1
|
Reyes G, Oulhen N, Wessel G. mRNA splicing variants of the transcription factor Blimp1 differentially regulate germline genes in echinoderms. Dev Biol 2025; 522:8-19. [PMID: 40024498 DOI: 10.1016/j.ydbio.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Germ cell specification is an essential step in sexually reproducing animals. Echinoderms possess diverse representatives of the main mechanisms that result in this cell fate determination. Sea urchins use an inherited mechanism, whereas sea stars rely on the ancestral, induced mechanism. Blimp1 (B lymphocyte-induced maturation protein-1) is a transcriptional regulator reported in mice to function in the induction of germline cells. Here, we identify the dynamic function of Blimp1 during development in a comparative approach using the purple sea urchin, Strongylocentrotus purpuratus (inherited germline) and the batstar, Patiria miniata (induced germline). We found that Blimp1 is important for germ cell specification in both species and that multiple Blimp1 isoforms result from differential mRNA splicing in each animal. Each isoform of Blimp1 functions in distinct expression of germline determinants, including Vasa and Nanos. These results show that Blimp1 is a conserved and key regulator for germ cell specification, but divergent in function as a result of post-transcriptional modification. Overall, we conclude that Blimp1 is an intersectional node in diverse germline specification strategies and supports the concept that differential mRNA splicing is an essential mechanism in germ cell formation.
Collapse
Affiliation(s)
- Gerardo Reyes
- Department of Molecular and Cellular Biology, Brown University, Providence, RI, 02912, USA
| | - Nathalie Oulhen
- Department of Molecular and Cellular Biology, Brown University, Providence, RI, 02912, USA
| | - Gary Wessel
- Department of Molecular and Cellular Biology, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
2
|
Smith LC, Hill TM. Ultrafiltration and Fluid Excretion in Echinoids Involves the Axial Organ with Elimination via the Intestine. Life (Basel) 2025; 15:767. [PMID: 40430194 PMCID: PMC12113024 DOI: 10.3390/life15050767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Many animals display nephridial structures for the ultrafiltration of metabolic waste. However, a nephridial equivalent and an excretory system are not generally recognized for echinoderms. Podocytes are nephridial cells that function in ultrafiltration of body fluids. Limited ultrastructural analyses of echinoderms identify cells with podocyte morphology in the axial organ and in the left coelom of larval sea urchins. Echinoid internal anatomy suggests that the excretory system functions by ultrafiltration in the axial organ, as well as filtrate flow via the water vascular system for excretion through the madreporite; however, these reports are based on morphology. To verify podocytes in the axial organ, orthologues of podocyte-specific genes were evaluated in the sea urchin genome and RNAseq data sets. To verify excretion from the madreporite, fluorescein was used as a tracer for nephridial clearance, and was injected into the main body cavity of sea urchins. Results showed that genes encoding proteins that function in podocytes of vertebrates are expressed specifically in the axial organ of sea urchins, in agreement with orthologue expression in the nurse shark kidney. However, fluorescein clearance from the body cavity shows elimination from the anus rather than the madreporite. This leads to the hypothesis that fluorescein and metabolic waste clearance occur through ultrafiltration by podocytes in the axial organ, but that the filtrate flows into the haemal system and the haemal capillaries in the intestinal walls, from which fluid is transferred to the intestinal lumen for elimination through the anus. Future testing is proposed to evaluate fluorescein filtration from the blastocoel of larvae into the left coelom, and for excretion by small or juvenile echinoids that have undergone tissue clearance to visualize the route of fluorescein flow within the internal anatomy of cleared, intact sea urchins.
Collapse
Affiliation(s)
- L. Courtney Smith
- Department of Biological Sciences, George Washington University, Suite 6000, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - Thomas M. Hill
- Department of Microbiology and Immunology, University of Maryland, Suite 380 Health Science Research Facility-I, 685 West Baltimore Street, Baltimore, MD 21201, USA;
| |
Collapse
|
3
|
Tsai FY, Lin CY, Su YH, Yu JK, Kuo DH. Evolutionary History of Bilaterian FoxP Genes: Complex Ancestral Functions and Evolutionary Changes Spanning 2R-WGD in the Vertebrate Lineage. Mol Biol Evol 2025; 42:msaf072. [PMID: 40155202 PMCID: PMC11998571 DOI: 10.1093/molbev/msaf072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 04/01/2025] Open
Abstract
Human and fly FoxP homologs are well-known for their roles in the development of cognitive abilities. These findings have led to the hypothesis that the ancestral function of FoxP was in the development of cognitive neural circuits. However, complex brains in human and fly evolved independently, and the similar cognitive function of FoxP in human and fly may thus be interpreted as a result of convergent evolution. In addition, the 4 gnathostome FoxP paralogs also possess diverse developmental functions unrelated to neurodevelopment, which might have been overlooked in comparative studies of invertebrate FoxP homologs. To resolve these uncertainties, we set out to improve the phylogenetic reconstruction of vertebrate FoxP homologs and broaden the taxonomic sampling of gene expression profiling to include an invertebrate chordate, ambulacrarian deuterostomes, and a spiralian protostome. Using phylogenetic analysis combined with synteny mapping, we elaborated the hypothesis that the 4 FoxP paralogs arose through the 2R-WGD events shared by all gnathostome species. Based on this evolutionary scenario, we examined the FoxP expression pattern in amphioxus development and concluded that FoxP already had complex developmental functions across all germ layers in the chordate ancestor. Moreover, in sea urchin, hemichordate, and catenulid flatworm, FoxP was expressed in the gut prominently, in addition to the anterior neurogenic ectoderm. This surprising similarity shared among these distantly related species implies that FoxP may have a significant function in gut development in addition to the neural development function in the last common ancestor of bilaterians.
Collapse
Affiliation(s)
- Fu-Yu Tsai
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Che-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Dian-Han Kuo
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Museum of Zoology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Meng W, Kong L, Abulizi A, Cong J, Sun Z, Chang Y. Sex determination factor, a novel male-linked gene in the sea cucumber Apostichopus japonicus: Molecular characterization, expression patterns and effects of gene knockdown. Comp Biochem Physiol B Biochem Mol Biol 2025; 277:111071. [PMID: 39778676 DOI: 10.1016/j.cbpb.2025.111071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/05/2025] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Apostichopus japonicus is a highly significant marine aquaculture species. Research findings have indicated that male sea cucumbers demonstrate a more rapid growth rate compared to females, underscoring the potential advantages of establishing an all-male population. In this study, we identified a specific protein-coding gene (ORFan) within a 4565 bp male fragment and named it sex determination factor (sdf). The sdf transcript exhibited ubiquitous expression in various adult male tissues, along with dynamic expression patterns in the testis across different developmental stages. Notably, knockdown of the sdf gene through immersion of embryos in its specific vivo-morpholino oligomers (vivo-MO) resulted in significant changes in the expression levels of several sex-related genes including piwi1, vasa, foxl2, and DNMT3. Additionally, a transcriptomic analysis showed that sdf knockdown resulted in significant alterations in multiple biological processes encompassing various sex-related gene ontology terms such as male gonad development, ovarian follicle development, and steroidogenesis. These results provide a molecular foundation for comprehending ORFans in sea cucumbers while offering a valuable method for gene knockdown studies in echinoderms.
Collapse
Affiliation(s)
- Weihan Meng
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Lingnan Kong
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Abudula Abulizi
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Jingjing Cong
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China; School of Life Science, Liaoning Normal University, Dalian 116029, China
| | - Zhihui Sun
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Yaqing Chang
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
5
|
Lee Y, Jenniches C, Metry R, Renaudin G, Kling S, Tjeerdema E, Jackson EW, Hamdoun A. Automated, high-throughput in-situ hybridization of Lytechinus pictus embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.23.644641. [PMID: 40196544 PMCID: PMC11974767 DOI: 10.1101/2025.03.23.644641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Despite the reach of in situ hybridization (ISH) in developmental biology, it has rarely been used at scale. The major limitation has been the throughput of the assay, which typically relies upon labor intensive manual steps. The goal of this study was to develop a fully automated hybridization chain reaction (HCR) pipeline capable of large-scale gene expression pattern profiling, with dramatically reduced cost and effort, in the sea urchin Lytechinus pictus. Our resulting pipeline, which we term high throughput (HT)-HCR, can process 192 gene probe sets on whole-mount embryos within 32 hours. The unique qualities of the sea urchin embryo enabled us to automate the entire HCR assay in a 96-well plate format, and utilize highly miniaturized reaction volumes, a general purpose robotic liquid handler, and automated confocal microscopy. From this approach we produced high quality localization data for 101 target genes across three developmental stages of L. pictus. The results reveal the localization of previously undescribed physiological genes, as well as canonical developmental transcription factors. HT-HCR represents a log order increase in the rate at which spatial transcriptomic data can be resolved in the sea urchin. This study paves the way for localization of understudied genes and for sophisticated perturbation analysis.
Collapse
Affiliation(s)
- Yoon Lee
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Chloe Jenniches
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Rachel Metry
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Gloria Renaudin
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Svenja Kling
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Evan Tjeerdema
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Elliot W Jackson
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Pieplow C, Furze A, Gregory P, Oulhen N, Wessel GM. Sex specific gene expression is present prior to metamorphosis in the sea urchin. Dev Biol 2025; 517:217-233. [PMID: 39427857 DOI: 10.1016/j.ydbio.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/26/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
A profound collaboration between the germline and somatic cells of an organism is the creation of a functional gonad. Here we establish a foundation for studying molecular gonadogenesis in the sea urchin by use of RNA-seq, quantitative mRNA measurements, and in-situ hybridizations throughout the life cycle of the variegated sea urchin, Lytechinus variegatus (Lv). We found through three distinct analyses that the ovary and testis of this echinoderm expresses unique transcripts involved in gametogenesis, and also discovered uncharacterized gene products unique to each gonad. We further developed a pipeline integrating timepoint RNA-seq data throughout development to identify hallmark gene expression in gonads. We found that meiotic and candidate genes involved in sex determination are first expressed surprisingly early during larval growth, and well before metamorphosis. We further discovered that individual larvae express varying amounts of male- or female-hallmarks before metamorphosis, including germline, oocyte, sperm, and meiotic related genes. These distinct male- or female-gonad gene profiles may indicate the onset of, and commitment to, development of a bipotential gonad primordium, and may include metabolic differences, supported by the observation that transcripts involved in glycolysis are highly enriched in the ovary compared to the testis. Together these data support a hypothesis that sex determination is initiated prior to metamorphosis in the sea urchin and that the many uncharacterized genes unique to each gonad type characterized herein may reveal unique pathways and mechanisms in echinoderm reproduction.
Collapse
Affiliation(s)
- Cosmo Pieplow
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Aidan Furze
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Pauline Gregory
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Nathalie Oulhen
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Gary M Wessel
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA.
| |
Collapse
|
7
|
Pérez-Posada A, Lin CY, Fan TP, Lin CY, Chen YC, Gómez-Skarmeta JL, Yu JK, Su YH, Tena JJ. Hemichordate cis-regulatory genomics and the gene expression dynamics of deuterostomes. Nat Ecol Evol 2024; 8:2213-2227. [PMID: 39424956 PMCID: PMC11618098 DOI: 10.1038/s41559-024-02562-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/12/2024] [Indexed: 10/21/2024]
Abstract
Deuterostomes are one major group of bilaterians composed by hemichordates and echinoderms (collectively called Ambulacraria) and chordates. Comparative studies between these groups can provide valuable insights into the nature of the last common ancestor of deuterostomes and that of bilaterians. Indirect development of hemichordates, with larval phases similar to echinoderms and an adult body plan with an anteroposterior polarity like chordates and other bilaterians, makes them a suitable model for studying the molecular basis of development among deuterostomes. However, a comprehensive, quantitative catalogue of gene expression and chromatin dynamics in hemichordates is still lacking. In this study, we analysed the transcriptomes and chromatin accessibility of multiple developmental stages of the indirect-developing hemichordate Ptychodera flava. We observed that P. flava development is underpinned by a biphasic transcriptional program probably controlled by distinct genetic networks. Comparisons with other bilaterian species revealed similar transcriptional and regulatory dynamics during hemichordate gastrulation, cephalochordate neurulation and elongation stages of annelids. By means of regulatory networks analysis and functional validations by transgenesis experiments in echinoderms, we propose that gastrulation is the stage of highest molecular resemblance in deuterostomes and that much of the molecular basis of deuterostome development was probably present in the bilaterian last common ancestor.
