection, can be important determinants of sex-specific selection pressures that shape sex chromosome evolution. I also explain how studying the ecology of sex chromosome evolution can help us understand important and unresolved aspects of both sex chromosome evolution and sex-specific selection.
Collapse
Affiliation(s)
- Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
12
|
Jeffries DL, Mee JA, Peichel CL. Identification of a candidate sex determination gene in Culaea inconstans suggests convergent recruitment of an Amh duplicate in two lineages of stickleback. J Evol Biol 2022; 35:1683-1695. [PMID: 35816592 PMCID: PMC10083969 DOI: 10.1111/jeb.14034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/07/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022]
Abstract
Sex chromosomes vary greatly in their age and levels of differentiation across the tree of life. This variation is largely due to the rates of sex chromosome turnover in different lineages; however, we still lack an explanation for why sex chromosomes are so conserved in some lineages (e.g. mammals, birds) but so labile in others (e.g. teleosts, amphibians). To identify general mechanisms driving transitions in sex determination systems or forces which favour their conservation, we first require empirical data on sex chromosome systems from multiple lineages. Stickleback fishes are a valuable model lineage for the study of sex chromosome evolution due to variation in sex chromosome systems between closely-related species. Here, we identify the sex chromosome and a strong candidate for the master sex determination gene in the brook stickleback, Culaea inconstans. Using whole-genome sequencing of wild-caught samples and a lab cross, we identify AmhY, a male specific duplication of the gene Amh, as the candidate master sex determination gene. AmhY resides on Chromosome 20 in C. inconstans and is likely a recent duplication, as both AmhY and the sex-linked region of Chromosome 20 show little sequence divergence. Importantly, this duplicate AmhY represents the second independent duplication and recruitment of Amh as the sex determination gene in stickleback and the eighth example known across teleosts. We discuss this convergence in the context of sex chromosome turnovers and the role that the Amh/AmhrII pathway, which is crucial for sex determination, may play in the evolution of sex chromosomes in teleosts.
Collapse
Affiliation(s)
- Daniel L Jeffries
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Jonathan A Mee
- Department of Biology, Mount Royal University, Calgary, Alberta, Canada
| | - Catherine L Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Miura I, Shams F, Jeffries DL, Katsura Y, Mawaribuchi S, Perrin N, Ito M, Ogata M, Ezaz T. Identification of ancestral sex chromosomes in the frog Glandirana rugosa bearing XX-XY and ZZ-ZW sex-determining systems. Mol Ecol 2022; 31:3859-3870. [PMID: 35691011 DOI: 10.1111/mec.16551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/03/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
Sex chromosomes constantly exist in a dynamic state of evolution: rapid turnover and change of heterogametic sex during homomorphic state, and often stepping out to a heteromorphic state followed by chromosomal decaying. However, the forces driving these different trajectories of sex chromosome evolution are still unclear. The Japanese frog Glandirana rugosa is one taxon well suited to the study on these driving forces. The species has two different heteromorphic sex chromosome systems, XX-XY and ZZ-ZW, which are separated in different geographic populations. Both XX-XY and ZZ-ZW sex chromosomes are represented by chromosome 7 (2n = 26). Phylogenetically, these two systems arose via hybridization between two ancestral lineages of West Japan and East Japan populations, of which sex chromosomes are homomorphic in both sexes and to date have not yet been identified. Identification of the sex chromosomes will give us important insight into the mechanisms of sex chromosome evolution in this species. Here, we used a high-throughput genomic approach to identify the homomorphic XX-XY sex chromosomes in both ancestral populations. Sex-linked DNA markers of West Japan were aligned to chromosome 1, whereas those of East Japan were aligned to chromosome 3. These results reveal that at least two turnovers across three different sex chromosomes 1, 3 and 7 occurred during evolution of this species. This finding raises the possibility that cohabitation of the two different sex chromosomes from ancestral lineages induced turnover to another new one in their hybrids, involving transition of heterogametic sex and evolution from homomorphy to heteromorphy.
Collapse
Affiliation(s)
- Ikuo Miura
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Japan.,Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Foyez Shams
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Daniel Lee Jeffries
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Yukako Katsura
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Shuuji Mawaribuchi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Michihiko Ito
- School of Science, Kitasato University, Sagamihara, Japan
| | - Mitsuaki Ogata
- Preservation and Research Center, City of Yokohama, Yokohama, Japan
| | - Tariq Ezaz
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Japan.,Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
14
|
Gatto KP, Timoshevskaya N, Smith JJ, Lourenço LB. Sequencing of laser captured Z and W chromosomes of the tocantins paradoxical frog (Pseudis tocantins) provides insights on repeatome and chromosomal homology. J Evol Biol 2022; 35:1659-1674. [PMID: 35642451 DOI: 10.1111/jeb.14027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/06/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Pseudis tocantins is the only frog species of the hylid genus Pseudis that possesses highly heteromorphic sex chromosomes. Z and W chromosomes of Ps. tocantins differ in size, morphology, position of the nucleolar organizer region (NOR) and the amount and distribution of heterochromatin. A chromosomal inversion and heterochromatin amplification on the W chromosome were previously inferred to be involved in the evolution of this sex chromosome pair. Despite these findings, knowledge related to the molecular composition of the large heterochromatic band of this W chromosome is restricted to the PcP190 satellite DNA, and no data are available regarding the gene content of either the W or the Z chromosome of Ps. tocantins. Here, we sequenced microdissected Z and W chromosomes of this species to further resolve their molecular composition. Comparative genomic analysis suggests that Ps. tocantins sex chromosomes are likely homologous to chromosomes 4 and 10 of Xenopus tropicalis. Analyses of the repetitive DNA landscape in the Z and W assemblies allowed for the identification of several transposable elements and putative satellite DNA sequences. Finally, some transposable elements from the W assembly were found to be highly diverse and divergent from elements found elsewhere in the genome, suggesting a rapid amplification of these elements on the W chromosome.
Collapse
Affiliation(s)
- Kaleb Pretto Gatto
- Laboratory of Chromosome Studies, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil.,Laboratory of Herpetology and Aquaculture Center, Department of Zoology, Institute of Biosciences, São Paulo State University, Rio Claro, Brazil
| | - Nataliya Timoshevskaya
- Department of Biology, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Jeramiah J Smith
- Department of Biology, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Luciana Bolsoni Lourenço
- Laboratory of Chromosome Studies, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
15
|
Mank JE. Are plant and animal sex chromosomes really all that different? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210218. [PMID: 35306885 PMCID: PMC8935310 DOI: 10.1098/rstb.2021.0218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022] Open
Abstract
Sex chromosomes in plants have often been contrasted with those in animals with the goal of identifying key differences that can be used to elucidate fundamental evolutionary properties. For example, the often homomorphic sex chromosomes in plants have been compared to the highly divergent systems in some animal model systems, such as birds, Drosophila and therian mammals, with many hypotheses offered to explain the apparent dissimilarities, including the younger age of plant sex chromosomes, the lesser prevalence of sexual dimorphism, or the greater extent of haploid selection. Furthermore, many plant sex chromosomes lack complete sex chromosome dosage compensation observed in some animals, including therian mammals, Drosophila, some poeciliids, and Anolis, and plant dosage compensation, where it exists, appears to be incomplete. Even the canonical theoretical models of sex chromosome formation differ somewhat between plants and animals. However, the highly divergent sex chromosomes observed in some animal groups are actually the exception, not the norm, and many animal clades are far more similar to plants in their sex chromosome patterns. This begs the question of how different are plant and animal sex chromosomes, and which of the many unique properties of plants would be expected to affect sex chromosome evolution differently than animals? In fact, plant and animal sex chromosomes exhibit more similarities than differences, and it is not at all clear that they differ in terms of sexual conflict, dosage compensation, or even degree of divergence. Overall, the largest difference between these two groups is the greater potential for haploid selection in plants compared to animals. This may act to accelerate the expansion of the non-recombining region at the same time that it maintains gene function within it. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- Judith E. Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| |
Collapse
|
16
|
Pinto BJ, Keating SE, Nielsen SV, Scantlebury DP, Daza JD, Gamble T. Chromosome-Level Genome Assembly Reveals Dynamic Sex Chromosomes in Neotropical Leaf-Litter Geckos (Sphaerodactylidae: Sphaerodactylus). J Hered 2022; 113:272-287. [PMID: 35363859 PMCID: PMC9270867 DOI: 10.1093/jhered/esac016] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/24/2022] [Indexed: 02/07/2023] Open
Abstract
Sex determination is a critical element of successful vertebrate development, suggesting that sex chromosome systems might be evolutionarily stable across lineages. For example, mammals and birds have maintained conserved sex chromosome systems over long evolutionary time periods. Other vertebrates, in contrast, have undergone frequent sex chromosome transitions, which is even more amazing considering we still know comparatively little across large swaths of their respective phylogenies. One reptile group in particular, the gecko lizards (infraorder Gekkota), shows an exceptional lability with regard to sex chromosome transitions and may possess the majority of transitions within squamates (lizards and snakes). However, detailed genomic and cytogenetic information about sex chromosomes is lacking for most gecko species, leaving large gaps in our understanding of the evolutionary processes at play. To address this, we assembled a chromosome-level genome for a gecko (Sphaerodactylidae: Sphaerodactylus) and used this assembly to search for sex chromosomes among six closely related species using a variety of genomic data, including whole-genome re-sequencing, RADseq, and RNAseq. Previous work has identified XY systems in two species of Sphaerodactylus geckos. We expand upon that work to identify between two and four sex chromosome cis-transitions (XY to a new XY) within the genus. Interestingly, we confirmed two different linkage groups as XY sex chromosome systems that were previously unknown to act as sex chromosomes in tetrapods (syntenic with Gallus chromosome 3 and Gallus chromosomes 18/30/33), further highlighting a unique and fascinating trend that most linkage groups have the potential to act as sex chromosomes in squamates.
