1
|
Rath S, Das S. Stress response proteins within biofilm matrixome protect the cell membrane against heavy metals-induced oxidative damage in a marine bacterium Bacillus stercoris GST-03. Int J Biol Macromol 2025; 293:139397. [PMID: 39743066 DOI: 10.1016/j.ijbiomac.2024.139397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Biofilm formation is a key adaptive response of marine bacteria towards stress conditions. The protective mechanisms of biofilm matrixome proteins against heavy metals (Pb and Cd) induced oxidative damage in the marine bacterium Bacillus stercoris GST-03 was investigated. Exposure to heavy metals resulted in significant changes in cell morphology, biofilm formation, and matrixome composition. Biofilm-encased cells showed lower oxidative damage. Biofilm matrixome protein exhibited major conformational changes, with 100 % α-helix turned to 62.33 % and 69.64 % of random coil under Pb and Cd stress, respectively. Fluorescence quenching kinetics revealed slow interactions between biofilm matrixome proteins and heavy metals (Kq values < 2.0 × 1010). Thermodynamic analysis showed negative ∆G (-16.02 kJ/mol for Pb and -17.45 kJ/mol for Cd) and binding dissociation constant (KD) (1530 ± 157 μM for Pb and 875 ± 97.4 μM for Cd), indicating a stronger binding affinity of biofilm matrixome to heavy metals. Pb stress led to overproduction of detoxification proteins (YnaI, KhtS, Bacillopeptidase F), competence and sporulation proteins (RapF, CSSF, XkdP), while Cd exposure leads to overproduction of proteins involved in protein misfolding repair (YlxX, cysteine-tRNA ligase, YacP), DNA repair (YfkN), and redox balance (cysteine synthase, YdiK). The findings highlight the resilience of B. stercoris GST-03 to heavy metal stress in biofilm mode.
Collapse
Affiliation(s)
- Sonalin Rath
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
2
|
Felipe-Ruiz A, Zamora-Caballero S, Bendori SO, Penadés JR, Eldar A, Marina A. Extracellular proteolysis of tandemly duplicated pheromone propeptides affords additional complexity to bacterial quorum sensing. PLoS Biol 2024; 22:e3002744. [PMID: 39137235 PMCID: PMC11343458 DOI: 10.1371/journal.pbio.3002744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/23/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Bacterial interactions are vital for adapting to changing environments, with quorum sensing (QS) systems playing a central role in coordinating behaviors through small signaling molecules. The RRNPPA family is the prevalent QS systems in Bacillota and mediating communication through secreted oligopeptides, which are processed into active pheromones by extracellular proteases. Notably, in several cases the propeptides show the presence of multiple putative pheromones within their sequences, which has been proposed as a mechanism to diversify peptide-receptor specificity and potentially facilitate new functions. However, neither the processes governing the maturation of propeptides containing multiple pheromones, nor their functional significance has been evaluated. Here, using 2 Rap systems from bacteriophages infecting Bacillus subtilis that exhibit different types of pheromone duplication in their propeptides, we investigate the maturation process and the molecular and functional activities of the produced pheromones. Our results reveal that distinct maturation processes generate multiple mature pheromones, which bind to receptors with varying affinities but produce identical structural and biological responses. These findings add additional layers in the complexity of QS communication and regulation, opening new possibilities for microbial social behaviors, highlighting the intricate nature of bacterial interactions and adaptation.
Collapse
Affiliation(s)
- Alonso Felipe-Ruiz
- Instituto de Biomedicina de Valencia (IBV)-CSIC and CIBER de Enfermedades Raras (CIBERER)-ISCIII, Valencia, Spain
| | - Sara Zamora-Caballero
- Instituto de Biomedicina de Valencia (IBV)-CSIC and CIBER de Enfermedades Raras (CIBERER)-ISCIII, Valencia, Spain
| | - Shira Omer Bendori
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - José R. Penadés
- Centre for Bacterial Resistance Biology, Imperial College London, United Kingdom
- School of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Alfara del Patriarca, Spain
| | - Avigdor Eldar
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV)-CSIC and CIBER de Enfermedades Raras (CIBERER)-ISCIII, Valencia, Spain
| |
Collapse
|
3
|
Fessia A, Sartori M, Orlando J, Barros G, Nesci A. Draft genome sequences of two biocontrol agents isolated from the maize phyllosphere : Bacillus subtilis strain EM-A7 and Bacillus velezensis strain EM-A8. Heliyon 2024; 10:e32607. [PMID: 39021968 PMCID: PMC11252862 DOI: 10.1016/j.heliyon.2024.e32607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/06/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
In the present study, the genomes of B. subtilis EM-A7 and B. velezensis EM-A8 were sequenced and annotated. The Illumina sequencing platform (NovaSeq PE150) was used to sequence the genomic DNA. There were 6 277 054 raw reads for EM-A7, with a Q20 of 97.52 % and 43.78 % GC, and 8 030 262 raw reads for EM-A8, with a Q20 of 97.53 % and 46.21 % GC. Annotation was carried out by the NCBI Prokaryotic Genome Annotation Pipeline (PGAP). The strains were classified taxonomically on the basis of an average nucleotide identity analysis (ANI), as well as through a dDDh analysis on the Genome-to-Genome Distance Calculator (GGDC v3.0). The pipeline predicted 4062 protein-coding sequences (CDSs) and 73 RNA genes (62 tRNA and 6 rRNA) for EM-A7, and 3797 protein-coding sequences (CDSs) and 80 RNA genes for EM-A8. These findings enhance our understanding of the two strains' potential as biocontrol agents to manage disease in maize.
Collapse
Affiliation(s)
- Aluminé Fessia
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina. - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Melina Sartori
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina. - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Julieta Orlando
- Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Germán Barros
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina. - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Andrea Nesci
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina. - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
4
|
Zamora-Caballero S, Chmielowska C, Quiles-Puchalt N, Brady A, Gallego Del Sol F, Mancheño-Bonillo J, Felipe-Ruíz A, Meijer WJJ, Penadés JR, Marina A. Antagonistic interactions between phage and host factors control arbitrium lysis-lysogeny decision. Nat Microbiol 2024; 9:161-172. [PMID: 38177302 PMCID: PMC10769878 DOI: 10.1038/s41564-023-01550-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/07/2023] [Indexed: 01/06/2024]
Abstract
Phages can use a small-molecule communication arbitrium system to coordinate lysis-lysogeny decisions, but the underlying mechanism remains unknown. Here we determined that the arbitrium system in Bacillus subtilis phage phi3T modulates the bacterial toxin-antitoxin system MazE-MazF to regulate the phage life cycle. We show that phi3T expresses AimX and YosL, which bind to and inactivate MazF. AimX also inhibits the function of phi3T_93, a protein that promotes lysogeny by binding to MazE and releasing MazF. Overall, these mutually exclusive interactions promote the lytic cycle of the phage. After several rounds of infection, the phage-encoded AimP peptide accumulates intracellularly and inactivates the phage antiterminator AimR, a process that eliminates aimX expression from the aimP promoter. Therefore, when AimP increases, MazF activity promotes reversion back to lysogeny, since AimX is absent. Altogether, our study reveals the evolutionary strategy used by arbitrium to control lysis-lysogeny by domesticating and fine-tuning a phage-defence mechanism.
Collapse
Grants
- Wellcome Trust
- Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
- Regional Government of Valencia | Conselleria d'Educació, Investigació, Cultura i Esport (Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana)
- NYSE Euronext
- European Commission NextGenerationEU fund (EU 2020/2094), through CSIC’s Global Health Platform (PTI Salud Global). Block allocation group (BAG) DLS Proposal MX28394, ALBA Proposal 2020074406 and ESRF proposal MX-2452
- grants PID2019-108541GB-I00 and PID2022-137201NB-I00 from Spanish Government (Ministerio de Ciencia e Innovación), PROMETEO/2020/012 by Valencian Government
- MR/M003876/1, MR/V000772/1 and MR/S00940X/1 from the Medical Research Council (UK), BB/N002873/1, BB/V002376/1 and BB/S003835/1 from the Biotechnology and Biological Sciences Research Council (BBSRC, UK), ERC-ADG-2014 Proposal n° 670932 Dut-signal (from EU), and Wellcome Trust 201531/Z/16/Z
- RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
- RCUK | Medical Research Council (MRC)
- Wellcome Trust (Wellcome)
- EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
Collapse
Affiliation(s)
- Sara Zamora-Caballero
- Instituto de Biomedicina de Valencia (IBV)-CSIC and CIBER de Enfermedades Raras (CIBERER)-ISCIII, Valencia, Spain
| | - Cora Chmielowska
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Nuria Quiles-Puchalt
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Alfara del Patriarca, Spain
| | - Aisling Brady
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Francisca Gallego Del Sol
- Instituto de Biomedicina de Valencia (IBV)-CSIC and CIBER de Enfermedades Raras (CIBERER)-ISCIII, Valencia, Spain
| | - Javier Mancheño-Bonillo
- Instituto de Biomedicina de Valencia (IBV)-CSIC and CIBER de Enfermedades Raras (CIBERER)-ISCIII, Valencia, Spain
| | - Alonso Felipe-Ruíz
- Instituto de Biomedicina de Valencia (IBV)-CSIC and CIBER de Enfermedades Raras (CIBERER)-ISCIII, Valencia, Spain
| | - Wilfried J J Meijer
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - José R Penadés
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK.
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV)-CSIC and CIBER de Enfermedades Raras (CIBERER)-ISCIII, Valencia, Spain.
| |
Collapse
|
5
|
Mirmajidi SH, Irajie C, Savardashtaki A, Negahdaripour M, Nezafat N, Ghasemi Y. Identification of potential RapJ hits as sporulation pathway inducer candidates in Bacillus coagulans via structure-based virtual screening and molecular dynamics simulation studies. J Mol Model 2023; 29:256. [PMID: 37464224 DOI: 10.1007/s00894-023-05664-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND The bacterium Bacillus coagulans has attracted interest because of its ability to produce spores and advantageous probiotic traits, such as facilitating food digestion in the intestine, managing some disorders, and controlling the symbiotic microbiota. Spore-forming probiotic bacteria are especially important in the probiotic industry compared to non-spore-forming bacteria due to their stability during production and high resistance to adverse factors such as stomach acid. When spore-forming bacteria are exposed to environmental stresses, they enter the sporulation pathway to survive. This pathway is activated by the final phosphorylation of the master regulator of spore response, Spo0A, and upon achieving the phosphorylation threshold. Spo0A is indirectly inhibited by some enzymes of the aspartate response regulator phosphatase (Rap) family, such as RapJ. RapJ is one of the most important Rap enzymes in the sporogenesis pathway, which is naturally inhibited by the pentapeptides. METHODS This study used structure-based virtual screening and molecular dynamics (MD) simulation studies to find potential RapJ hits that could induce the sporulation pathway. The crystal structures of RapJ complexed with pentapeptide clearly elucidated their interactions with the enzyme active site. RESULTS Based on the binding compartment, through molecular docking, MD simulation, hydrogen bonds, and binding-free energy calculations, a series of novel hits against RapJ named tandutinib, infigratinib, sitravatinib, linifanib, epertinib, surufatinib, and acarbose were identified. Among these compounds, acarbose obtained the highest score, especially in terms of the number of hydrogen bonds, which plays a major role in stabilizing RapJ-ligand complexes, and also according to the occupancy percentages of hydrogen bonds, its hydrogen bonds were more stable during the simulation time. Consequently, acarbose is probably the most suitable hit for RapJ enzyme. Notably, experimental validation is crucial to confirm the effectiveness of the selected ligands.