Collapse
Affiliation(s)
- Alberto Pérez-Posada
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK.
| | - Che-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tzu-Pei Fan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ching-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Chih Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.
| |
Collapse
|
8
|
Yu JK, Peng LY, Chen CY, Lu TM, Holland ND, Holland LZ. Asymmetric Segregation of Maternal mRNAs and Germline-related Determinants in Cephalochordate Embryos: Implications for the Evolution of Early Patterning Events in Chordates. Integr Comp Biol 2024; 64:1243-1254. [PMID: 38599626 DOI: 10.1093/icb/icae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
How animal embryos determine their early cell fates is an important question in developmental biology. In various model animals, asymmetrically localized maternal transcripts play important roles in axial patterning and cell fate specification. Cephalochordates (amphioxus), which have three living genera (Asymmetron, Epigonichthys, and Branchiostoma), are an early branching chordate lineage and thus occupy a key phylogenetic position for understanding the evolution of chordate developmental mechanisms. It has been shown that in the zygote of Branchiostoma amphioxus, which possesses bilateral gonads flanking both sides of their trunk region, maternal transcripts of germline determinants form a compact granule. During early embryogenesis, this granule is inherited by a single blastomere, which subsequently gives rise to a cluster of cells displaying typical characteristics of primordial germ cells (PGC). These PGCs then come to lie in the tailbud region and proliferate during posterior elongation of the larvae to join in the gonad anlagen at the ventral tip of the developing myomeres in amphioxus larvae. However, in Asymmetron and Epigonichthys amphioxus, whose gonads are present only on the right side of their bodies, nothing is known about their PGC development or the cellular/morphogenetic processes resulting in the asymmetric distribution of gonads. Using conserved germline determinants as markers, we show that similarly to Branchiostoma amphioxus, Asymmetron also employs a preformation mechanism to specify their PGCs, suggesting that this mechanism represents an ancient trait dating back to the common ancestor of Cephalochordates. Surprisingly, we found that Asymmetron PGCs are initially deposited on both sides of the body during early larval development; however, the left-side PGCs cease to exist in young juveniles, suggesting that PGCs are eliminated from the left body side during larval development or following metamorphosis. This is reminiscent of the PGC development in the sea urchin embryo, and we discuss the implications of this observation for the evolution of developmental mechanisms.
Collapse
Affiliation(s)
- Jr-Kai Yu
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei 11529, Taiwan
- Marine Research Station, ICOB, Academia Sinica, Yilan 26242, Taiwan
- Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan
| | - Li-Ying Peng
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei 11529, Taiwan
- Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan
| | - Chen-Yi Chen
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei 11529, Taiwan
| | - Tsai-Ming Lu
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei 11529, Taiwan
| | - Nicholas D Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, UCSD, La Jolla, CA 92093-0202, USA
| | - Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, UCSD, La Jolla, CA 92093-0202, USA
| |
Collapse
|
9
|
Chou C, Lin CY, Lin CY, Wang A, Fan TP, Wang KT, Yu JK, Su YH. Tracing the Evolutionary Origin of Chordate Somites in the Hemichordate Ptychodera flava. Integr Comp Biol 2024; 64:1226-1242. [PMID: 38637301 DOI: 10.1093/icb/icae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
Metameric somites are a novel character of chordates with unclear evolutionary origins. In the early branching chordate amphioxus, anterior somites are derived from the paraxial mesodermal cells that bud off the archenteron (i.e., enterocoely) at the end of gastrulation. Development of the anterior somites requires fibroblast growth factor (FGF) signaling, and distinct somite compartments express orthologs of vertebrate nonaxial mesodermal markers. Thus, it has been proposed that the amphioxus anterior somites are homologous to the vertebrate head mesoderm, paraxial mesoderm, and lateral plate mesoderm. To trace the evolutionary origin of somites, it is essential to study the chordates' closest sister group, Ambulacraria, which includes hemichordates and echinoderms. The anterior coeloms of hemichordate and sea urchin embryos (respectively called protocoel and coelomic pouches) are also formed by enterocoely and require FGF signals for specification and/or differentiation. In this study, we applied RNA-seq to comprehensively screen for regulatory genes associated with the mesoderm-derived protocoel of the hemichordate Ptychodera flava. We also used a candidate gene approach to identify P. flava orthologs of chordate somite markers. In situ hybridization results showed that many of these candidate genes are expressed in distinct or overlapping regions of the protocoel, which indicates that molecular compartments exist in the hemichordate anterior coelom. Given that the hemichordate protocoel and amphioxus anterior somites share a similar ontogenic process (enterocoely), induction signal (FGF), and characteristic expression of orthologous genes, we propose that these two anterior coeloms are indeed homologous. In the lineage leading to the emergence of chordates, somites likely evolved from enterocoelic, FGF-dependent, and molecularly compartmentalized anterior coeloms of the deuterostome last common ancestor.
Collapse
Affiliation(s)
- Cindy Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Ching-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Che-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Anthony Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Tzu-Pei Fan
- Institute of Cellular and Organismic Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Kuang-Tse Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, 11529 Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 26242 Yilan, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, 11529 Taipei, Taiwan
| |
Collapse
|
10
|
Valencia JE, Peter IS. Combinatorial regulatory states define cell fate diversity during embryogenesis. Nat Commun 2024; 15:6841. [PMID: 39122679 PMCID: PMC11315938 DOI: 10.1038/s41467-024-50822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cell fate specification occurs along invariant species-specific trajectories that define the animal body plan. This process is controlled by gene regulatory networks that regulate the expression of the limited set of transcription factors encoded in animal genomes. Here we globally assess the spatial expression of ~90% of expressed transcription factors during sea urchin development from embryo to larva to determine the activity of gene regulatory networks and their regulatory states during cell fate specification. We show that >200 embryonically expressed transcription factors together define >70 cell fates that recapitulate the morphological and functional organization of this organism. Most cell fate-specific regulatory states consist of ~15-40 transcription factors with similarity particularly among functionally related cell types regardless of developmental origin. Temporally, regulatory states change continuously during development, indicating that progressive changes in regulatory circuit activity determine cell fate specification. We conclude that the combinatorial expression of transcription factors provides molecular definitions that suffice for the unique specification of cell states in time and space during embryogenesis.
Collapse
Affiliation(s)
- Jonathan E Valencia
- Division of Biology and Biological Engineering, MC156-29, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Isabelle S Peter
- Division of Biology and Biological Engineering, MC156-29, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
11
|
Goloe D, Gildor T, Ben-Tabou de-Leon S. Expression and Transcriptional Targets of TGFβ-RII in Paracentrotus lividus Larval Skeletogenesis. Genesis 2024; 62:e23614. [PMID: 39139086 DOI: 10.1002/dvg.23614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024]
Abstract
Organisms from the five kingdoms of life use minerals to harden their tissues and make teeth, shells and skeletons, in the process of biomineralization. The sea urchin larval skeleton is an excellent system to study the biological regulation of biomineralization and its evolution. The gene regulatory network (GRN) that controls sea urchin skeletogenesis is known in great details and shows similarity to the GRN that controls vertebrates' vascularization while it is quite distinct from the GRN that drives vertebrates' bone formation. Yet, transforming growth factor beta (TGF-β) signaling regulates both sea urchin and vertebrates' skeletogenesis. Here, we study the upstream regulation and identify transcriptional targets of TGF-β in the Mediterranean Sea urchin species, Paracentrotus lividus. TGF-βRII is transiently active in the skeletogenic cells downstream of vascular endothelial growth factor (VEGF) signaling, in P. lividus. Continuous perturbation of TGF-βRII activity significantly impairs skeletal elongation and the expression of key skeletogenic genes. Perturbation of TGF-βRII after skeletal initiation leads to a delay in skeletal elongation and minor changes in gene expression. TGF-β targets are distinct from its transcriptional targets during vertebrates' bone formation, suggesting that the role of TGF-β in biomineralization in these two phyla results from convergent evolution.
Collapse
Affiliation(s)
- Daniel Goloe
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Tsvia Gildor
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
12
|
Viswanathan PK, Chessel A, Molina MD, Haillot E, Lepage T. Maternal TGF-β ligand Panda breaks the radial symmetry of the sea urchin embryo by antagonizing the Nodal type II receptor ACVRII. PLoS Biol 2024; 22:e3002701. [PMID: 38913712 PMCID: PMC11239237 DOI: 10.1371/journal.pbio.3002701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 07/11/2024] [Accepted: 06/07/2024] [Indexed: 06/26/2024] Open
Abstract
In the highly regulative embryo of the sea urchin Paracentrotus lividus, establishment of the dorsal-ventral (D/V) axis critically depends on the zygotic expression of the TGF-β nodal in the ventral ectoderm. nodal expression is first induced ubiquitously in the 32-cell embryo and becomes progressively restricted to the presumptive ventral ectoderm by the early blastula stage. This early spatial restriction of nodal expression is independent of Lefty, and instead relies on the activity of Panda, a maternally expressed TGF-β ligand related to Lefty and Inhibins, which is required maternally for D/V axis specification. However, the mechanism by which Panda restricts the early nodal expression has remained enigmatic and it is not known if Panda works like a BMP ligand by opposing Nodal and antagonizing Smad2/3 signaling, or if it works like Lefty by sequestering an essential component of the Nodal signaling pathway. In this study, we report that Panda functions as an antagonist of the TGF-β type II receptor ACVRII (Activin receptor type II), which is the only type II receptor for Nodal signaling in the sea urchin and is also a type II receptor for BMP ligands. Inhibiting translation of acvrII mRNA disrupted D/V patterning across all 3 germ layers and caused acvrII morphants to develop with a typical Nodal loss-of-function phenotype. In contrast, embryos overexpressing acvrII displayed strong ectopic Smad1/5/8 signaling at blastula stages and developed as dorsalized larvae, a phenotype very similar to that caused by over activation of BMP signaling. Remarkably, embryos co-injected with acvrII mRNA and panda mRNA did not show ectopic Smad1/5/8 signaling and developed with a largely normal dorsal-ventral polarity. Furthermore, using an axis induction assay, we found that Panda blocks the ability of ACVRII to orient the D/V axis when overexpressed locally. Using co-immunoprecipitation, we showed that Panda physically interacts with ACVRII, as well as with the Nodal co-receptor Cripto, and with TBR3 (Betaglycan), which is a non-signaling receptor for Inhibins in mammals. At the molecular level, we have traced back the antagonistic activity of Panda to the presence of a single proline residue, conserved with all the Lefty factors, in the ACVRII binding motif of Panda, instead of a serine as in most of TGF-β ligands. Conversion of this proline to a serine converted Panda from an antagonist that opposed Nodal signaling and promoted dorsalization to an agonist that promoted Nodal signaling and triggered ventralization when overexpressed. Finally, using phylogenomics, we analyzed the emergence of the agonist and antagonist form of Panda in the course of evolution. Our data are consistent with the idea that the presence of a serine at that position, like in most TGF-β, was the ancestral condition and that the initial function of Panda was possibly in promoting and not in antagonizing Nodal signaling. These results highlight the existence of key functional and structural elements conserved between Panda and Lefty, allow to draw an intriguing parallel between sea urchin Panda and mammalian Inhibin α and raise the unexpected possibility that the original function of Panda may have been in activation of the Nodal pathway rather than in its inhibition.