Collapse
Affiliation(s)
- Brendan J Pinto
- Address correspondence to B. J. Pinto at the address above, or e-mail:
| | - Shannon E Keating
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Stuart V Nielsen
- Department of Biological Sciences, Louisiana State University in Shreveport, Shreveport, LA 71115, USA,Division of Herpetology, Florida Museum of Natural History, Gainesville, FL 32611, USA
| | | | - Juan D Daza
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77340, USA
| | - Tony Gamble
- Milwaukee Public Museum, Milwaukee, WI 53233, USA,Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA,Bell Museum of Natural History, University of Minnesota, St Paul, MN 55455, USA
| |
Collapse
|
17
|
Majtyka T, Borczyk B, Ogielska M, Stöck M. Morphometry of two cryptic tree frog species at their hybrid zone reveals neither intermediate nor transgressive morphotypes. Ecol Evol 2022; 12:e8527. [PMID: 35127036 PMCID: PMC8794711 DOI: 10.1002/ece3.8527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022] Open
Abstract
Under incomplete reproductive isolation, secondary contact of diverged allopatric lineages may lead to the formation of hybrid zones that allow to study recombinants over several generations as excellent systems of genomic interactions resulting from the evolutionary forces acting on certain genes and phenotypes. Hybrid phenotypes may either exhibit intermediacy or, alternatively, transgressive traits, which exceed the extremes of their parents due to epistasis and segregation of complementary alleles. While transgressive morphotypes have been examined in fish, reptiles, birds, and mammals, studies in amphibians are rare. Here, we associate microsatellite-based genotypes with morphometrics-based morphotypes of two tree frog species of the Hyla arborea group, sampled across a hybrid zone in Poland, to understand whether the genetically differentiated parental species also differ in morphology between each other and their hybrids and whether secondary contact leads to the evolution of intermediate or transgressive morphotypes. Using univariate approaches, explorative multivariate methods (principal component analyses) as well as techniques with prior grouping (discriminant function analyses), we find that morphotypes of both parental species and hybrids differ from each other. Importantly, hybrid morphotypes are neither intermediate nor transgressive but found to be more similar to H. orientalis than to H. arborea.
Collapse
Affiliation(s)
- Tomasz Majtyka
- Department of Evolutionary Biology and Conservation of VertebratesUniversity of WrocławWrocławPoland
| | - Bartosz Borczyk
- Department of Evolutionary Biology and Conservation of VertebratesUniversity of WrocławWrocławPoland
| | - Maria Ogielska
- Department of Evolutionary Biology and Conservation of VertebratesUniversity of WrocławWrocławPoland
| | - Matthias Stöck
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Amphibian Research CenterHiroshima UniversityHigashi‐HiroshimaJapan
| |
Collapse
|
18
|
Nürnberger B, Baird SJE, Čížková D, Bryjová A, Mudd AB, Blaxter ML, Szymura JM. A dense linkage map for a large repetitive genome: discovery of the sex-determining region in hybridizing fire-bellied toads (Bombina bombina and Bombina variegata). G3 (BETHESDA, MD.) 2021; 11:6353606. [PMID: 34849761 PMCID: PMC8664441 DOI: 10.1093/g3journal/jkab286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022]
Abstract
Genomic analysis of hybrid zones offers unique insights into emerging reproductive isolation and the dynamics of introgression. Because hybrid genomes consist of blocks inherited from one or the other parental taxon, linkage information is essential. In most cases, the spectrum of local ancestry tracts can be efficiently uncovered from dense linkage maps. Here, we report the development of such a map for the hybridizing toads, Bombina bombina and Bombina variegata (Anura: Bombinatoridae). Faced with the challenge of a large (7–10 Gb), repetitive genome, we set out to identify a large number of Mendelian markers in the nonrepetitive portion of the genome that report B. bombina vs B. variegata ancestry with appropriately quantified statistical support. Bait sequences for targeted enrichment were selected from a draft genome assembly, after filtering highly repetitive sequences. We developed a novel approach to infer the most likely diplotype per sample and locus from the raw read mapping data, which is robust to over-merging and obviates arbitrary filtering thresholds. Validation of the resulting map with 4755 markers underscored the large-scale synteny between Bombina and Xenopus tropicalis. By assessing the sex of late-stage F2 tadpoles from histological sections, we identified the sex-determining region in the Bombina genome to 7 cM on LG5, which is homologous to X. tropicalis chromosome 5, and inferred male heterogamety. Interestingly, chromosome 5 has been repeatedly recruited as a sex chromosome in anurans with XY sex determination.
Collapse
Affiliation(s)
- Beate Nürnberger
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, 603 65 Brno, Czech Republic
| | - Stuart J E Baird
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, 603 65 Brno, Czech Republic
| | - Dagmar Čížková
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, 603 65 Brno, Czech Republic
| | - Anna Bryjová
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, 603 65 Brno, Czech Republic
| | - Austin B Mudd
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, 94720 CA, USA
| | - Mark L Blaxter
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Jacek M Szymura
- Department of Comparative Anatomy, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
19
|
Cayuela H, Lemaître JF, Léna JP, Ronget V, Martínez-Solano I, Muths E, Pilliod DS, Schmidt BR, Sánchez-Montes G, Gutiérrez-Rodríguez J, Pyke G, Grossenbacher K, Lenzi O, Bosch J, Beard KH, Woolbright LL, Lambert BA, Green DM, Jreidini N, Garwood JM, Fisher RN, Matthews K, Dudgeon D, Lau A, Speybroeck J, Homan R, Jehle R, Başkale E, Mori E, Arntzen JW, Joly P, Stiles RM, Lannoo MJ, Maerz JC, Lowe WH, Valenzuela-Sánchez A, Christiansen DG, Angelini C, Thirion JM, Merilä J, Colli GR, Vasconcellos MM, Boas TCV, Arantes ÍDC, Levionnois P, Reinke BA, Vieira C, Marais GAB, Gaillard JM, Miller DAW. Sex-related differences in aging rate are associated with sex chromosome system in amphibians. Evolution 2021; 76:346-356. [PMID: 34878663 PMCID: PMC9304222 DOI: 10.1111/evo.14410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/03/2022]
Abstract
Sex‐related differences in mortality are widespread in the animal kingdom. Although studies have shown that sex determination systems might drive lifespan evolution, sex chromosome influence on aging rates have not been investigated so far, likely due to an apparent lack of demographic data from clades including both XY (with heterogametic males) and ZW (heterogametic females) systems. Taking advantage of a unique collection of capture–recapture datasets in amphibians, a vertebrate group where XY and ZW systems have repeatedly evolved over the past 200 million years, we examined whether sex heterogamy can predict sex differences in aging rates and lifespans. We showed that the strength and direction of sex differences in aging rates (and not lifespan) differ between XY and ZW systems. Sex‐specific variation in aging rates was moderate within each system, but aging rates tended to be consistently higher in the heterogametic sex. This led to small but detectable effects of sex chromosome system on sex differences in aging rates in our models. Although preliminary, our results suggest that exposed recessive deleterious mutations on the X/Z chromosome (the “unguarded X/Z effect”) or repeat‐rich Y/W chromosome (the “toxic Y/W effect”) could accelerate aging in the heterogametic sex in some vertebrate clades.
