1
|
Liu S, Zheng C, Nechanitzky R, Luo P, Ramachandran P, Nguyen D, Elia AJ, Moghadas Jafari S, Law R, Snow BE, Wakeham AC, Berger T, Chen H, Gill KT, Mcwilliam R, Fortin J, Modares NF, Saunders ME, Murakami K, Qiu Y, You Z, Mohtashami M, Qi H, Ohashi PS, Zúñiga-Pflücker JC, Mak TW. Cholinergic regulation of thymocyte negative selection. Nat Immunol 2025:10.1038/s41590-025-02152-4. [PMID: 40399609 DOI: 10.1038/s41590-025-02152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/04/2025] [Indexed: 05/23/2025]
Abstract
The immune and nervous systems use a common chemical language for communication, namely, the cholinergic signaling involving acetylcholine (ACh) and its receptors (AChRs). Whether and how this language also regulates the development of the immune system is poorly understood. Here, we show that mouse CD4+CD8+ double-positive thymocytes express high levels of α9 nicotinic AChR (nAChR) and that this receptor controls thymic negative selection. α9 nAChR-deficient mice show an altered T cell receptor (TCR) repertoire and reduced CD4+ and CD8+ T cells in a mixed bone marrow chimera setting. α9 nAChR-mediated signaling regulates TCR strength and thymocyte survival. Thymic tuft cells, B cells and some T cells express choline acetyltransferase and are potential ACh sources, with ACh derived from T cells having the most important role. Furthermore, α9 nAChR deficiency during thymocyte development contributes to the altered development of autoimmune diseases in mice. Our results thus reveal a mechanism controlling immune cell development that involves cholinergic signaling.
Collapse
Affiliation(s)
- Shaofeng Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Chunxing Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Robert Nechanitzky
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ping Luo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Dat Nguyen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Andrew J Elia
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Soode Moghadas Jafari
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Rhoda Law
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Bryan E Snow
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Andrew C Wakeham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Thorsten Berger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Hui Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Kyle T Gill
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ryan Mcwilliam
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jerome Fortin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | | - Mary E Saunders
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kiichi Murakami
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yangmin Qiu
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Zhiwei You
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Mahmood Mohtashami
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Hai Qi
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Tak W Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Alam MR, Akinyemi AO, Wang J, Howlader M, Farahani ME, Nur M, Zhang M, Gu L, Li Z. CD4 +CD8 + double-positive T cells in immune disorders and cancer: Prospects and hurdles in immunotherapy. Autoimmun Rev 2025; 24:103757. [PMID: 39855286 DOI: 10.1016/j.autrev.2025.103757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
CD4+ and CD8+ T cells play critical roles in both innate and adaptive immune responses, managing and modulating cellular immunity during immune diseases and cancer. Their well-established functions have led to significant clinical benefits. CD4+CD8+ double-positive (DP) T cells, a subset of the T cell population, have been identified in the blood and peripheral lymphoid tissues across various species. They have gained interest due to their involvement in immune disorders, inflammation, and cancer. Although mature DP T cells are present in healthy individuals and contribute to disease contexts, their molecular characteristics and pathophysiological roles remain debated. Notably, the number of DP T cells in the blood is higher in older adults compared to younger individuals, and these cells can stimulate inflammation and viral infections through increased secretion of interleukin (IL)-10, interferon gamma (IFN-γ), and transforming growth factor beta (TGF-β). In cancer, DP T cells have been observed to infiltrate cutaneous T cell lymphomas and are found in greater numbers in nodular lymphocyte predominant Hodgkin lymphoma, melanoma, hepatocellular carcinoma, and breast cancer. The higher prevalence of DP T cells in advanced cancers, coupled with their strong lytic activity and distinct cytokine profile, suggests that these cells may play a crucial role in modulating immune responses to cancer. This insight offers a potential new approach for enhancing the identification and selection of antigen-reactive T cells in immune-based treatments. This review provides a comprehensive overview of the origin, distribution, transcriptional regulation during developmental stages, and functions of DP T cells. A deeper understanding of the diversity and roles of DP T cells may pave the way for their development as a promising tool for immunotherapy in the management of immune disorders and metastatic cancers.
Collapse
Affiliation(s)
- Md Rakibul Alam
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Amos Olalekan Akinyemi
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Jianlin Wang
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Mithu Howlader
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Mohammad Esfini Farahani
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Maria Nur
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Min Zhang
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Lixiang Gu
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Zhiguo Li
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
3
|
McCullen M, Oltz E. The multifaceted roles of TCF1 in innate and adaptive lymphocytes. Adv Immunol 2024; 164:39-71. [PMID: 39523028 DOI: 10.1016/bs.ai.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The immune system requires a complex network of specialized cell types to defend against a range of threats. The specific roles and destinies of these cell types are enforced by a constellation of gene regulatory programs, which are orchestrated through lineage-specifying transcription factors. T Cell Factor 1 (TCF1) is a central transcription factor in many of these programs, guiding the development and functionality of both adaptive and innate lymphoid cells. This review highlights recent insights into the function of TCF1 in a variety of lymphoid cell subsets and its potential for translational applications in immune disorders and cancer.
Collapse
Affiliation(s)
- Matthew McCullen
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, United States
| | - Eugene Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, United States.
| |
Collapse
|
4
|
Han B, Lim S, Yim J, Song YK, Koh J, Kim S, Lee C, Kim YA, Jeon YK. Clinicopathological implications of immunohistochemical expression of TBX21, CXCR3, GATA3, CCR4, and TCF1 in nodal follicular helper T-cell lymphoma and peripheral T-cell lymphoma, not otherwise specified. J Pathol Transl Med 2024; 58:59-71. [PMID: 38247153 PMCID: PMC10948251 DOI: 10.4132/jptm.2024.01.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND The classification of nodal peripheral T-cell lymphoma (PTCL) has evolved according to histology, cell-of-origin, and genetic alterations. However, the comprehensive expression pattern of follicular helper T-cell (Tfh) markers, T-cell factor-1 (TCF1), and Th1- and Th2-like molecules in nodal PTCL is unclear. METHODS Eighty-two cases of nodal PTCL were classified into 53 angioimmunoblastic T-cell lymphomas (AITLs)/nodal T-follicular helper cell lymphoma (nTFHL)-AI, 18 PTCLs-Tfh/nTFHL-not otherwise specified (NOS), and 11 PTCLs-NOS according to the revised 4th/5th World Health Organization classifications. Immunohistochemistry for TCF1, TBX21, CXCR3, GATA3, and CCR4 was performed. RESULTS TCF1 was highly expressed in up to 68% of patients with nTFHL but also in 44% of patients with PTCL-NOS (p > .05). CXCR3 expression was higher in AITLs than in non-AITLs (p = .035), whereas GATA3 expression was higher in non-AITL than in AITL (p = .007) and in PTCL-Tfh compared to AITL (p = .010). Of the cases, 70% of AITL, 44% of PTCLTfh/ nTFHL-NOS, and 36% of PTCL-NOS were subclassified as the TBX21 subtype; and 15% of AITL, 38% of PTCL-Tfh/nTFHL-NOS, and 36% of PTCL-NOS were subclassified as the GATA3 subtype. The others were an unclassified subtype. CCR4 expression was associated with poor progression-free survival (PFS) in patients with PTCL-Tfh (p < .001) and nTFHL (p = .023). The GATA3 subtype showed poor overall survival in PTCL-NOS compared to TBX21 (p = .046) and tended to be associated with poor PFS in patients with non-AITL (p = .054). CONCLUSIONS The TBX21 subtype was more prevalent than the GATA3 subtype in AITL. The GATA3 subtype was associated with poor prognosis in patients with non-AITL and PTCL-NOS.
Collapse
Affiliation(s)
- Bogyeong Han
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Sojung Lim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Jeemin Yim
- Department of Pathology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul,
Korea
| | - Young Keun Song
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Jiwon Koh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Sehui Kim
- Department of Pathology, Korea University Guro Hospital, Seoul,
Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Young A Kim
- Department of Pathology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul,
Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
- Seoul National University Cancer Research Institute, Seoul,
Korea
| |
Collapse
|
5
|
Cui H, Wang N, Li H, Bian Y, Wen W, Kong X, Wang F. The dynamic shifts of IL-10-producing Th17 and IL-17-producing Treg in health and disease: a crosstalk between ancient "Yin-Yang" theory and modern immunology. Cell Commun Signal 2024; 22:99. [PMID: 38317142 PMCID: PMC10845554 DOI: 10.1186/s12964-024-01505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/28/2024] [Indexed: 02/07/2024] Open
Abstract
The changes in T regulatory cell (Treg) and T helper cell (Th) 17 ratios holds paramount importance in ensuring internal homeostasis and disease progression. Recently, novel subsets of Treg and Th17, namely IL-17-producing Treg and IL-10-producing Th17 have been identified. IL-17-producing Treg and IL-10-producing Th17 are widely considered as the intermediates during Treg/Th17 transformation. These "bi-functional" cells exhibit plasticity and have been demonstrated with important roles in multiple physiological functions and disease processes. Yin and Yang represent opposing aspects of phenomena according to the ancient Chinese philosophy "Yin-Yang" theory. Furthermore, Yin can transform into Yang, and vice versa, under specific conditions. This theory has been widely used to describe the contrasting functions of immune cells and molecules. Therefore, immune-activating populations (Th17, M1 macrophage, etc.) and immune overreaction (inflammation, autoimmunity) can be considered Yang, while immunosuppressive populations (Treg, M2 macrophage, etc.) and immunosuppression (tumor, immunodeficiency) can be considered Yin. However, another important connotation of "Yin-Yang" theory, the conversion between Yin and Yang, has been rarely documented in immune studies. The discovery of IL-17-producing Treg and IL-10-producing Th17 enriches the meaning of "Yin-Yang" theory and further promotes the relationship between ancient "Yin-Yang" theory and modern immunology. Besides, illustrating the functions of IL-17-producing Treg and IL-10-producing Th17 and mechanisms governing their differentiation provides valuable insights into the mechanisms underlying the dynamically changing statement of immune statement in health and diseases.