Collapse
Affiliation(s)
| | - Aline Chessel
- Université Côte d’Azur, CNRS, Inserm, iBV, Nice, France
| | | | | | | |
Collapse
|
13
|
Hijaze E, Gildor T, Seidel R, Layous M, Winter M, Bertinetti L, Politi Y, Ben-Tabou de-Leon S. ROCK and the actomyosin network control biomineral growth and morphology during sea urchin skeletogenesis. eLife 2024; 12:RP89080. [PMID: 38573316 PMCID: PMC10994658 DOI: 10.7554/elife.89080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Biomineralization had apparently evolved independently in different phyla, using distinct minerals, organic scaffolds, and gene regulatory networks (GRNs). However, diverse eukaryotes from unicellular organisms, through echinoderms to vertebrates, use the actomyosin network during biomineralization. Specifically, the actomyosin remodeling protein, Rho-associated coiled-coil kinase (ROCK) regulates cell differentiation and gene expression in vertebrates' biomineralizing cells, yet, little is known on ROCK's role in invertebrates' biomineralization. Here, we reveal that ROCK controls the formation, growth, and morphology of the calcite spicules in the sea urchin larva. ROCK expression is elevated in the sea urchin skeletogenic cells downstream of the Vascular Endothelial Growth Factor (VEGF) signaling. ROCK inhibition leads to skeletal loss and disrupts skeletogenic gene expression. ROCK inhibition after spicule formation reduces the spicule elongation rate and induces ectopic spicule branching. Similar skeletogenic phenotypes are observed when ROCK is inhibited in a skeletogenic cell culture, indicating that these phenotypes are due to ROCK activity specifically in the skeletogenic cells. Reduced skeletal growth and enhanced branching are also observed under direct perturbations of the actomyosin network. We propose that ROCK and the actomyosin machinery were employed independently, downstream of distinct GRNs, to regulate biomineral growth and morphology in Eukaryotes.
Collapse
Affiliation(s)
- Eman Hijaze
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of HaifaHaifaIsrael
| | - Tsvia Gildor
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of HaifaHaifaIsrael
| | - Ronald Seidel
- B CUBE Center for Molecular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Majed Layous
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of HaifaHaifaIsrael
| | - Mark Winter
- Department of Electrical Engineering, Computer Science and Mathematics, Technische Universiteit DelftDelftNetherlands
| | - Luca Bertinetti
- B CUBE Center for Molecular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Yael Politi
- B CUBE Center for Molecular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of HaifaHaifaIsrael
| |
Collapse
|
14
|
Fung CW, Chau KY, Tong DCS, Knox C, Tam SST, Tan SY, Loi DSC, Leung Z, Xu Y, Lan Y, Qian PY, Chan KYK, Wu AR. Parentage influence on gene expression under acidification revealed through single-embryo sequencing. Mol Ecol 2023; 32:6796-6808. [PMID: 37888909 DOI: 10.1111/mec.17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
The dissolution of anthropogenic carbon dioxide (CO2 ) in seawater has altered its carbonate chemistry in the process of ocean acidification (OA). OA affects the viability of marine species. In particular, calcifying organisms and their early planktonic larval stages are considered vulnerable. These organisms often utilize energy reserves for metabolism rather than growth and calcification as supported by bulk RNA-sequencing (RNA-seq) experiments. Yet, transcriptomic profiling of a bulk sample reflects the average gene expression of the population, neglecting the variations between individuals, which forms the basis for natural selection. Here, we used single-embryo RNA-seq on larval sea urchin Heliocidaris crassispina, which is a commercially and ecologically valuable species in East Asia, to document gene expression changes to OA at an individual and family level. Three paternal half-sibs groups were fertilized and exposed to 3 pH conditions (ambient pH 8.0, 7.7 and 7.4) for 12 h prior to sequencing and oxygen consumption assay. The resulting transcriptomic profile of all embryos can be distinguished into four clusters, with differences in gene expressions that govern biomineralization, cell differentiation and patterning, as well as metabolism. While these responses were influenced by pH conditions, the male identities also had an effect. Specifically, a regression model and goodness of fit tests indicated a significant interaction between sire and pH on the probability of embryo membership in different clusters of gene expression. The single-embryo RNA-seq approach is promising in climate stressor research because not only does it highlight potential impacts before phenotypic changes were observed, but it also highlights variations between individuals and lineages, thus enabling a better determination of evolutionary potential.
Collapse
Affiliation(s)
- Cheuk Wang Fung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kin Yung Chau
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Daniel Chun Sang Tong
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Claire Knox
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Sindy Sing Ting Tam
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Sin Yen Tan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Danson Shek Chun Loi
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ziuwin Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ying Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yi Lan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kit Yu Karen Chan
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Biology Department, Swarthmore College, Swarthmore, Pennsylvania, USA
| | - Angela Ruohao Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Aging Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
15
|
Khor JM, Guerrero-Santoro J, Ettensohn CA. Molecular compartmentalization in a syncytium: restricted mobility of proteins within the sea urchin skeletogenic mesenchyme. Development 2023; 150:dev201804. [PMID: 37902109 DOI: 10.1242/dev.201804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023]
Abstract
Multinucleated cells, or syncytia, are found in diverse taxa. Their biological function is often associated with the compartmentalization of biochemical or cellular activities within the syncytium. How such compartments are generated and maintained is poorly understood. The sea urchin embryonic skeleton is secreted by a syncytium, and local patterns of skeletal growth are associated with distinct sub-domains of gene expression within the syncytium. For such molecular compartments to be maintained and to control local patterns of skeletal growth: (1) the mobility of TFs must be restricted to produce stable differences in the transcriptional states of nuclei within the syncytium; and (2) the mobility of biomineralization proteins must also be restricted to produce regional differences in skeletal growth. To test these predictions, we expressed fluorescently tagged forms of transcription factors and biomineralization proteins in sub-domains of the skeletogenic syncytium. We found that both classes of proteins have restricted mobility within the syncytium and identified motifs that limit their mobility. Our findings have general implications for understanding the functional and molecular compartmentalization of syncytia.
Collapse
Affiliation(s)
- Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15218, USA
| | - Jennifer Guerrero-Santoro
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15218, USA
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15218, USA
| |
Collapse
|
16
|
Khor JM, Ettensohn CA. An optimized Tet-On system for conditional control of gene expression in sea urchins. Development 2023; 150:dev201373. [PMID: 36607745 PMCID: PMC10108607 DOI: 10.1242/dev.201373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/28/2022] [Indexed: 01/07/2023]
Abstract
Sea urchins and other echinoderms are important experimental models for studying developmental processes. The lack of approaches for conditional gene perturbation, however, has made it challenging to investigate the late developmental functions of genes that have essential roles during early embryogenesis and genes that have diverse functions in multiple tissues. The doxycycline-controlled Tet-On system is a widely used molecular tool for temporally and spatially regulated transgene expression. Here, we optimized the Tet-On system to conditionally induce gene expression in sea urchin embryos. Using this approach, we explored the roles the MAPK signaling plays in skeletogenesis by expressing genes that perturb the pathway specifically in primary mesenchyme cells during later stages of development. We demonstrated the wide utility of the Tet-On system by applying it to a second sea urchin species and in cell types other than the primary mesenchyme cells. Our work provides a robust and flexible platform for the spatiotemporal regulation of gene expression in sea urchins, which will considerably enhance the utility of this prominent model system.
Collapse
Affiliation(s)
- Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Charles A. Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
17
|
Díaz-Martínez JP, Mejía-Gutiérrez LM, Islas-Villanueva V, Benítez-Villalobos F. Trioecy is maintained as a time-stable mating system in the pink sea urchin Toxopneustes roseus from the Mexican Pacific. Sci Rep 2022; 12:21408. [PMID: 36496463 PMCID: PMC9741619 DOI: 10.1038/s41598-022-26059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
Trioecy is a sexual system that consists of the co-occurrence of females, males and hermaphrodites in a population and is common in plants; however, in animals it is uncommon and poorly understood. In echinoderms, trioecy had never been recorded until now. Frequencies of females, males, and hermaphrodites were evaluated and gametogenic development was histologically characterized in a population of Toxopneustes roseus inhabiting the Mexican Pacific. Trioecy in this population is functional and temporally stable, since the three sexes coexisted in each sampling month. The hermaphrodites presented similar gametogenic development as the females and males and participated during the spawning season, contributing to the population's reproductive process. Trioecy is considered an evolutionarily transitory state, and it is extremely difficult to explain its presence in a species. We hypothesize that continuous ocean warming represents a threat to the survival of this population of T. roseus, since its early developmental stages, which represent a population bottleneck, are more vulnerable to high temperatures than other sea urchins inhabiting the area, while its population density is significantly lower. These conditions generate a strongly stressed environment, which is the determining factor that maintains the stability of trioecy in the species in which it has been studied.
Collapse
Affiliation(s)
- Julia Patricia Díaz-Martínez
- Programa de Posgrado en Ecología Marina, División de Estudios de Posgrado, Universidad del Mar Campus Puerto Ángel, Cd. Universitaria S/N, 70902, Oaxaca, Mexico
| | - Leobarda Margarita Mejía-Gutiérrez
- Programa de Posgrado en Ecología Marina, División de Estudios de Posgrado, Universidad del Mar Campus Puerto Ángel, Cd. Universitaria S/N, 70902, Oaxaca, Mexico
| | - Valentina Islas-Villanueva
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Av. de los Insurgentes Sur 1582, 03940, Mexico, Mexico
- Instituto de Genética, Universidad del Mar Campus Puerto Ángel, Cd. Universitaria S/N, 70902, Oaxaca, Mexico
| | | |
Collapse
|
18
|
Formery L, Wakefield A, Gesson M, Toisoul L, Lhomond G, Gilletta L, Lasbleiz R, Schubert M, Croce JC. Developmental atlas of the indirect-developing sea urchin Paracentrotus lividus: From fertilization to juvenile stages. Front Cell Dev Biol 2022; 10:966408. [PMID: 36393864 PMCID: PMC9664562 DOI: 10.3389/fcell.2022.966408] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/26/2022] [Indexed: 05/29/2025] Open
Abstract
The sea urchin Paracentrotus lividus has been used as a model system in biology for more than a century. Over the past decades, it has been at the center of a number of studies in cell, developmental, ecological, toxicological, evolutionary, and aquaculture research. Due to this previous work, a significant amount of information is already available on the development of this species. However, this information is fragmented and rather incomplete. Here, we propose a comprehensive developmental atlas for this sea urchin species, describing its ontogeny from fertilization to juvenile stages. Our staging scheme includes three periods divided into 33 stages, plus 15 independent stages focused on the development of the coeloms and the adult rudiment. For each stage, we provide a thorough description based on observations made on live specimens using light microscopy, and when needed on fixed specimens using confocal microscopy. Our descriptions include, for each stage, the main anatomical characteristics related, for instance, to cell division, tissue morphogenesis, and/or organogenesis. Altogether, this work is the first of its kind providing, in a single study, a comprehensive description of the development of P. lividus embryos, larvae, and juveniles, including details on skeletogenesis, ciliogenesis, myogenesis, coelomogenesis, and formation of the adult rudiment as well as on the process of metamorphosis in live specimens. Given the renewed interest for the use of sea urchins in ecotoxicological, developmental, and evolutionary studies as well as in using marine invertebrates as alternative model systems for biomedical investigations, this study will greatly benefit the scientific community and will serve as a reference for specialists and non-specialists interested in studying sea urchins.