Collapse
Affiliation(s)
- Hugo Cayuela
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland
| | - Jean-François Lemaître
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, F-769622, France
| | - Jean-Paul Léna
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, F-69622, France
| | - Victor Ronget
- Unité Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Diderot, Paris, F-75016, France
| | - Iñigo Martínez-Solano
- Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutiérrez Abascal, 2, Madrid, 28006, Spain
| | - Erin Muths
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, 80526, USA
| | - David S Pilliod
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 Lusk Street, Boise, ID, 83706, USA
| | - Benedikt R Schmidt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, 8057, Switzerland.,Info fauna karch, Neuchâtel, 2000, Switzerland
| | - Gregorio Sánchez-Montes
- Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutiérrez Abascal, 2, Madrid, 28006, Spain
| | - Jorge Gutiérrez-Rodríguez
- Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutiérrez Abascal, 2, Madrid, 28006, Spain.,Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Graham Pyke
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.,Department of Biological Sciences, Macquarie University, Ryde, NSW, 2109, Australia
| | - Kurt Grossenbacher
- Abteilung Wirbeltiere, Naturhistorisches Museum, Bernastrasse 15, Bern, 3005, Switzerland
| | - Omar Lenzi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, 8057, Switzerland
| | - Jaime Bosch
- Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutiérrez Abascal, 2, Madrid, 28006, Spain.,UMIB-Research Unit of Biodiversity (CSIC, UO, PA), Universidad de Oviedo, Campus de Mieres, Mieres, 33600, Spain.,Centro de Investigación, Seguimiento y Evaluación, Sierra de Guadarrama National Park, Cta. M-604, Km 27.6, Rascafría, 28740, Spain
| | - Karen H Beard
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, Utah, 84322, USA
| | - Lawrence L Woolbright
- Biology Department, Siena College, 515 Loudon Road, Loudonville, New York, 12211, USA
| | - Brad A Lambert
- Colorado Natural Heritage Program, Colorado State University, Fort Collins, Colorado, 80523-1475, USA
| | - David M Green
- Redpath Museum, McGill University, Montreal, QC, H3A 0C4, Canada
| | | | - Justin M Garwood
- California Department of Fish and Wildlife, 5341 Ericson Way, Arcata, CA, 95521, USA
| | - Robert N Fisher
- Western Ecological Research Center, U.S. Geological Survey, San Diego, CA, 92101, USA
| | - Kathleen Matthews
- USDA Forest Service, Pacific Southwest Research Station, Albany, California, USA
| | - David Dudgeon
- Division of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR
| | - Anthony Lau
- Science Unit, Lingnan University, Hong Kong, China
| | - Jeroen Speybroeck
- Research Institute for Nature and Forest, Havenlaan 88 bus 73, Brussel, 1000, Belgium
| | - Rebecca Homan
- Biology Department, Denison University, Granville, Ohio, USA
| | - Robert Jehle
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Eyup Başkale
- Department of Biology, Faculty of Science and Arts, Pamukkale University, Denizli, Turkey
| | - Emiliano Mori
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca sugli Ecosistemi Terrestri, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Italy
| | - Jan W Arntzen
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Pierre Joly
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, F-69622, France
| | - Rochelle M Stiles
- San Francisco Zoological Society, 1 Zoo Road, San Francisco, California, 94132, USA
| | - Michael J Lannoo
- Indiana University School of Medicine-TH, 620 Chestnut Street, Terre Haute, Indiana, 47809, USA
| | - John C Maerz
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Winsor H Lowe
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812, USA
| | - Andrés Valenzuela-Sánchez
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile.,ONG Ranita de Darwin, Valdivia, 5112144, Chile
| | - Ditte G Christiansen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, 8057, Switzerland
| | - Claudio Angelini
- Salamandrina Sezzese Search Society, via G. Marconi 30, Sezze, 04018, Italy
| | - Jean-Marc Thirion
- Objectifs Biodiversité, 22 rue du Dr. Gilbert, Pont-l'Abbé-d'Arnoult, 17250, France
| | - Juha Merilä
- Division of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR.,Ecological Genetics Research Unit, Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00014, Finland
| | - Guarino R Colli
- Departamento de Zoologia, Universidade de Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Mariana M Vasconcellos
- Department of Biology, City College of New York, The City University of New York, New York, NY, 10031, USA
| | - Taissa C V Boas
- Departamento de Zoologia, Universidade de Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Ísis da C Arantes
- Department of Biology, University of Mississippi, Oxford, MS, 38677, USA
| | - Pauline Levionnois
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, F-69622, France
| | - Beth A Reinke
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL, 60625, USA
| | - Cristina Vieira
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, F-769622, France
| | - Gabriel A B Marais
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, F-769622, France.,LEAF- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Portugal
| | - Jean-Michel Gaillard
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, F-769622, France
| | - David A W Miller
- Department of Ecosystem Sciences and Management, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
20
|
Kratochvíl L, Stöck M, Rovatsos M, Bullejos M, Herpin A, Jeffries DL, Peichel CL, Perrin N, Valenzuela N, Pokorná MJ. Expanding the classical paradigm: what we have learnt from vertebrates about sex chromosome evolution. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200097. [PMID: 34304593 PMCID: PMC8310716 DOI: 10.1098/rstb.2020.0097] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, the field of sex chromosome evolution has been dominated by the canonical unidirectional scenario, first developed by Muller in 1918. This model postulates that sex chromosomes emerge from autosomes by acquiring a sex-determining locus. Recombination reduction then expands outwards from this locus, to maintain its linkage with sexually antagonistic/advantageous alleles, resulting in Y or W degeneration and potentially culminating in their disappearance. Based mostly on empirical vertebrate research, we challenge and expand each conceptual step of this canonical model and present observations by numerous experts in two parts of a theme issue of Phil. Trans. R. Soc. B. We suggest that greater theoretical and empirical insights into the events at the origins of sex-determining genes (rewiring of the gonadal differentiation networks), and a better understanding of the evolutionary forces responsible for recombination suppression are required. Among others, crucial questions are: Why do sex chromosome differentiation rates and the evolution of gene dose regulatory mechanisms between male versus female heterogametic systems not follow earlier theory? Why do several lineages not have sex chromosomes? And: What are the consequences of the presence of (differentiated) sex chromosomes for individual fitness, evolvability, hybridization and diversification? We conclude that the classical scenario appears too reductionistic. Instead of being unidirectional, we show that sex chromosome evolution is more complex than previously anticipated and principally forms networks, interconnected to potentially endless outcomes with restarts, deletions and additions of new genomic material. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Mónica Bullejos
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Las Lagunillas Campus S/N, 23071 Jaén, Spain
| | - Amaury Herpin
- INRAE, LPGP, 35000 Rennes, France
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Daniel L. Jeffries
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Catherine L. Peichel
- Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Martina Johnson Pokorná
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, Czech Republic
| |
Collapse
|
21
|
Sember A, Nguyen P, Perez MF, Altmanová M, Ráb P, Cioffi MDB. Multiple sex chromosomes in teleost fishes from a cytogenetic perspective: state of the art and future challenges. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200098. [PMID: 34304595 PMCID: PMC8310710 DOI: 10.1098/rstb.2020.0098] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
Despite decades of cytogenetic and genomic research of dynamic sex chromosome evolution in teleost fishes, multiple sex chromosomes have been largely neglected. In this review, we compiled available data on teleost multiple sex chromosomes, identified major trends in their evolution and suggest further trajectories in their investigation. In a compiled dataset of 440 verified records of fish sex chromosomes, we counted 75 multiple sex chromosome systems with 60 estimated independent origins. We showed that male-heterogametic systems created by Y-autosome fusion predominate and that multiple sex chromosomes are over-represented in the order Perciformes. We documented a striking difference in patterns of differentiation of sex chromosomes between male and female heterogamety and hypothesize that faster W sex chromosome differentiation may constrain sex chromosome turnover in female-heterogametic systems. We also found no significant association between the mechanism of multiple sex chromosome formation and percentage of uni-armed chromosomes in teleost karyotypes. Last but not least, we hypothesized that interaction between fish populations, which differ in their sex chromosomes, can drive the evolution of multiple sex chromosomes in fishes. This underlines the importance of broader inter-population sampling in studies of fish sex chromosomes. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Petr Nguyen
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Manolo F. Perez
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235 cep, 13565-905, São Carlos, Brazil
| | - Marie Altmanová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague, Czech Republic
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235 cep, 13565-905, São Carlos, Brazil
| |
Collapse
|
22
|
Perrin N. Sex-chromosome evolution in frogs: what role for sex-antagonistic genes? Philos Trans R Soc Lond B Biol Sci 2021; 376:20200094. [PMID: 34247502 PMCID: PMC8273499 DOI: 10.1098/rstb.2020.0094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Sex-antagonistic (SA) genes are widely considered to be crucial players in the evolution of sex chromosomes, being instrumental in the arrest of recombination and degeneration of Y chromosomes, as well as important drivers of sex-chromosome turnovers. To test such claims, one needs to focus on systems at the early stages of differentiation, ideally with a high turnover rate. Here, I review recent work on two families of amphibians, Ranidae (true frogs) and Hylidae (tree frogs), to show that results gathered so far from these groups provide no support for a significant role of SA genes in the evolutionary dynamics of their sex chromosomes. The findings support instead a central role for neutral processes and deleterious mutations. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
23
|
Stöck M, Kratochvíl L, Kuhl H, Rovatsos M, Evans BJ, Suh A, Valenzuela N, Veyrunes F, Zhou Q, Gamble T, Capel B, Schartl M, Guiguen Y. A brief review of vertebrate sex evolution with a pledge for integrative research: towards ' sexomics'. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200426. [PMID: 34247497 PMCID: PMC8293304 DOI: 10.1098/rstb.2020.0426] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Triggers and biological processes controlling male or female gonadal differentiation vary in vertebrates, with sex determination (SD) governed by environmental factors or simple to complex genetic mechanisms that evolved repeatedly and independently in various groups. Here, we review sex evolution across major clades of vertebrates with information on SD, sexual development and reproductive modes. We offer an up-to-date review of divergence times, species diversity, genomic resources, genome size, occurrence and nature of polyploids, SD systems, sex chromosomes, SD genes, dosage compensation and sex-biased gene expression. Advances in sequencing technologies now enable us to study the evolution of SD at broader evolutionary scales, and we now hope to pursue a sexomics integrative research initiative across vertebrates. The vertebrate sexome comprises interdisciplinary and integrated information on sexual differentiation, development and reproduction at all biological levels, from genomes, transcriptomes and proteomes, to the organs involved in sexual and sex-specific processes, including gonads, secondary sex organs and those with transcriptional sex-bias. The sexome also includes ontogenetic and behavioural aspects of sexual differentiation, including malfunction and impairment of SD, sexual differentiation and fertility. Starting from data generated by high-throughput approaches, we encourage others to contribute expertise to building understanding of the sexomes of many key vertebrate species. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries—IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czech Republic
| | - Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries—IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
| | - Michail Rovatsos
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Ben J. Evans
- Department of Biology, McMaster University, Life Sciences Building Room 328, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
- Department of Organismal Biology—Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Frédéric Veyrunes
- Institut des Sciences de l'Evolution de Montpellier, ISEM UMR 5554 (CNRS/Université de Montpellier/IRD/EPHE), Montpellier, France
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Department of Neuroscience and Developmental Biology, University of Vienna, A-1090 Vienna, Austria
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, 97074 Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | | |
Collapse
|
24
|
Cordaux R, Chebbi MA, Giraud I, Pleydell DRJ, Peccoud J. Characterization of a Sex-Determining Region and Its Genomic Context via Statistical Estimates of Haplotype Frequencies in Daughters and Sons Sequenced in Pools. Genome Biol Evol 2021; 13:evab121. [PMID: 34048551 PMCID: PMC8350356 DOI: 10.1093/gbe/evab121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 11/14/2022] Open
Abstract
Sex chromosomes are generally derived from a pair of autosomes that have acquired a locus controlling sex. Sex chromosomes may evolve reduced recombination around this locus and undergo a long process of molecular divergence. At that point, the original loci controlling sex may be difficult to pinpoint. This difficulty has affected many model species from mammals to birds to flies, which present highly diverged sex chromosomes. Identifying sex-controlling loci is easier in species with molecularly similar sex chromosomes. Here we aimed at pinpointing the sex-determining region (SDR) of Armadillidium vulgare, a terrestrial isopod with female heterogamety (ZW females and ZZ males) and whose sex chromosomes appear to show low genetic divergence. To locate the SDR, we assessed single-nucleotide polymorphism (SNP) allele frequencies in F1 daughters and sons sequenced in pools (pool-seq) in several families. We developed a Bayesian method that uses the SNP genotypes of individually sequenced parents and pool-seq data from F1 siblings to estimate the genetic distance between a given genomic region (contig) and the SDR. This allowed us to assign more than 43 Mb of contigs to sex chromosomes, and to demonstrate extensive recombination and very low divergence between these chromosomes. By taking advantage of multiple F1 families, we delineated a very short genomic region (∼65 kb) that presented no evidence of recombination with the SDR. In this short genomic region, the comparison of sequencing depths between sexes highlighted female-specific genes that have undergone recent duplication, and which may be involved in sex determination in A. vulgare.