Collapse
Affiliation(s)
- Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Ning Wang
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Hanzhou Li
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuhong Bian
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Weibo Wen
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fudi Wang
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
6
|
MacNabb BW, Rothenberg EV. Speed and navigation control of thymocyte development by the fetal T-cell gene regulatory network. Immunol Rev 2023; 315:171-196. [PMID: 36722494 PMCID: PMC10771342 DOI: 10.1111/imr.13190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
T-cell differentiation is a tightly regulated developmental program governed by interactions between transcription factors (TFs) and chromatin landscapes and affected by signals received from the thymic stroma. This process is marked by a series of checkpoints: T-lineage commitment, T-cell receptor (TCR)β selection, and positive and negative selection. Dynamically changing combinations of TFs drive differentiation along the T-lineage trajectory, through mechanisms that have been most extensively dissected in adult mouse T-lineage cells. However, fetal T-cell development differs from adult in ways that suggest that these TF mechanisms are not fully deterministic. The first wave of fetal T-cell differentiation occurs during a unique developmental window during thymic morphogenesis, shows more rapid kinetics of differentiation with fewer rounds of cell division, and gives rise to unique populations of innate lymphoid cells (ILCs) and invariant γδT cells that are not generated in the adult thymus. As the characteristic kinetics and progeny biases are cell-intrinsic properties of thymic progenitors, the differences could be based on distinct TF network circuitry within the progenitors themselves. Here, we review recent single-cell transcriptome data that illuminate the TF networks involved in T-cell differentiation in the fetal and adult mouse thymus.
Collapse
Affiliation(s)
- Brendan W MacNabb
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
7
|
Zhao X, Zhu S, Peng W, Xue HH. The Interplay of Transcription and Genome Topology Programs T Cell Development and Differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2269-2278. [PMID: 36469845 PMCID: PMC9731349 DOI: 10.4049/jimmunol.2200625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/14/2022] [Indexed: 01/04/2023]
Abstract
T cells are essential for mounting defense against various pathogens and malignantly transformed cells. Thymic development and peripheral T cell differentiation are highly orchestrated biological processes that require precise gene regulation. Higher-order genome organization on multiple scales, in the form of chromatin loops, topologically associating domains and compartments, provides pivotal control of T cell gene expression. CTCF and the cohesin machinery are ubiquitously expressed architectural proteins responsible for establishing chromatin structures. Recent studies indicate that transcription factors, such as T lineage-defining Tcf1 and TCR-induced Batf, may have intrinsic ability and/or engage CTCF to shape chromatin architecture. In this article, we summarize current knowledge on the dynamic changes in genome topology that underlie normal or leukemic T cell development, CD4+ helper T cell differentiation, and CD8+ cytotoxic T cell functions. The knowledge lays a solid foundation for elucidating the causative link of spatial chromatin configuration to transcriptional and functional output in T cells.
Collapse
Affiliation(s)
- Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110
| | - Shaoqi Zhu
- Department of Physics, The George Washington University, Washington DC, 20052
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington DC, 20052
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110
- New Jersey Veterans Affairs Health Care System, East Orange, NJ 07018
| |
Collapse
|
8
|
Parriott G, Kee BL. E Protein Transcription Factors as Suppressors of T Lymphocyte Acute Lymphoblastic Leukemia. Front Immunol 2022; 13:885144. [PMID: 35514954 PMCID: PMC9065262 DOI: 10.3389/fimmu.2022.885144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
T Lymphocyte Acute Lymphoblastic Leukemia (ALL) is an aggressive disease arising from transformation of T lymphocytes during their development. The mutation spectrum of T-ALL has revealed critical regulators of the growth and differentiation of normal and leukemic T lymphocytes. Approximately, 60% of T-ALLs show aberrant expression of the hematopoietic stem cell-associated helix-loop-helix transcription factors TAL1 and LYL1. TAL1 and LYL1 function in multiprotein complexes that regulate gene expression in T-ALL but they also antagonize the function of the E protein homodimers that are critical regulators of T cell development. Mice lacking E2A, or ectopically expressing TAL1, LYL1, or other inhibitors of E protein function in T cell progenitors, also succumb to an aggressive T-ALL-like disease highlighting that E proteins promote T cell development and suppress leukemogenesis. In this review, we discuss the role of E2A in T cell development and how alterations in E protein function underlie leukemogenesis. We focus on the role of TAL1 and LYL1 and the genes that are dysregulated in E2a-/- T cell progenitors that contribute to human T-ALL. These studies reveal novel mechanisms of transformation and provide insights into potential therapeutic targets for intervention in this disease.
Collapse
Affiliation(s)
- Geoffrey Parriott
- Committee on Immunology, University of Chicago, Chicago, IL, United States
| | - Barbara L Kee
- Committee on Immunology, University of Chicago, Chicago, IL, United States.,Committee on Cancer Biology, University of Chicago, Chicago, IL, United States.,Department of Pathology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
Bao X, Qin Y, Lu L, Zheng M. Transcriptional Regulation of Early T-Lymphocyte Development in Thymus. Front Immunol 2022; 13:884569. [PMID: 35432347 PMCID: PMC9008359 DOI: 10.3389/fimmu.2022.884569] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
T-lymphocytes play crucial roles for maintaining immune homeostasis by fighting against various pathogenic microorganisms and establishing self-antigen tolerance. They will go through several stages and checkpoints in the thymus from progenitors to mature T cells, from CD4-CD8- double negative (DN) cells to CD4+CD8+ double positive (DP) cells, finally become CD4+ or CD8+ single positive (SP) cells. The mature SP cells then emigrate out of the thymus and further differentiate into distinct subsets under different environment signals to perform specific functions. Each step is regulated by various transcriptional regulators downstream of T cell receptors (TCRs) that have been extensively studied both in vivo and vitro via multiple mouse models and advanced techniques, such as single cell RNA sequencing (scRNA-seq) and Chromatin Immunoprecipitation sequencing (ChIP-seq). This review will summarize the transcriptional regulators participating in the early stage of T cell development reported in the past decade, trying to figure out cascade networks in each process and provide possible research directions in the future.
Collapse
Affiliation(s)
- Xueyang Bao
- Department of Pathogenic Biology and Immunology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Yingyu Qin
- Department of Pathogenic Biology and Immunology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Linrong Lu
- Shanghai Immune Therapy Institute, Renji Hospital, Jiao Tong University School of Medicine, Shanghai, China.,Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mingzhu Zheng
- Department of Pathogenic Biology and Immunology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
10
|
Abstract
TCF1 and its homologue LEF1 are historically known as effector transcription factors downstream of the WNT signalling pathway and are essential for early T cell development. Recent advances bring TCF1 into the spotlight for its versatile, context-dependent functions in regulating mature T cell responses. In the cytotoxic T cell lineages, TCF1 is required for the self-renewal of stem-like CD8+ T cells generated in response to viral or tumour antigens, and for preserving heightened responses to checkpoint blockade immunotherapy. In the helper T cell lineages, TCF1 is indispensable for the differentiation of T follicular helper and T follicular regulatory cells, and crucially regulates immunosuppressive functions of regulatory T cells. Mechanistic investigations have also identified TCF1 as the first transcription factor that directly modifies histone acetylation, with the capacity to bridge transcriptional and epigenetic regulation. TCF1 also has the potential to become an important clinical biomarker for assessing the prognosis of tumour immunotherapy and the success of viral control in treating HIV and hepatitis C virus infection. Here, we summarize the key findings on TCF1 across the fields of T cell immunity and reflect on the possibility of exploring TCF1 and its downstream transcriptional programmes as therapeutic targets for improving antiviral and antitumour immunity.
Collapse
|
11
|
Kumar D, Kashyap MK, Yu Z, Spaanderman I, Villa R, Kipps TJ, La Clair JJ, Burkart MD, Castro JE. Modulation of RNA splicing associated with Wnt signaling pathway using FD-895 and pladienolide B. Aging (Albany NY) 2022; 14:2081-2100. [PMID: 35230971 PMCID: PMC8954975 DOI: 10.18632/aging.203924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Alterations in RNA splicing are associated with different malignancies, including leukemia, lymphoma, and solid tumors. The RNA splicing modulators such as FD-895 and pladienolide B have been investigated in different malignancies to target/modulate spliceosome for therapeutic purpose. Different cell lines were screened using an RNA splicing modulator to test in vitro cytotoxicity and the ability to modulate RNA splicing capability via induction of intron retention (using RT-PCR and qPCR). The Cignal Finder Reporter Array evaluated [pathways affected by the splice modulators in HeLa cells. Further, the candidates associated with the pathways were validated at protein level using western blot assay, and gene-gene interaction studies were carried out using GeneMANIA. We show that FD-895 and pladienolide B induces higher apoptosis levels than conventional chemotherapy in different solid tumors. In addition, both agents modulate Wnt signaling pathways and mRNA splicing. Specifically, FD-895 and pladienolide B significantly downregulates Wnt signaling pathway-associated transcripts (GSK3β and LRP5) and both transcript and proteins including LEF1, CCND1, LRP6, and pLRP6 at the transcript, total protein, and protein phosphorylation's levels. These results indicate FD-895 and pladienolide B inhibit Wnt signaling by decreasing LRP6 phosphorylation and modulating mRNA splicing through induction of intron retention in solid tumors.
Collapse
Affiliation(s)
- Deepak Kumar
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- ThermoFisher Scientific, Carlsbad, CA 92008, USA
| | - Manoj K. Kashyap
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Haryana 122413, India
| | - Zhe Yu
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ide Spaanderman
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Reymundo Villa
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Thomas J. Kipps
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- CLL Research Consortium and Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - James J. La Clair
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Januario E. Castro
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- CLL Research Consortium and Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Hematology-Oncology Division, Mayo Clinic, Phoenix, AZ 85054, USA
| |
Collapse
|
12
|
Emerging Therapeutic Landscape of Peripheral T-Cell Lymphomas Based on Advances in Biology: Current Status and Future Directions. Cancers (Basel) 2021; 13:cancers13225627. [PMID: 34830782 PMCID: PMC8616039 DOI: 10.3390/cancers13225627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Peripheral T-cell lymphoma is a rare but aggressive tumor. Due to its rarity, the disease has not been completely understood. In our review, we look at this lymphoma at the molecular level based on available literature. We highlight the mechanism behind the progression and resistance of this tumor. In doing so, we bring forth possible mechanism that could be exploited through novel chemotherapy drugs. In addition, we also look at the current available drugs used in treating this disease, as well as highlight other new drugs, describing their potential in treating this lymphoma. We comprehensively have collected and present the available biology behind peripheral T-cell lymphoma and discuss the available treatment options. Abstract T-cell lymphomas are a relatively rare group of malignancies with a diverse range of pathologic features and clinical behaviors. Recent molecular studies have revealed a wide array of different mechanisms that drive the development of these malignancies and may be associated with resistance to therapies. Although widely accepted chemotherapeutic agents and combinations, including stem cell transplantation, obtain responses as initial therapy for these diseases, most patients will develop a relapse, and the median survival is only 5 years. Most patients with relapsed disease succumb within 2 to 3 years. Since 2006, the USFDA has approved five medications for treatment of these diseases, and only anti-CD30-therapy has made a change in these statistics. Clearly, newer agents are needed for treatment of these disorders, and investigators have proposed studies that evaluate agents that target these malignancies and the microenvironment depending upon the molecular mechanisms thought to underlie their pathogenesis. In this review, we discuss the currently known molecular mechanisms driving the development and persistence of these cancers and discuss novel targets for therapy of these diseases and agents that may improve outcomes for these patients.