Collapse
Affiliation(s)
- Laurent Formery
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche (IMEV), Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe), Villefranche-sur-Mer, France
| | - Axel Wakefield
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche (IMEV), Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe), Villefranche-sur-Mer, France
| | - Maeva Gesson
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche (IMEV), Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe), Villefranche-sur-Mer, France
| | - Ludovic Toisoul
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche (IMEV), Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe), Villefranche-sur-Mer, France
| | - Guy Lhomond
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche (IMEV), Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe), Villefranche-sur-Mer, France
| | - Laurent Gilletta
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche (IMEV), Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Villefranche-sur-Mer, France
| | - Régis Lasbleiz
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche (IMEV), Service Aquariologie du Centre de Ressources de Biologie Marine (CRBM), Villefranche-sur-Mer, France
| | - Michael Schubert
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche (IMEV), Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe), Villefranche-sur-Mer, France
| | - Jenifer C. Croce
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche (IMEV), Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe), Villefranche-sur-Mer, France
| |
Collapse
|
19
|
Martino C, Chianese T, Chiarelli R, Roccheri MC, Scudiero R. Toxicological Impact of Rare Earth Elements (REEs) on the Reproduction and Development of Aquatic Organisms Using Sea Urchins as Biological Models. Int J Mol Sci 2022; 23:ijms23052876. [PMID: 35270017 PMCID: PMC8911218 DOI: 10.3390/ijms23052876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
The growing presence of lanthanides in the environment has drawn the attention of the scientific community on their safety and toxicity. The sources of lanthanides in the environment include diagnostic medicine, electronic devices, permanent magnets, etc. Their exponential use and the poor management of waste disposal raise serious concerns about the quality and safety of the ecosystems at a global level. This review focused on the impact of lanthanides in marine organisms on reproductive fitness, fertilization and embryonic development, using the sea urchin as a biological model system. Scientific evidence shows that exposure to lanthanides triggers a wide variety of toxic insults, including reproductive performance, fertilization, redox metabolism, embryogenesis, and regulation of embryonic gene expression. This was thoroughly demonstrated for gadolinium, the most widely used lanthanide in diagnostic medicine, whose uptake in sea urchin embryos occurs in a time- and concentration-dependent manner, correlates with decreased calcium absorption and primarily affects skeletal growth, with incorrect regulation of the skeletal gene regulatory network. The results collected on sea urchin embryos demonstrate a variable sensitivity of the early life stages of different species, highlighting the importance of testing the effects of pollution in different species. The accumulation of lanthanides and their emerging negative effects make risk assessment and consequent legislative intervention on their disposal mandatory.
Collapse
Affiliation(s)
- Chiara Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, 90128 Palermo, Italy; (C.M.); (R.C.); (M.C.R.)
| | - Teresa Chianese
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy;
| | - Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, 90128 Palermo, Italy; (C.M.); (R.C.); (M.C.R.)
| | - Maria Carmela Roccheri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, 90128 Palermo, Italy; (C.M.); (R.C.); (M.C.R.)
| | - Rosaria Scudiero
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy;
- Correspondence:
| |
Collapse
|
20
|
Post-transcriptional regulation of factors important for the germ line. Curr Top Dev Biol 2022; 146:49-78. [PMID: 35152986 DOI: 10.1016/bs.ctdb.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Echinoderms are a major model system for many general aspects of biology, including mechanisms of gene regulation. Analysis of transcriptional regulation (Gene regulatory networks, direct DNA-binding of proteins to specific cis-elements, and transgenesis) has contributed to our understanding of how an embryo works. This chapter looks at post-transcriptional gene regulation in the context of how the primordial germ cells are formed, and how the factors essential for this process are regulated. Important in echinoderms, as in many embryos, is that key steps of fate determination are made post-transcriptionally. This chapter highlights these steps uncovered in sea urchins and sea stars, and links them to a general theme of how the germ line may regulate its fate differently than many of the embryo's somatic cell lineages.
Collapse
|
21
|
Su YH. Dorsal-ventral axis formation in sea urchin embryos. Curr Top Dev Biol 2022; 146:183-210. [PMID: 35152983 DOI: 10.1016/bs.ctdb.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Most sea urchin species produce planktonic feeding larvae with distinct dorsal-ventral polarity. Such morphological indicators of polarity arise after gastrulation, when several morphogenesis and cell differentiation events occur differentially along the dorsal-ventral axis. For instance, the gut bends toward the ventral side where the mouth will form, skeletogenesis occurs initially near the ventral side with the forming skeleton extending dorsally, and pigment cells differentiate and embed in the dorsal ectoderm. The patterning mechanisms and gene regulatory networks underlying these events have been extensively studied. Two opposing TGF-β signaling pathways, Nodal and BMP, play key roles in all three germ layers to respectively pattern the sea urchin ventral and dorsal sides. In this chapter, I describe our current understanding of sea urchin dorsal-ventral patterning mechanisms. Additionally, differences in the patterning mechanisms observed in lecithotrophic sea urchins (nonfeeding larvae) and in cidaroid sea urchins are also discussed, along with evolutionary insights gained from comparative analyses.
Collapse
Affiliation(s)
- Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
22
|
Valencia JE, Feuda R, Mellott DO, Burke RD, Peter IS. Ciliary photoreceptors in sea urchin larvae indicate pan-deuterostome cell type conservation. BMC Biol 2021; 19:257. [PMID: 34863182 PMCID: PMC8642985 DOI: 10.1186/s12915-021-01194-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolutionary history of cell types provides insights into how morphological and functional complexity arose during animal evolution. Photoreceptor cell types are particularly broadly distributed throughout Bilateria; however, their evolutionary relationship is so far unresolved. Previous studies indicate that ciliary photoreceptors are homologous at least within chordates, and here, we present evidence that a related form of this cell type is also present in echinoderm larvae. RESULTS Larvae of the purple sea urchin Strongylocentrotus purpuratus have photoreceptors that are positioned bilaterally in the oral/anterior apical neurogenic ectoderm. Here, we show that these photoreceptors express the transcription factor Rx, which is commonly expressed in ciliary photoreceptors, together with an atypical opsin of the GO family, opsin3.2, which localizes in particular to the cilia on the cell surface of photoreceptors. We show that these ciliary photoreceptors express the neuronal marker synaptotagmin and are located in proximity to pigment cells. Furthermore, we systematically identified additional transcription factors expressed in these larval photoreceptors and found that a majority are orthologous to transcription factors expressed in vertebrate ciliary photoreceptors, including Otx, Six3, Tbx2/3, and Rx. Based on the developmental expression of rx, these photoreceptors derive from the anterior apical neurogenic ectoderm. However, genes typically involved in eye development in bilateria, including pax6, six1/2, eya, and dac, are not expressed in sea urchin larval photoreceptors but are instead co-expressed in the hydropore canal. CONCLUSIONS Based on transcription factor expression, location, and developmental origin, we conclude that the sea urchin larval photoreceptors constitute a cell type that is likely homologous to the ciliary photoreceptors present in chordates.
Collapse
Affiliation(s)
- Jonathan E Valencia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Roberto Feuda
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.,Present address: Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Dan O Mellott
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Robert D Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| | - Isabelle S Peter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
23
|
Paganos P, Voronov D, Musser JM, Arendt D, Arnone MI. Single-cell RNA sequencing of the Strongylocentrotus purpuratus larva reveals the blueprint of major cell types and nervous system of a non-chordate deuterostome. eLife 2021; 10:70416. [PMID: 34821556 PMCID: PMC8683087 DOI: 10.7554/elife.70416] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Identifying the molecular fingerprint of organismal cell types is key for understanding their function and evolution. Here, we use single-cell RNA sequencing (scRNA-seq) to survey the cell types of the sea urchin early pluteus larva, representing an important developmental transition from non-feeding to feeding larva. We identify 21 distinct cell clusters, representing cells of the digestive, skeletal, immune, and nervous systems. Further subclustering of these reveal a highly detailed portrait of cell diversity across the larva, including the identification of neuronal cell types. We then validate important gene regulatory networks driving sea urchin development and reveal new domains of activity within the larval body. Focusing on neurons that co-express Pdx-1 and Brn1/2/4, we identify an unprecedented number of genes shared by this population of neurons in sea urchin and vertebrate endocrine pancreatic cells. Using differential expression results from Pdx-1 knockdown experiments, we show that Pdx1 is necessary for the acquisition of the neuronal identity of these cells. We hypothesize that a network similar to the one orchestrated by Pdx1 in the sea urchin neurons was active in an ancestral cell type and then inherited by neuronal and pancreatic developmental lineages in sea urchins and vertebrates.
Collapse
Affiliation(s)
- Periklis Paganos
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Danila Voronov
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Jacob M Musser
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg, Germany
| | - Detlev Arendt
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg, Germany
| | - Maria Ina Arnone
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| |
Collapse
|
24
|
Massri AJ, Greenstreet L, Afanassiev A, Berrio A, Wray GA, Schiebinger G, McClay DR. Developmental single-cell transcriptomics in the Lytechinus variegatus sea urchin embryo. Development 2021; 148:271986. [PMID: 34463740 DOI: 10.1242/dev.198614] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 08/20/2021] [Indexed: 12/30/2022]
Abstract
Using scRNA-seq coupled with computational approaches, we studied transcriptional changes in cell states of sea urchin embryos during development to the larval stage. Eighteen closely spaced time points were taken during the first 24 h of development of Lytechinus variegatus (Lv). Developmental trajectories were constructed using Waddington-OT, a computational approach to 'stitch' together developmental time points. Skeletogenic and primordial germ cell trajectories diverged early in cleavage. Ectodermal progenitors were distinct from other lineages by the 6th cleavage, although a small percentage of ectoderm cells briefly co-expressed endoderm markers that indicated an early ecto-endoderm cell state, likely in cells originating from the equatorial region of the egg. Endomesoderm cells also originated at the 6th cleavage and this state persisted for more than two cleavages, then diverged into distinct endoderm and mesoderm fates asynchronously, with some cells retaining an intermediate specification status until gastrulation. Seventy-nine out of 80 genes (99%) examined, and included in published developmental gene regulatory networks (dGRNs), are present in the Lv-scRNA-seq dataset and are expressed in the correct lineages in which the dGRN circuits operate.
Collapse
Affiliation(s)
- Abdull J Massri
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Laura Greenstreet
- Department of Mathematics, University of British Columbia, 121-1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada
| | - Anton Afanassiev
- Department of Mathematics, University of British Columbia, 121-1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada
| | | | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Columbia, 121-1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada
| | - David R McClay
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
25
|
Molecular evidence for a single origin of ultrafiltration-based excretory organs. Curr Biol 2021; 31:3629-3638.e2. [PMID: 34166606 DOI: 10.1016/j.cub.2021.05.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/14/2021] [Accepted: 05/26/2021] [Indexed: 01/14/2023]
Abstract
Excretion is an essential physiological process, carried out by all living organisms, regardless of their size or complexity.1-3 Both protostomes (e.g., flies and flatworms) and deuterostomes (e.g., humans and sea urchins) possess specialized excretory organs serving that purpose. Those organs exhibit an astonishing diversity, ranging from units composed of just few distinct cells (e.g., protonephridia) to complex structures, built by millions of cells of multiple types with divergent morphology and function (e.g., vertebrate kidneys).4,5 Although some molecular similarities between the development of kidneys of vertebrates and the regeneration of the protonephridia of flatworms have been reported,6,7 the molecular underpinnings of the development of excretory organs have never been systematically studied in a comparative context.4 Here, we show that a set of transcription factors (eya, six1/2, pou3, sall, lhx1/5, and osr) and structural proteins (nephrin, kirre, and zo1) is expressed in the excretory organs of a phoronid, brachiopod, annelid, onychophoran, priapulid, and hemichordate that represent major protostome lineages and non-vertebrate deuterostomes. We demonstrate that the molecular similarity observed in the vertebrate kidney and flatworm protonephridia6,7 is also seen in the developing excretory organs of those animals. Our results show that all types of ultrafiltration-based excretory organs are patterned by a conserved set of developmental genes, an observation that supports their homology. We propose that the last common ancestor of protostomes and deuterostomes already possessed an ultrafiltration-based organ that later gave rise to the vast diversity of extant excretory organs, including both proto- and metanephridia.