Collapse
Affiliation(s)
- Richard Cordaux
- Laboratoire Écologie et Biologie des Interactions, Équipe Écologie Évolution Symbiose, UMR CNRS 7267, Université de Poitiers, France
| | - Mohamed Amine Chebbi
- Laboratoire Écologie et Biologie des Interactions, Équipe Écologie Évolution Symbiose, UMR CNRS 7267, Université de Poitiers, France
| | - Isabelle Giraud
- Laboratoire Écologie et Biologie des Interactions, Équipe Écologie Évolution Symbiose, UMR CNRS 7267, Université de Poitiers, France
| | - David Richard John Pleydell
- UMR Animal, Santé, Territoires, Risques et Écosystèmes, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, France
| | - Jean Peccoud
- Laboratoire Écologie et Biologie des Interactions, Équipe Écologie Évolution Symbiose, UMR CNRS 7267, Université de Poitiers, France
| |
Collapse
|
25
|
Kuhl H, Guiguen Y, Höhne C, Kreuz E, Du K, Klopp C, Lopez-Roques C, Yebra-Pimentel ES, Ciorpac M, Gessner J, Holostenco D, Kleiner W, Kohlmann K, Lamatsch DK, Prokopov D, Bestin A, Bonpunt E, Debeuf B, Haffray P, Morvezen R, Patrice P, Suciu R, Dirks R, Wuertz S, Kloas W, Schartl M, Stöck M. A 180 Myr-old female-specific genome region in sturgeon reveals the oldest known vertebrate sex determining system with undifferentiated sex chromosomes. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200089. [PMID: 34247507 PMCID: PMC8273502 DOI: 10.1098/rstb.2020.0089] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Several hypotheses explain the prevalence of undifferentiated sex chromosomes in poikilothermic vertebrates. Turnovers change the master sex determination gene, the sex chromosome or the sex determination system (e.g. XY to WZ). Jumping master genes stay main triggers but translocate to other chromosomes. Occasional recombination (e.g. in sex-reversed females) prevents sex chromosome degeneration. Recent research has uncovered conserved heteromorphic or even homomorphic sex chromosomes in several clades of non-avian and non-mammalian vertebrates. Sex determination in sturgeons (Acipenseridae) has been a long-standing basic biological question, linked to economical demands by the caviar-producing aquaculture. Here, we report the discovery of a sex-specific sequence from sterlet (Acipenser ruthenus). Using chromosome-scale assemblies and pool-sequencing, we first identified an approximately 16 kb female-specific region. We developed a PCR-genotyping test, yielding female-specific products in six species, spanning the entire phylogeny with the most divergent extant lineages (A. sturio, A. oxyrinchus versus A. ruthenus, Huso huso), stemming from an ancient tetraploidization. Similar results were obtained in two octoploid species (A. gueldenstaedtii, A. baerii). Conservation of a female-specific sequence for a long period, representing 180 Myr of sturgeon evolution, and across at least one polyploidization event, raises many interesting biological questions. We discuss a conserved undifferentiated sex chromosome system with a ZZ/ZW-mode of sex determination and potential alternatives. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)’.
Collapse
Affiliation(s)
- Heiner Kuhl
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 and 310, 12587 Berlin, Germany
| | | | - Christin Höhne
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 and 310, 12587 Berlin, Germany
| | - Eva Kreuz
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 and 310, 12587 Berlin, Germany
| | - Kang Du
- Developmental Biochemistry, Biocenter, University of Würzburg, 97074 Würzburg, Germany.,The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Christophe Klopp
- SIGENAE, Plate-forme Bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRAe, 31326 Castanet-Tolosan, France
| | | | | | - Mitica Ciorpac
- Danube Delta National Institute for Research and Development, Tulcea 820112, Romania.,Genetic Improvement Laboratory, Research Station for Cattle Breeding Dancu - Iasi (SCDCB Dancu), Academy of Agricultural and Forestry Sciences 'Gheorghe Ionescu-Sisesti', Iasi-Ungheni Street, No. 9, Holboca, Iași county 707252, Romania
| | - Jörn Gessner
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 and 310, 12587 Berlin, Germany
| | - Daniela Holostenco
- Danube Delta National Institute for Research and Development, Tulcea 820112, Romania
| | - Wibke Kleiner
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 and 310, 12587 Berlin, Germany
| | - Klaus Kohlmann
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 and 310, 12587 Berlin, Germany
| | - Dunja K Lamatsch
- Research Department for Limnology, University of Innsbruck, A-5310 Mondsee, Austria
| | - Dmitry Prokopov
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Anastasia Bestin
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042 Rennes cedex, France
| | | | - Bastien Debeuf
- SCEA Sturgeon, 29 rue du Carillon, 17240 Saint Fort sur Gironde, France
| | - Pierrick Haffray
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042 Rennes cedex, France
| | - Romain Morvezen
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042 Rennes cedex, France
| | - Pierre Patrice
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042 Rennes cedex, France
| | - Radu Suciu
- Danube Delta National Institute for Research and Development, Tulcea 820112, Romania
| | - Ron Dirks
- Future Genomics Technologies B.V., Sylviusweg 74, 2333 BD, Leiden, The Netherlands
| | - Sven Wuertz
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 and 310, 12587 Berlin, Germany
| | - Werner Kloas
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 and 310, 12587 Berlin, Germany
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, 97074 Würzburg, Germany.,The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Matthias Stöck
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 and 310, 12587 Berlin, Germany
| |
Collapse
|
26
|
Lisachov A, Andreyushkova D, Davletshina G, Prokopov D, Romanenko S, Galkina S, Saifitdinova A, Simonov E, Borodin P, Trifonov V. Amplified Fragments of an Autosome-Borne Gene Constitute a Significant Component of the W Sex Chromosome of Eremias velox (Reptilia, Lacertidae). Genes (Basel) 2021; 12:779. [PMID: 34065205 PMCID: PMC8160951 DOI: 10.3390/genes12050779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/30/2023] Open
Abstract
Heteromorphic W and Y sex chromosomes often experience gene loss and heterochromatinization, which is frequently viewed as their "degeneration". However, the evolutionary trajectories of the heterochromosomes are in fact more complex since they may not only lose but also acquire new sequences. Previously, we found that the heterochromatic W chromosome of a lizard Eremias velox (Lacertidae) is decondensed and thus transcriptionally active during the lampbrush stage. To determine possible sources of this transcription, we sequenced DNA from a microdissected W chromosome sample and a total female DNA sample and analyzed the results of reference-based and de novo assembly. We found a new repetitive sequence, consisting of fragments of an autosomal protein-coding gene ATF7IP2, several SINE elements, and sequences of unknown origin. This repetitive element is distributed across the whole length of the W chromosome, except the centromeric region. Since it retained only 3 out of 10 original ATF7IP2 exons, it remains unclear whether it is able to produce a protein product. Subsequent studies are required to test the presence of this element in other species of Lacertidae and possible functionality. Our results provide further evidence for the view of W and Y chromosomes as not just "degraded" copies of Z and X chromosomes but independent genomic segments in which novel genetic elements may arise.
Collapse
Affiliation(s)
- Artem Lisachov
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, Lenina str. 23, 625003 Tyumen, Russia;
- Institute of Cytology and Genetics SB RAS, Acad. Lavrentiev Ave. 10, 630090 Novosibirsk, Russia; (G.D.); (P.B.)
| | - Daria Andreyushkova
- Institute of Molecular and Cellular Biology SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (D.A.); (D.P.); (S.R.); (V.T.)
| | - Guzel Davletshina
- Institute of Cytology and Genetics SB RAS, Acad. Lavrentiev Ave. 10, 630090 Novosibirsk, Russia; (G.D.); (P.B.)