Collapse
|
13
|
Chiara VD, Daxinger L, Staal FJT. The Route of Early T Cell Development: Crosstalk between Epigenetic and Transcription Factors. Cells 2021; 10:1074. [PMID: 33946533 PMCID: PMC8147249 DOI: 10.3390/cells10051074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic multipotent progenitors seed the thymus and then follow consecutive developmental stages until the formation of mature T cells. During this process, phenotypic changes of T cells entail stage-specific transcriptional programs that underlie the dynamic progression towards mature lymphocytes. Lineage-specific transcription factors are key drivers of T cell specification and act in conjunction with epigenetic regulators that have also been elucidated as crucial players in the establishment of regulatory networks necessary for proper T cell development. In this review, we summarize the activity of transcription factors and epigenetic regulators that together orchestrate the intricacies of early T cell development with a focus on regulation of T cell lineage commitment.
Collapse
Affiliation(s)
- Veronica Della Chiara
- Department of Human Genetics, Leiden University Medical Centre (LUMC), 2300 RC Leiden, The Netherlands; (V.D.C.); (L.D.)
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Centre (LUMC), 2300 RC Leiden, The Netherlands; (V.D.C.); (L.D.)
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
14
|
Wang F, Qi Z, Yao Y, Yu G, Feng T, Zhao T, Xue HH, Zhao Y, Jiang P, Bao L, Yu S. Exploring the stage-specific roles of Tcf-1 in T cell development and malignancy at single-cell resolution. Cell Mol Immunol 2021; 18:644-659. [PMID: 32868912 PMCID: PMC8027857 DOI: 10.1038/s41423-020-00527-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023] Open
Abstract
Tcf-1 (encoded by Tcf7) not only plays critical roles in promoting T cell development and differentiation but also has been identified as a tumor suppressor involved in preventing T cell malignancy. However, the comprehensive mechanisms of Tcf-1 involved in T cell transformation remain poorly understood. In this study, Tcf7fl/fl mice were crossed with Vav-cre, Lck-cre, or Cd4-cre mice to delete Tcf-1 conditionally at the beginning of the HSC, DN2-DN3, or DP stage, respectively. The defective T cell development phenotypes became gradually less severe as the deletion stage became more advanced in distinct mouse models. Interestingly, consistent with Tcf7-/- mice, Tcf7fl/flVav-cre mice developed aggressive T cell lymphoma within 45 weeks, but no tumors were generated in Tcf7fl/flLck-cre or Tcf7fl/flCd4-cre mice. Single-cell RNA-seq (ScRNA-seq) indicated that ablation of Tcf-1 at distinct phases can subdivide DN1 cells into three clusters (C1, C2, and C3) and DN2-DN3 cells into three clusters (C4, C5, and C6). Moreover, Tcf-1 deficiency redirects bifurcation among divergent cell fates, and clusters C1 and C4 exhibit high potential for leukemic transformation. Mechanistically, we found that Tcf-1 directly binds and mediates chromatin accessibility for both typical T cell regulators and proto-oncogenes, including Myb, Mycn, Runx1, and Lyl1 in the DN1 phase and Lef1, Id2, Dtx1, Fyn, Bcl11b, and Zfp36l2 in the DN2-DN3 phase. The aberrant expression of these genes due to Tcf-1 deficiency in very early T cells contributes to subsequent tumorigenesis. Thus, we demonstrated that Tcf-1 plays stage-specific roles in regulating early thymocyte development and transformation, providing new insights and evidence for clinical trials on T-ALL leukemia.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Cell Differentiation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Gene Expression Profiling
- Hepatocyte Nuclear Factor 1-alpha/physiology
- Lymphocyte Activation
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/physiology
- Lymphoma, T-Cell/etiology
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Single-Cell Analysis/methods
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Zhihong Qi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Yingpeng Yao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Guotao Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Tao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Tianyan Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Hai-Hui Xue
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Peng Jiang
- Regenerative Biology Laboratory, Morgridge Institute for Research, Madison, WI, 53707, USA
| | - Li Bao
- Department Hematology, Beijing Jishuitan Hospital, 100096, Beijing, China
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China.
| |
Collapse
|
15
|
Hosokawa H, Rothenberg EV. How transcription factors drive choice of the T cell fate. Nat Rev Immunol 2021; 21:162-176. [PMID: 32918063 PMCID: PMC7933071 DOI: 10.1038/s41577-020-00426-6] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2020] [Indexed: 12/21/2022]
Abstract
Recent evidence has elucidated how multipotent blood progenitors transform their identities in the thymus and undergo commitment to become T cells. Together with environmental signals, a core group of transcription factors have essential roles in this process by directly activating and repressing specific genes. Many of these transcription factors also function in later T cell development, but control different genes. Here, we review how these transcription factors work to change the activities of specific genomic loci during early intrathymic development to establish T cell lineage identity. We introduce the key regulators and highlight newly emergent insights into the rules that govern their actions. Whole-genome deep sequencing-based analysis has revealed unexpectedly rich relationships between inherited epigenetic states, transcription factor-DNA binding affinity thresholds and influences of given transcription factors on the activities of other factors in the same cells. Together, these mechanisms determine T cell identity and make the lineage choice irreversible.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
16
|
Garcia-Perez L, Famili F, Cordes M, Brugman M, van Eggermond M, Wu H, Chouaref J, Granado DSL, Tiemessen MM, Pike-Overzet K, Daxinger L, Staal FJT. Functional definition of a transcription factor hierarchy regulating T cell lineage commitment. SCIENCE ADVANCES 2020; 6:eaaw7313. [PMID: 32789164 PMCID: PMC7400773 DOI: 10.1126/sciadv.aaw7313] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 06/17/2020] [Indexed: 05/02/2023]
Abstract
T cell factor 1 (Tcf1) is the first T cell-specific protein induced by Notch signaling in the thymus, leading to the activation of two major target genes, Gata3 and Bcl11b. Tcf1 deficiency results in partial arrests in T cell development, high apoptosis, and increased development of B and myeloid cells. Phenotypically, seemingly fully T cell-committed thymocytes with Tcf1 deficiency have promiscuous gene expression and an altered epigenetic profile and can dedifferentiate into more immature thymocytes and non-T cells. Restoring Bcl11b expression in Tcf1-deficient cells rescues T cell development but does not strongly suppress the development of non-T cells; in contrast, expressing Gata3 suppresses their development but does not rescue T cell development. Thus, T cell development is controlled by a minimal transcription factor network involving Notch signaling, Tcf1, and the subsequent division of labor between Bcl11b and Gata3, thereby ensuring a properly regulated T cell gene expression program.
Collapse
Affiliation(s)
- Laura Garcia-Perez
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Farbod Famili
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Martijn Cordes
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Martijn Brugman
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Marja van Eggermond
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Haoyu Wu
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Jihed Chouaref
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Karin Pike-Overzet
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Frank J. T. Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
17
|
Sznajder ŁJ, Scotti MM, Shin J, Taylor K, Ivankovic F, Nutter CA, Aslam FN, Subramony SH, Ranum LPW, Swanson MS. Loss of MBNL1 induces RNA misprocessing in the thymus and peripheral blood. Nat Commun 2020; 11:2022. [PMID: 32332745 PMCID: PMC7181699 DOI: 10.1038/s41467-020-15962-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/03/2020] [Indexed: 12/25/2022] Open
Abstract
The thymus is a primary lymphoid organ that plays an essential role in T lymphocyte maturation and selection during development of one arm of the mammalian adaptive immune response. Although transcriptional mechanisms have been well documented in thymocyte development, co-/post-transcriptional modifications are also important but have received less attention. Here we demonstrate that the RNA alternative splicing factor MBNL1, which is sequestered in nuclear RNA foci by C(C)UG microsatellite expansions in myotonic dystrophy (DM), is essential for normal thymus development and function. Mbnl1 129S1 knockout mice develop postnatal thymic hyperplasia with thymocyte accumulation. Transcriptome analysis indicates numerous gene expression and RNA mis-splicing events, including transcription factors from the TCF/LEF family. CNBP, the gene containing an intronic CCTG microsatellite expansion in DM type 2 (DM2), is coordinately expressed with MBNL1 in the developing thymus and DM2 CCTG expansions induce similar transcriptome alterations in DM2 blood, which thus serve as disease-specific biomarkers.
Collapse
Affiliation(s)
- Łukasz J Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, 32610, USA.
| | - Marina M Scotti
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Jihae Shin
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, 32610, USA.,Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and Rutgers Cancer Institute of New Jersey, Newark, NJ, 07103, USA
| | - Katarzyna Taylor
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, 32610, USA.,Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Franjo Ivankovic
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Curtis A Nutter
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Faaiq N Aslam
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - S H Subramony
- Department of Neurology, Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Laura P W Ranum
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, 32610, USA.
| |
Collapse
|
18
|
Sasaki B, Uemoto S, Kawaguchi Y. Transient FOXO1 inhibition in pancreatic endoderm promotes the generation of NGN3+ endocrine precursors from human iPSCs. Stem Cell Res 2020; 44:101754. [PMID: 32179491 DOI: 10.1016/j.scr.2020.101754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/24/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
In the multi-step differentiation protocol used to generate pancreatic endocrine cells from human pluripotent stem cells, the induction of NGN3+ endocrine precursors from the PDX1+/NKX6.1+ pancreatic endoderm is crucial for efficient endocrine cell production. Here, we demonstrate that transient, not prolonged FOXO1 inhibition results in enhanced NGN3+ endocrine precursors and hormone-producing cell production. FOXO1 inhibition does not directly induce NGN3 expression but stimulates PDX1+/NKX6.1+ cell proliferation. NOTCH activity, whose suppression is important for Ngn3 expression, is not suppressed but Wnt signaling is stimulated by FOXO1 inhibition. Reversely, Wnt inhibition suppresses the effects of FOXO1 inhibitor. These findings indicate that FOXO1 and Wnt are involved in regulating the proliferation of PDX1+/NKX6.1+ pancreatic endoderm that gives rise to NGN3+ endocrine precursors.