Collapse
|
26
|
Layous M, Khalaily L, Gildor T, Ben-Tabou de-Leon S. The tolerance to hypoxia is defined by a time-sensitive response of the gene regulatory network in sea urchin embryos. Development 2021; 148:dev.195859. [PMID: 33795230 PMCID: PMC8077511 DOI: 10.1242/dev.195859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
Deoxygenation, the reduction of oxygen level in the oceans induced by global warming and anthropogenic disturbances, is a major threat to marine life. This change in oxygen level could be especially harmful to marine embryos that use endogenous hypoxia and redox gradients as morphogens during normal development. Here, we show that the tolerance to hypoxic conditions changes between different developmental stages of the sea urchin embryo, possibly due to the structure of the gene regulatory networks (GRNs). We demonstrate that during normal development, the bone morphogenetic protein (BMP) pathway restricts the activity of the vascular endothelial growth factor (VEGF) pathway to two lateral domains and this restriction controls proper skeletal patterning. Hypoxia applied during early development strongly perturbs the activity of Nodal and BMP pathways that affect the VEGF pathway, dorsal-ventral (DV) and skeletogenic patterning. These pathways are largely unaffected by hypoxia applied after DV-axis formation. We propose that the use of redox and hypoxia as morphogens makes the sea urchin embryo highly sensitive to environmental hypoxia during early development, but the GRN structure provides higher tolerance to hypoxia at later stages. Summary: The use of hypoxia and redox gradients as morphogens makes sea urchin early development sensitive to environmental hypoxia. This sensitivity decreases later, possibly due to the gene regulatory network structure.
Collapse
Affiliation(s)
- Majed Layous
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel
| | - Lama Khalaily
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel
| | - Tsvia Gildor
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel
| | - Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel
| |
Collapse
|
27
|
Petersen I, Chang WWJ, Hu MY. Na+/H+ exchangers differentially contribute to midgut fluid sodium and proton concentration in the sea urchin larva. J Exp Biol 2021; 224:239542. [PMID: 34424985 DOI: 10.1242/jeb.240705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/24/2021] [Indexed: 11/20/2022]
Abstract
Regulation of ionic composition and pH is a requisite of all digestive systems in the animal kingdom. Larval stages of the marine superphylum Ambulacraria, including echinoderms and hemichordates, were demonstrated to have highly alkaline conditions in their midgut with the underlying epithelial transport mechanisms being largely unknown. Using ion-selective microelectrodes, the present study demonstrated that pluteus larvae of the purple sea urchin have highly alkaline pH (pH ∼9) and low [Na+] (∼120 mmol l-1) in their midgut fluids, compared with the ionic composition of the surrounding seawater. We pharmacologically investigated the role of Na+/H+ exchangers (NHE) in intracellular pH regulation and midgut proton and sodium maintenance using the NHE inhibitor 5-(n-ethyl-n-isopropyl)amiloride (EIPA). Basolateral EIPA application decreased midgut pH while luminal application via micro-injections increased midgut [Na+], without affecting pH. Immunohistochemical analysis demonstrated a luminal localization of NHE-2 (SpSlc9a2) in the midgut epithelium. Specific knockdown of spslc9a2 using Vivo-Morpholinos led to an increase in midgut [Na+] without affecting pH. Acute acidification experiments in combination with quantitative PCR analysis and measurements of midgut pH and [Na+] identified two other NHE isoforms, Spslc9a7 and SpSlc9a8, which potentially contribute to the regulation of [Na+] and pH in midgut fluids. This work provides new insights into ion regulatory mechanisms in the midgut epithelium of sea urchin larvae. The involvement of NHEs in regulating pH and Na+ balance in midgut fluids shows conserved features of insect and vertebrate digestive systems and may contribute to the ability of sea urchin larvae to cope with changes in seawater pH.
Collapse
Affiliation(s)
- Inga Petersen
- Institute of Physiology, Christian-Albrechts University of Kiel, Hermann-Rodewaldstraße 5, 24118 Kiel, Germany
| | - William W J Chang
- Institute of Physiology, Christian-Albrechts University of Kiel, Hermann-Rodewaldstraße 5, 24118 Kiel, Germany
| | - Marian Y Hu
- Institute of Physiology, Christian-Albrechts University of Kiel, Hermann-Rodewaldstraße 5, 24118 Kiel, Germany
| |
Collapse
|
28
|
Pieplow A, Dastaw M, Sakuma T, Sakamoto N, Yamamoto T, Yajima M, Oulhen N, Wessel GM. CRISPR-Cas9 editing of non-coding genomic loci as a means of controlling gene expression in the sea urchin. Dev Biol 2021; 472:85-97. [PMID: 33482173 PMCID: PMC7956150 DOI: 10.1016/j.ydbio.2021.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 11/28/2022]
Abstract
We seek to manipulate gene function here through CRISPR-Cas9 editing of cis-regulatory sequences, rather than the more typical mutation of coding regions. This approach would minimize secondary effects of cellular responses to nonsense mediated decay pathways or to mutant protein products by premature stops. This strategy also allows for reducing gene activity in cases where a complete gene knockout would result in lethality, and it can be applied to the rapid identification of key regulatory sites essential for gene expression. We tested this strategy here with genes of known function as a proof of concept, and then applied it to examine the upstream genomic region of the germline gene Nanos2 in the sea urchin, Strongylocentrotus purpuratus. We first used CRISPR-Cas9 to target established genomic cis-regulatory regions of the skeletogenic cell transcription factor, Alx1, and the TGF-β signaling ligand, Nodal, which produce obvious developmental defects when altered in sea urchin embryos. Importantly, mutation of cis-activator sites (Alx1) and cis-repressor sites (Nodal) result in the predicted decreased and increased transcriptional output, respectively. Upon identification of efficient gRNAs by genomic mutations, we then used the same validated gRNAs to target a deadCas9-VP64 transcriptional activator to increase Nodal transcription directly. Finally, we paired these new methodologies with a more traditional, GFP reporter construct approach to further our understanding of the transcriptional regulation of Nanos2, a key gene required for germ cell identity in S. purpuratus. With a series of reporter assays, upstream Cas9-promoter targeted mutagenesis, coupled with qPCR and in situ RNA hybridization, we concluded that the promoter of Nanos2 drives strong mRNA expression in the sea urchin embryo, indicating that its primordial germ cell (PGC)-specific restriction may rely instead on post-transcriptional regulation. Overall, we present a proof-of-principle tool-kit of Cas9-mediated manipulations of promoter regions that should be applicable in most cells and embryos for which CRISPR-Cas9 is employed.
Collapse
Affiliation(s)
- Alice Pieplow
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Meseret Dastaw
- Ethiopian Biotechnology Institute, Addis Ababa University, NBH1, 4killo King George VI St, Addis Ababa, Ethiopia
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Naoaki Sakamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Gary M Wessel
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
29
|
Bardhan A, Deiters A, Ettensohn CA. Conditional gene knockdowns in sea urchins using caged morpholinos. Dev Biol 2021; 475:21-29. [PMID: 33684434 DOI: 10.1016/j.ydbio.2021.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 12/01/2022]
Abstract
Echinoderms are important experimental models for analyzing embryonic development, but a lack of spatial and temporal control over gene perturbations has hindered developmental studies using these animals. Morpholino antisense oligonucleotides (MOs) have been used successfully by the echinoderm research community for almost two decades, and MOs remain the most widely used tool for acute gene knockdowns in these organisms. Echinoderm embryos develop externally and are optically transparent, making them ideally-suited to many light-based approaches for analyzing and manipulating development. Studies using zebrafish embryos have demonstrated the effectiveness of photoactivatable (caged) MOs for conditional gene knockdowns. Here we show that caged MOs, synthesized using nucleobase-caged monomers, provide light-regulated control over gene expression in sea urchin embryos. Our work provides the first robust approach for conditional gene silencing in this prominent model system.
Collapse
Affiliation(s)
- Anirban Bardhan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
30
|
Byrne M, Koop D, Strbenac D, Cisternas P, Yang JYH, Davidson PL, Wray G. Transcriptomic analysis of Nodal - and BMP- associated genes during development to the juvenile seastar in Parvulastra exigua (Asterinidae). Mar Genomics 2021; 59:100857. [PMID: 33676872 DOI: 10.1016/j.margen.2021.100857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
The molecular mechanisms underlying development of the pentameral body of adult echinoderms are poorly understood but are important to solve with respect to evolution of a unique body plan that contrasts with the bilateral body plan of other deuterostomes. As Nodal and BMP2/4 signalling is involved in axis formation in larvae and development of the echinoderm body plan, we used the developmental transcriptome generated for the asterinid seastar Parvulastra exigua to investigate the temporal expression patterns of Nodal and BMP2/4 genes from the embryo and across metamorphosis to the juvenile. For echinoderms, the Asteroidea represents the basal-type body architecture with a distinct (separated) ray structure. Parvulastra exigua has lecithotrophic development forming the juvenile soon after gastrulation providing ready access to the developing adult stage. We identified 39 genes associated with the Nodal and BMP2/4 network in the P. exigua developmental transcriptome. Clustering analysis of these genes resulted in 6 clusters with similar temporal expression patterns across development. A co-expression analysis revealed genes that have similar expression profiles as Nodal and BMP2/4. These results indicated genes that may have a regulatory relationship in patterning morphogenesis of the juvenile seastar. Developmental RNA-seq analyses of Parvulastra exigua show changes in Nodal and BMP2/4 signalling genes across the metamorphic transition. We provide the foundation for detailed analyses of this cascade in the evolution of the unusual pentameral echinoderm body and its deuterostome affinities.
Collapse
Affiliation(s)
- Maria Byrne
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Demian Koop
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dario Strbenac
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paula Cisternas
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jean Yee Hwa Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Phillip L Davidson
- Department of Biology and Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Gregory Wray
- Department of Biology and Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
31
|
Schrankel CS, Hamdoun A. Early patterning of ABCB, ABCC, and ABCG transporters establishes unique territories of small molecule transport in embryonic mesoderm and endoderm. Dev Biol 2021; 472:115-124. [PMID: 33460641 DOI: 10.1016/j.ydbio.2020.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/08/2020] [Accepted: 12/22/2020] [Indexed: 01/16/2023]
Abstract
Directed intercellular movement of diverse small molecules, including metabolites, signal molecules and xenobiotics, is a key feature of multicellularity. Networks of small molecule transporters (SMTs), including several ATP Binding Cassette (ABC) transporters, are central to this process. While small molecule transporters are well described in differentiated organs, little is known about their patterns of expression in early embryogenesis. Here we report the pattern of ABC-type SMT expression and activity during the early development of sea urchins. Of the six major ABCs in this embryo (ABCB1, -B4, -C1, -C4, -C5 and -G2), three expression patterns were observed: 1) ABCB1 and ABCC1 are first expressed ubiquitously, and then become enriched in endoderm and ectoderm-derived structures. 2) ABCC4 and ABCC5 are restricted to a ring of mesoderm in the blastula and ABCC4 is later expressed in the coelomic pouches, the embryonic niche of the primordial germ cells. 3) ABCB4 and ABCG2 are expressed exclusively in endoderm-fated cells. Assays with fluorescent substrates and inhibitors of transporters revealed a ring of ABCC4 efflux activity emanating from ABCC4+ mesodermal cells. Similarly, ABCB1 and ABCB4 efflux activity was observed in the developing gut, prior to the onset of feeding. This study reveals the early establishment of unique territories of small molecule transport during embryogenesis. A pattern of ABCC4/C5 expression is consistent with signaling functions during gut invagination and germ line development, while a later pattern of ABCB1/B4 and ABCG2 is consistent with roles in the embryonic gut. This work provides a conceptual framework with which to examine the function and evolution of SMT networks and to define the specific developmental pathways that drive the expression of these genes.