- Institute of Molecular and Cellular Biology SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (D.A.); (D.P.); (S.R.); (V.T.)
| | - Dmitry Prokopov
- Institute of Molecular and Cellular Biology SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (D.A.); (D.P.); (S.R.); (V.T.)
| | - Svetlana Romanenko
- Institute of Molecular and Cellular Biology SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (D.A.); (D.P.); (S.R.); (V.T.)
| | - Svetlana Galkina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya Emb. 7–9, 199034 Saint Petersburg, Russia;
| | - Alsu Saifitdinova
- Department of Human and Animal Anatomy and Physiology, Herzen State Pedagogical University of Russia, Moyka Emb. 48, 191186 Saint Petersburg, Russia;
| | - Evgeniy Simonov
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, Lenina str. 23, 625003 Tyumen, Russia;
| | - Pavel Borodin
- Institute of Cytology and Genetics SB RAS, Acad. Lavrentiev Ave. 10, 630090 Novosibirsk, Russia; (G.D.); (P.B.)
- Novosibirsk State University, Pirogova str. 3, 630090 Novosibirsk, Russia
| | - Vladimir Trifonov
- Institute of Molecular and Cellular Biology SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (D.A.); (D.P.); (S.R.); (V.T.)
- Novosibirsk State University, Pirogova str. 3, 630090 Novosibirsk, Russia
| |
Collapse
|
27
|
Ma WJ, Veltsos P. The Diversity and Evolution of Sex Chromosomes in Frogs. Genes (Basel) 2021; 12:483. [PMID: 33810524 PMCID: PMC8067296 DOI: 10.3390/genes12040483] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022] Open
Abstract
Frogs are ideal organisms for studying sex chromosome evolution because of their diversity in sex chromosome differentiation and sex-determination systems. We review 222 anuran frogs, spanning ~220 Myr of divergence, with characterized sex chromosomes, and discuss their evolution, phylogenetic distribution and transitions between homomorphic and heteromorphic states, as well as between sex-determination systems. Most (~75%) anurans have homomorphic sex chromosomes, with XY systems being three times more common than ZW systems. Most remaining anurans (~25%) have heteromorphic sex chromosomes, with XY and ZW systems almost equally represented. There are Y-autosome fusions in 11 species, and no W-/Z-/X-autosome fusions are known. The phylogeny represents at least 19 transitions between sex-determination systems and at least 16 cases of independent evolution of heteromorphic sex chromosomes from homomorphy, the likely ancestral state. Five lineages mostly have heteromorphic sex chromosomes, which might have evolved due to demographic and sexual selection attributes of those lineages. Males do not recombine over most of their genome, regardless of which is the heterogametic sex. Nevertheless, telomere-restricted recombination between ZW chromosomes has evolved at least once. More comparative genomic studies are needed to understand the evolutionary trajectories of sex chromosomes among frog lineages, especially in the ZW systems.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Paris Veltsos
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA;
| |
Collapse
|
28
|
The Amazonian Red Side-Necked Turtle Rhinemys rufipes (Spix, 1824) (Testudines, Chelidae) Has a GSD Sex-Determining Mechanism with an Ancient XY Sex Microchromosome System. Cells 2020; 9:cells9092088. [PMID: 32932633 PMCID: PMC7563702 DOI: 10.3390/cells9092088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
The Amazonian red side-necked turtle Rhynemis rufipes is an endemic Amazonian Chelidae species that occurs in small streams throughout Colombia and Brazil river basins. Little is known about various biological aspects of this species, including its sex determination strategies. Among chelids, the greatest karyotype diversity is found in the Neotropical species, with several 2n configurations, including cases of triploidy. Here, we investigate the karyotype of Rhinemys rufipes by applying combined conventional and molecular cytogenetic procedures. This allowed us to discover a genetic sex-determining mechanism that shares an ancestral micro XY sex chromosome system. This ancient micro XY system recruited distinct repeat motifs before it diverged from several South America and Australasian species. We propose that such a system dates back to the earliest lineages of the chelid species before the split of South America and Australasian lineages.
Collapse
|
29
|
Martinez-Ruiz C, Pracana R, Stolle E, Paris CI, Nichols RA, Wurm Y. Genomic architecture and evolutionary antagonism drive allelic expression bias in the social supergene of red fire ants. eLife 2020; 9:55862. [PMID: 32773032 PMCID: PMC7476760 DOI: 10.7554/elife.55862] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022] Open
Abstract
Supergene regions maintain alleles of multiple genes in tight linkage through suppressed recombination. Despite their importance in determining complex phenotypes, our empirical understanding of early supergene evolution is limited. Here we focus on the young ‘social’ supergene of fire ants, a powerful system for disentangling the effects of evolutionary antagonism and suppressed recombination. We hypothesize that gene degeneration and social antagonism shaped the evolution of the fire ant supergene, resulting in distinct patterns of gene expression. We test these ideas by identifying allelic differences between supergene variants, characterizing allelic expression across populations, castes and body parts, and contrasting allelic expression biases with differences in expression between social forms. We find strong signatures of gene degeneration and gene-specific dosage compensation. On this background, a small portion of the genes has the signature of adaptive responses to evolutionary antagonism between social forms. Red fire ants (Solenopsis invicta) are native to South America, but the species has spread to North America, Australia and New Zealand where it can be an invasive pest. A reason for this species’ invasiveness types of colonies : one with a single egg-laying queen and another with several queens. However, it is not possible to simply add more queens to a colony with one queen. Instead, the number of queens in a colony is controlled genetically, by a chromosome known as the ‘social chromosome’. Like many other animals, red fire ants are diploid: their cells have two copies of each chromosome, which can carry two different versions of each gene. The social chromosome is no different, and it comes in two variants, SB and Sb. Each ant can therefore have either two SB chromosomes, leading to a colony with a single queen; or one SB chromosome and one Sb chromosome, leading to a colony with multiple queens. Ants with two copies of the Sb variant die when they are young, so the Sb version is inherited in a similar way to how the Y chromosome is passed on in humans. However, the social chromosome in red fire ants appeared less than one million years ago, making it much younger than the human Y chromosome, which is 180 million years old. This makes the social chromosome a good candidate for examining the early evolution of special chromosome variants that are only inherited. How differences between the SB and the Sb chromosomes are evolving is an open question, however. Perhaps each version of the social chromosome has been optimised through natural selection to one colony type. Another suggestion is that the Sb chromosome has degenerated over time because its genes cannot be ‘reshuffled’ as they would be on normal chromosomes. Martinez-Ruiz et al. compared genetic variants on the SB and Sb chromosomes, along with their expression in different types of ant colonies. The analysis showed that the Sb variant is in fact breaking down because of the lack of gene shuffling. This loss is compensated by intact copies of the same genes found on the SB variant, which explains why ants with the Sb variant can only survive if they also carry the SB version. Only a handful of genes on the social chromosomes appear to have been optimised by natural selection. Therefore Martinez-Ruiz et al. concluded the differences between the two chromosomes that lead to different colony types are collateral effects of Sb’s inability to reshuffle its genes. This work reveals how a special chromosome similar to the Y chromosome in humans evolved. It also shows how multiple complex evolutionary forces can shape a species’ genetic makeup and social forms.
Collapse
Affiliation(s)
- Carlos Martinez-Ruiz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Rodrigo Pracana
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Eckart Stolle
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Carolina Ivon Paris
- Departamento Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires, Argentina
| | - Richard A Nichols
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Yannick Wurm
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.,Alan Turing Institute, London, United Kingdom
| |
Collapse
|
30
|
Keating SE, Griffing AH, Nielsen SV, Scantlebury DP, Gamble T. Conserved ZZ/ZW sex chromosomes in Caribbean croaking geckos (
Aristelliger
: Sphaerodactylidae). J Evol Biol 2020; 33:1316-1326. [DOI: 10.1111/jeb.13682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 01/04/2023]
Affiliation(s)
| | - Aaron H. Griffing
- Department of Biological Sciences Marquette University Milwaukee WI USA
| | - Stuart V. Nielsen
- Department of Biological Sciences Marquette University Milwaukee WI USA
- Florida Museum of Natural HistoryUniversity of Florida Gainesville FL USA
| | | | - Tony Gamble
- Department of Biological Sciences Marquette University Milwaukee WI USA
- Milwaukee Public Museum Milwaukee WI USA
- Bell Museum of Natural HistoryUniversity of Minnesota Saint Paul MN USA
| |
Collapse
|
31
|
Meisel RP. Evolution of Sex Determination and Sex Chromosomes: A Novel Alternative Paradigm. Bioessays 2020; 42:e1900212. [DOI: 10.1002/bies.201900212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/11/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Richard P. Meisel
- Department of Biology and Biochemistry University of Houston 3455 Cullen Blvd Houston TX 77204‐5001 USA
| |
Collapse
|
32
|
Darolti I, Wright AE, Mank JE. Guppy Y Chromosome Integrity Maintained by Incomplete Recombination Suppression. Genome Biol Evol 2020; 12:965-977. [PMID: 32426836 PMCID: PMC7337182 DOI: 10.1093/gbe/evaa099] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
The loss of recombination triggers divergence between the sex chromosomes and promotes degeneration of the sex-limited chromosome. Several livebearers within the genus Poecilia share a male-heterogametic sex chromosome system that is roughly 20 Myr old, with extreme variation in the degree of Y chromosome divergence. In Poecilia picta, the Y is highly degenerate and associated with complete X chromosome dosage compensation. In contrast, although recombination is restricted across almost the entire length of the sex chromosomes in Poecilia reticulata and Poecilia wingei, divergence between the X chromosome and the Y chromosome is very low. This clade therefore offers a unique opportunity to study the forces that accelerate or hinder sex chromosome divergence. We used RNA-seq data from multiple families of both P. reticulata and P. wingei, the species with low levels of sex chromosome divergence, to differentiate X and Y coding sequences based on sex-limited SNP inheritance. Phylogenetic tree analyses reveal that occasional recombination has persisted between the sex chromosomes for much of their length, as X- and Y-linked sequences cluster by species instead of by gametolog. This incomplete recombination suppression maintains the extensive homomorphy observed in these systems. In addition, we see differences between the previously identified strata in the phylogenetic clustering of X-Y orthologs, with those that cluster by chromosome located in the older stratum, the region previously associated with the sex-determining locus. However, recombination arrest appears to have expanded throughout the sex chromosomes more gradually instead of through a stepwise process associated with inversions.