Collapse
Affiliation(s)
- Seyedeh Habibeh Mirmajidi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Navid Nezafat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran.
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran.
| |
Collapse
|
6
|
Ricci-Tam C, Kuipa S, Kostman MP, Aronson MS, Sgro AE. Microbial models of development: Inspiration for engineering self-assembled synthetic multicellularity. Semin Cell Dev Biol 2023; 141:50-62. [PMID: 35537929 DOI: 10.1016/j.semcdb.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
Abstract
While the field of synthetic developmental biology has traditionally focused on the study of the rich developmental processes seen in metazoan systems, an attractive alternate source of inspiration comes from microbial developmental models. Microbes face unique lifestyle challenges when forming emergent multicellular collectives. As a result, the solutions they employ can inspire the design of novel multicellular systems. In this review, we dissect the strategies employed in multicellular development by two model microbial systems: the cellular slime mold Dictyostelium discoideum and the biofilm-forming bacterium Bacillus subtilis. Both microbes face similar challenges but often have different solutions, both from metazoan systems and from each other, to create emergent multicellularity. These challenges include assembling and sustaining a critical mass of participating individuals to support development, regulating entry into development, and assigning cell fates. The mechanisms these microbial systems exploit to robustly coordinate development under a wide range of conditions offer inspiration for a new toolbox of solutions to the synthetic development community. Additionally, recreating these phenomena synthetically offers a pathway to understanding the key principles underlying how these behaviors are coordinated naturally.
Collapse
Affiliation(s)
- Chiara Ricci-Tam
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Sophia Kuipa
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Maya Peters Kostman
- Biological Design Center, Boston University, Boston, MA 02215, USA; Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA 02215, USA
| | - Mark S Aronson
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Allyson E Sgro
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA; Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
7
|
Structural and Genomic Evolution of RRNPPA Systems and Their Pheromone Signaling. mBio 2022; 13:e0251422. [PMID: 36259720 PMCID: PMC9765709 DOI: 10.1128/mbio.02514-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
Abstract
In Firmicutes, important processes such as competence development, sporulation, virulence, and biofilm formation are regulated by cytoplasmic quorum sensing (QS) receptors of the RRNPPA family using peptide-based communication. Although these systems regulate important processes in a variety of bacteria, their origin and diversification are poorly understood. Here, we integrate structural, genomic, and phylogenetic evidence to shed light on RRNPPA protein origin and diversification. The family is constituted by seven different subfamilies with different domain architectures and functions. Among these, three were found in Lactobacillales (Rgg, ComR, and PrgX) and four in Bacillales (AimR, NprR, PlcR, and Rap). The patterns of presence and the phylogeny of these proteins show that subfamilies diversified a long time ago, resulting in key structural and functional differences. The concordance between the distribution of subfamilies and the bacterial phylogeny was somewhat unexpected, since many of the subfamilies are very abundant in mobile genetic elements, such as phages, plasmids, and phage-plasmids. The existence of diverse propeptide architectures raises intriguing questions about their export and maturation. It also suggests the existence of diverse roles for the RRNPPA systems. Some systems encode multiple pheromones on the same propeptide or multiple similar propeptides, suggesting that they act as "chatterers." Many others lack pheromone genes and may be "eavesdroppers." Interestingly, AimR systems without associated propeptide genes were particularly abundant in chromosomal regions not classed as prophages, suggesting that either the bacterium or other mobile elements are eavesdropping on phage activity. IMPORTANCE Quorum sensing (QS) is a mechanism of bacterial communication, coordinating important decisions depending on bacterial population. QS regulates important processes not only in bacterial behavior but also in genetic mobile elements and host-guest interactions. In Firmicutes, the most important family of QS receptors is the RRNPPA family. Despite the importance of such systems in microbiology, we know little about RRNPPA origin and diversification. In this work, the combination of sequence analysis and structural biology allowed us to identify a very large number of novel systems but also to class of them in functional families and thereby study of their origin and functional diversification. Moreover, peptide pheromone analysis revealed new and intriguing mechanisms of communication, such as "eavesdropper" systems which only listen for the pheromone and "chatterers" that take control of the communication in their microenvironment.
Collapse
|
8
|
Zhao L, Liu Q, Xu FH, Liu H, Zhang J, Liu F, Wang G. Identification and analysis of Rap-Phr system in Bacillus cereus 0-9. FEMS Microbiol Lett 2022; 369:6549557. [PMID: 35293995 DOI: 10.1093/femsle/fnac026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/15/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, eight rap-related genes were found in the Bacillus cereus 0-9 genome; five rap genes were located on chromosomes and three on large plasmids. Five Rap proteins in B. cereus 0-9 were annotated as 'tetratricopeptide repeat proteins'. SMART Server analysis showed that the eight Rap proteins had typical tetrapeptide repeat sequence (TPR) domains. Biofilm assays and crystal violet staining showed that overexpression of the rapp1 and rap5 genes affected the biofilm formation of B. cereus 0-9, and the activities of Rapp1 and Rap5 proteins were inhibited by their corresponding cognate Phr, suggesting that the Rap-Phr quorum sensing (QS) system might also exist in the B. cereus 0-9 strain. In addition, overexpression of rap1 genes inhibited in the extracellular amylase decomposition capacity of B. cereus 0-9. The results of the sporulation assay indicated that overexpression of the eight rap genes inhibited the spore formation of B. cereus 0-9 to varying degrees. These results provide a reference for research on the regulation of the Rap-Phr QS system in B. cereus.
Collapse
Affiliation(s)
- Linlin Zhao
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China
| | - Qing Liu
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China
| | - Feng Hua Xu
- School of Pharmaceutical, Henan University, Kaifeng, China
| | - Huiping Liu
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China
| | - Juanmei Zhang
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China.,School of Pharmaceutical, Henan University, Kaifeng, China
| | - Fengying Liu
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China.,Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, China
| | - Gang Wang
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China.,Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, China
| |
Collapse
|
9
|
Microbial Lipopeptide-Producing Strains and Their Metabolic Roles under Anaerobic Conditions. Microorganisms 2021; 9:microorganisms9102030. [PMID: 34683351 PMCID: PMC8540375 DOI: 10.3390/microorganisms9102030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/17/2023] Open
Abstract
The lipopeptide produced by microorganisms is one of the representative biosurfactants and is characterized as a series of structural analogues of different families. Thirty-four families covering about 300 lipopeptide compounds have been reported in the last decades, and most of the reported lipopeptides produced by microorganisms were under aerobic conditions. The lipopeptide-producing strains under anaerobic conditions have attracted much attention from both the academic and industrial communities, due to the needs and the challenge of their applications in anaerobic environments, such as in oil reservoirs and in microbial enhanced oil recovery (MEOR). In this review, the fifty-eight reported bacterial strains, mostly isolated from oil reservoirs and dominated by the species Bacillus subtilis, producing lipopeptide biosurfactants, and the species Pseudomonas aeruginosa, producing glycolipid biosurfactants under anaerobic conditions were summarized. The metabolic pathway and the non-ribosomal peptide synthetases (NRPSs) of the strain Bacillus subtilis under anaerobic conditions were analyzed, which is expected to better understand the key mechanisms of the growth and production of lipopeptide biosurfactants of such kind of bacteria under anaerobic conditions, and to expand the industrial application of anaerobic biosurfactant-producing bacteria.
Collapse
|
10
|
Gallegos-Monterrosa R, Christensen MN, Barchewitz T, Koppenhöfer S, Priyadarshini B, Bálint B, Maróti G, Kempen PJ, Dragoš A, Kovács ÁT. Impact of Rap-Phr system abundance on adaptation of Bacillus subtilis. Commun Biol 2021; 4:468. [PMID: 33850233 PMCID: PMC8044106 DOI: 10.1038/s42003-021-01983-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Microbes commonly display great genetic plasticity, which has allowed them to colonize all ecological niches on Earth. Bacillus subtilis is a soil-dwelling organism that can be isolated from a wide variety of environments. An interesting characteristic of this bacterium is its ability to form biofilms that display complex heterogeneity: individual, clonal cells develop diverse phenotypes in response to different environmental conditions within the biofilm. Here, we scrutinized the impact that the number and variety of the Rap-Phr family of regulators and cell-cell communication modules of B. subtilis has on genetic adaptation and evolution. We examine how the Rap family of phosphatase regulators impacts sporulation in diverse niches using a library of single and double rap-phr mutants in competition under 4 distinct growth conditions. Using specific DNA barcodes and whole-genome sequencing, population dynamics were followed, revealing the impact of individual Rap phosphatases and arising mutations on the adaptability of B. subtilis.