Collapse
Affiliation(s)
- Catherine S Schrankel
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego. 9500 Gilman Drive, La Jolla, CA, 92093-0202, USA
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego. 9500 Gilman Drive, La Jolla, CA, 92093-0202, USA.
| |
Collapse
|
32
|
Lin CY, Yu JK, Su YH. Evidence for BMP-mediated specification of primordial germ cells in an indirect-developing hemichordate. Evol Dev 2020; 23:28-45. [PMID: 33283431 DOI: 10.1111/ede.12361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/08/2020] [Accepted: 11/09/2020] [Indexed: 01/14/2023]
Abstract
Primordial germ cells (PGCs) are specified during development by either one of two major mechanisms, the preformation mode or the inductive mode. Because the inductive mode is widely employed by many bilaterians and early branching metazoan lineages, it has been postulated as an ancestral mechanism. However, among the deuterostome species that have been studied, invertebrate chordates use the preformation mode, while many vertebrate and echinoderm species are known to utilize an inductive mechanism, thus leaving the evolutionary history of PGC specification in the deuterostome lineage unclear. Hemichordates are the sister phylum of echinoderms, and together they form a clade called Ambulacraria that represents the closest group to the chordates. Thus, research in hemichordates is highly informative for resolving this issue. In this study, we investigate the developmental process of PGCs in an indirect-developing hemichordate, Ptychodera flava. We show that maternal transcripts of the conserved germline markers vasa, nanos, and piwi1 are ubiquitously distributed in early P. flava embryos, and these genes are coexpressed specifically in the dorsal hindgut starting from the gastrula stage. Immunostaining revealed that Vasa protein is concentrated toward the vegetal pole in early P. flava embryos, and it is restricted to cells in the dorsal hindgut of gastrulae and newly hatched larvae. The Vasa-positive cells later contribute to the developing trunk coeloms of the larvae and eventually reside in the adult gonads. We further show that bone morphogenetic protein (BMP) signaling is required to activate expression of the germline determinants in the gastrula hindgut, suggesting that PGC specification is induced by BMP signaling in P. flava. Our data support the hypothesis that the inductive mode is a conserved mechanism in Ambulacraria, which might even trace back to the common ancestor of Deuterostomes.
Collapse
Affiliation(s)
- Ching-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
33
|
Lyons DC, Perry KJ, Batzel G, Henry JQ. BMP signaling plays a role in anterior-neural/head development, but not organizer activity, in the gastropod Crepidula fornicata. Dev Biol 2020; 463:135-157. [PMID: 32389712 PMCID: PMC7444637 DOI: 10.1016/j.ydbio.2020.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
BMP signaling is involved in many aspects of metazoan development, with two of the most conserved functions being to pattern the dorsal-ventral axis and to specify neural versus epidermal fates. An active area of research within developmental biology asks how BMP signaling was modified over evolution to build disparate body plans. Animals belonging to the superclade Spiralia/Lophotrochozoa are excellent experimental subjects for studying the evolution of BMP signaling because a highly conserved, stereotyped early cleavage program precedes the emergence of distinct body plans. In this study we examine the role of BMP signaling in one representative, the slipper snail Crepidula fornicata. We find that mRNAs encoding BMP pathway components (including the BMP ligand decapentaplegic, and BMP antagonists chordin and noggin-like proteins) are not asymmetrically localized along the dorsal-ventral axis in the early embryo, as they are in other species. Furthermore, when BMP signaling is perturbed by adding ectopic recombinant BMP4 protein, or by treating embryos with the selective Activin receptor-like kinase-2 (ALK-2) inhibitor Dorsomorphin Homolog 1 (DMH1), we observe no obvious effects on dorsal-ventral patterning within the posterior (post-trochal) region of the embryo. Instead, we see effects on head development and the balance between neural and epidermal fates specifically within the anterior, pre-trochal tissue derived from the 1q1 lineage. Our experiments define a window of BMP signaling sensitivity that ends at approximately 44-48 hours post fertilization, which occurs well after organizer activity has ended and after the dorsal-ventral axis has been determined. When embryos were exposed to BMP4 protein during this window, we observed morphogenetic defects leading to the separation of the anterior, 1q lineage from the rest of the embryo. The 1q-derived organoid remained largely undifferentiated and was radialized, while the post-trochal portion of the embryo developed relatively normally and exhibited clear signs of dorsal-ventral patterning. When embryos were exposed to DMH1 during the same time interval, we observed defects in the head, including protrusion of the apical plate, enlarged cerebral ganglia and ectopic ocelli, but otherwise the larvae appeared normal. No defects in shell development were noted following DMH1 treatments. The varied roles of BMP signaling in the development of several other spiralians have recently been examined. We discuss our results in this context, and highlight the diversity of developmental mechanisms within spiral-cleaving animals.
Collapse
Affiliation(s)
- Deirdre C Lyons
- Scripps Institution of Oceanography, U.C. San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Kimberly J Perry
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Grant Batzel
- Scripps Institution of Oceanography, U.C. San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jonathan Q Henry
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave., Urbana, IL, 61801, USA.
| |
Collapse
|
34
|
Li Y, Omori A, Flores RL, Satterfield S, Nguyen C, Ota T, Tsurugaya T, Ikuta T, Ikeo K, Kikuchi M, Leong JCK, Reich A, Hao M, Wan W, Dong Y, Ren Y, Zhang S, Zeng T, Uesaka M, Uchida Y, Li X, Shibata TF, Bino T, Ogawa K, Shigenobu S, Kondo M, Wang F, Chen L, Wessel G, Saiga H, Cameron RA, Livingston B, Bradham C, Wang W, Irie N. Genomic insights of body plan transitions from bilateral to pentameral symmetry in Echinoderms. Commun Biol 2020; 3:371. [PMID: 32651448 PMCID: PMC7351957 DOI: 10.1038/s42003-020-1091-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Echinoderms are an exceptional group of bilaterians that develop pentameral adult symmetry from a bilaterally symmetric larva. However, the genetic basis in evolution and development of this unique transformation remains to be clarified. Here we report newly sequenced genomes, developmental transcriptomes, and proteomes of diverse echinoderms including the green sea urchin (L. variegatus), a sea cucumber (A. japonicus), and with particular emphasis on a sister group of the earliest-diverged echinoderms, the feather star (A. japonica). We learned that the last common ancestor of echinoderms retained a well-organized Hox cluster reminiscent of the hemichordate, and had gene sets involved in endoskeleton development. Further, unlike in other animal groups, the most conserved developmental stages were not at the body plan establishing phase, and genes normally involved in bilaterality appear to function in pentameric axis development. These results enhance our understanding of the divergence of protostomes and deuterostomes almost 500 Mya. Li et al. investigate the evolution and genetic basis of the adult pentameral body plan in echinoderms using genomic, transcriptomic, and proteomic data. They determine that the last common ancestor of echinoderms contained an organized Hox cluster and endoskeleton genes, and suggest that cooption of bilateral development genes was involved in evolution of the pentameric body plan.
Collapse
Affiliation(s)
- Yongxin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Akihito Omori
- Sado Island Center for Ecological Sustainability, Niigata University, Niigata, Japan
| | - Rachel L Flores
- Dept. of Biological Sciences, California State Univesity, Long Beach, CA, USA
| | - Sheri Satterfield
- Dept. of Biological Sciences, California State Univesity, Long Beach, CA, USA
| | - Christine Nguyen
- Dept. of Biological Sciences, California State Univesity, Long Beach, CA, USA
| | | | | | - Tetsuro Ikuta
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, Japan.,Tokyo Metropolitan University, Yokosuka, Tokyo, Japan
| | | | | | - Jason C K Leong
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Adrian Reich
- Providence Institute of Molecular Oogenesis, Brown University, Providence, RI, USA
| | - Meng Hao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenting Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yang Dong
- Yunnan Agricultural University, Kunming, China
| | - Yaondong Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Si Zhang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Tao Zeng
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Masahiro Uesaka
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, Japan
| | - Yui Uchida
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Universal Biology Institute, University of Tokyo, Tokyo, Japan
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Tomoko F Shibata
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takahiro Bino
- NIBB Core Research Facilities, National Institute of Basic Biology, Okazaki, Aichi, Japan
| | - Kota Ogawa
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute of Basic Biology, Okazaki, Aichi, Japan
| | - Mariko Kondo
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Fayou Wang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Luonan Chen
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Gary Wessel
- Providence Institute of Molecular Oogenesis, Brown University, Providence, RI, USA
| | - Hidetoshi Saiga
- Tokyo Metropolitan University, Yokosuka, Tokyo, Japan.,Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Chuo University, Tokyo, Japan
| | - R Andrew Cameron
- Beckman Institute, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Brian Livingston
- Dept. of Biological Sciences, California State Univesity, Long Beach, CA, USA
| | | | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. .,School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
| | - Naoki Irie
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan. .,Universal Biology Institute, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
35
|
Hogan JD, Keenan JL, Luo L, Ibn-Salem J, Lamba A, Schatzberg D, Piacentino ML, Zuch DT, Core AB, Blumberg C, Timmermann B, Grau JH, Speranza E, Andrade-Navarro MA, Irie N, Poustka AJ, Bradham CA. The developmental transcriptome for Lytechinus variegatus exhibits temporally punctuated gene expression changes. Dev Biol 2019; 460:139-154. [PMID: 31816285 DOI: 10.1016/j.ydbio.2019.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
Embryonic development is arguably the most complex process an organism undergoes during its lifetime, and understanding this complexity is best approached with a systems-level perspective. The sea urchin has become a highly valuable model organism for understanding developmental specification, morphogenesis, and evolution. As a non-chordate deuterostome, the sea urchin occupies an important evolutionary niche between protostomes and vertebrates. Lytechinus variegatus (Lv) is an Atlantic species that has been well studied, and which has provided important insights into signal transduction, patterning, and morphogenetic changes during embryonic and larval development. The Pacific species, Strongylocentrotus purpuratus (Sp), is another well-studied sea urchin, particularly for gene regulatory networks (GRNs) and cis-regulatory analyses. A well-annotated genome and transcriptome for Sp are available, but similar resources have not been developed for Lv. Here, we provide an analysis of the Lv transcriptome at 11 timepoints during embryonic and larval development. Temporal analysis suggests that the gene regulatory networks that underlie specification are well-conserved among sea urchin species. We show that the major transitions in variation of embryonic transcription divide the developmental time series into four distinct, temporally sequential phases. Our work shows that sea urchin development occurs via sequential intervals of relatively stable gene expression states that are punctuated by abrupt transitions.