Collapse
Affiliation(s)
- Iulia Darolti
- Biodiversity Research Centre and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alison E Wright
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Judith E Mank
- Biodiversity Research Centre and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
33
|
Furman BLS, Metzger DCH, Darolti I, Wright AE, Sandkam BA, Almeida P, Shu JJ, Mank JE. Sex Chromosome Evolution: So Many Exceptions to the Rules. Genome Biol Evol 2020; 12:750-763. [PMID: 32315410 PMCID: PMC7268786 DOI: 10.1093/gbe/evaa081] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 01/10/2023] Open
Abstract
Genomic analysis of many nonmodel species has uncovered an incredible diversity of sex chromosome systems, making it possible to empirically test the rich body of evolutionary theory that describes each stage of sex chromosome evolution. Classic theory predicts that sex chromosomes originate from a pair of homologous autosomes and recombination between them is suppressed via inversions to resolve sexual conflict. The resulting degradation of the Y chromosome gene content creates the need for dosage compensation in the heterogametic sex. Sex chromosome theory also implies a linear process, starting from sex chromosome origin and progressing to heteromorphism. Despite many convergent genomic patterns exhibited by independently evolved sex chromosome systems, and many case studies supporting these theoretical predictions, emerging data provide numerous interesting exceptions to these long-standing theories, and suggest that the remarkable diversity of sex chromosomes is matched by a similar diversity in their evolution. For example, it is clear that sex chromosome pairs are not always derived from homologous autosomes. In addition, both the cause and the mechanism of recombination suppression between sex chromosome pairs remain unclear, and it may be that the spread of recombination suppression is a more gradual process than previously thought. It is also clear that dosage compensation can be achieved in many ways, and displays a range of efficacy in different systems. Finally, the remarkable turnover of sex chromosomes in many systems, as well as variation in the rate of sex chromosome divergence, suggest that assumptions about the inevitable linearity of sex chromosome evolution are not always empirically supported, and the drivers of the birth-death cycle of sex chromosome evolution remain to be elucidated. Here, we concentrate on how the diversity in sex chromosomes across taxa highlights an equal diversity in each stage of sex chromosome evolution.
Collapse
Affiliation(s)
- Benjamin L S Furman
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David C H Metzger
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Iulia Darolti
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alison E Wright
- Department of Animal and Plant Sciences, University of Sheffield, United Kingdom
| | - Benjamin A Sandkam
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pedro Almeida
- Department of Genetics, Evolution and Environment, University College London, United Kingdom
| | - Jacelyn J Shu
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Judith E Mank
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Genetics, Evolution and Environment, University College London, United Kingdom
| |
Collapse
|
34
|
Cheng Y, Shang D, Luo M, Huang C, Lai F, Wang X, Xu X, Ying R, Wang L, Zhao Y, Zhang L, Long M, Cheng H, Zhou R. Whole genome-wide chromosome fusion and new gene birth in the Monopterus albus genome. Cell Biosci 2020; 10:67. [PMID: 32477490 PMCID: PMC7240998 DOI: 10.1186/s13578-020-00432-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background Teleost fishes account for over half of extant vertebrate species. A core question in biology is how genomic changes drive phenotypic diversity that relates to the origin of teleost fishes. Results Here, we used comparative genomic analyses with chromosome assemblies of diverse lineages of vertebrates and reconstructed an ancestral vertebrate genome, which revealed phylogenomic trajectories in vertebrates. We found that the whole-genome-wide chromosome fission/fusions took place in the Monopterus albus lineage after the 3-round whole-genome duplication. Four times of genomic fission/fusions events resulted in the whole genome-wide chromosome fusions in the genomic history of the lineage. In addition, abundant recently evolved new genes for reproduction emerged in the Monopterus albus after separated from medaka. Notably, we described evolutionary trajectories of conserved blocks related to sex determination genes in teleosts. Conclusions These data pave the way for a better understanding of genomic evolution in extant teleosts.
Collapse
Affiliation(s)
- Yibin Cheng
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Dantong Shang
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Majing Luo
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Chunhua Huang
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Fengling Lai
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Xin Wang
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Xu Xu
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Ruhong Ying
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Lingling Wang
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Yu Zhao
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Li Zhang
- 2Department of Ecology and Evolution, University of Chicago, Chicago, 60637 USA
| | - Manyuan Long
- 2Department of Ecology and Evolution, University of Chicago, Chicago, 60637 USA
| | - Hanhua Cheng
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Rongjia Zhou
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| |
Collapse
|
35
|
Borzée A, Fong JJ, Nguyen HQ, Jang Y. Large-Scale Hybridisation as an Extinction Threat to the Suweon Treefrog (Hylidae: Dryophytes suweonensis). Animals (Basel) 2020; 10:ani10050764. [PMID: 32349428 PMCID: PMC7278489 DOI: 10.3390/ani10050764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/05/2020] [Accepted: 04/13/2020] [Indexed: 01/09/2023] Open
Abstract
Simple Summary A large number of amphibian species are now endangered, mostly because of human activities. An example is land modification, which may bring species that were previously isolated in contact, and allows them to hybridise. Here, we assessed the presence of hybrid individuals between the endangered Suweon treefrog (Dryophytes suweonensis) and the widespread Japanese treefrog (Dryophytes japonicus). We found hybrids to be relatively widespread and present at all populations where the Suweon treefrog occurred. This is important, as it results in an additional threat to the Suweon treefrog. Abstract Amphibians are in the midst of a sixth mass extinction, and human activities play a major role in pushing species towards extinction. Landscape anthropisation has impacts that indirectly threaten species, in addition to the obvious destruction of natural habitats. For instance, land modification may bring human-commensal species in contact with sister-clades from which they were previously isolated. The species in these new contact zones are then able to hybridise to the point of reaching lineage fusion, through which the gene pool of the two species merges and one of the parental lineages becomes extirpated. Here, we documented the patterns of hybridisation between the spatially restricted D. suweonensis and the widespread D. japonicus. On the basis of the analysis of Cytochrome c oxidase subunit I mitochondrial DNA sequences (404 individuals from 35 sites) and six polymorphic microsatellites (381 individuals from 34 sites), we revealed a generalised, bi-directional, and geographically widespread hybridisation between the two species. Evidence of fertile back-crosses is provided by relatively high numbers of individuals in cyto-nuclear disequilibrium, as well as the presence of hybrid individuals further south than the species distribution limit, determined on the basis of call properties. Hybridisation is an additional threat to the endangered D. suweonensis.
Collapse
Affiliation(s)
- Amaël Borzée
- Laboratory of Animal Behaviour and Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China;
| | | | - Hoa Quynh Nguyen
- Department of Life Sciences and Division of EcoScience, Ewha Woman’s University, Seoul 03760, Korea
- Centre for Research and Development of Membrane Technology, Institute of Environmental Technology, Vietnam Academy of Science and Technology, Hanoi 10072, Vietnam
| | - Yikweon Jang
- Department of Life Sciences and Division of EcoScience, Ewha Woman’s University, Seoul 03760, Korea
- Correspondence:
| |
Collapse
|
36
|
Abstract
Sex chromosomes and sex determining genes can evolve fast, with the sex-linked chromosomes often differing between closely related species. Population genetics theory has been developed and tested to explain the rapid evolution of sex chromosomes and sex determination. However, we do not know why the sex chromosomes are divergent in some taxa and conserved in others. Addressing this question requires comparing closely related taxa with conserved and divergent sex chromosomes to identify biological features that could explain these differences. Cytological karyotypes suggest that muscid flies (e.g., house fly) and blow flies are such a taxonomic pair. The sex chromosomes appear to differ across muscid species, whereas they are conserved across blow flies. Despite the cytological evidence, we do not know the extent to which muscid sex chromosomes are independently derived along different evolutionary lineages. To address that question, we used genomic and transcriptomic sequence data to identify young sex chromosomes in two closely related muscid species, horn fly (Haematobia irritans) and stable fly (Stomoxys calcitrans). We provide evidence that the nascent sex chromosomes of horn fly and stable fly were derived independently from each other and from the young sex chromosomes of the closely related house fly (Musca domestica). We present three different scenarios that could have given rise to the sex chromosomes of horn fly and stable fly, and we describe how the scenarios could be distinguished. Distinguishing between these scenarios in future work could identify features of muscid genomes that promote sex chromosome divergence.