Collapse
Affiliation(s)
- Ramses Gallegos-Monterrosa
- grid.9613.d0000 0001 1939 2794Terrestrial Biofilms Group, Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Mathilde Nordgaard Christensen
- grid.5170.30000 0001 2181 8870Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tino Barchewitz
- grid.9613.d0000 0001 1939 2794Terrestrial Biofilms Group, Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Sonja Koppenhöfer
- grid.9613.d0000 0001 1939 2794Terrestrial Biofilms Group, Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany ,grid.25055.370000 0000 9130 6822Present Address: Department of Biology, Memorial University of Newfoundland, St. John’s, NL Canada
| | - B. Priyadarshini
- grid.5170.30000 0001 2181 8870Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Balázs Bálint
- grid.475919.7Seqomics Biotechnology Ltd., Mórahalom, Hungary
| | - Gergely Maróti
- grid.5018.c0000 0001 2149 4407Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Paul J. Kempen
- grid.5170.30000 0001 2181 8870Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Dragoš
- grid.5170.30000 0001 2181 8870Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ákos T. Kovács
- grid.9613.d0000 0001 1939 2794Terrestrial Biofilms Group, Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany ,grid.5170.30000 0001 2181 8870Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
11
|
Blake C, Christensen MN, Kovács ÁT. Molecular Aspects of Plant Growth Promotion and Protection by Bacillus subtilis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:15-25. [PMID: 32986513 DOI: 10.1094/mpmi-08-20-0225-cr] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Bacillus subtilis is one of the most widely studied plant growth-promoting rhizobacteria. It is able to promote plant growth as well as control plant pathogens through diverse mechanisms, including the improvement of nutrient availability and alteration of phytohormone homeostasis as well as the production of antimicrobials and triggering induced systemic resistance, respectively. Even though its benefits for crop production have been recognized and studied extensively under laboratory conditions, the success of its application in fields varies immensely. It is widely accepted that agricultural application of B. subtilis often fails because the bacteria are not able to persist in the rhizosphere. Bacterial colonization of plant roots is a crucial step in the interaction between microbe and plant and seems, therefore, to be of great importance for its growth promotion and biocontrol effects. A successful root colonization depends thereby on both bacterial traits, motility and biofilm formation, as well as on a signal interplay with the plant. This review addresses current knowledge about plant-microbial interactions of the B. subtilis species, including the various mechanisms for supporting plant growth as well as the necessity for the establishment of the relationship.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Collapse
Affiliation(s)
- Christopher Blake
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
12
|
Crespo I, Bernardo N, Miguel-Arribas A, Singh PK, Luque-Ortega JR, Alfonso C, Malfois M, Meijer WJJ, Boer DR. Inactivation of the dimeric RappLS20 anti-repressor of the conjugation operon is mediated by peptide-induced tetramerization. Nucleic Acids Res 2020; 48:8113-8127. [PMID: 32658272 PMCID: PMC7430634 DOI: 10.1093/nar/gkaa540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
Quorum sensing allows bacterial cells to communicate through the release of soluble signaling molecules into the surrounding medium. It plays a pivotal role in controlling bacterial conjugation in Gram-positive cells, a process that has tremendous impact on health. Intracellular regulatory proteins of the RRNPP family are common targets of these signaling molecules. The RRNPP family of gene regulators bind signaling molecules at their C-terminal domain (CTD), but have highly divergent functionalities at their N-terminal effector domains (NTD). This divergence is also reflected in the functional states of the proteins, and is highly interesting from an evolutionary perspective. RappLS20 is an RRNPP encoded on the Bacillus subtilis plasmid pLS20. It relieves the gene repression effectuated by RcopLS20 in the absence of the mature pLS20 signaling peptide Phr*pLS20. We report here an in-depth structural study of apo and Phr*pLS20-bound states of RappLS20 at various levels of atomic detail. We show that apo-RappLS20 is dimeric and that Phr*pLS20-bound Rap forms NTD-mediated tetramers. In addition, we show that RappLS20 binds RcopLS20 directly in the absence of Phr*pLS20 and that addition of Phr*pLS20 releases RcopLS20 from RappLS20. This allows RcopLS20 to bind the promotor region of crucial conjugation genes blocking their expression.
Collapse
Affiliation(s)
- Isidro Crespo
- ALBA Synchrotron Light Source, C. de la Llum 2-26, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Nerea Bernardo
- ALBA Synchrotron Light Source, C. de la Llum 2-26, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Andrés Miguel-Arribas
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Praveen K Singh
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Juan R Luque-Ortega
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C. Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carlos Alfonso
- Systems Biochemistry of Bacterial Division Lab, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C. Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Marc Malfois
- ALBA Synchrotron Light Source, C. de la Llum 2-26, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Wilfried J J Meijer
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Dirk Roeland Boer
- ALBA Synchrotron Light Source, C. de la Llum 2-26, Cerdanyola del Vallès, 08290 Barcelona, Spain
| |
Collapse
|
13
|
Singh PK, Serrano E, Ramachandran G, Miguel-Arribas A, Gago-Cordoba C, Val-Calvo J, López-Pérez A, Alfonso C, Wu LJ, Luque-Ortega JR, Meijer WJJ. Reversible regulation of conjugation of Bacillus subtilis plasmid pLS20 by the quorum sensing peptide responsive anti-repressor RappLS20. Nucleic Acids Res 2020; 48:10785-10801. [PMID: 33045732 PMCID: PMC7641744 DOI: 10.1093/nar/gkaa797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Quorum sensing plays crucial roles in bacterial communication including in the process of conjugation, which has large economical and health-related impacts by spreading antibiotic resistance. The conjugative Bacillus subtilis plasmid pLS20 uses quorum sensing to determine when to activate the conjugation genes. The main conjugation promoter, Pc, is by default repressed by a regulator RcopLS20 involving DNA looping. A plasmid-encoded signalling peptide, Phr*pLS20, inactivates the anti-repressor of RcopLS20, named RappLS20, which belongs to the large group of RRNPP family of regulatory proteins. Here we show that DNA looping occurs through interactions between two RcopLS20 tetramers, each bound to an operator site. We determined the relative promoter strengths for all the promoters involved in synthesizing the regulatory proteins of the conjugation genes, and constructed an in vivo system uncoupling these regulatory genes to show that RappLS20 is sufficient for activating conjugation in vivo. We also show that RappLS20 actively detaches RcopLS20 from DNA by preferentially acting on the RcopLS20 molecules involved in DNA looping, resulting in sequestration but not inactivation of RcopLS20. Finally, results presented here in combination with our previous results show that activation of conjugation inhibits competence and competence development inhibits conjugation, indicating that both processes are mutually exclusive.
Collapse
Affiliation(s)
- Praveen K Singh
- Centro de Biología Molecular “Severo Ochoa’’ (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Ester Serrano
- Centro de Biología Molecular “Severo Ochoa’’ (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Gayetri Ramachandran
- Centro de Biología Molecular “Severo Ochoa’’ (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Andrés Miguel-Arribas
- Centro de Biología Molecular “Severo Ochoa’’ (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - César Gago-Cordoba
- Centro de Biología Molecular “Severo Ochoa’’ (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Jorge Val-Calvo
- Centro de Biología Molecular “Severo Ochoa’’ (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Arancha López-Pérez
- Centro de Biología Molecular “Severo Ochoa’’ (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), C. Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Juan R Luque-Ortega
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C. Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Wilfried J J Meijer
- Centro de Biología Molecular “Severo Ochoa’’ (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| |
Collapse
|
14
|
A novel Rap-Phr system in Bacillus velezensis NAU-B3 regulates surfactin production and sporulation via interaction with ComA. Appl Microbiol Biotechnol 2020; 104:10059-10074. [PMID: 33043389 DOI: 10.1007/s00253-020-10942-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/10/2020] [Accepted: 10/04/2020] [Indexed: 10/23/2022]
Abstract
Several quorum sensing systems occurring in Bacillus subtilis, e.g. Rap-Phr systems, were reported to interact with major regulatory proteins, such as ComA, DegU, and Spo0A, in order to regulate competence, sporulation, and synthesis of secondary metabolites. In this study, we characterized a novel Rap-Phr system, RapA4-PhrA4, in Bacillus velezensis NAU-B3. We found that the rapA4 and phrA4 genes were co-transcribed in NAU-B3. When rapA4 was expressed in the heterologous host Bacillus subtilis OKB105, surfactin production and sporulation were severely inhibited. However, when the phrA4 was co-expressed, the RapA4 activity was inhibited. The transcription of the surfactin synthetase srfA gene and sporulation-related genes were also regulated by the RapA4-PhrA4 system. In vitro results obtained from electrophoretic mobility shift assay (EMSA) proved that RapA4 inhibits ComA binding to the promoter of the srfA operon, and the PhrA4 pentapeptide acts as anti-activator of RapA4. We also found that the F24 residue plays a key role in RapA4 function. This study indicated that the novel RapA4-PhrA4 system regulates the surfactin synthesis and sporulation via interaction with ComA, thereby supporting the bacterium to compete and to survive in a hostile environment. KEY POINTS: •Bacillus velezensis NAU-B3 has a novel Rap-Phr quorum sensing system, which does not occur in model strains Bacillus subtilis 168 and B. velezensis FZB42. •RapA4-PhrA4 regulates surfactin production and sporulation. •RapA4-PhrA4 interacts with the ComA protein from ComP/ComA two-component system.
Collapse
|
15
|
Bernard C, Li Y, Lopez P, Bapteste E. Beyond arbitrium: identification of a second communication system in Bacillus phage phi3T that may regulate host defense mechanisms. ISME JOURNAL 2020; 15:545-549. [PMID: 33028977 PMCID: PMC8027211 DOI: 10.1038/s41396-020-00795-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/20/2022]
Abstract
The evolutionary stability of temperate bacteriophages at low abundance of susceptible bacterial hosts lies in the trade-off between the maximization of phage replication, performed by the host-destructive lytic cycle, and the protection of the phage-host collective, enacted by lysogeny. Upon Bacillus infection, Bacillus phages phi3T rely on the “arbitrium” quorum sensing (QS) system to communicate on their population density in order to orchestrate the lysis-to-lysogeny transition. At high phage densities, where there may be limited host cells to infect, lysogeny is induced to preserve chances of phage survival. Here, we report the presence of an additional, host-derived QS system in the phi3T genome, making it the first known virus with two communication systems. Specifically, this additional system, coined “Rapφ-Phrφ”, is predicted to downregulate host defense mechanisms during the viral infection, but only upon stress or high abundance of Bacillus cells and at low density of population of the phi3T phages. Post-lysogenization, Rapφ-Phrφ is also predicted to provide the lysogenized bacteria with an immediate fitness advantage: delaying the costly production of public goods while nonetheless benefiting from the public goods produced by other non-lysogenized Bacillus bacteria. The discovered “Rapφ-Phrφ” QS system hence provides novel mechanistic insights into how phage communication systems could contribute to the phage-host evolutionary stability.