Collapse
Affiliation(s)
- Ben Sasaki
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shinji Uemoto
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshiya Kawaguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
19
|
The Role Played by Wnt/β-Catenin Signaling Pathway in Acute Lymphoblastic Leukemia. Int J Mol Sci 2020; 21:ijms21031098. [PMID: 32046053 PMCID: PMC7037748 DOI: 10.3390/ijms21031098] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is an aggressive hematologic neoplastic disorder that arises from the clonal expansion of transformed T-cell or B-cell precursors. Thanks to progress in chemotherapy protocols, ALL outcome has significantly improved. However, drug-resistance remains an unresolved issue in the treatment of ALL and toxic effects limit dose escalation of current chemotherapeutics. Therefore, the identification of novel targeted therapies to support conventional chemotherapy is required. The Wnt/β-catenin pathway is a conserved signaling axis involved in several physiological processes such as development, differentiation, and adult tissue homeostasis. As a result, deregulation of this cascade is closely related to initiation and progression of various types of cancers, including hematological malignancies. In particular, deregulation of this signaling network is involved in the transformation of healthy HSCs in leukemic stem cells (LSCs), as well as cancer cell multi-drug-resistance. This review highlights the recent findings on the role of Wnt/β-catenin in hematopoietic malignancies and provides information on the current status of Wnt/β-catenin inhibitors with respect to their therapeutic potential in the treatment of ALL.
Collapse
|
20
|
Wnt Signaling in the Regulation of Immune Cell and Cancer Therapeutics. Cells 2019; 8:cells8111380. [PMID: 31684152 PMCID: PMC6912555 DOI: 10.3390/cells8111380] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022] Open
Abstract
Wnt signaling is one of the important pathways to play a major role in various biological processes, such as embryonic stem-cell development, tissue regeneration, cell differentiation, and immune cell regulation. Recent studies suggest that Wnt signaling performs an essential function in immune cell modulation and counteracts various disorders. Nonetheless, the emerging role and mechanism of action of this signaling cascade in immune cell regulation, as well as its involvement in various cancers, remain debatable. The Wnt signaling in immune cells is very diverse, e.g., the tolerogenic role of dendritic cells, the development of natural killer cells, thymopoiesis of T cells, B-cell-driven initiation of T-cells, and macrophage actions in tissue repair, regeneration, and fibrosis. The purpose of this review is to highlight the current therapeutic targets in (and the prospects of) Wnt signaling, as well as the potential suitability of available modulators for the development of cancer immunotherapies. Although there are several Wnt inhibitors relevant to cancer, it would be worthwhile to extend this approach to immune cells.
Collapse
|
21
|
Effects of Glycogen Synthase Kinase-3β Inhibitor TWS119 on Proliferation and Cytokine Production of TILs From Human Lung Cancer. J Immunother 2019; 41:319-328. [PMID: 29877972 PMCID: PMC6092086 DOI: 10.1097/cji.0000000000000234] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The canonical Wnt-β-catenin signaling pathway arrests the differentiation of T cells and plays an important role in phenotypic maintenance of naive T cells and stem cell-like memory T cells in human peripheral blood, but its effect on tumor-infiltrating lymphocytes (TILs) from non-small cell lung cancer is little known. In this study, we showed that glycogen synthase kinase-3β inhibitor TWS119 has different effects on CD4 and CD8 T cells in TILs. TWS119 preserved the expansion of naive T cell and CD8 stem cell-like memory T cells, and induced CD8 effector T-cell proliferation in TILs. To further determine whether TWS119 impaired the effector function of TILs, TILs were stimulated with polyclonal stimulation, IL-2 and IFN-γ production were detected. Our data showed that TWS119 does not affect the production of IFN-γ in TILs compared with the control group; whereas TWS119 inhibited IFN-γ secretion of T cells from healthy donor. IL-2 production in CD4 central memory T cells and CD4 effector memory T cells from TILs was significantly increased with the TWS119 treatment; TWS119 also promoted the secretion of IL-2 in all cell subsets of CD8 TILs. These findings reveal that TWS119 has a distinct effect on the proliferation and cytokine production of TILs, and provide new insights into the clinical application of TILs with TWS119 treatment for the adoptive immunotherapy.
Collapse
|
22
|
Paganelli F, Lonetti A, Anselmi L, Martelli AM, Evangelisti C, Chiarini F. New advances in targeting aberrant signaling pathways in T-cell acute lymphoblastic leukemia. Adv Biol Regul 2019; 74:100649. [PMID: 31523031 DOI: 10.1016/j.jbior.2019.100649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/24/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disorder characterized by malignant transformation of immature progenitors primed towards T-cell development. Over the past 15 years, advances in the molecular characterization of T-ALL have uncovered oncogenic key drivers and crucial signaling pathways of this disease, opening new chances for the development of novel therapeutic strategies. Currently, T-ALL patients are still treated with aggressive therapies, consisting of high dose multiagent chemotherapy. To minimize and overcome the unfavorable effects of these regimens, it is critical to identify innovative targets and test selective inhibitors of such targets. Major efforts are being made to develop small molecules against deregulated signaling pathways, which sustain T-ALL cell growth, survival, metabolism, and drug-resistance. This review will focus on recent improvements in the understanding of the signaling pathways involved in the pathogenesis of T-ALL and on the challenging opportunities for T-ALL targeted therapies.
Collapse
Affiliation(s)
- Francesca Paganelli
- Institute of Molecular Genetics, Luigi Luca Cavalli-Sforza-CNR National Research Council of Italy, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Annalisa Lonetti
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Laura Anselmi
- Department of Biomedical, Metabolic, and Neural Sciences, Section of Morphology, Signal Transduction Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Institute of Molecular Genetics, Luigi Luca Cavalli-Sforza-CNR National Research Council of Italy, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics, Luigi Luca Cavalli-Sforza-CNR National Research Council of Italy, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
23
|
van Loosdregt J, Coffer PJ. The Role of WNT Signaling in Mature T Cells: T Cell Factor Is Coming Home. THE JOURNAL OF IMMUNOLOGY 2019; 201:2193-2200. [PMID: 30301837 DOI: 10.4049/jimmunol.1800633] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023]
Abstract
T cell factor, the effector transcription factor of the WNT signaling pathway, was so named because of the primary observation that it is indispensable for T cell development in the thymus. Since this discovery, the role of this signaling pathway has been extensively studied in T cell development, hematopoiesis, and stem cells; however, its functional role in mature T cells has remained relatively underinvestigated. Over the last few years, various studies have demonstrated that T cell factor can directly influence T cell function and the differentiation of Th1, Th2, Th17, regulatory T cell, follicular helper CD4+ T cell subsets, and CD8+ memory T cells. In this paper, we discuss the molecular mechanisms underlying these observations and place them in the general context of immune responses. Furthermore, we explore the implications and limitations of these findings for WNT manipulation as a therapeutic approach for treating immune-related diseases.
Collapse
Affiliation(s)
- Jorg van Loosdregt
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, 3508 AB Utrecht, the Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, 3508 AB Utrecht, the Netherlands; and
| | - Paul J Coffer
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, 3508 AB Utrecht, the Netherlands; .,Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, the Netherlands
| |
Collapse
|
24
|
Identification of Sex-Specific Transcriptome Responses to Polychlorinated Biphenyls (PCBs). Sci Rep 2019; 9:746. [PMID: 30679748 PMCID: PMC6346099 DOI: 10.1038/s41598-018-37449-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/30/2018] [Indexed: 12/16/2022] Open
Abstract
PCBs are classified as xenoestrogens and carcinogens and their health risks may be sex-specific. To identify potential sex-specific responses to PCB-exposure we established gene expression profiles in a population study subdivided into females and males. Gene expression profiles were determined in a study population consisting of 512 subjects from the EnviroGenomarkers project, 217 subjects who developed lymphoma and 295 controls were selected in later life. We ran linear mixed models in order to find associations between gene expression and exposure to PCBs, while correcting for confounders, in particular distribution of white blood cells (WBC), as well as random effects. The analysis was subdivided according to sex and development of lymphoma in later life. The changes in gene expression as a result of exposure to the six studied PCB congeners were sex- and WBC type specific. The relatively large number of genes that are significantly associated with PCB-exposure in the female subpopulation already indicates different biological response mechanisms to PCBs between the two sexes. The interaction analysis between different PCBs and WBCs provides only a small overlap between sexes. In males, cancer-related pathways and in females immune system-related pathways are identified in association with PCBs and WBCs. Future lymphoma cases and controls for both sexes show different responses to the interaction of PCBs with WBCs, suggesting a role of the immune system in PCB-related cancer development.
Collapse
|
25
|
Chae WJ, Bothwell ALM. Canonical and Non-Canonical Wnt Signaling in Immune Cells. Trends Immunol 2018; 39:830-847. [PMID: 30213499 DOI: 10.1016/j.it.2018.08.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022]
Abstract
Cell differentiation, proliferation, and death are vital for immune homeostasis. Wnt signaling plays essential roles in processes across species. The roles of Wnt signaling proteins and Wnt ligands have been studied in the past, but the context-dependent mechanisms and functions of these pathways in immune responses remain unclear. Recent findings regarding the role of Wnt ligands and Wnt signaling in immune cells and their immunomodulatory mechanisms suggest that Wnt ligands and signaling are significant in regulating immune responses. We introduce recent key findings and future perspectives on Wnt ligands and their signaling pathways in immune cells as well as the immunological roles and functions of Wnt antagonists.