Collapse
Affiliation(s)
- John D Hogan
- Program in Bioinformatics, Boston University, Boston, MA, USA
| | | | - Lingqi Luo
- Program in Bioinformatics, Boston University, Boston, MA, USA
| | - Jonas Ibn-Salem
- Evolution and Development Group, Max-Planck Institute for Molecular Genetics, Berlin, Germany; Faculty of Biology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Arjun Lamba
- Biology Department, Boston University, Boston, MA, USA
| | | | - Michael L Piacentino
- Program in Molecular and Cellular Biology and Biochemistry, Boston University, Boston, MA, USA
| | - Daniel T Zuch
- Program in Molecular and Cellular Biology and Biochemistry, Boston University, Boston, MA, USA
| | - Amanda B Core
- Biology Department, Boston University, Boston, MA, USA
| | | | - Bernd Timmermann
- Sequencing Core Facility, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - José Horacio Grau
- Dahlem Centre for Genome Research and Medical Systems Biology, Environmental and Phylogenomics Group, Berlin, Germany; Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Emily Speranza
- Program in Bioinformatics, Boston University, Boston, MA, USA
| | | | - Naoki Irie
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| | - Albert J Poustka
- Evolution and Development Group, Max-Planck Institute for Molecular Genetics, Berlin, Germany; Dahlem Centre for Genome Research and Medical Systems Biology, Environmental and Phylogenomics Group, Berlin, Germany
| | - Cynthia A Bradham
- Program in Bioinformatics, Boston University, Boston, MA, USA; Biology Department, Boston University, Boston, MA, USA; Program in Molecular and Cellular Biology and Biochemistry, Boston University, Boston, MA, USA.
| |
Collapse
|
36
|
Oulhen N, Swartz SZ, Wang L, Wikramanayake A, Wessel GM. Distinct transcriptional regulation of Nanos2 in the germ line and soma by the Wnt and delta/notch pathways. Dev Biol 2019; 452:34-42. [PMID: 31075220 PMCID: PMC6848975 DOI: 10.1016/j.ydbio.2019.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 12/23/2022]
Abstract
Specification of the primordial germ cells (PGCs) is essential for sexually reproducing animals. Although the mechanisms of PGC specification are diverse between organisms, the RNA binding protein Nanos is consistently required in the germ line in all species tested. How Nanos is selectively expressed in the germ line, however, remains largely elusive. We report that in sea urchin embryos, the early expression of Nanos2 in the PGCs requires the maternal Wnt pathway. During gastrulation, however, Nanos2 expression expands into adjacent somatic mesodermal cells and this secondary Nanos expression instead requires Delta/Notch signaling through the forkhead family member FoxY. Each of these transcriptional regulators were tested by chromatin immunoprecipitation analysis and found to directly interact with a DNA locus upstream of Nanos2. Given the conserved importance of Nanos in germ line specification, and the derived character of the micromeres and small micromeres in the sea urchin, we propose that the ancestral mechanism of Nanos2 expression in echinoderms was by induction in mesodermal cells during gastrulation.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - S Zachary Swartz
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA
| | - Lingyu Wang
- Department of Biology and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | | | - Gary M Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI, 02912, USA.
| |
Collapse
|
37
|
BMP controls dorsoventral and neural patterning in indirect-developing hemichordates providing insight into a possible origin of chordates. Proc Natl Acad Sci U S A 2019; 116:12925-12932. [PMID: 31189599 DOI: 10.1073/pnas.1901919116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A defining feature of chordates is the unique presence of a dorsal hollow neural tube that forms by internalization of the ectodermal neural plate specified via inhibition of BMP signaling during gastrulation. While BMP controls dorsoventral (DV) patterning across diverse bilaterians, the BMP-active side is ventral in chordates and dorsal in many other bilaterians. How this phylum-specific DV inversion occurs and whether it is coupled to the emergence of the dorsal neural plate are unknown. Here we explore these questions by investigating an indirect-developing enteropneust from the hemichordate phylum, which together with echinoderms form a sister group of the chordates. We found that in the hemichordate larva, BMP signaling is required for DV patterning and is sufficient to repress neurogenesis. We also found that transient overactivation of BMP signaling during gastrulation concomitantly blocked mouth formation and centralized the nervous system to the ventral ectoderm in both hemichordate and sea urchin larvae. Moreover, this mouthless, neurogenic ventral ectoderm displayed a medial-to-lateral organization similar to that of the chordate neural plate. Thus, indirect-developing deuterostomes use BMP signaling in DV and neural patterning, and an elevated BMP level during gastrulation drives pronounced morphological changes reminiscent of a DV inversion. These findings provide a mechanistic basis to support the hypothesis that an inverse chordate body plan emerged from an indirect-developing ancestor by tinkering with BMP signaling.
Collapse
|
38
|
Production of a mutant of large-scale loach Paramisgurnus dabryanus with skin pigmentation loss by genome editing with CRISPR/Cas9 system. Transgenic Res 2019; 28:341-356. [PMID: 31183663 DOI: 10.1007/s11248-019-00125-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/23/2019] [Indexed: 02/06/2023]
Abstract
CRISPR/Cas9 system has been developed as a highly efficient genome editing technology to specifically induce mutations in a few aquaculture species. In this study, we described induction of targeted gene (namely tyrosinase, tyr) mutations in large-scale loach Paramisgurnus dabryanus, an important aquaculture fish species and a potential model organism for studies of intestinal air-breathing function, using the CRISPR/Cas9 system. Tyr gene in large-scale loach was firstly cloned and then its expressions were investigated. Two guide RNAs (gRNAs) were designed and separately transformed with Cas9 in the loach. 89.4% and 96.1% of injected loach juveniles respectively displayed a graded loss of pigmentation for the two gRNAs, in other words, for target 1 and target 2. We classified the injected loach juveniles into five groups according to their skin color phenotypes, including four albino groups and one wild-type-like group. And one of them was clear albino group, which was of high ornamental and commercial value. More than 50 clones for each albino transformant with a visible phenotype in each target were randomly selected and sequenced. Results obtained here showed that along with the increase of pigmentation, wild-type alleles appeared in the injected loach juveniles more often and insertion/deletion alleles less frequently. This study demonstrated that CRISPR/Cas9 system could be practically performed to modify large-scale loach tyr to produce an albino mutant of high ornamental and commercial value, and for the first time showed successful use of the CRISPR/Cas9 system for genome editing in a Cobitidae species.
Collapse
|
39
|
Campanale JP, Hamdoun A, Wessel GM, Su YH, Oulhen N. Methods to label, isolate, and image sea urchin small micromeres, the primordial germ cells (PGCs). Methods Cell Biol 2019; 150:269-292. [PMID: 30777180 PMCID: PMC6487853 DOI: 10.1016/bs.mcb.2018.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Small micromeres of the sea urchin are believed to be primordial germ cells (PGCs), fated to give rise to sperm or eggs in the adult. Sea urchin PGCs are formed at the fifth cleavage, undergo one additional division during blastulation, and migrate to the coelomic pouches of the pluteus larva. The goal of this chapter is to detail classical and modern techniques used to analyze primordial germ cell specification, gene expression programs, and cell behaviors in fixed and live embryos. The transparency of the sea urchin embryo enables both live imaging techniques and in situ RNA hybridization and immunolabeling for a detailed molecular characterization of these cells. Four approaches are presented to highlight small micromeres with fluorescent molecules for analysis by live and fixed cell microscopy: (1) small molecule dye accumulation during cleavage and blastula stages, (2) primordial germ cell targeted RNA expression using the Nanos untranslated regions, (3) fusing genes of interest with a Nanos2 targeting peptide, and (4) EdU and BrdU labeling. Applications of the live labeling techniques are discussed, including sorting by fluorescence-activated cell sorting for transcriptomic analysis, and, methods to image small micromere behavior in whole and dissociated embryos by live confocal microscopy. Finally, summary table of antibody and RNA probes as well as small molecule dyes to label small micromeres at a variety of developmental stages is provided.
Collapse
Affiliation(s)
- Joseph P Campanale
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States.
| | - Amro Hamdoun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States.
| | - Gary M Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| |
Collapse
|
40
|
Fan TP, Ting HC, Yu JK, Su YH. Reiterative use of FGF signaling in mesoderm development during embryogenesis and metamorphosis in the hemichordate Ptychodera flava. BMC Evol Biol 2018; 18:120. [PMID: 30075704 PMCID: PMC6091094 DOI: 10.1186/s12862-018-1235-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/26/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Mesoderm is generally considered to be a germ layer that is unique to Bilateria, and it develops into diverse tissues, including muscle, and in the case of vertebrates, the skeleton and notochord. Studies on various deuterostome animals have demonstrated that fibroblast growth factor (FGF) signaling is required for the formation of many mesodermal structures, such as vertebrate somites, from which muscles are differentiated, and muscles in sea urchin embryos, suggesting an ancient role of FGF signaling in muscle development. However, the formation of trunk muscles in invertebrate chordates is FGF-independent, leading to ambiguity about this ancient role in deuterostomes. To further understand the role of FGF signaling during deuterostome evolution, we investigated the development of mesodermal structures during embryogenesis and metamorphosis in Ptychodera flava, an indirect-developing hemichordate that has larval morphology similar to echinoderms and adult body features that are similar to chordates. RESULTS Here we show that genes encoding FGF ligands, FGF receptors and transcription factors that are known to be involved in mesoderm formation and myogenesis are expressed dynamically during embryogenesis and metamorphosis. FGF signaling at the early gastrula stage is required for the specification of the mesodermal cell fate in P. flava. The mesoderm cells are then differentiated stepwise into the hydroporic canal, the pharyngeal muscle and the muscle string; formation of the last two muscular structures are controlled by FGF signaling. Moreover, augmentation of FGF signaling during metamorphosis accelerated the process, facilitating the transformation from cilia-driven swimming larvae into muscle-driven worm-like juveniles. CONCLUSIONS Our data show that FGF signaling is required for mesoderm induction and myogenesis in the P. flava embryo, and it is reiteratively used for the morphological transition during metamorphosis. The dependence of muscle development on FGF signaling in both planktonic larvae and sand-burrowing worms supports its ancestral role in deuterostomes.
Collapse
Affiliation(s)
- Tzu-Pei Fan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hsiu-Chi Ting
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang, Taipei, 11529, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang, Taipei, 11529, Taiwan
| | - Yi-Hsien Su
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan. .,Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang, Taipei, 11529, Taiwan. .,Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
41
|
Kasahara M, Kobayashi C, Sakaguchi C, Miyahara C, Yamanaka A, Kitazawa C. Effects of Nodal inhibition on development of temnopleurid sea urchins. Evol Dev 2018; 20:91-99. [PMID: 29806731 DOI: 10.1111/ede.12254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adult rudiment formation in some temnopleurids begins with the formation of a cell mass that is pinched off the left ectoderm in early larval development. The cell mass forms the adult rudiment with the left coelomic pouch of the mesodermal region. However, details of the mechanisms to establish position of the cell mass are still unknown. We analyzed the inhibiting effect of Nodal, a factor for morphogenesis of the oral region and right side, for location of the cell mass, in four temnopleurids. Pulse inhibition, at least 5 min inhibition, during coelomic pouch formation allowed a cell mass to form on both sides, whereas treatments after that period did not. These results indicate that Nodal signaling controls the oral-aboral axis before gastrulation and then affects the position of the cell mass and adult rudiment up to coelomic pouch formation. They also indicate that the position of the adult rudiment under Nodal signaling pathways is conserved in temnopleurids, as adult rudiment formation is dependent on the cell mass.
Collapse
Affiliation(s)
- Mami Kasahara
- Biological Institute, Faculty of Education, Yamaguchi University, Yamaguchi, Japan
| | - Chiaki Kobayashi
- Biological Institute, Faculty of Education, Yamaguchi University, Yamaguchi, Japan
| | - Chikara Sakaguchi
- Biological Institute, Faculty of Education, Yamaguchi University, Yamaguchi, Japan
| | - Chisato Miyahara
- Biological Institute, Faculty of Education, Yamaguchi University, Yamaguchi, Japan
| | - Akira Yamanaka
- Faculty of Science, Department of Biology and Chemistry, Yamaguchi University, Yamaguchi, Japan.,Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Chisato Kitazawa
- Biological Institute, Faculty of Education, Yamaguchi University, Yamaguchi, Japan.,Social System Analysis, The Graduate School of East Asian Studies, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
42
|
Abstract
A growing body of evidence shows that gene expression in multicellular organisms is controlled by the combinatorial function of multiple transcription factors. This indicates that not the individual transcription factors or signaling molecules, but the combination of expressed regulatory molecules, the regulatory state, should be viewed as the functional unit in gene regulation. Here, I discuss the concept of the regulatory state and its proposed role in the genome-wide control of gene expression. Recent analyses of regulatory gene expression in sea urchin embryos have been instrumental for solving the genomic control of cell fate specification in this system. Some of the approaches that were used to determine the expression of regulatory states during sea urchin embryogenesis are reviewed. Significant developmental changes in regulatory state expression leading to the distinct specification of cell fates are regulated by gene regulatory network circuits. How these regulatory state transitions are encoded in the genome is illuminated using the sea urchin endoderm-mesoderms cell fate decision circuit as an example. These observations highlight the importance of considering developmental gene regulation, and the function of individual transcription factors, in the context of regulatory states.