Collapse
Affiliation(s)
- Charles Bernard
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Muséum National d'Histoire Naturelle, Campus Jussieu, Bâtiment A, 4eme et. Pièce 429, 75005, Paris, France. .,Unité Molécules de Communication et Adaptation des Micro-organismes (MCAM), CNRS, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005, Paris, France.
| | - Yanyan Li
- Unité Molécules de Communication et Adaptation des Micro-organismes (MCAM), CNRS, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005, Paris, France
| | - Philippe Lopez
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Muséum National d'Histoire Naturelle, Campus Jussieu, Bâtiment A, 4eme et. Pièce 429, 75005, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Muséum National d'Histoire Naturelle, Campus Jussieu, Bâtiment A, 4eme et. Pièce 429, 75005, Paris, France
| |
Collapse
|
16
|
Balderas-Ruíz KA, Bustos P, Santamaria RI, González V, Cristiano-Fajardo SA, Barrera-Ortíz S, Mezo-Villalobos M, Aranda-Ocampo S, Guevara-García ÁA, Galindo E, Serrano-Carreón L. Bacillus velezensis 83 a bacterial strain from mango phyllosphere, useful for biological control and plant growth promotion. AMB Express 2020; 10:163. [PMID: 32894363 PMCID: PMC7477031 DOI: 10.1186/s13568-020-01101-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 08/30/2020] [Indexed: 01/05/2023] Open
Abstract
Bacillus velezensis 83 was isolated from mango tree phyllosphere of orchards located in El Rosario, Sinaloa, México. The assessment of this strain as BCA (biological control agent), as well as PGPB (plant growth-promoting bacteria), were demonstrated through in vivo and in vitro assays. In vivo assays showed that B. velezensis 83 was able to control anthracnose (Kent mangoes) as efficiently as chemical treatment with Captan 50 PH™ or Cupravit hidro™. The inoculation of B. velezensis 83 to the roots of maize seedlings yielded an increase of 12% in height and 45% of root biomass, as compared with uninoculated seedlings. In vitro co-culture assays showed that B. velezensis 83 promoted Arabidopsis thaliana growth (root and shoot biomass) while, under the same experimental conditions, B. velezensis FZB42 (reference strain) had a suppressive effect on plant growth. In order to characterize the isolated strain, the complete genome sequence of B. velezensis 83 is reported. Its circular genome consists of 3,997,902 bp coding to 3949 predicted genes. The assembly and annotation of this genome revealed gene clusters related with plant-bacteria interaction and sporulation, as well as ten secondary metabolites biosynthetic gene clusters implicated in the biological control of phytopathogens. Despite the high genomic identity (> 98%) between B. velezensis 83 and B. velezensis FZB42, they are phenotypically different. Indeed, in vitro production of compounds such as surfactin and bacillomycin D (biocontrol activity) and γ-PGA (biofilm component) is significantly different between both strains. ![]()
Collapse
|
17
|
Rap-Phr Systems from Plasmids pAW63 and pHT8-1 Act Together To Regulate Sporulation in the Bacillus thuringiensis Serovar kurstaki HD73 Strain. Appl Environ Microbiol 2020; 86:AEM.01238-20. [PMID: 32680861 DOI: 10.1128/aem.01238-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Bacillus thuringiensis is a Gram-positive spore-forming bacterium pathogenic to various insect species. This property is due to the Cry toxins encoded by plasmid genes and mostly produced during sporulation. B. thuringiensis contains a remarkable number of extrachromosomal DNA molecules and a great number of plasmid rap-phr genes. Rap-Phr quorum-sensing systems regulate different bacterial processes, notably the commitment to sporulation in Bacillus species. Rap proteins are quorum sensors acting as phosphatases on Spo0F, an intermediate of the sporulation phosphorelay, and are inhibited by Phr peptides that function as signaling molecules. In this study, we characterize the Rap63-Phr63 system encoded by the pAW63 plasmid from the B. thuringiensis serovar kurstaki HD73 strain. Rap63 has moderate activity on sporulation and is inhibited by the Phr63 peptide. The rap63-phr63 genes are cotranscribed, and the phr63 gene is also transcribed from a σH-specific promoter. We show that Rap63-Phr63 regulates sporulation together with the Rap8-Phr8 system harbored by plasmid pHT8_1 of the HD73 strain. Interestingly, the deletion of both phr63 and phr8 genes in the same strain has a greater negative effect on sporulation than the sum of the loss of each phr gene. Despite the similarities in the Phr8 and Phr63 sequences, there is no cross talk between the two systems. Our results suggest a synergism of these two Rap-Phr systems in the regulation of the sporulation of B. thuringiensis at the end of the infectious cycle in insects, thus pointing out the roles of the plasmids in the fitness of the bacterium.IMPORTANCE The life cycle of Bacillus thuringiensis in insect larvae is regulated by quorum-sensing systems of the RNPP family. After the toxemia caused by Cry insecticidal toxins, the sequential activation of these systems allows the bacterium to trigger first a state of virulence (regulated by PlcR-PapR) and then a necrotrophic lifestyle (regulated by NprR-NprX); ultimately, sporulation is controlled by the Rap-Phr systems. Our study describes a new rap-phr operon carried by a B. thuringiensis plasmid and shows that the Rap protein has a moderate effect on sporulation. However, this system, in combination with another plasmidic rap-phr operon, provides effective control of sporulation when the bacteria develop in the cadavers of infected insect larvae. Overall, this study highlights the important adaptive role of the plasmid Rap-Phr systems in the developmental fate of B. thuringiensis and its survival within its ecological niche.
Collapse
|
18
|
Wu S, Liu J, Liu C, Yang A, Qiao J. Quorum sensing for population-level control of bacteria and potential therapeutic applications. Cell Mol Life Sci 2020; 77:1319-1343. [PMID: 31612240 PMCID: PMC11104945 DOI: 10.1007/s00018-019-03326-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/13/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023]
Abstract
Quorum sensing (QS), a microbial cell-to-cell communication process, dynamically regulates a variety of metabolism and physiological activities. In this review, we provide an update on QS applications based on autoinducer molecules including acyl-homoserine lactones (AHLs), auto-inducing peptides (AIPs), autoinducer 2 (AI-2) and indole in population-level control of bacteria, and highlight the potential in developing novel clinical therapies. We summarize the development in the combination of various genetic circuits such as genetic oscillators, toggle switches and logic gates with AHL-based QS devices in Gram-negative bacteria. An overview is then offered to the state-of-the-art of much less researched applications of AIP-based QS devices with Gram-positive bacteria, followed by a review of the applications of AI-2 and indole based QS for interspecies communication among microbial communities. Building on these general-purpose QS applications, we highlight the disruptions and manipulations of QS devices as potential clinical therapies for diseases caused by biofilm formation, antibiotic resistance and the phage invasion. The last part of reviewed literature is dedicated to mathematical modelling for QS applications. Finally, the key challenges and future perspectives of QS applications in monoclonal synthetic biology and synthetic ecology are discussed.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jiaheng Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
| | - Chunjiang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK.
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
| |
Collapse
|
19
|
Babel H, Naranjo-Meneses P, Trauth S, Schulmeister S, Malengo G, Sourjik V, Bischofs IB. Ratiometric population sensing by a pump-probe signaling system in Bacillus subtilis. Nat Commun 2020; 11:1176. [PMID: 32132526 PMCID: PMC7055314 DOI: 10.1038/s41467-020-14840-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/04/2020] [Indexed: 12/20/2022] Open
Abstract
Communication by means of diffusible signaling molecules facilitates higher-level organization of cellular populations. Gram-positive bacteria frequently use signaling peptides, which are either detected at the cell surface or ‘probed’ by intracellular receptors after being pumped into the cytoplasm. While the former type is used to monitor cell density, the functions of pump-probe networks are less clear. Here we show that pump-probe networks can, in principle, perform different tasks and mediate quorum-sensing, chronometric and ratiometric control. We characterize the properties of the prototypical PhrA-RapA system in Bacillus subtilis using FRET. We find that changes in extracellular PhrA concentrations are tracked rather poorly; instead, cells accumulate and strongly amplify the signal in a dose-dependent manner. This suggests that the PhrA-RapA system, and others like it, have evolved to sense changes in the composition of heterogeneous populations and infer the fraction of signal-producing cells in a mixed population to coordinate cellular behaviors. Gram-positive bacteria can release signaling peptides that are ‘probed’ by intracellular receptors after being pumped into the cytoplasm. Here, Babel et al. show that these pump-probe networks can infer the fraction of signal-producing cells in a mixed population, and do not necessarily mediate typical quorum-sensing control.
Collapse
Affiliation(s)
- Heiko Babel
- BioQuant Center of the University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Pablo Naranjo-Meneses
- BioQuant Center of the University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Stephanie Trauth
- BioQuant Center of the University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Sonja Schulmeister
- BioQuant Center of the University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany
| | - Gabriele Malengo
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany.,LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Str. 16, 35043, Marburg, Germany
| | - Victor Sourjik
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany.,LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Str. 16, 35043, Marburg, Germany
| | - Ilka B Bischofs
- BioQuant Center of the University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany. .,Center for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany. .,Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany.
| |
Collapse
|
20
|
Zhen X, Zhou H, Ding W, Zhou B, Xu X, Perčulija V, Chen CJ, Chang MX, Choudhary MI, Ouyang S. Structural basis of AimP signaling molecule recognition by AimR in Spbeta group of bacteriophages. Protein Cell 2020; 10:131-136. [PMID: 30421358 PMCID: PMC6340889 DOI: 10.1007/s13238-018-0588-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Xiangkai Zhen
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.,Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Huan Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Wei Ding
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Biao Zhou
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.,Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Xiaolong Xu
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.,Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Vanja Perčulija
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.,Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Chun-Jung Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701, China
| | - Ming-Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China. .,Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China. .,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
21
|
Gallego Del Sol F, Penadés JR, Marina A. Deciphering the Molecular Mechanism Underpinning Phage Arbitrium Communication Systems. Mol Cell 2019; 74:59-72.e3. [PMID: 30745087 PMCID: PMC6458997 DOI: 10.1016/j.molcel.2019.01.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/12/2018] [Accepted: 01/15/2019] [Indexed: 10/28/2022]
Abstract
Bacillus phages use a communication system, termed "arbitrium," to coordinate lysis-lysogeny decisions. Arbitrium communication is mediated by the production and secretion of a hexapeptide (AimP) during lytic cycle. Once internalized, AimP reduces the expression of the negative regulator of lysogeny, AimX, by binding to the transcription factor, AimR, promoting lysogeny. We have elucidated the crystal structures of AimR from the Bacillus subtilis SPbeta phage in its apo form, bound to its DNA operator and in complex with AimP. AimR presents intrinsic plasticity, sharing structural features with the RRNPP quorum-sensing family. Remarkably, AimR binds to an unusual operator with a long spacer that interacts nonspecifically with the receptor TPR domain, while the HTH domain canonically recognizes two inverted repeats. AimP stabilizes a compact conformation of AimR that approximates the DNA-recognition helices, preventing AimR binding to the aimX promoter region. Our results establish the molecular basis of the arbitrium communication system.