Collapse
Affiliation(s)
- Wook-Jin Chae
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA.
| | - Alfred L M Bothwell
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
26
|
Pizzi M, Margolskee E, Inghirami G. Pathogenesis of Peripheral T Cell Lymphoma. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 13:293-320. [DOI: 10.1146/annurev-pathol-020117-043821] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marco Pizzi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padova, 35121 Padova, Italy
| | - Elizabeth Margolskee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, 10126 Torino, Italy
- Department of Pathology and NYU Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
27
|
Wnt Signaling in Hematological Malignancies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:321-341. [PMID: 29389522 DOI: 10.1016/bs.pmbts.2017.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Leukemia and lymphoma are a wide encompassing term for a diverse set of blood malignancies that affect people of all ages and result in approximately 23,000 deaths in the United States per year (Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7-30.). Hematopoietic stem cells (HSCs) are tissue-specific stem cells at the apex of the hierarchy that gives rise to all of the terminally differentiated blood cells, through progressively restricted progenitor populations, a process that is known to be Wnt-responsive. In particular, the progenitor populations are subject to uncontrolled expansion during oncogenic processes, namely the common myeloid progenitor and common lymphoid progenitor, as well as the myeloblast and lymphoblast. Unregulated growth of these cell-types leads to mainly three types of blood cancers (i.e., leukemia, lymphoma, and myeloma), which frequently exhibit deregulation of the Wnt signaling pathway. Generally, leukemia is caused by the expansion of myeloid progenitors, leading to an overproduction of white blood cells; as such, patients are unable to make sufficient numbers of red blood cells and platelets. Likewise, an overproduction of lymphocytes leads to clogging of the lymph system and impairment of the immune system in lymphomas. Finally, cancer of the plasma cells in the blood is called myeloma, which also leads to immune system failure. Within each of these three types of blood cancers, there are multiple subtypes, usually characterized by their timeline of onset and their cell type of origin. Of these, 85% of leukemias are encompassed by the four most common diseases, that is, acute myeloid leukemia (AML), chronic myeloid leukemia (CML), acute lymphoblastic leukemia (ALL), and chronic lymphocytic leukemia (CLL); AML accounts for the majority of leukemia-related deaths (Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7-30.). Through understanding how HSCs are normally developed and maintained, we can understand how the normal functions of these pathways are disrupted during blood cancer progression; the Wnt pathway is important in regulation of both normal and malignant hematopoiesis. In this chapter, we will discuss the role of Wnt signaling in normal and aberrant hematopoiesis. Our understanding the relationship between Wnt and HSCs will provide novel insights into therapeutic targets.
Collapse
|
28
|
FOXO1 opposition of CD8 + T cell effector programming confers early memory properties and phenotypic diversity. Proc Natl Acad Sci U S A 2017; 114:E8865-E8874. [PMID: 28973925 DOI: 10.1073/pnas.1618916114] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The factors and steps controlling postinfection CD8+ T cell terminal effector versus memory differentiation are incompletely understood. Whereas we found that naive TCF7 (alias "Tcf-1") expression is FOXO1 independent, early postinfection we report bimodal, FOXO1-dependent expression of the memory-essential transcription factor TCF7 in pathogen-specific CD8+ T cells. We determined the early postinfection TCF7high population is marked by low TIM3 expression and bears memory signature hallmarks before the appearance of established memory precursor marker CD127 (IL-7R). These cells exhibit diminished TBET, GZMB, mTOR signaling, and cell cycle progression. Day 5 postinfection, TCF7high cells express higher memory-associated BCL2 and EOMES, as well as increased accumulation potential and capacity to differentiate into memory phenotype cells. TCF7 retroviral transduction opposes GZMB expression and the formation of KLRG1pos phenotype cells, demonstrating an active role for TCF7 in extinguishing the effector program and forestalling terminal differentiation. Past the peak of the cellular immune response, we report a gradient of FOXO1 and TCF7 expression, which functions to oppose TBET and orchestrate a continuum of effector-to-memory phenotypes.
Collapse
|
29
|
de Roo JJD, Breukel C, Chhatta AR, Linssen MM, Vloemans SA, Salvatori D, Mikkers HMM, Verbeek SJ, Staal FJT. Axin2-mTurquoise2: A novel reporter mouse model for the detection of canonical Wnt signalling. Genesis 2017; 55. [PMID: 28875532 DOI: 10.1002/dvg.23068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 01/08/2023]
Abstract
The canonical Wnt signalling pathway has been implicated in organogenesis and self-renewal of essentially all stem cell systems. In vivo reporter systems are crucial to assess the role of Wnt signalling in the biology and pathology of stem cell systems. We set out to develop a Turquoise (TQ) fluorescent protein based Wnt reporter. We used a CRISPR-Cas9 approach to insert a TQ fluorescent protein encoding gene into the general Wnt target gene Axin2, thereby establishing a Wnt reporter mouse similar to previously generated Wnt reporter mice but with the mTurquoise2 gene instead of E. coli-β-galactosidase (LacZ). The use of mTurquoise2 is especially important in organ systems in which cells need to a be alive for further experimentation such as in vitro activation or transplantation studies. We here report successful generation of Axin2-TQ mice and show that cells from these mice faithfully respond to Wnt signals. High Wnt signals were detected in the intestinal crypts, a classical Wnt signalling site in vivo, and by flow cytometry in the thymus. These mice are an improved tool to further elucidate the role of Wnt signalling in vivo.
Collapse
Affiliation(s)
- Jolanda J D de Roo
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, The Netherlands
| | - Cor Breukel
- Department of Human and Clinical Genetics, Leiden University Medical Center, The Netherlands
| | - Amiet R Chhatta
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, The Netherlands.,Department of Molecular Cell Biology, Leiden University Medical Center, The Netherlands
| | - Margot M Linssen
- Department of Central Laboratory Animal Facility, Leiden University Medical Center, The Netherlands
| | - Sandra A Vloemans
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, The Netherlands
| | - Daniela Salvatori
- Department of Central Laboratory Animal Facility, Leiden University Medical Center, The Netherlands
| | - Harald M M Mikkers
- Department of Molecular Cell Biology, Leiden University Medical Center, The Netherlands
| | - Sjef J Verbeek
- Department of Human and Clinical Genetics, Leiden University Medical Center, The Netherlands
| | - Frank J T Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, The Netherlands
| |
Collapse
|
30
|
Bongiovanni D, Saccomani V, Piovan E. Aberrant Signaling Pathways in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2017; 18:ijms18091904. [PMID: 28872614 PMCID: PMC5618553 DOI: 10.3390/ijms18091904] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease caused by the malignant transformation of immature progenitors primed towards T-cell development. Clinically, T-ALL patients present with diffuse infiltration of the bone marrow by immature T-cell blasts high blood cell counts, mediastinal involvement, and diffusion to the central nervous system. In the past decade, the genomic landscape of T-ALL has been the target of intense research. The identification of specific genomic alterations has contributed to identify strong oncogenic drivers and signaling pathways regulating leukemia growth. Notwithstanding, T-ALL patients are still treated with high-dose multiagent chemotherapy, potentially exposing these patients to considerable acute and long-term side effects. This review summarizes recent advances in our understanding of the signaling pathways relevant for the pathogenesis of T-ALL and the opportunities offered for targeted therapy.
Collapse
Affiliation(s)
- Deborah Bongiovanni
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita' di Padova, Padova 35128, Italy.
| | - Valentina Saccomani
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita' di Padova, Padova 35128, Italy.
| | - Erich Piovan
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita' di Padova, Padova 35128, Italy.
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova 35128, Italy.
| |
Collapse
|
31
|
Oliveira ML, Akkapeddi P, Alcobia I, Almeida AR, Cardoso BA, Fragoso R, Serafim TL, Barata JT. From the outside, from within: Biological and therapeutic relevance of signal transduction in T-cell acute lymphoblastic leukemia. Cell Signal 2017. [PMID: 28645565 DOI: 10.1016/j.cellsig.2017.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer that arises from clonal expansion of transformed T-cell precursors. In this review we summarize the current knowledge on the external stimuli and cell-intrinsic lesions that drive aberrant activation of pivotal, pro-tumoral intracellular signaling pathways in T-cell precursors, driving transformation, leukemia expansion, spread or resistance to therapy. In addition to their pathophysiological relevance, receptors and kinases involved in signal transduction are often attractive candidates for targeted drug development. As such, we discuss also the potential of T-ALL signaling players as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mariana L Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Padma Akkapeddi
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Isabel Alcobia
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Afonso R Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Bruno A Cardoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Rita Fragoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Teresa L Serafim
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| |
Collapse
|
32
|
Wnt Signaling as Master Regulator of T-Lymphocyte Responses: Implications for Transplant Therapy. Transplantation 2017; 100:2584-2592. [PMID: 27861287 DOI: 10.1097/tp.0000000000001393] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
T cell-mediated immune responses to the grafted tissues are the major reason for failed organ transplantation. The regulation of T cell responses is complex and involves major histocompatibility complex molecules on transplanted organs, cytokines, regulatory cells, and antigen-presenting cells. The evolutionary conserved Wnt signal transduction pathway has long been known for its importance in development of stem cells and immature T cells in the thymus. Recent evidence indicates the Wnt pathway as a master regulator of T cell immune responses via governing the balance between T helper 17/regulatory T cells and by regulating the formation of effector and memory cytotoxic CD8 T cell responses. In doing so, Wnt signals influence the outcome of immune responses in transplantation settings.
Collapse
|
33
|
De Jaime-Soguero A, Aulicino F, Ertaylan G, Griego A, Cerrato A, Tallam A, del Sol A, Cosma MP, Lluis F. Wnt/Tcf1 pathway restricts embryonic stem cell cycle through activation of the Ink4/Arf locus. PLoS Genet 2017; 13:e1006682. [PMID: 28346462 PMCID: PMC5386305 DOI: 10.1371/journal.pgen.1006682] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 04/10/2017] [Accepted: 03/10/2017] [Indexed: 12/22/2022] Open
Abstract
Understanding the mechanisms regulating cell cycle, proliferation and potency of pluripotent stem cells guarantees their safe use in the clinic. Embryonic stem cells (ESCs) present a fast cell cycle with a short G1 phase. This is due to the lack of expression of cell cycle inhibitors, which ultimately determines naïve pluripotency by holding back differentiation. The canonical Wnt/β-catenin pathway controls mESC pluripotency via the Wnt-effector Tcf3. However, if the activity of the Wnt/β-catenin controls the cell cycle of mESCs remains unknown. Here we show that the Wnt-effector Tcf1 is recruited to and triggers transcription of the Ink4/Arf tumor suppressor locus. Thereby, the activation of the Wnt pathway, a known mitogenic pathway in somatic tissues, restores G1 phase and drastically reduces proliferation of mESCs without perturbing pluripotency. Tcf1, but not Tcf3, is recruited to a palindromic motif enriched in the promoter of cell cycle repressor genes, such as p15Ink4b, p16Ink4a and p19Arf, which mediate the Wnt-dependent anti-proliferative effect in mESCs. Consistently, ablation of β-catenin or Tcf1 expression impairs Wnt-dependent cell cycle regulation. All together, here we showed that Wnt signaling controls mESC pluripotency and proliferation through non-overlapping functions of distinct Tcf factors. Studying how to safely expand stem cells in culture is essential for regenerative medicine applications. Hence there is a clear need to decode how the cell cycle of mouse embryonic stem cells (mESCs) is regulated. Tcf3 and Tcf1 belong to the Tcf family of proteins. Tcf/Lef are effectors of the Wnt/β-catenin pathway and Tcf3 controls mESC pluripotency. Here we identified a recruitment site for Tcf1 embedded into a number of cell cycle repressor genes such as p15Ink4b, p16Ink4a and p19Arf. Tcf1-mediated activation of these genes drastically slows down proliferation of mESCs. In conclusion, here we showed that the Wnt pathway, besides controlling mESC pluripotency via Tcf3, also regulates mESC cell cycle through the recruitment of Tcf1 to the regulatory sites of key cell cycle genes.