Collapse
|
43
|
Cui M, Lin CY, Su YH. Recent advances in functional perturbation and genome editing techniques in studying sea urchin development. Brief Funct Genomics 2018; 16:309-318. [PMID: 28605407 DOI: 10.1093/bfgp/elx011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Studies on the gene regulatory networks (GRNs) of sea urchin embryos have provided a basic understanding of the molecular mechanisms controlling animal development. The causal links in GRNs have been verified experimentally through perturbation of gene functions. Microinjection of antisense morpholino oligonucleotides (MOs) into the egg is the most widely used approach for gene knockdown in sea urchin embryos. The modification of MOs into a membrane-permeable form (vivo-MOs) has allowed gene knockdown at later developmental stages. Recent advances in genome editing tools, such as zinc-finger nucleases, transcription activator-like effector-based nucleases and the clustered regularly interspaced short palindromic repeat/clustered regularly interspaced short palindromic repeat-associated protein 9 (CRISPR/Cas9) system, have provided methods for gene knockout in sea urchins. Here, we review the use of vivo-MOs and genome editing tools in sea urchin studies since the publication of its genome in 2006. Various applications of the CRISPR/Cas9 system and their potential in studying sea urchin development are also discussed. These new tools will provide more sophisticated experimental methods for studying sea urchin development.
Collapse
|
44
|
Abstract
The control processes that underlie the progression of development can be summarized in maps of gene regulatory networks (GRNs). A critical step in their assembly is the systematic perturbation of network candidates. In sea urchins the most important method for interfering with expression in a gene-specific way is application of morpholino antisense oligonucleotides (MOs). MOs act by binding to their sequence complement in transcripts resulting in a block in translation or a change in splicing and thus result in a loss of function. Despite the tremendous success of this technology, recent comparisons to mutants generated by genome editing have led to renewed criticism and challenged its reliability. As with all methods based on sequence recognition, MOs are prone to off-target binding that may result in phenotypes that are erroneously ascribed to the loss of the intended target. However, the slow progression of development in sea urchins has enabled extremely detailed studies of gene activity in the embryo. This wealth of knowledge paired with the simplicity of the sea urchin embryo enables careful analysis of MO phenotypes through a variety of methods that do not rely on terminal phenotypes. This article summarizes the use of MOs in probing GRNs and the steps that should be taken to assure their specificity.
Collapse
|
45
|
Soukup V, Kozmik Z. The Bmp signaling pathway regulates development of left-right asymmetry in amphioxus. Dev Biol 2018; 434:164-174. [PMID: 29224891 DOI: 10.1016/j.ydbio.2017.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 01/31/2023]
Abstract
Establishment of asymmetry along the left-right (LR) body axis in vertebrates requires interplay between Nodal and Bmp signaling pathways. In the basal chordate amphioxus, the left-sided activity of the Nodal signaling has been attributed to the asymmetric morphogenesis of paraxial structures and pharyngeal organs, however the role of Bmp signaling in LR asymmetry establishment has not been addressed to date. Here, we show that Bmp signaling is necessary for the development of LR asymmetric morphogenesis of amphioxus larvae through regulation of Nodal signaling. Loss of Bmp signaling results in loss of the left-sided expression of Nodal, Gdf1/3, Lefty and Pitx and in gain of ectopic expression of Cerberus on the left side. As a consequence, the larvae display loss of the offset arrangement of axial structures, loss of the left-sided pharyngeal organs including the mouth, and ectopic development of the right-sided organs on the left side. Bmp inhibition thus phenocopies inhibition of Nodal signaling and results in the right isomerism. We conclude that Bmp and Nodal pathways act in concert to specify the left side and that Bmp signaling plays a fundamental role during LR development in amphioxus.
Collapse
Affiliation(s)
- Vladimir Soukup
- Institute of Molecular Genetics, The Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic.
| | - Zbynek Kozmik
- Institute of Molecular Genetics, The Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| |
Collapse
|
46
|
Abstract
Deuterostomes - a key subdivision of animals - are characterized by the mouth developing anteriorly as a rupture between the outer epithelium and the foregut wall. A new study of amphioxus challenges this view and proposes separate evolutionary origins of deuterostome oral openings.
Collapse
|
47
|
Fresques TM, Wessel GM. Nodal induces sequential restriction of germ cell factors during primordial germ cell specification. Development 2018; 145:dev155663. [PMID: 29358213 PMCID: PMC5825842 DOI: 10.1242/dev.155663] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 12/18/2017] [Indexed: 12/30/2022]
Abstract
Specification of the germ cell lineage is required for sexual reproduction in animals. The mechanism of germ cell specification varies among animals but roughly clusters into either inherited or inductive mechanisms. The inductive mechanism, the use of cell-cell interactions for germ cell specification, appears to be the ancestral mechanism in animal phylogeny, yet the pathways responsible for this process are only recently surfacing. Here, we show that germ cell factors in the sea star initially are present broadly, then become restricted dorsally and then in the left side of the embryo where the germ cells form a posterior enterocoel. We find that Nodal signaling is required for the restriction of two germ cell factors, Nanos and Vasa, during the early development of this animal. We learned that Nodal inhibits germ cell factor accumulation in three ways including: inhibition of specific transcription, degradation of specific mRNAs and inhibition of tissue morphogenesis. These results document a signaling mechanism required for the sequential restriction of germ cell factors, which causes a specific set of embryonic cells to become the primordial germ cells.
Collapse
Affiliation(s)
- Tara M Fresques
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA
| | - Gary M Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA
| |
Collapse
|
48
|
Morov AR, Ukizintambara T, Sabirov RM, Yasui K. Acquisition of the dorsal structures in chordate amphioxus. Open Biol 2017; 6:rsob.160062. [PMID: 27307516 PMCID: PMC4929940 DOI: 10.1098/rsob.160062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/17/2016] [Indexed: 02/04/2023] Open
Abstract
Acquisition of dorsal structures, such as notochord and hollow nerve cord, is likely to have had a profound influence upon vertebrate evolution. Dorsal formation in chordate development thus has been intensively studied in vertebrates and ascidians. However, the present understanding does not explain how chordates acquired dorsal structures. Here we show that amphioxus retains a key clue to answer this question. In amphioxus embryos, maternal nodal mRNA distributes asymmetrically in accordance with the remodelling of the cortical cytoskeleton in the fertilized egg, and subsequently lefty is first expressed in a patch of blastomeres across the equator where wnt8 is expressed circularly and which will become the margin of the blastopore. The lefty domain co-expresses zygotic nodal by the initial gastrula stage on the one side of the blastopore margin and induces the expression of goosecoid, not-like, chordin and brachyury1 genes in this region, as in the oral ectoderm of sea urchin embryos, which provides a basis for the formation of the dorsal structures. The striking similarity in the gene regulations and their respective expression domains when comparing dorsal formation in amphioxus and the determination of the oral ectoderm in sea urchin embryos suggests that chordates derived from an ambulacrarian-type blastula with dorsoventral inversion.
Collapse
Affiliation(s)
- Arseniy R Morov
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan Department of Zoology and General Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya Street, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Tharcisse Ukizintambara
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Rushan M Sabirov
- Department of Zoology and General Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya Street, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Kinya Yasui
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
49
|
Byrne M, Koop D, Morris VB, Chui J, Wray GA, Cisternas P. Expression of genes and proteins of the pax-six-eya-dach network in the metamorphic sea urchin: Insights into development of the enigmatic echinoderm body plan and sensory structures. Dev Dyn 2017; 247:239-249. [PMID: 28850769 DOI: 10.1002/dvdy.24584] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Photoreception-associated genes of the Pax-Six-Eya-Dach network (PSEDN) are deployed for many roles in addition to photoreception development. In this first study of PSEDN genes during development of the pentameral body in sea urchins, we investigated their spatial expression in Heliocidaris erythrogramma. RESULTS Expression of PSEDN genes in the hydrocoele of early (Dach, Eya, Six1/2) and/or late (Pax6, Six3/6) larvae, and the five hydrocoele lobes, the first morphological expression of pentamery, supports a role in body plan development. Pax6, Six1/2, and Six3/6 were localized to the primary and/or secondary podia and putative sensory/neuronal cells. Six1/2 and Six3/6 were expressed in the neuropil region in the terminal disc of the podia. Dach was localized to spines. Sequential up-regulation of gene expression as new podia and spines formed was evident. Rhabdomeric opsin and pax6 protein were localized to cells in the primary podia and spines. CONCLUSIONS Our results support roles for PSEDN genes in development of the pentameral body plan, contributing to our understanding of how the most unusual body plan in the Bilateria may have evolved. Development of sensory cells within the Pax-Six expression field is consistent with the role of these genes in sensory cell development in diverse species. Developmental Dynamics 247:239-249, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maria Byrne
- School of Medical Sciences, The University of Sydney, NSW, Australia.,School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| | - Demian Koop
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Valerie B Morris
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| | - Juanita Chui
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Gregory A Wray
- Department of Biology and Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
| | - Paula Cisternas
- School of Medical Sciences, The University of Sydney, NSW, Australia
| |
Collapse
|
50
|
Kitazawa C, Nakano M, Yamaguchi T, Miyahara C, Yamanaka A. Specification of Larval Axes of Partial Embryos in the Temnopleurid Temnopleurus toreumaticus and the Strongylocentroid Hemicentrotus pulcherrimus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:533-545. [PMID: 28744964 DOI: 10.1002/jez.b.22751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 04/22/2017] [Accepted: 04/27/2017] [Indexed: 11/11/2022]
Abstract
Many sea urchins, including the strongylocentroid Hemicentrotus pulcherrimus, produce an amniotic cavity on the left for adult rudiment formation at the late larval stage. In contrast, temnopleurids form a cell mass at the early larval stage instead of an amniotic cavity. Although the mechanisms establishing left-right polarity of the amniotic cavity involve cell-cell interactions and signaling pathways, corresponding pathways for the cell mass are unknown. We analyzed the effects of blastomere isolation on the specification of larval axes in the temnopleurid Temnopleurus toreumaticus and compared them to those in H. pulcherrimus. Blastomere isolation at the two- or four-cell stages in T. toreumaticus disturbed the location of the cell mass and adult rudiment in approximately 10-20% of specimens. In contrast, isolation at the two-cell stage in H. pulcherrimus caused the left-right polarity to become random. When blastomeres isolated at the two-cell stage were cultured as pairs, approximately 20% of pairs had atypical polarity in both species. Following isolation at the four-cell stage, 71.4% of quartets produced larvae with atypical polarity in T. toreumaticus. Thus, cell-cell interaction between two daughter blastomeres after the second cleavage may be involved in the mechanism determining left-right polarity. Dye injection into a blastomere and subsequent observations indicated that the location of the boundary of the first cleavage showed similar patterns in both species. These observations suggest that species-specific mechanisms establish the larval axes and blastomeres at the two- and four-cell stages redistribute their cytoplasm, forming gradients that establish left-right polarity.
Collapse
Affiliation(s)
- Chisato Kitazawa
- Biological Institute, Faculty of Education, Yamaguchi University, Yamaguchi, Japan.,Social System Analysis, The Graduate School of East Asian Studies, Yamaguchi University, Yamaguchi, Japan
| | - Michihiro Nakano
- Biological Institute, Faculty of Education, Yamaguchi University, Yamaguchi, Japan
| | - Tadashi Yamaguchi
- Biological Institute, Faculty of Education, Yamaguchi University, Yamaguchi, Japan
| | - Chisato Miyahara
- Biological Institute, Faculty of Education, Yamaguchi University, Yamaguchi, Japan
| | - Akira Yamanaka
- Department of Biology & Chemistry, Faculty of Science, Yamaguchi University, Yamaguchi, Japan.,Department of Biology, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|