Collapse
Affiliation(s)
- Francisca Gallego Del Sol
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain.
| |
Collapse
|
22
|
Díaz AR, Porrini L, de Mendoza D, Mansilla MC. A genetic screen for mutations affecting temperature sensing in Bacillus subtilis. MICROBIOLOGY-SGM 2018; 165:90-101. [PMID: 30431418 DOI: 10.1099/mic.0.000741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two component systems, composed of a receptor histidine kinase and a cytoplasmic response regulator, regulate pivotal cellular processes in microorganisms. Here we describe a new screening procedure for the identification of amino acids that are crucial for the functioning of DesK, a prototypic thermosensor histidine kinase from Bacillus subtilis. This experimental strategy involves random mutagenesis of the membrane sensor domain of the DesK coding sequence, followed by the use of a detection procedure based on changes in the colony morphogenesis that take place during the sporulation programme of B. subtilis. This method permitted us the recovery of mutants defective in DesK temperature sensing. This screening approach could be applied to all histidine kinases of B. subtilis and also to kinases of other bacteria that are functionally expressed in this organism. Moreover, this reporter assay could be expanded to develop reporter assays for a variety of transcriptionally regulated systems.
Collapse
Affiliation(s)
- Alejandra R Díaz
- 1Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur and Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET), Bahía Blanca, Argentina
| | - Lucia Porrini
- 2Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Diego de Mendoza
- 2Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - María C Mansilla
- 2Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| |
Collapse
|
23
|
Dou C, Xiong J, Gu Y, Yin K, Wang J, Hu Y, Zhou D, Fu X, Qi S, Zhu X, Yao S, Xu H, Nie C, Liang Z, Yang S, Wei Y, Cheng W. Structural and functional insights into the regulation of the lysis-lysogeny decision in viral communities. Nat Microbiol 2018; 3:1285-1294. [PMID: 30323253 DOI: 10.1038/s41564-018-0259-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/31/2018] [Indexed: 02/05/2023]
Abstract
Communication is vital for all organisms including microorganisms, which is clearly demonstrated by the bacterial quorum-sensing system. However, the molecular mechanisms underlying communication among viruses (phages) via the quorum-sensing-like 'arbitrium' system remain unclear. Viral or host densities are known to be related to an increased prevalence of lysogeny; however, how the switch from the lytic to the lysogenic pathway occurs is unknown. Thus, we sought to reveal mechanisms of communication among viruses and determine the lysogenic dynamics involved. Structural and functional analyses of the phage-derived SAIRGA and GMPRGA peptides and their corresponding receptors, phAimR and spAimR, indicated that SAIRGA directs the lysis-lysogeny decision of phi3T by modulating conformational changes in phAimR, whereas GMPRGA regulates the lysis-lysogeny pathway by stabilizing spAimR in the dimeric state. Although temperate viruses are thought to share a similar lytic-lysogenic cycle switch model, our study suggests the existence of alternative strain-specific mechanisms that regulate the lysis-lysogeny decision. Collectively, these findings provide insights into the molecular mechanisms underlying communication among viruses, offering theoretical applications for the treatment of infectious viral diseases.
Collapse
Affiliation(s)
- Chao Dou
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jie Xiong
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yijun Gu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai, China
| | - Kun Yin
- Shandong Academy of Medical Sciences, Shandong Institute of Parasitic Disease, Jining, China
| | - Jinjing Wang
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yuehong Hu
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Dan Zhou
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xianghui Fu
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Shiqian Qi
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xiaofeng Zhu
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Shaohua Yao
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Heng Xu
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Chunlai Nie
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Zongan Liang
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Shengyong Yang
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yuquan Wei
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.
| |
Collapse
|
24
|
Structural basis of the arbitrium peptide–AimR communication system in the phage lysis–lysogeny decision. Nat Microbiol 2018; 3:1266-1273. [DOI: 10.1038/s41564-018-0239-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 08/06/2018] [Indexed: 11/08/2022]
|
25
|
A single mutation in rapP induces cheating to prevent cheating in Bacillus subtilis by minimizing public good production. Commun Biol 2018; 1:133. [PMID: 30272012 PMCID: PMC6123732 DOI: 10.1038/s42003-018-0136-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/10/2018] [Indexed: 12/30/2022] Open
Abstract
Cooperation is beneficial to group behaviors like multicellularity, but is vulnerable to exploitation by cheaters. Here we analyze mechanisms that protect against exploitation of extracellular surfactin in swarms of Bacillus subtilis. Unexpectedly, the reference strain NCIB 3610 displays inherent resistance to surfactin-non-producing cheaters, while a different wild isolate is susceptible. We trace this interstrain difference down to a single amino acid change in the plasmid-borne regulator RapP, which is necessary and sufficient for cheater mitigation. This allele, prevalent in many Bacillus species, optimizes transcription of the surfactin operon to the minimum needed for full cooperation. When combined with a strain lacking rapP, NCIB 3610 acts as a cheater itself—except it does not harm the population at high proportions since it still produces enough surfactin. This strategy of minimal production is thus a doubly advantageous mechanism to limit exploitation of public goods, and is readily evolved from existing regulatory networks. Lyons and Kolter describe a single-point mutation in the plasmid-borne gene rapP of Bacillus subtilis that optimizes surfactin transcription to express the minimum required for cooperation. The decrease in the production of this public good significantly prevented the exploitation of cooperative traits by cheaters.
Collapse
|
26
|
Brown SP, Blackwell HE, Hammer BK. The State of the Union Is Strong: a Review of ASM's 6th Conference on Cell-Cell Communication in Bacteria. J Bacteriol 2018; 200:e00291-18. [PMID: 29760210 PMCID: PMC6018360 DOI: 10.1128/jb.00291-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 6th American Society for Microbiology Conference on Cell-Cell Communication in Bacteria convened from 16 to 19 October 2017 in Athens, GA. In this minireview, we highlight some of the research presented at that meeting that addresses central questions emerging in the field, including the following questions. How are cell-cell communication circuits designed to generate responses? Where are bacteria communicating? Finally, why are bacteria engaging in such behaviors?
Collapse
Affiliation(s)
- Sam P Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brian K Hammer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
27
|
Neiditch MB, Capodagli GC, Prehna G, Federle MJ. Genetic and Structural Analyses of RRNPP Intercellular Peptide Signaling of Gram-Positive Bacteria. Annu Rev Genet 2017; 51:311-333. [PMID: 28876981 PMCID: PMC6588834 DOI: 10.1146/annurev-genet-120116-023507] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacteria use diffusible chemical messengers, termed pheromones, to coordinate gene expression and behavior among cells in a community by a process known as quorum sensing. Pheromones of many gram-positive bacteria, such as Bacillus and Streptococcus, are small, linear peptides secreted from cells and subsequently detected by sensory receptors such as those belonging to the large family of RRNPP proteins. These proteins are cytoplasmic pheromone receptors sharing a structurally similar pheromone-binding domain that functions allosterically to regulate receptor activity. X-ray crystal structures of prototypical RRNPP members have provided atomic-level insights into their mechanism and regulation by pheromones. This review provides an overview of RRNPP prototype signaling; describes the structure-function of this protein family, which is spread widely among gram-positive bacteria; and suggests approaches to target RRNPP systems in order to manipulate beneficial and harmful bacterial behaviors.
Collapse
Affiliation(s)
- Matthew B Neiditch
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, USA; ,
| | - Glenn C Capodagli
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, USA; ,
| | - Gerd Prehna
- Center for Structural Biology, Research Resources Center and Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60607, USA;
| | - Michael J Federle
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA;
| |
Collapse
|
28
|
Fazion F, Perchat S, Buisson C, Vilas-Bôas G, Lereclus D. A plasmid-borne Rap-Phr system regulates sporulation ofBacillus thuringiensisin insect larvae. Environ Microbiol 2017; 20:145-155. [DOI: 10.1111/1462-2920.13946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/28/2017] [Accepted: 09/23/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Fernanda Fazion
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay; 78350 Jouy-en-Josas France
- Universidade Estadual de Londrina, Bio/CCB; Londrina Brazil
| | - Stéphane Perchat
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay; 78350 Jouy-en-Josas France
| | - Christophe Buisson
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay; 78350 Jouy-en-Josas France
| | | | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay; 78350 Jouy-en-Josas France
| |
Collapse
|
29
|
Wilkening RV, Capodagli GC, Khataokar A, Tylor KM, Neiditch MB, Federle MJ. Activating mutations in quorum-sensing regulator Rgg2 and its conformational flexibility in the absence of an intermolecular disulfide bond. J Biol Chem 2017; 292:20544-20557. [PMID: 29030429 DOI: 10.1074/jbc.m117.801670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/10/2017] [Indexed: 01/08/2023] Open
Abstract
Rap/Rgg/NprR/PlcR/PrgX (RRNPP) quorum-sensing systems use extracellular peptide pheromones that are detected by cytoplasmic receptors to regulate gene expression in firmicute bacteria. Rgg-type receptors are allosterically regulated through direct pheromone binding to control transcriptional activity; however, the receptor activation mechanism remains poorly understood. Previous work has identified a disulfide bond between Cys-45 residues within the homodimer interface of Rgg2 from Streptococcus dysgalactiae (Rgg2Sd). Here, we compared two Rgg2Sd(C45S) X-ray crystal structures with that of wild-type Rgg2Sd and found that in the absence of the intermolecular disulfide, the Rgg2Sd dimer interface is destabilized and Rgg2Sd can adopt multiple conformations. One conformation closely resembled the "disulfide-locked" Rgg2Sd secondary and tertiary structures, but another displayed more extensive rigid-body shifts as well as dramatic secondary structure changes. In parallel experiments, a genetic screen was used to identify mutations in rgg2 of Streptococcus pyogenes (rgg2Sp ) that conferred pheromone-independent transcriptional activation of an Rgg2-stimulated promoter. Eight mutations yielding constitutive Rgg2 activity, designated Rgg2Sp*, were identified, and five of them clustered in or near an Rgg2 region that underwent conformational changes in one of the Rgg2Sd(C45S) crystal structures. The Rgg2Sp* mutations increased Rgg2Sp sensitivity to pheromone and pheromone variants while displaying decreased sensitivity to the Rgg2 antagonist cyclosporine A. We propose that Rgg2Sp* mutations invoke shifts in free-energy bias to favor the active state of the protein. Finally, we present evidence for an electrostatic interaction between an N-terminal Asp of the pheromone and Arg-153 within the proposed pheromone-binding pocket of Rgg2Sp.