Collapse
Affiliation(s)
- Anchel De Jaime-Soguero
- KU Leuven Stem Cell Institute, Department of Development and Regeneration, Stem Cell Signalling laboratory, Herestraat 49, Onderwijs en Navorsing 4, Leuven, Belgium
| | - Francesco Aulicino
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Gokhan Ertaylan
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University. Universiteitssingel 60, 6229 ER Maastricht, The Netherlands
| | - Anna Griego
- KU Leuven Stem Cell Institute, Department of Development and Regeneration, Stem Cell Signalling laboratory, Herestraat 49, Onderwijs en Navorsing 4, Leuven, Belgium
| | - Aniello Cerrato
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale "Gaetano Salvatore", CNR, Napoli, Italy
| | - Aravind Tallam
- TWINCORE, Zentrum für Experimentelle und Klinische Infektionsforschung, Hannover, Germany
| | - Antonio del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- * E-mail: ;
| | - Frederic Lluis
- KU Leuven Stem Cell Institute, Department of Development and Regeneration, Stem Cell Signalling laboratory, Herestraat 49, Onderwijs en Navorsing 4, Leuven, Belgium
- * E-mail: ;
| |
Collapse
|
34
|
The development of T cells from stem cells in mice and humans. Future Sci OA 2017; 3:FSO186. [PMID: 28883990 PMCID: PMC5583695 DOI: 10.4155/fsoa-2016-0095] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/20/2017] [Indexed: 12/19/2022] Open
Abstract
T cells develop from hematopoietic stem cells in the specialized microenvironment of the thymus. The main transcriptional players of T-cell differentiation such as Notch, Tcf-1, Gata3 and Bcl11b have been identified, but their role and regulation are not yet completely understood. In humans, functional experiments on T-cell development have traditionally been rather difficult to perform, but novel in vitro culture systems and in vivo xenograft models have allowed detailed studies on human T-cell development. Recent work has allowed the use of human severe combined immunodeficiency stem cells to unravel developmental checkpoints for human thymocyte development.
Collapse
|
35
|
Masuda T, Ishitani T. Context-dependent regulation of the β-catenin transcriptional complex supports diverse functions of Wnt/β-catenin signaling. J Biochem 2016; 161:9-17. [PMID: 28013224 DOI: 10.1093/jb/mvw072] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/14/2016] [Indexed: 12/15/2022] Open
Abstract
Wnt/β-catenin signaling is activated repeatedly during an animal's lifespan, and it controls gene expression through its essential nuclear effector, β-catenin, to regulate embryogenesis, organogenesis, and adult homeostasis. Although the β-catenin transcriptional complex has the ability to induce the expression of many genes to exert its diverse roles, it chooses and transactivates a specific gene set from among its numerous target genes depending on the context. For example, the β-catenin transcriptional complex stimulates the expression of cell cycle-related genes and consequent cell proliferation in neural progenitor cells, while it promotes the expression of neural differentiation-related genes in differentiating neurons. Recent studies using animal and cell culture models have gradually improved our understanding of the molecular basis underlying such context-dependent actions of the β-catenin transcriptional complex. Here, we describe eight mechanisms that support β-catenin-mediated context-dependent gene regulation, and their spatio-temporal regulation during vertebrate development. In addition, we discuss their contribution to the diverse functions of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Takamasa Masuda
- Division of Cell Regulation Systems, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Tohru Ishitani
- Division of Cell Regulation Systems, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| |
Collapse
|
36
|
Aberrant Wnt Signaling in Leukemia. Cancers (Basel) 2016; 8:cancers8090078. [PMID: 27571104 PMCID: PMC5040980 DOI: 10.3390/cancers8090078] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/25/2016] [Accepted: 08/22/2016] [Indexed: 12/21/2022] Open
Abstract
The Wnt signaling pathway is essential in the development and homeostasis of blood and immune cells, but its exact role is still controversial and is the subject of intense research. The malignant counterpart of normal hematopoietic cells, leukemic (stem) cells, have hijacked the Wnt pathway for their self-renewal and proliferation. Here we review the multiple ways dysregulated Wnt signaling can contribute to leukemogenesis, both cell autonomously as well as by changes in the microenvironment.
Collapse
|
37
|
Staal FJT. Wnt signalling meets epigenetics. Stem Cell Investig 2016; 3:38. [PMID: 27668245 DOI: 10.21037/sci.2016.08.01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/03/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Frank J T Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
38
|
La Starza R, Barba G, Demeyer S, Pierini V, Di Giacomo D, Gianfelici V, Schwab C, Matteucci C, Vicente C, Cools J, Messina M, Crescenzi B, Chiaretti S, Foà R, Basso G, Harrison CJ, Mecucci C. Deletions of the long arm of chromosome 5 define subgroups of T-cell acute lymphoblastic leukemia. Haematologica 2016; 101:951-8. [PMID: 27151989 PMCID: PMC4967574 DOI: 10.3324/haematol.2016.143875] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/29/2016] [Indexed: 11/09/2022] Open
Abstract
Recurrent deletions of the long arm of chromosome 5 were detected in 23/200 cases of T-cell acute lymphoblastic leukemia. Genomic studies identified two types of deletions: interstitial and terminal. Interstitial 5q deletions, found in five cases, were present in both adults and children with a female predominance (chi-square, P=0.012). Interestingly, these cases resembled immature/early T-cell precursor acute lymphoblastic leukemia showing significant down-regulation of five out of the ten top differentially expressed genes in this leukemia group, including TCF7 which maps within the 5q31 common deleted region. Mutations of genes known to be associated with immature/early T-cell precursor acute lymphoblastic leukemia, i.e. WT1, ETV6, JAK1, JAK3, and RUNX1, were present, while CDKN2A/B deletions/mutations were never detected. All patients had relapsed/resistant disease and blasts showed an early differentiation arrest with expression of myeloid markers. Terminal 5q deletions, found in 18 of patients, were more prevalent in adults (chi-square, P=0.010) and defined a subgroup of HOXA-positive T-cell acute lymphoblastic leukemia characterized by 130 up- and 197 down-regulated genes. Down-regulated genes included TRIM41, ZFP62, MAPK9, MGAT1, and CNOT6, all mapping within the 1.4 Mb common deleted region at 5q35.3. Of interest, besides CNOT6 down-regulation, these cases also showed low BTG1 expression and a high incidence of CNOT3 mutations, suggesting that the CCR4-NOT complex plays a crucial role in the pathogenesis of HOXA-positive T-cell acute lymphoblastic leukemia with terminal 5q deletions. In conclusion, interstitial and terminal 5q deletions are recurrent genomic losses identifying distinct subtypes of T-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Roberta La Starza
- Molecular Medicine Laboratory, Center for Hemato-Oncology Research, University of Perugia, Italy
| | - Gianluca Barba
- Molecular Medicine Laboratory, Center for Hemato-Oncology Research, University of Perugia, Italy
| | - Sofie Demeyer
- Center for Human Genetics, KU Leuven, Belgium Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Valentina Pierini
- Molecular Medicine Laboratory, Center for Hemato-Oncology Research, University of Perugia, Italy
| | - Danika Di Giacomo
- Molecular Medicine Laboratory, Center for Hemato-Oncology Research, University of Perugia, Italy
| | - Valentina Gianfelici
- Hematology, Department of Cellular Biotechnologies and Hematology, "Sapienza" University, Rome, Italy
| | - Claire Schwab
- Leukaemia Research Cytogenetic Group, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Caterina Matteucci
- Molecular Medicine Laboratory, Center for Hemato-Oncology Research, University of Perugia, Italy
| | - Carmen Vicente
- Center for Human Genetics, KU Leuven, Belgium Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Jan Cools
- Center for Human Genetics, KU Leuven, Belgium Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Monica Messina
- Hematology, Department of Cellular Biotechnologies and Hematology, "Sapienza" University, Rome, Italy
| | - Barbara Crescenzi
- Molecular Medicine Laboratory, Center for Hemato-Oncology Research, University of Perugia, Italy
| | - Sabina Chiaretti
- Hematology, Department of Cellular Biotechnologies and Hematology, "Sapienza" University, Rome, Italy
| | - Robin Foà
- Hematology, Department of Cellular Biotechnologies and Hematology, "Sapienza" University, Rome, Italy
| | - Giuseppe Basso
- Pediatric Hemato-Oncology, Department of Pediatrics "Salus Pueri", University of Padova, Italy
| | - Christine J Harrison
- Leukaemia Research Cytogenetic Group, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Cristina Mecucci
- Molecular Medicine Laboratory, Center for Hemato-Oncology Research, University of Perugia, Italy
| |
Collapse
|
39
|
Gekas C, D'Altri T, Aligué R, González J, Espinosa L, Bigas A. β-Catenin is required for T-cell leukemia initiation and MYC transcription downstream of Notch1. Leukemia 2016; 30:2002-2010. [PMID: 27125305 DOI: 10.1038/leu.2016.106] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 12/30/2022]
Abstract
Notch activation is instrumental in the development of most T-cell acute lymphoblastic leukemia (T-ALL) cases, yet Notch mutations alone are not sufficient to recapitulate the full human disease in animal models. We here found that Notch1 activation at the fetal liver (FL) stage expanded the hematopoietic progenitor population and conferred it transplantable leukemic-initiating capacity. However, leukemogenesis and leukemic-initiating cell capacity induced by Notch1 was critically dependent on the levels of β-Catenin in both FL and adult bone marrow contexts. In addition, inhibition of β-Catenin compromised survival and proliferation of human T-ALL cell lines carrying activated Notch1. By transcriptome analyses, we identified the MYC pathway as a crucial element downstream of β-Catenin in these T-ALL cells and demonstrate that the MYC 3' enhancer required β-Catenin and Notch1 recruitment to induce transcription. Finally, PKF115-584 treatment prevented and partially reverted leukemogenesis induced by active Notch1.