Collapse
|
37
|
Nielsen SV, Pinto BJ, Guzmán-Méndez IA, Gamble T. First Report of Sex Chromosomes in Night Lizards (Scincoidea: Xantusiidae). J Hered 2020; 111:307-317. [DOI: 10.1093/jhered/esaa007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/18/2020] [Indexed: 12/31/2022] Open
Abstract
Abstract
Squamate reptiles (lizards, snakes, and amphibians) are an outstanding group for studying sex chromosome evolution—they are old, speciose, geographically widespread, and exhibit myriad sex-determining modes. Yet, the vast majority of squamate species lack heteromorphic sex chromosomes. Cataloging the sex chromosome systems of species lacking easily identifiable, heteromorphic sex chromosomes, therefore, is essential before we are to fully understand the evolution of vertebrate sex chromosomes. Here, we use restriction site-associated DNA sequencing (RADseq) to classify the sex chromosome system of the granite night lizard, Xantusia henshawi. RADseq is an effective alternative to traditional cytogenetic methods for determining a species’ sex chromosome system (i.e., XX/XY or ZZ/ZW), particularly in taxa with non-differentiated sex chromosomes. Although many xantusiid lineages have been karyotyped, none possess heteromorphic sex chromosomes. We identified a ZZ/ZW sex chromosome system in X. henshawi—the first such data for this family. Furthermore, we report that the X. henshawi sex chromosome contains fragments of genes found on Gallus gallus chromosomes 7, 12, and 18 (which are homologous to Anolis carolinensis chromosome 2), the first vertebrate sex chromosomes to utilize this linkage group.
Collapse
Affiliation(s)
- Stuart V Nielsen
- Florida Museum of Natural History, University of Florida, Gainesville, FL
- Department of Biological Sciences, Marquette University, Milwaukee, WI
| | - Brendan J Pinto
- Department of Biological Sciences, Marquette University, Milwaukee, WI
- Milwaukee Public Museum, Milwaukee, WI
| | | | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI
- Bell Museum of Natural History, University of Minnesota, Saint Paul, MN
- Milwaukee Public Museum, Milwaukee, WI
| |
Collapse
|
38
|
Sopniewski J, Shams F, Scheele BC, Kefford BJ, Ezaz T. Identifying sex-linked markers in Litoria aurea: a novel approach to understanding sex chromosome evolution in an amphibian. Sci Rep 2019; 9:16591. [PMID: 31719585 PMCID: PMC6851140 DOI: 10.1038/s41598-019-52970-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/25/2019] [Indexed: 01/13/2023] Open
Abstract
Few taxa exhibit the variability of sex-determining modes as amphibians. However, due to the presence of homomorphic sex chromosomes in many species, this phenomenon has been difficult to study. The Australian frog, Litoria aurea, has been relatively well studied over the past 20 years due to widespread declines largely attributable to chytrid fungus. However, it has been subject to few molecular studies and its mode of sex determination remained unknown. We applied DArTseq™ to develop sex-linked single nucleotide polymorphisms (SNPs) and restriction fragment presence/absence (PA) markers in 44 phenotypically sexed L. aurea individuals from the Molonglo River in NSW, Australia. We conclusively identified a male heterogametic (XX-XY) sex determination mode in this species, identifying 11 perfectly sex-linked SNP and six strongly sex-linked PA markers. We identified a further 47 moderately sex-linked SNP loci, likely serving as evidence indicative of XY recombination. Furthermore, within these 47 loci, a group of nine males were found to have a feminised Y chromosome that significantly differed to all other males. We postulate ancestral sex-reversal as a means for the evolution of this now pseudoautosomal region on the Y chromosome. Our findings present new evidence for the ‘fountain of youth’ hypothesis for the retention of homomorphic sex chromosomes in amphibians and describe a novel approach for the study of sex chromosome evolution in amphibia.
Collapse
Affiliation(s)
- Jarrod Sopniewski
- Institute for Applied Ecology, University of Canberra, Bruce 2617, Canberra, Australia.
| | - Foyez Shams
- Institute for Applied Ecology, University of Canberra, Bruce 2617, Canberra, Australia
| | - Benjamin C Scheele
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ben J Kefford
- Institute for Applied Ecology, University of Canberra, Bruce 2617, Canberra, Australia
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Bruce 2617, Canberra, Australia.
| |
Collapse
|
39
|
Hasan AR, Duggal JK, Ness RW. Consequences of recombination for the evolution of the mating type locus in Chlamydomonas reinhardtii. THE NEW PHYTOLOGIST 2019; 224:1339-1348. [PMID: 31222749 DOI: 10.1111/nph.16003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Recombination suppression in sex chromosomes and mating type loci can lead to degeneration as a result of reduced selection efficacy and Muller's ratchet effects. However, genetic exchange in the form of noncrossover gene conversions may still take place within crossover-suppressed regions. Recent work has found evidence that gene conversion may explain the low degrees of allelic differentiation in the dimorphic mating-type locus (MT) of the isogamous alga Chlamydomonas reinhardtii. However, no one has tested whether gene conversion is sufficient to avoid the degeneration of functional sequence within MT. Here, we calculate degree of linkage disequilibrium (LD) across MT as a proxy for recombination rate and investigate its relationship to patterns of population genetic variation and the efficacy of selection in the region. We find that degree of LD predicts selection efficacy across MT, and that purifying selection is stronger in shared genes than in MT-limited genes to the point of being equivalent to that of autosomal genes. We argue that while crossover suppression is needed in the mating-type loci of many isogamous systems, these loci are less likely to experience selection to differentiate further. Thus, recombination can act in these regions and prevent degeneration caused by Hill-Robertson effects.
Collapse
Affiliation(s)
- Ahmed R Hasan
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Jaspreet K Duggal
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Rob W Ness
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
40
|
Genomic Data Reveal Conserved Female Heterogamety in Giant Salamanders with Gigantic Nuclear Genomes. G3-GENES GENOMES GENETICS 2019; 9:3467-3476. [PMID: 31439718 PMCID: PMC6778777 DOI: 10.1534/g3.119.400556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Systems of genetic sex determination and the homology of sex chromosomes in different taxa vary greatly across vertebrates. Much progress remains to be made in understanding systems of genetic sex determination in non-model organisms, especially those with homomorphic sex chromosomes and/or large genomes. We used reduced representation genome sequencing to investigate genetic sex determination systems in the salamander family Cryptobranchidae (genera Cryptobranchus and Andrias), which typifies both of these inherent difficulties. We tested hypotheses of male- or female-heterogamety by sequencing hundreds of thousands of anonymous genomic regions in a panel of known-sex cryptobranchids and characterized patterns of presence/absence, inferred zygosity, and depth of coverage to identify sex-linked regions of these 56 gigabase genomes. Our results strongly support the hypothesis that all cryptobranchid species possess homologous systems of female heterogamety, despite maintenance of homomorphic sex chromosomes over nearly 60 million years. Additionally, we report a robust, non-invasive genetic assay for sex diagnosis in Cryptobranchus and Andrias which may have great utility for conservation efforts with these endangered salamanders. Co-amplification of these W-linked markers in both cryptobranchid genera provides evidence for long-term sex chromosome stasis in one of the most divergent salamander lineages. These findings inform hypotheses about the ancestral mode of sex determination in salamanders, but suggest that comparative data from other salamander families are needed. Our results further demonstrate that massive genomes are not necessarily a barrier to effective genome-wide sequencing and that the resulting data can be highly informative about sex determination systems in taxa with homomorphic sex chromosomes.
Collapse
|
41
|
Extreme heterogeneity in sex chromosome differentiation and dosage compensation in livebearers. Proc Natl Acad Sci U S A 2019; 116:19031-19036. [PMID: 31484763 PMCID: PMC6754558 DOI: 10.1073/pnas.1905298116] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Once recombination is halted between the X and Y chromosomes, sex chromosomes begin to differentiate and transition to heteromorphism. While there is a remarkable variation across clades in the degree of sex chromosome divergence, far less is known about the variation in sex chromosome differentiation within clades. Here, we combined whole-genome and transcriptome sequencing data to characterize the structure and conservation of sex chromosome systems across Poeciliidae, the livebearing clade that includes guppies. We found that the Poecilia reticulata XY system is much older than previously thought, being shared not only with its sister species, Poecilia wingei, but also with Poecilia picta, which diverged roughly 20 million years ago. Despite the shared ancestry, we uncovered an extreme heterogeneity across these species in the proportion of the sex chromosome with suppressed recombination, and the degree of Y chromosome decay. The sex chromosomes in P. reticulata and P. wingei are largely homomorphic, with recombination in the former persisting over a substantial fraction. However, the sex chromosomes in P. picta are completely nonrecombining and strikingly heteromorphic. Remarkably, the profound degradation of the ancestral Y chromosome in P. picta is counterbalanced by the evolution of functional chromosome-wide dosage compensation in this species, which has not been previously observed in teleost fish. Our results offer important insight into the initial stages of sex chromosome evolution and dosage compensation.