Collapse
Affiliation(s)
- Reid V Wilkening
- From the Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Glenn C Capodagli
- the Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, New Jersey 07103, and
| | - Atul Khataokar
- the Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, New Jersey 07103, and
| | - Kaitlyn M Tylor
- From the Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Matthew B Neiditch
- the Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, New Jersey 07103, and
| | - Michael J Federle
- From the Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60607, .,the Department of Medicinal Chemistry and Pharmacognosy, Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| |
Collapse
|
30
|
Wu L, Guo X, Liu X, Yang H. NprR-NprX Quorum-Sensing System Regulates the Algicidal Activity of Bacillus sp. Strain S51107 against Bloom-Forming Cyanobacterium Microcystis aeruginosa. Front Microbiol 2017; 8:1968. [PMID: 29075240 PMCID: PMC5641580 DOI: 10.3389/fmicb.2017.01968] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/25/2017] [Indexed: 11/24/2022] Open
Abstract
Harmful cyanobacterial blooms have severely impaired freshwater quality and threatened human health worldwide. Here, a Gram-positive bacterium, Bacillus sp. strain S51107, which exhibits strong algicidal activity against Microcystis aeruginosa, was isolated from Lake Taihu. We found that the algicidal activity of strain S51107 was regulated primarily by NprR-NprX quorum sensing (QS), in which the mature form of the signaling peptide NprX was identified as the SKPDIVG heptapeptide. Disruption of the nprR-nprX cassette markedly decreased the algicidal activity, and complemented strains showed significantly recovered algicidal activity. Strain S51107 produced low-molecular-weight algicidal compounds [indole-3-carboxaldehyde and cyclo(Pro-Phe)] and high-molecular-weight algicidal substance(s) (>3 kDa). Moreover, the production of high-molecular-weight algicidal substance(s) was regulated by NprR-NprX QS, but the production of low-molecular-weight algicidal compounds was not. High-molecular-weight algicidal substance(s) played a more important role than low-molecular-weight algicidal compounds in the algicidal activity of strain S51107. The results of this study could increase our knowledge about algicidal characteristics of a potential algicidal bacterium, Bacillus sp. strain S51107, and provide the first evidence that the algicidal activity of Gram-positive algicidal bacteria is regulated by QS, which will greatly enhance our understanding of the interactions between algae and indigenous algicidal bacteria, thereby providing aid in the design and optimization of strategies to control harmful algae blooms.
Collapse
Affiliation(s)
- Lishuang Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xingliang Guo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xianglong Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
31
|
Tiwari S, Jamal SB, Hassan SS, Carvalho PVSD, Almeida S, Barh D, Ghosh P, Silva A, Castro TLP, Azevedo V. Two-Component Signal Transduction Systems of Pathogenic Bacteria As Targets for Antimicrobial Therapy: An Overview. Front Microbiol 2017; 8:1878. [PMID: 29067003 PMCID: PMC5641358 DOI: 10.3389/fmicb.2017.01878] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022] Open
Abstract
The bacterial communities in a wide range of environmental niches sense and respond to numerous external stimuli for their survival. Primarily, a source they require to follow up this communication is the two-component signal transduction system (TCS), which typically comprises a sensor Histidine kinase for receiving external input signals and a response regulator that conveys a proper change in the bacterial cell physiology. For numerous reasons, TCSs have ascended as convincing targets for antibacterial drug design. Several studies have shown that TCSs are essential for the coordinated expression of virulence factors and, in some cases, for bacterial viability and growth. It has also been reported that the expression of antibiotic resistance determinants may be regulated by some TCSs. In addition, as a mode of signal transduction, phosphorylation of histidine in bacteria differs from normal serine/threonine and tyrosine phosphorylation in higher eukaryotes. Several studies have shown the molecular mechanisms by which TCSs regulate virulence and antibiotic resistance in pathogenic bacteria. In this review, we list some of the characteristics of the bacterial TCSs and their involvement in virulence and antibiotic resistance. Furthermore, this review lists and discusses inhibitors that have been reported to target TCSs in pathogenic bacteria.
Collapse
Affiliation(s)
- Sandeep Tiwari
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Syed B. Jamal
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Syed S. Hassan
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Biochemistry Group, Department of Chemistry, Islamia College University, Peshawar, Pakistan
| | - Paulo V. S. D. Carvalho
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sintia Almeida
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Debmalya Barh
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, India
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Artur Silva
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Thiago L. P. Castro
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
32
|
Transient Duplication-Dependent Divergence and Horizontal Transfer Underlie the Evolutionary Dynamics of Bacterial Cell-Cell Signaling. PLoS Biol 2016; 14:e2000330. [PMID: 28033323 PMCID: PMC5199041 DOI: 10.1371/journal.pbio.2000330] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/02/2016] [Indexed: 01/01/2023] Open
Abstract
Evolutionary expansion of signaling pathway families often underlies the evolution of regulatory complexity. Expansion requires the acquisition of a novel homologous pathway and the diversification of pathway specificity. Acquisition can occur either vertically, by duplication, or through horizontal transfer, while divergence of specificity is thought to occur through a promiscuous protein intermediate. The way by which these mechanisms shape the evolution of rapidly diverging signaling families is unclear. Here, we examine this question using the highly diversified Rap-Phr cell-cell signaling system, which has undergone massive expansion in the genus Bacillus. To this end, genomic sequence analysis of >300 Bacilli genomes was combined with experimental analysis of the interaction of Rap receptors with Phr autoinducers and downstream targets. Rap-Phr expansion is shown to have occurred independently in multiple Bacillus lineages, with >80 different putative rap-phr alleles evolving in the Bacillius subtilis group alone. The specificity of many rap-phr alleles and the rapid gain and loss of Rap targets are experimentally demonstrated. Strikingly, both horizontal and vertical processes were shown to participate in this expansion, each with a distinct role. Horizontal gene transfer governs the acquisition of already diverged rap-phr alleles, while intralocus duplication and divergence of the phr gene create the promiscuous intermediate required for the divergence of Rap-Phr specificity. Our results suggest a novel role for transient gene duplication and divergence during evolutionary shifts in specificity.
Collapse
|
33
|
Talagas A, Fontaine L, Ledesma-Garca L, Mignolet J, Li de la Sierra-Gallay I, Lazar N, Aumont-Nicaise M, Federle MJ, Prehna G, Hols P, Nessler S. Structural Insights into Streptococcal Competence Regulation by the Cell-to-Cell Communication System ComRS. PLoS Pathog 2016; 12:e1005980. [PMID: 27907189 PMCID: PMC5131891 DOI: 10.1371/journal.ppat.1005980] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/04/2016] [Indexed: 11/19/2022] Open
Abstract
In Gram-positive bacteria, cell-to-cell communication mainly relies on extracellular signaling peptides, which elicit a response either indirectly, by triggering a two-component phosphorelay, or directly, by binding to cytoplasmic effectors. The latter comprise the RNPP family (Rgg and original regulators Rap, NprR, PrgX and PlcR), whose members regulate important bacterial processes such as sporulation, conjugation, and virulence. RNPP proteins are increasingly considered as interesting targets for the development of new antibacterial agents. These proteins are characterized by a TPR-type peptide-binding domain, and except for Rap proteins, also contain an N-terminal HTH-type DNA-binding domain and display a transcriptional activity. Here, we elucidate the structure-function relationship of the transcription factor ComR, a new member of the RNPP family, which positively controls competence for natural DNA transformation in streptococci. ComR is directly activated by the binding of its associated pheromone XIP, the mature form of the comX/sigX-inducing-peptide ComS. The crystal structure analysis of ComR from Streptococcus thermophilus combined with a mutational analysis and in vivo assays allows us to propose an original molecular mechanism of the ComR regulation mode. XIP-binding induces release of the sequestered HTH domain and ComR dimerization to allow DNA binding. Importantly, we bring evidence that this activation mechanism is conserved and specific to ComR orthologues, demonstrating that ComR is not an Rgg protein as initially proposed, but instead constitutes a new member of the RNPP family. In addition, identification of XIP and ComR residues important for competence activation constitutes a crucial step towards the design of antagonistic strategies to control gene exchanges among streptococci. Bacterial cell-cell communication systems are based on the secretion of signal molecules. These quorum-sensing systems allow bacteria to coordinate genes expression according to the density of their local population. In Gram-positive bacteria, intracellular quorum sensors regulated by re-internalized signal peptides control the expression of genes involved in essential bacterial processes such as horizontal gene transfer, biofilm formation, sporulation or virulence. In most streptococci, including pathogenic species, the ComR regulator and its cognate signal peptide ComS activate competence for natural DNA transformation, a major mechanism for horizontal gene transfer and antibiotic resistance acquisition. To elucidate the molecular mechanism of ComR activation, we performed the structure-function analysis of the ComRS system from S. thermophilus. We solved the crystal structures of the apo form of ComR and of the complex with XIP, the mature form of ComS, and DNA. We showed that peptide binding shifts the protein from an inactive monomeric state, characterized by the sequestration of the DNA-binding domain, to an active dimer. This idiosyncratic mechanism was confirmed by in vitro interaction measurements and in vivo transcription assays using ComR mutants and XIP variants. These results may be of special interest for the future design of new antimicrobials targeting antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Antoine Talagas
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Laetitia Fontaine
- Institute of Life Sciences (ISV), Biochemistry, Biophysics and Genetics of Microorganisms (BBGM), Université catholique de Louvain, Croix du Sud, 4-5 (L7.07.06), Louvain-La-Neuve, Belgium
| | - Laura Ledesma-Garca
- Institute of Life Sciences (ISV), Biochemistry, Biophysics and Genetics of Microorganisms (BBGM), Université catholique de Louvain, Croix du Sud, 4-5 (L7.07.06), Louvain-La-Neuve, Belgium
| | - Johann Mignolet
- Institute of Life Sciences (ISV), Biochemistry, Biophysics and Genetics of Microorganisms (BBGM), Université catholique de Louvain, Croix du Sud, 4-5 (L7.07.06), Louvain-La-Neuve, Belgium
| | - Inès Li de la Sierra-Gallay
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Noureddine Lazar
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Magali Aumont-Nicaise
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Michael J. Federle
- Dept. of Medicinal Chemistry and Pharmacognosy, Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Gerd Prehna
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Structural Biology, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Pascal Hols
- Institute of Life Sciences (ISV), Biochemistry, Biophysics and Genetics of Microorganisms (BBGM), Université catholique de Louvain, Croix du Sud, 4-5 (L7.07.06), Louvain-La-Neuve, Belgium
- * E-mail: (PH); (SN)
| | - Sylvie Nessler
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
- * E-mail: (PH); (SN)
| |
Collapse
|
34
|
Shanker E, Morrison DA, Talagas A, Nessler S, Federle MJ, Prehna G. Pheromone Recognition and Selectivity by ComR Proteins among Streptococcus Species. PLoS Pathog 2016; 12:e1005979. [PMID: 27907154 PMCID: PMC5131902 DOI: 10.1371/journal.ppat.1005979] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022] Open
Abstract
Natural transformation, or competence, is an ability inherent to bacteria for the uptake of extracellular DNA. This process is central to bacterial evolution and allows for the rapid acquirement of new traits, such as antibiotic resistance in pathogenic microorganisms. For the Gram-positive bacteria genus Streptococcus, genes required for competence are under the regulation of quorum sensing (QS) mediated by peptide pheromones. One such system, ComRS, consists of a peptide (ComS) that is processed (XIP), secreted, and later imported into the cytoplasm, where it binds and activates the transcription factor ComR. ComR then engages in a positive feedback loop for the expression of ComS and the alternative sigma-factor SigX. Although ComRS are present in the majority of Streptococcus species, the sequence of both ComS/XIP and ComR diverge significantly, suggesting a mechanism for species-specific communication. To study possible cross-talk between streptococcal species in the regulation of competence, and to explore in detail the molecular interaction between ComR and XIP we undertook an interdisciplinary approach. We developed a 'test-bed' assay to measure the activity of different ComR proteins in response to cognate and heterologous XIP peptides in vivo, revealing distinct ComR classes of strict, intermediate, and promiscuous specificity among species. We then solved an X-ray crystal structure of ComR from S. suis to further understand the interaction with XIP and to search for structural features in ComR proteins that may explain XIP recognition. Using the structure as a guide, we probed the apo conformation of the XIP-binding pocket by site-directed mutagenesis, both in test-bed cultures and biochemically in vitro. In alignments with ComR proteins from other species, we find that the pocket is lined by a variable and a conserved face, where residues of the conserved face contribute to ligand binding and the variable face discriminate among XIP peptides. Together, our results not only provide a model for XIP recognition and specificity, but also allow for the prediction of novel XIP peptides that induce ComR activity.