Collapse
Affiliation(s)
- C Gekas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - T D'Altri
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - R Aligué
- Department of Cell Biology, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - J González
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - L Espinosa
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - A Bigas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| |
Collapse
|
40
|
Xing S, Li F, Zeng Z, Zhao Y, Yu S, Shan Q, Li Y, Phillips FC, Maina PK, Qi HH, Liu C, Zhu J, Pope RM, Musselman CA, Zeng C, Peng W, Xue HH. Tcf1 and Lef1 transcription factors establish CD8(+) T cell identity through intrinsic HDAC activity. Nat Immunol 2016; 17:695-703. [PMID: 27111144 PMCID: PMC4873337 DOI: 10.1038/ni.3456] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/30/2016] [Indexed: 02/06/2023]
Abstract
The CD4+ and CD8+ T cell dichotomy is essential for effective cellular immunity. How the individual T cell identity is established remains poorly understood. Here we show that the high mobility group (HMG) transcription factors Tcf1 and Lef1 are essential for repressing CD4+ lineage-associated genes including Cd4, Foxp3 and Rorc in CD8+ T cells. Tcf1- and Lef1-deficient CD8+ T cells exhibit histone hyperacetylation, which is ascribed to an unexpected intrinsic histone deacetylase (HDAC) activity in Tcf1 and Lef1. Mutating five conserved amino acids in the Tcf1 HDAC domain diminishes the HDAC activity and the ability to suppress CD4+ lineage genes in CD8+ T cells. These findings reveal that sequence-specific transcription factors can utilize intrinsic HDAC activity to guard cell identity by repressing lineage-inappropriate genes.
Collapse
Affiliation(s)
- Shaojun Xing
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Fengyin Li
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Zhouhao Zeng
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Yunjie Zhao
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qiang Shan
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Yalan Li
- Proteomics Facility, University of Iowa, Iowa City, Iowa, USA
| | - Farrah C Phillips
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USA
| | - Peterson K Maina
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Hank H Qi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Chengyu Liu
- Transgenic Core Facility, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Zhu
- Systems Biology Center, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - R Marshall Pope
- Proteomics Facility, University of Iowa, Iowa City, Iowa, USA
| | - Catherine A Musselman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Chen Zeng
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Hai-Hui Xue
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
41
|
Staal FJT, Chhatta A, Mikkers H. Caught in a Wnt storm: Complexities of Wnt signaling in hematopoiesis. Exp Hematol 2016; 44:451-7. [PMID: 27016274 DOI: 10.1016/j.exphem.2016.03.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 01/10/2023]
Abstract
The Wnt signaling pathway is an evolutionary conserved pathway that is involved in the development of almost every organ system in the body and provides self-renewal signals for most, if not all, adult stem cell systems. In recent years, this pathway has been studied by various research groups working on hematopoietic stem cells, resulting in contradicting conclusions. Here, we discuss and interpret the results of these studies and propose that Wnt dosage, the source of hematopoietic stem cells, and interactions with other pathways explain these disparate results.
Collapse
Affiliation(s)
- Frank J T Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands; Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Amiet Chhatta
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands; Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Harald Mikkers
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands; Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
42
|
Belmonte M, Hoofd C, Weng AP, Giambra V. Targeting leukemia stem cells: which pathways drive self-renewal activity in T-cell acute lymphoblastic leukemia? ACTA ACUST UNITED AC 2016; 23:34-41. [PMID: 26966402 DOI: 10.3747/co.23.2806] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
T-Cell acute lymphoblastic leukemia (t-all) is a malignancy of white blood cells, characterized by an uncontrolled accumulation of T-cell progenitors. During leukemic progression, immature T cells grow abnormally and crowd into the bone marrow, preventing it from making normal blood cells and spilling out into the bloodstream. Recent studies suggest that only discrete cell populations that possess the ability to recreate the entire tumour might be responsible for the initiation and propagation of t-all. Those unique cells are commonly called "cancer stem cells" or, in the case of hematopoietic malignancies, "leukemia stem cells" (lscs). Like normal hematopoietic stem cells, lscs are thought to be capable of self-renewal, during which, by asymmetrical division, they give rise to an identical copy of themselves as well as to a daughter cell that is no longer capable of self-renewal activity and represents a more "differentiated" progeny. Here, we review the main pathways of self-renewal activity in lscs, focusing on their involvement in the maintenance and development of t-all. New stem cell-directed therapies and lsc-targeted agents are also discussed.
Collapse
Affiliation(s)
- M Belmonte
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC
| | - C Hoofd
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC
| | - A P Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC
| | - V Giambra
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC
| |
Collapse
|
43
|
Staal FJT, Wiekmeijer AS, Brugman MH, Pike-Overzet K. The functional relationship between hematopoietic stem cells and developing T lymphocytes. Ann N Y Acad Sci 2016; 1370:36-44. [PMID: 26773328 DOI: 10.1111/nyas.12995] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In contrast to all other blood and immune cells, T lymphocytes do not develop in the bone marrow (BM), but in the specialized microenvironment provided by the thymus. Similar to the other lineages, however, all T cells arise from multipotent hematopoietic stem cells (HSCs) that reside in the BM. Not all HSCs give rise to T cells; but how many and what kind of developmental checkpoints are located along this intricate differentiation path is the subject of intense research. Traditionally, this process has been studied almost exclusively using mouse cells, but recent advances in immunodeficient mouse models, high-speed cell sorting, lentiviral transduction protocols, and deep sequencing techniques have allowed these questions to be addressed using human cells. Here we review the process of thymic seeding by BM-derived cells and T cell commitment in humans, discussing recent insights into the clonal composition of the thymus and the definition of developmental checkpoints, on the basis of insights from human severe combined immunodeficiency patients.
Collapse
Affiliation(s)
- Frank J T Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Anna-Sophia Wiekmeijer
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Martijn H Brugman
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Karin Pike-Overzet
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
44
|
Famili F, Naber BAE, Vloemans S, de Haas EFE, Tiemessen MM, Staal FJT. Discrete roles of canonical and non-canonical Wnt signaling in hematopoiesis and lymphopoiesis. Cell Death Dis 2015; 6:e1981. [PMID: 26583322 PMCID: PMC4670932 DOI: 10.1038/cddis.2015.326] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/30/2015] [Accepted: 10/09/2015] [Indexed: 12/17/2022]
Abstract
The mechanisms that regulate proliferation, fate decisions and differentiation of hematopoietic stem cells (HSC) and thymic stem cells are highly complex. Several signaling pathways including Wnt signaling have important roles during these processes. Both canonical and non-canonical Wnt signaling are important in normal and malignant hematopoiesis and lymphoid development, yet their precise roles are controversial. In a side-by-side comparison, we investigated the roles of the canonical and non-canonical Wnt pathway in hematopoiesis and thymopoiesis. As complete loss-of-function models for non-canonical Wnt signaling are not yet available and highly complex for canonical Wnt signaling, we decided to use a gain-of-function approach. To this end, Wnt3a and Wn5a, two well-known prototypical canonical and non-canonical Wnt ligands were produced in hematopoiesis supporting stromal assays. High levels of Wnt3a signaling blocked T-cell development at early stages, whereas intermediate levels accelerated T-cell development. In contrast, Wnt5a signaling prompted apoptosis in developing thymocytes, without affecting differentiation at a particular stage. To explore the role of Wnt3a and Wnt5a in vivo, we transduced HSCs isolated from fetal liver, transduced with Wnt3a and Wnt5a vectors, and performed reconstitution assays in irradiated C57Bl/6 mice. Wnt3a overexpression led to increased lymphopoiesis, whereas Wnt5a augments myelopoiesis in the bone marrow (BM) and spleen. Thus, the canonical and non-canonical Wnt signaling have discrete roles in hematopoiesis and thymopoiesis, and understanding their right dose of action is crucial for prospective translational applications.
Collapse
Affiliation(s)
- F Famili
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center, Leiden, The Netherlands
| | - B A E Naber
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center, Leiden, The Netherlands
| | - S Vloemans
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center, Leiden, The Netherlands
| | - E F E de Haas
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center, Leiden, The Netherlands
| | - M M Tiemessen
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center, Leiden, The Netherlands
| | - F J T Staal
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
45
|
Rothenberg EV, Ungerbäck J, Champhekar A. Forging T-Lymphocyte Identity: Intersecting Networks of Transcriptional Control. Adv Immunol 2015; 129:109-74. [PMID: 26791859 DOI: 10.1016/bs.ai.2015.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T-lymphocyte development branches off from other lymphoid developmental programs through its requirement for sustained environmental signals through the Notch pathway. In the thymus, Notch signaling induces a succession of T-lineage regulatory factors that collectively create the T-cell identity through distinct steps. This process involves both the staged activation of T-cell identity genes and the staged repression of progenitor-cell-inherited regulatory genes once their roles in self-renewal and population expansion are no longer needed. With the recent characterization of innate lymphoid cells (ILCs) that share transcriptional regulation programs extensively with T-cell subsets, T-cell identity can increasingly be seen as defined in modular terms, as the processes selecting and actuating effector function are potentially detachable from the processes generating and selecting clonally unique T-cell receptor structures. The developmental pathways of different classes of T cells and ILCs are distinguished by the numbers of prerequisites of gene rearrangement, selection, and antigen contact before the cells gain access to nearly common regulatory mechanisms for choosing effector function. Here, the major classes of transcription factors that interact with Notch signals during T-lineage specification are discussed in terms of their roles in these programs, the evidence for their spectra of target genes at different stages, and their cross-regulatory and cooperative actions with each other. Specific topics include Notch modulation of PU.1 and GATA-3, PU.1-Notch competition, the relationship between PU.1 and GATA-3, and the roles of E proteins, Bcl11b, and GATA-3 in guiding acquisition of T-cell identity while avoiding redirection to an ILC fate.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA.
| | - Jonas Ungerbäck
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA; Department of Clinical and Experimental Medicine, Experimental Hematopoiesis Unit, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Ameya Champhekar
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
46
|
Undi RB, Gutti U, Sahu I, Sarvothaman S, Pasupuleti SR, Kandi R, Gutti RK. Wnt Signaling: Role in Regulation of Haematopoiesis. Indian J Hematol Blood Transfus 2015; 32:123-34. [PMID: 27065573 DOI: 10.1007/s12288-015-0585-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 08/18/2015] [Indexed: 01/22/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are a unique population of bone marrow cells which are responsible for the generation of various blood cell lineages. One of the significant characteristics of these HSCs is to self-renew, while producing differentiating cells for normal hematopoiesis. Deregulation of self-renewal and differentiation leads to the hematological malignancies. Several pathways are known to be involved in the maintenance of HSC fate among which Wnt signaling is a crucial pathway which controls development and cell fate determination. Wnt signaling also plays a major role in differentiation, self-renewal and maintenance of HSCs. Wnt ligands activate three major pathways including planar cell polarity, Wnt/β-catenin and Wnt/Ca(2+). It has been shown that Wnt/β-catenin or canonical pathway regulates cell proliferation, survival and differentiation in HSCs, deregulation of this pathway leads to hematological malignancies. Wnt non-canonical pathway regulates calcium signaling and planar cell polarity. In this review, we discuss various signaling pathways induced by Wnt ligands and their potential role in hematopoiesis.