Collapse
|
42
|
Wright AE, Darolti I, Bloch NI, Oostra V, Sandkam BA, Buechel SD, Kolm N, Breden F, Vicoso B, Mank JE. On the power to detect rare recombination events. Proc Natl Acad Sci U S A 2019; 116:12607-12608. [PMID: 31213531 PMCID: PMC6601268 DOI: 10.1073/pnas.1905555116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Alison E Wright
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom;
| | - Iulia Darolti
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Natasha I Bloch
- Department of Biomedical Engineering, University of Los Andes, Bogotá 111711, Colombia
| | - Vicencio Oostra
- Research Centre for Ecological Change, University of Helsinki, Helsinki FI-00014, Finland
| | - Benjamin A Sandkam
- Department of Zoology, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Séverine D Buechel
- Department of Zoology, Stockholm University, Stockholm SE-106 91, Sweden
| | - Niclas Kolm
- Department of Zoology, Stockholm University, Stockholm SE-106 91, Sweden
| | - Felix Breden
- Department of Biological Sciences, Simon Fraser University, Burnaby V5A 1S6, Canada
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
- Department of Zoology, University of British Columbia, Vancouver V6T 1Z4, Canada
| |
Collapse
|
43
|
Dynamic evolutionary history and gene content of sex chromosomes across diverse songbirds. Nat Ecol Evol 2019; 3:834-844. [DOI: 10.1038/s41559-019-0850-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/22/2019] [Indexed: 11/09/2022]
|
44
|
Rodrigues N, Studer T, Dufresnes C, Perrin N. Sex-Chromosome Recombination in Common Frogs Brings Water to the Fountain-of-Youth. Mol Biol Evol 2019; 35:942-948. [PMID: 29394416 DOI: 10.1093/molbev/msy008] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
According to the canonical model of sex-chromosome evolution, the degeneration of Y or W chromosomes (as observed in mammals and birds, respectively) results from an arrest of recombination in the heterogametic sex, driven by the fixation of sexually antagonistic mutations. However, sex chromosomes have remained homomorphic in many lineages of fishes, amphibians, and nonavian reptiles. According to the "fountain-of-youth" model, this homomorphy results from occasional events of sex reversal. If recombination arrest in males is controlled by maleness per se (and not by genotype), then Y chromosomes are expected to recombine in XY females, preventing their long-term degeneration. Here, we provide field support for the fountain-of-youth, by showing that sex-chromosome recombination in Rana temporaria only depends on phenotypic sex: naturally occurring XX males show the same restriction of recombination as XY males (average map length ∼2 cM), while XY females recombine as much as XX females (average map length ∼150 cM). Our results challenge several common assumptions regarding the evolution of sex chromosomes, including the role of sexually antagonistic genes as drivers of recombination arrest, and that of chromosomal inversions as underlying mechanisms.
Collapse
Affiliation(s)
- Nicolas Rodrigues
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Tania Studer
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Zentrum für Molekulare Biologie, Universität Heidelberg, Heidelberg, Germany
| | - Christophe Dufresnes
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
45
|
Böhne A, Weber AAT, Rajkov J, Rechsteiner M, Riss A, Egger B, Salzburger W. Repeated Evolution Versus Common Ancestry: Sex Chromosome Evolution in the Haplochromine Cichlid Pseudocrenilabrus philander. Genome Biol Evol 2019; 11:439-458. [PMID: 30649313 PMCID: PMC6375353 DOI: 10.1093/gbe/evz003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
Why sex chromosomes turn over and remain undifferentiated in some taxa, whereas they degenerate in others, is still an area of ongoing research. The recurrent occurrence of homologous and homomorphic sex chromosomes in distantly related taxa suggests their independent evolution or continued recombination since their first emergence. Fishes display a great diversity of sex-determining systems. Here, we focus on sex chromosome evolution in haplochromines, the most species-rich lineage of cichlid fishes. We investigate sex-specific signatures in the Pseudocrenilabrus philander species complex, which belongs to a haplochromine genus found in many river systems and ichthyogeographic regions in northern, eastern, central, and southern Africa. Using whole-genome sequencing and population genetic, phylogenetic, and read-coverage analyses, we show that one population of P. philander has an XX-XY sex-determining system on LG7 with a large region of suppressed recombination. However, in a second bottlenecked population, we did not find any sign of a sex chromosome. Interestingly, LG7 also carries an XX-XY system in the phylogenetically more derived Lake Malawi haplochromine cichlids. Although the genomic regions determining sex are the same in Lake Malawi cichlids and P. philander, we did not find evidence for shared ancestry, suggesting that LG7 evolved as sex chromosome at least twice in haplochromine cichlids. Hence, our work provides further evidence for the labile nature of sex determination in fishes and supports the hypothesis that the same genomic regions can repeatedly and rapidly be recruited as sex chromosomes in more distantly related lineages.
Collapse
Affiliation(s)
- Astrid Böhne
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| | - Alexandra Anh-Thu Weber
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
- Museums Victoria, Melbourne, Victoria, Australia
| | - Jelena Rajkov
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| | - Michael Rechsteiner
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| | - Andrin Riss
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| | - Bernd Egger
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
- Program Man Society Environment, University of Basel, Switzerland
| | - Walter Salzburger
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| |
Collapse
|
46
|
Drillon O, Dufresnes G, Perrin N, Crochet PA, Dufresnes C. Reaching the edge of the speciation continuum: hybridization between three sympatric species of Hyla tree frogs. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/bly198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Olivier Drillon
- Agence Française pour la Biodiversité, Service Départemental de la Charente, Champniers, France
| | | | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Pierre-André Crochet
- CEFE, CNRS, University of Montpellier, University Paul Valéry Montpellier, EPHE, IRD, Montpellier, France
| | - Christophe Dufresnes
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Sheffield, UK
| |
Collapse
|
47
|
Miniscule differences between sex chromosomes in the giant genome of a salamander. Sci Rep 2018; 8:17882. [PMID: 30552368 PMCID: PMC6294749 DOI: 10.1038/s41598-018-36209-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/12/2018] [Indexed: 11/08/2022] Open
Abstract
In the Mexican axolotl (Ambystoma mexicanum), sex is determined by a single Mendelian factor, yet its sex chromosomes do not exhibit morphological differentiation typical of many vertebrate taxa that possess a single sex-determining locus. As sex chromosomes are theorized to differentiate rapidly, species with undifferentiated sex chromosomes provide the opportunity to reconstruct early events in sex chromosome evolution. Whole genome sequencing of 48 salamanders, targeted chromosome sequencing and in situ hybridization were used to identify the homomorphic sex chromosome that carries an A. mexicanum sex-determining factor and sequences that are present only on the W chromosome. Altogether, these sequences cover ~300 kb of validated female-specific (W chromosome) sequence, representing ~1/100,000th of the 32 Gb genome. Notably, a recent duplication of ATRX, a gene associated with mammalian sex-determining pathways, is one of few functional (non-repetitive) genes identified among these W-specific sequences. This duplicated gene (ATRW) was used to develop highly predictive markers for diagnosing sex and represents a strong candidate for a recently-acquired sex determining locus (or sexually antagonistic gene) in A. mexicanum.
Collapse
|
48
|
Gerchen JF, Dufresnes C, Stöck M. Introgression across Hybrid Zones Is Not Mediated by Large X-Effects in Green Toads with Undifferentiated Sex Chromosomes. Am Nat 2018; 192:E178-E188. [DOI: 10.1086/699162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Furman BLS, Evans BJ. Divergent Evolutionary Trajectories of Two Young, Homomorphic, and Closely Related Sex Chromosome Systems. Genome Biol Evol 2018; 10:742-755. [PMID: 29608717 PMCID: PMC5841384 DOI: 10.1093/gbe/evy045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 02/02/2023] Open
Abstract
There exists extraordinary variation among species in the degree and nature of sex chromosome divergence. However, much of our knowledge about sex chromosomes is based on comparisons between deeply diverged species with different ancestral sex chromosomes, making it difficult to establish how fast and why sex chromosomes acquire variable levels of divergence. To address this problem, we studied sex chromosome evolution in two species of African clawed frog (Xenopus), both of whom acquired novel systems for sex determination from a recent common ancestor, and both of whom have female (ZW/ZZ) heterogamy. Derived sex chromosomes of one species, X. laevis, have a small region of suppressed recombination that surrounds the sex determining locus, and have remained this way for millions of years. In the other species, X. borealis, a younger sex chromosome system exists on a different pair of chromosomes, but the region of suppressed recombination surrounding an unidentified sex determining gene is vast, spanning almost half of the sex chromosomes. Differences between these sex chromosome systems are also apparent in the extent of nucleotide divergence between the sex chromosomes carried by females. Our analyses also indicate that in autosomes of both of these species, recombination during oogenesis occurs more frequently and in different genomic locations than during spermatogenesis. These results demonstrate that new sex chromosomes can assume radically different evolutionary trajectories, with far-reaching genomic consequences. They also suggest that in some instances the origin of new triggers for sex determination may be coupled with rapid evolution sex chromosomes, including recombination suppression of large genomic regions.
Collapse
Affiliation(s)
| | - Ben J Evans
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
50
|
Dufresnes C, Mazepa G, Rodrigues N, Brelsford A, Litvinchuk SN, Sermier R, Lavanchy G, Betto-Colliard C, Blaser O, Borzée A, Cavoto E, Fabre G, Ghali K, Grossen C, Horn A, Leuenberger J, Phillips BC, Saunders PA, Savary R, Maddalena T, Stöck M, Dubey S, Canestrelli D, Jeffries DL. Genomic Evidence for Cryptic Speciation in Tree Frogs From the Apennine Peninsula, With Description of Hyla perrini sp. nov. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00144] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|