Collapse
Affiliation(s)
- Erin Shanker
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, United States of America
- Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Donald A. Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Antoine Talagas
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, France
| | - Sylvie Nessler
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, France
| | - Michael J. Federle
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, United States of America
- Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Gerd Prehna
- Center for Structural Biology, Research Resources Center, University of Illinois at Chicago, Chicago, IL, United States of America
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
35
|
Cabrera R, Rodríguez-Romero A, Guarneros G, de la Torre M. New insights into the interaction between the quorum-sensing receptor NprR and its DNA target, or the response regulator Spo0F. FEBS Lett 2016; 590:3243-53. [PMID: 27543719 DOI: 10.1002/1873-3468.12371] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 11/08/2022]
Abstract
The NprR protein and NprRB signaling peptide comprise a bifunctional quorum-sensing system from the Bacillus cereus group that is involved in transcriptional activation through DNA-binding and in sporulation initiation by binding to Spo0F. We characterized in vitro the direct interactions established by NprR that may be relevant for performing its two functions. Apo-NprR interacted with Spo0F, but not with the target DNA. The NprRB signaling peptide SSKPDIVG that binds strongly to Apo-NprR, failed to bind and disrupt the NprR-Spo0F complex. Finally, the NprR-NprRB complex bound both to Spo0F and the target DNA with similar affinity. Based on our findings, we propose that rather than a switch triggered by NprRB, the NprR/NprRB ratio and the availability of Spo0F binding sites define the function of NprR.
Collapse
Affiliation(s)
- Rosina Cabrera
- Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, Mexico
| | - Adela Rodríguez-Romero
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Gabriel Guarneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Mayra de la Torre
- Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, Mexico.
| |
Collapse
|
36
|
Perchat S, Talagas A, Poncet S, Lazar N, Li de la Sierra-Gallay I, Gohar M, Lereclus D, Nessler S. How Quorum Sensing Connects Sporulation to Necrotrophism in Bacillus thuringiensis. PLoS Pathog 2016; 12:e1005779. [PMID: 27483473 PMCID: PMC4970707 DOI: 10.1371/journal.ppat.1005779] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 06/29/2016] [Indexed: 11/28/2022] Open
Abstract
Bacteria use quorum sensing to coordinate adaptation properties, cell fate or commitment to sporulation. The infectious cycle of Bacillus thuringiensis in the insect host is a powerful model to investigate the role of quorum sensing in natural conditions. It is tuned by communication systems regulators belonging to the RNPP family and directly regulated by re-internalized signaling peptides. One such RNPP regulator, NprR, acts in the presence of its cognate signaling peptide NprX as a transcription factor, regulating a set of genes involved in the survival of these bacteria in the insect cadaver. Here, we demonstrate that, in the absence of NprX and independently of its transcriptional activator function, NprR negatively controls sporulation. NprR inhibits expression of Spo0A-regulated genes by preventing the KinA-dependent phosphorylation of the phosphotransferase Spo0F, thus delaying initiation of the sporulation process. This NprR function displays striking similarities with the Rap proteins, which also belong to the RNPP family, but are devoid of DNA-binding domain and indirectly control gene expression via protein-protein interactions in Bacilli. Conservation of the Rap residues directly interacting with Spo0F further suggests a common inhibition of the sporulation phosphorelay. The crystal structure of apo NprR confirms that NprR displays a highly flexible Rap-like structure. We propose a molecular regulatory mechanism in which key residues of the bifunctional regulator NprR are directly and alternatively involved in its two functions. NprX binding switches NprR from a dimeric inhibitor of sporulation to a tetrameric transcriptional activator involved in the necrotrophic lifestyle of B. thuringiensis. NprR thus tightly coordinates sporulation and necrotrophism, ensuring survival and dissemination of the bacteria during host infection. Bacillus thuringiensis is an entomopathogenic bacterium used worldwide as biopesticide. Its life cycle in insect larvae, which includes virulence, necrotrophism and sporulation, is regulated by cell-cell communication systems involving sensor proteins directly regulated by re-internalized peptide pheromones. After toxaemia caused by pore-forming Cry toxins, the PlcR sensor activates the production of virulence factors leading to insect death. B. thuringiensis then shifts to a necrotrophic lifestyle preceding sporulation. Previously, we showed that this process is regulated by the sensor NprR, which, in the presence of its cognate signaling peptide NprX, adopts a tetrameric conformation allowing its binding to specific DNA sequences and transcription of genes involved in survival of the bacteria in insect cadavers. Here, we demonstrate that, in the absence of NprX, NprR is a dimer, which negatively controls sporulation, independently of its transcription factor activity. We show that NprR prevents the phosphorylation of the phosphoprotein Spo0F and inhibits the phosphorylation cascade regulating sporulation. This demonstrates that NprX binding switches the bifunctional sensor NprR from a dimeric sporulation inhibitor to a tetrameric transcription factor. By establishing a close coordination between cell density, necrotrophism and sporulation, this communication system benefits a pathogenic bacterium feeding on death matter like B. thuringiensis. NprR is found in all strains of the B. cereus group, including B. anthracis and B. cereus involved in food poisoning. Our results may provide new insights for controlling the development and the survival of these undesirable bacteria.
Collapse
Affiliation(s)
- Stéphane Perchat
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Antoine Talagas
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sandrine Poncet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Noureddine Lazar
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Inès Li de la Sierra-Gallay
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel Gohar
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- * E-mail: (DL); (SN)
| | - Sylvie Nessler
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- * E-mail: (DL); (SN)
| |
Collapse
|
37
|
Do H, Kumaraswami M. Structural Mechanisms of Peptide Recognition and Allosteric Modulation of Gene Regulation by the RRNPP Family of Quorum-Sensing Regulators. J Mol Biol 2016; 428:2793-804. [PMID: 27283781 DOI: 10.1016/j.jmb.2016.05.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/19/2016] [Accepted: 05/29/2016] [Indexed: 11/19/2022]
Abstract
The members of RRNPP family of bacterial regulators sense population density-specific secreted oligopeptides and modulate the expression of genes involved in cellular processes, such as sporulation, competence, virulence, biofilm formation, conjugative plasmid transfer and antibiotic resistance. Signaling by RRNPP regulators include several steps: generation and secretion of the signaling oligopeptides, re-internalization of the signaling molecules into the cytoplasm, signal sensing by the cytosolic RRNPP regulators, signal-specific allosteric structural changes in the regulators, and interaction of the regulators with their respective regulatory target and gene regulation. The recently determined structures of the RRNPP regulators provide insight into the mechanistic aspects for several steps in this signaling circuit. In this review, we discuss the structural principles underlying peptide specificity, regulatory target recognition, and ligand-induced allostery in RRNPP regulators and its impact on gene regulation. Despite the conserved tertiary structure of these regulators, structural analyses revealed unexpected diversity in the mechanism of activation and molecular strategies that couple the peptide-induced allostery to gene regulation. Although these structural studies provide a sophisticated understanding of gene regulation by RRNPP regulators, much needs to be learned regarding the target DNA binding by yet-to-be characterized RNPP regulators and the several aspects of signaling by Rgg regulators.