Collapse
Affiliation(s)
- Ram Babu Undi
- Stem Cells and Haematological Disorders Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, (PO) Gachibowli, Hyderabad, Telangana 500046 India
| | - Usha Gutti
- Department of Biotechnology, GITAM Institute of Science, GITAM University, Visakhapatnam, Andhra Pradesh 530 045 India
| | - Itishri Sahu
- Stem Cells and Haematological Disorders Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, (PO) Gachibowli, Hyderabad, Telangana 500046 India
| | - Shilpa Sarvothaman
- Stem Cells and Haematological Disorders Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, (PO) Gachibowli, Hyderabad, Telangana 500046 India
| | - Satya Ratan Pasupuleti
- Stem Cells and Haematological Disorders Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, (PO) Gachibowli, Hyderabad, Telangana 500046 India
| | - Ravinder Kandi
- Stem Cells and Haematological Disorders Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, (PO) Gachibowli, Hyderabad, Telangana 500046 India
| | - Ravi Kumar Gutti
- Stem Cells and Haematological Disorders Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, (PO) Gachibowli, Hyderabad, Telangana 500046 India
| |
Collapse
|
47
|
Park J, Schlederer M, Schreiber M, Ice R, Merkel O, Bilban M, Hofbauer S, Kim S, Addison J, Zou J, Ji C, Bunting ST, Wang Z, Shoham M, Huang G, Bago-Horvath Z, Gibson LF, Rojanasakul Y, Remick S, Ivanov A, Pugacheva E, Bunting KD, Moriggl R, Kenner L, Tse W. AF1q is a novel TCF7 co-factor which activates CD44 and promotes breast cancer metastasis. Oncotarget 2015; 6:20697-710. [PMID: 26079538 PMCID: PMC4653036 DOI: 10.18632/oncotarget.4136] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/21/2015] [Indexed: 01/29/2023] Open
Abstract
AF1q is an MLL fusion partner that was identified from acute myeloid leukemia (AML) patients with t (1; 11) (q21; q23) chromosomal abnormality. The function of AF1q is not yet fully known, however, elevated AF1q expression is associated with poor clinical outcomes in various malignancies. Here, we show that AF1q specifically binds to T-cell-factor-7 (TCF7) in the Wnt signaling pathway and results in transcriptional activation of CD44 as well as multiple downstream targets of the TCF7/LEF1. In addition, enhanced AF1q expression promotes breast cancer cell proliferation, migration, mammosphere formation, and chemo-resistance. In xenograft models, enforced AF1q expression in breast cancer cells also promotes liver metastasis and lung colonization. In a cohort of 63 breast cancer patients, higher percentages of AF1q-positive cancer cells in primary sites were associated with significantly poorer overall survival (OS), disease-free survival (DFS), and brain metastasis-free survival (b-MFS). Using paired primary/metastatic samples from the same patients, we demonstrate that AF1q-positive breast cancer cells become dynamically dominant in the metastatic sites compared to the primary sites. Our findings indicate that breast cancer cells with a hyperactive AF1q/TCF7/CD44 regulatory axis in the primary sites may represent "metastatic founder cells" which have invasive properties.
Collapse
Affiliation(s)
- Jino Park
- James Graham Brown Cancer Center, Division of Blood and Bone Marrow Transplantation, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Michaela Schlederer
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Clinical Institute for Pathology, Medical University Vienna, Austria
| | - Martin Schreiber
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Ryan Ice
- Mary Babb Randolph Cancer Center, West Virginia University Health Science Center, Morgantown, WV, USA
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Olaf Merkel
- National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany
| | - Martin Bilban
- Department of Laboratory Medicine, Medical University of Vienna and Core Facility Genomics, Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Sebastian Hofbauer
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Soojin Kim
- James Graham Brown Cancer Center, Division of Blood and Bone Marrow Transplantation, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Joseph Addison
- Mary Babb Randolph Cancer Center, West Virginia University Health Science Center, Morgantown, WV, USA
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jie Zou
- Department of Hematology, Qilu Hospital, Shandong University School of Medicine, Jinan, Shandong, PR China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Shandong University School of Medicine, Jinan, Shandong, PR China
| | - Silvia T. Bunting
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Zhengqi Wang
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Menachem Shoham
- Case Western University School of Medicine, Cleveland, OH, USA
| | - Gang Huang
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Laura F. Gibson
- Mary Babb Randolph Cancer Center, West Virginia University Health Science Center, Morgantown, WV, USA
| | - Yon Rojanasakul
- Mary Babb Randolph Cancer Center, West Virginia University Health Science Center, Morgantown, WV, USA
- Department of Pharmaceutical Science, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Scot Remick
- Mary Babb Randolph Cancer Center, West Virginia University Health Science Center, Morgantown, WV, USA
| | - Alexey Ivanov
- Mary Babb Randolph Cancer Center, West Virginia University Health Science Center, Morgantown, WV, USA
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Elena Pugacheva
- Mary Babb Randolph Cancer Center, West Virginia University Health Science Center, Morgantown, WV, USA
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Kevin D. Bunting
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Clinical Institute for Pathology, Medical University Vienna, Austria
- Unit of Pathology of Laboratory Animals (UPLA), University of Veterinary Medicine, Vienna, Austria
| | - William Tse
- James Graham Brown Cancer Center, Division of Blood and Bone Marrow Transplantation, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
48
|
Zhu Y, Wang W, Wang X. Roles of transcriptional factor 7 in production of inflammatory factors for lung diseases. J Transl Med 2015; 13:273. [PMID: 26289446 PMCID: PMC4543455 DOI: 10.1186/s12967-015-0617-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/27/2015] [Indexed: 12/25/2022] Open
Abstract
Lung disease is the major cause of death and hospitalization worldwide. Transcription factors such as transcription factor 7 (TCF7) are involved in the pathogenesis of lung diseases. TCF7 is important for T cell development and differentiation, embryonic development, or tumorogenesis. Multiple TCF7 isoforms can be characterized by the full-length isoform (FL-TCF7) as a transcription activator, or dominant negative isoform (dn-TCF7) as a transcription repressor. TCF7 interacts with multiple proteins or target genes and participates in several signal pathways critical for lung diseases. TCF7 is involved in pulmonary infection, allergy or asthma through promoting T cells differentiating to Th2 or memory T cells. TCF7 also works in tissue repair and remodeling after acute lung injury. The dual roles of TCF7 in lung cancers were discussed and it is associated with the cellular proliferation, invasion or metastasis. Thus, TCF7 plays critical roles in lung diseases and should be considered as a new therapeutic target.
Collapse
Affiliation(s)
- Yichun Zhu
- Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University Center for Clinical Bioinformatics, Fenglin Rd 180, Shanghai, 200032, China.
| | - William Wang
- Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University Center for Clinical Bioinformatics, Fenglin Rd 180, Shanghai, 200032, China.
| | - Xiangdong Wang
- Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University Center for Clinical Bioinformatics, Fenglin Rd 180, Shanghai, 200032, China.
| |
Collapse
|
49
|
Steinke FC, Xue HH. From inception to output, Tcf1 and Lef1 safeguard development of T cells and innate immune cells. Immunol Res 2015; 59:45-55. [PMID: 24847765 DOI: 10.1007/s12026-014-8545-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transcription factors have recurring roles during T cell development and activation. Tcf1 and Lef1 are known to be essential for early stages of thymocyte maturation. Recent research has revealed several novel aspects of their functionality. Tcf1 is induced at the very earliest step of specifying hematopoietic progenitors to the T cell lineage as a key target gene downstream of Notch activation. In addition to promoting maturation of T-lineage-committed thymocytes, Tcf1 functions as a tumor suppressor in developing thymocytes, and this is mediated, paradoxically, by restraining Lef1 expression. After positive selection, Tcf1 and Lef1 act together to direct CD4(+)CD8(+) double positive thymocytes to a CD4(+) T cell fate. Although not required for CD8(+) T cell differentiation, Tcf1 and Lef1 cooperate with Runx factors to achieve stable silencing of the Cd4 gene in CD8(+) T cells. Tcf1 is also found to have versatile roles in innate immune cells, which partly mirror its functions in mature T helper cells. Discrepancy in requirements of Tcf1/Lef1 and β-catenin in T cells has been a long-standing enigma. We will review other protein factors interacting with Tcf1 and Lef1 and discuss their regulatory roles independent of β-catenin.
Collapse
Affiliation(s)
- Farrah C Steinke
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | |
Collapse
|
50
|
Tiemessen MM, Baert MRM, Kok L, van Eggermond MCJA, van den Elsen PJ, Arens R, Staal FJT. T Cell factor 1 represses CD8+ effector T cell formation and function. THE JOURNAL OF IMMUNOLOGY 2014; 193:5480-7. [PMID: 25355919 DOI: 10.4049/jimmunol.1303417] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Wnt-responsive transcription factor T cell factor 1 (Tcf1) is well known for its role in thymic T cell development and the formation of memory CD8(+) T cells. However, its role in the initial phases of CD8(+) T effector cell formation has remained unexplored. We report that high levels of Wnt signaling and Tcf1 are operational in naive and memory CD8(+) T cells, whereas Wnt signaling and Tcf1 were low in effector CD8(+) T cells. CD8(+) T cells deficient in Tcf1 produce IFN-γ more rapidly, coinciding with increased demethylation of the IFN-γ enhancer and higher expression of the transcription factors Tbet and Blimp1. Moreover, virus-specific Tcf1(-/-) CD8(+) T cells show accelerated expansion in acute infection, which is associated with increased IFN-γ and TNF production and lower viral load. Genetic complementation experiments with various Tcf1 isoforms indicate that Tcf1 dosage and protein stability are critical in suppressing IFN-γ production. Isoforms lacking the β-catenin binding domain are equally effective in inhibiting CD8(+) effector T cell formation. Thus, Tcf1 functions as a repressor of CD8(+) effector T cell formation in a β-catenin/Wnt-independent manner.
Collapse
Affiliation(s)
- Machteld M Tiemessen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC/Leiden, the Netherlands
| | - Miranda R M Baert
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC/Leiden, the Netherlands
| | - Lianne Kok
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC/Leiden, the Netherlands
| | - Marja C J A van Eggermond
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC/Leiden, the Netherlands
| | - Peter J van den Elsen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC/Leiden, the Netherlands
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC/Leiden, the Netherlands
| | - Frank J T Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC/Leiden, the Netherlands
| |
Collapse
|