Collapse
Affiliation(s)
- Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Hospital Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital System, Houston, TX, 77030, USA
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Hospital Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital System, Houston, TX, 77030, USA.
| |
Collapse
|
38
|
Babel H, Bischofs IB. Molecular and cellular factors control signal transduction via switchable allosteric modulator proteins (SAMPs). BMC SYSTEMS BIOLOGY 2016; 10:35. [PMID: 27122155 PMCID: PMC4849100 DOI: 10.1186/s12918-016-0274-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/05/2016] [Indexed: 11/21/2022]
Abstract
Background Rap proteins from Bacilli directly target response regulators of bacterial two-component systems and modulate their activity. Their effects are controlled by binding of signaling peptides to an allosteric site. Hence Raps exemplify a class of monomeric signaling receptors, which we call switchable allosteric modulator proteins (SAMPs). These proteins have potential applications in diverse biomedical and biotechnical settings, but a quantitative understanding of the impact of molecular and cellular factors on signal transduction is lacking. Here we introduce mathematical models that elucidate how signals are propagated though the network upon receptor stimulation and control the level of active response regulator. Results Based on a systematic parameter analysis of the models, we show that key features of the dose-response behavior at steady state are controlled either by the molecular properties of the modulator or the signaling context. In particular, we find that the biochemical activity (i.e. non-enzymatic vs. enzymatic) and allosteric properties of the modulator control the response amplitude. The Hill coefficient and the EC50 are controlled in addition by the relative ligand affinities. By tuning receptor properties, either graded or more switch-like (memory-less) response functions can be fashioned. Furthermore, we show that other contextual factors (e.g. relative concentrations of network components and kinase activity) have a substantial impact on the response, and we predict that there exists a modulator concentration which is optimal for response amplitude. Conclusion We discuss data on Rap-Phr systems in B. subtilis to show how our models can contribute to an integrated view of SAMP signaling by combining biochemical, structural and physiological insights. Our results also suggest that SAMPs could be evolved or engineered to implement diverse response behaviors. However—without additional regulatory controls—they can generate rather variable cellular outputs. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0274-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heiko Babel
- Center for Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany.,Center for the Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany
| | - Ilka B Bischofs
- Center for Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany. .,Center for the Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
39
|
Edwards AN, Tamayo R, McBride SM. A novel regulator controls Clostridium difficile sporulation, motility and toxin production. Mol Microbiol 2016; 100:954-71. [PMID: 26915493 DOI: 10.1111/mmi.13361] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2016] [Indexed: 01/09/2023]
Abstract
Clostridium difficile is an anaerobic pathogen that forms spores which promote survival in the environment and transmission to new hosts. The regulatory pathways by which C. difficile initiates spore formation are poorly understood. We identified two factors with limited similarity to the Rap sporulation proteins of other spore-forming bacteria. In this study, we show that disruption of the gene CD3668 reduces sporulation and increases toxin production and motility. This mutant was more virulent and exhibited increased toxin gene expression in the hamster model of infection. Based on these phenotypes, we have renamed this locus rstA, for regulator of sporulation and toxins. Our data demonstrate that RstA is a bifunctional protein that upregulates sporulation through an unidentified pathway and represses motility and toxin production by influencing sigD transcription. Conserved RstA orthologs are present in other pathogenic and industrial Clostridium species and may represent a key regulatory protein controlling clostridial sporulation.
Collapse
Affiliation(s)
- Adrianne N Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
40
|
Magno-Pérez-Bryan MC, Martínez-García PM, Hierrezuelo J, Rodríguez-Palenzuela P, Arrebola E, Ramos C, de Vicente A, Pérez-García A, Romero D. Comparative Genomics Within the Bacillus Genus Reveal the Singularities of Two Robust Bacillus amyloliquefaciens Biocontrol Strains. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1102-1116. [PMID: 26035127 DOI: 10.1094/mpmi-02-15-0023-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bacillus amyloliquefaciens CECT 8237 and CECT 8238, formerly known as Bacillus subtilis UMAF6639 and UMAF6614, respectively, contribute to plant health by facing microbial pathogens or inducing the plant's defense mechanisms. We sequenced their genomes and developed a set of ad hoc scripts that allowed us to search for the features implicated in their beneficial interaction with plants. We define a core set of genes that should ideally be found in any beneficial Bacillus strain, including the production of secondary metabolites, volatile compounds, metabolic plasticity, cell-to-cell communication systems, and biofilm formation. We experimentally prove that some of these genetic elements are active, such as i) the production of known secondary metabolites or ii) acetoin and 2-3-butanediol, compounds that stimulate plant growth and host defense responses. A comparison with other Bacillus genomes permits us to find differences in the cell-to-cell communication system and biofilm formation and to hypothesize variations in their persistence and resistance ability in diverse environmental conditions. In addition, the major protection provided by CECT 8237 and CECT 8238, which is different from other Bacillus strains against bacterial and fungal melon diseases, permits us to propose a correlation with their singular genetic background and determine the need to search for additional blind biocontrol-related features.
Collapse
Affiliation(s)
- M C Magno-Pérez-Bryan
- 1 Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain
| | - P M Martínez-García
- 2 Centro de Biotecnología y Genómica de Plantas UPM-INIA (CBGP), Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- 3 Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Área de Genética, Facultad de Ciencias, Universidad de Málaga
| | - J Hierrezuelo
- 1 Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain
| | - P Rodríguez-Palenzuela
- 2 Centro de Biotecnología y Genómica de Plantas UPM-INIA (CBGP), Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - E Arrebola
- 1 Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain
| | - C Ramos
- 3 Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Área de Genética, Facultad de Ciencias, Universidad de Málaga
| | - A de Vicente
- 1 Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain
| | - A Pérez-García
- 1 Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain
| | - D Romero
- 1 Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain
| |
Collapse
|
41
|
Rösch TC, Graumann PL. Induction of Plasmid Conjugation in Bacillus subtilis Is Bistable and Driven by a Direct Interaction of a Rap/Phr Quorum-sensing System with a Master Repressor. J Biol Chem 2015; 290:20221-32. [PMID: 26112413 DOI: 10.1074/jbc.m115.664110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 12/23/2022] Open
Abstract
Conjugation of plasmid pLS20 from Bacillus subtilis is limited to a time window between early and late exponential growth. Genetic evidence has suggested that pLS20-encoded protein RcoLS20 represses expression of a large conjugation operon, whereas Rap protein RapLS20 relieves repression. We show that RapLS20 is a true antirepressor protein that forms dimers in vivo and in vitro and that it directly binds to the repressor protein RcoLS20 in a 1:1 stoichiometry. We provide evidence that RapLS20 binds to the helix-turn-helix-containing domain of RcoLS20 in vivo, probably obstructing DNA binding of RcoLS20, as seen in competitive DNA binding experiments. The activity of RapLS20 in turn is counteracted by the addition of the cognate PhrLS20 peptide, which directly binds to the Rap protein and presumably induces a conformational change of the antirepressor. Thus, a Rap protein acts directly as an antirepressor protein during regulation of plasmid conjugation, turning on conjugation, and is counteracted by the PhrLS20 peptide, which, by analogy to known Rap/Phr systems, is secreted and taken back up into the cells, mediating cell density-driven regulation. Finally, we show that this switchlike process establishes a population heterogeneity, where up to 30% of the cells induce transcription of the conjugation operon.
Collapse
Affiliation(s)
- Thomas C Rösch
- From the LOEWE Zentrum für synthetische Mikrobiologie (SYNMIKRO), 35043 Marburg, Germany, the Spemann Graduate School of Biology and Medicine (SGBM), 79104 Freiburg, Germany, and the Fachbereich für Chemie, Hans-Meerwein Strasse, Universität Marburg, 35043 Marburg, Germany
| | - Peter L Graumann
- From the LOEWE Zentrum für synthetische Mikrobiologie (SYNMIKRO), 35043 Marburg, Germany, the Fachbereich für Chemie, Hans-Meerwein Strasse, Universität Marburg, 35043 Marburg, Germany
| |
Collapse
|
42
|
Rgg protein structure-function and inhibition by cyclic peptide compounds. Proc Natl Acad Sci U S A 2015; 112:5177-82. [PMID: 25847993 DOI: 10.1073/pnas.1500357112] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Peptide pheromone cell-cell signaling (quorum sensing) regulates the expression of diverse developmental phenotypes (including virulence) in Firmicutes, which includes common human pathogens, e.g., Streptococcus pyogenes and Streptococcus pneumoniae. Cytoplasmic transcription factors known as "Rgg proteins" are peptide pheromone receptors ubiquitous in Firmicutes. Here we present X-ray crystal structures of a Streptococcus Rgg protein alone and in complex with a tight-binding signaling antagonist, the cyclic undecapeptide cyclosporin A. To our knowledge, these represent the first Rgg protein X-ray crystal structures. Based on the results of extensive structure-function analysis, we reveal the peptide pheromone-binding site and the mechanism by which cyclosporin A inhibits activation of the peptide pheromone receptor. Guided by the Rgg-cyclosporin A complex structure, we predicted that the nonimmunosuppressive cyclosporin A analog valspodar would inhibit Rgg activation. Indeed, we found that, like cyclosporin A, valspodar inhibits peptide pheromone activation of conserved Rgg proteins in medically relevant Streptococcus species. Finally, the crystal structures presented here revealed that the Rgg protein DNA-binding domains are covalently linked across their dimerization interface by a disulfide bond formed by a highly conserved cysteine. The DNA-binding domain dimerization interface observed in our structures is essentially identical to the interfaces previously described for other members of the XRE DNA-binding domain family, but the presence of an intermolecular disulfide bond buried in this interface appears to be unique. We hypothesize that this disulfide bond may, under the right conditions, affect Rgg monomer-dimer equilibrium, stabilize Rgg conformation, or serve as a redox-sensitive switch.
Collapse
|
43
|
The RapP-PhrP quorum-sensing system of Bacillus subtilis strain NCIB3610 affects biofilm formation through multiple targets, due to an atypical signal-insensitive allele of RapP. J Bacteriol 2014; 197:592-602. [PMID: 25422306 DOI: 10.1128/jb.02382-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The genome of Bacillus subtilis 168 encodes eight rap-phr quorum-sensing pairs. Rap proteins of all characterized Rap-Phr pairs inhibit the function of one or several important response regulators: ComA, Spo0F, or DegU. This inhibition is relieved upon binding of the peptide encoded by the cognate phr gene. Bacillus subtilis strain NCIB3610, the biofilm-proficient ancestor of strain 168, encodes, in addition, the rapP-phrP pair on the plasmid pBS32. RapP was shown to dephosphorylate Spo0F and to regulate biofilm formation, but unlike other Rap-Phr pairs, RapP does not interact with PhrP. In this work we extend the analysis of the RapP pathway by reexamining its transcriptional regulation, its effect on downstream targets, and its interaction with PhrP. At the transcriptional level, we show that rapP and phrP regulation is similar to that of other rap-phr pairs. We further find that RapP has an Spo0F-independent negative effect on biofilm-related genes, which is mediated by the response regulator ComA. Finally, we find that the insensitivity of RapP to PhrP is due to a substitution of a highly conserved residue in the peptide binding domain of the rapP allele of strain NCIB3610. Reversing this substitution to the consensus amino acid restores the PhrP dependence of RapP activity and eliminates the effects of the rapP-phrP locus on ComA activity and biofilm formation. Taken together, our results suggest that RapP strongly represses biofilm formation through multiple targets and that PhrP does not counteract RapP due to a rare mutation in rapP.
Collapse
|
44
|
Cabrera R, Rocha J, Flores V, Vázquez-Moreno L, Guarneros G, Olmedo G, Rodríguez-Romero A, de la Torre M. Regulation of sporulation initiation by NprR and its signaling peptide NprRB: molecular recognition and conformational changes. Appl Microbiol Biotechnol 2014; 98:9399-412. [PMID: 25256619 DOI: 10.1007/s00253-014-6094-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/01/2014] [Accepted: 09/10/2014] [Indexed: 12/17/2022]
Abstract
NprR belongs to the RNPP family of quorum-sensing receptors, a group of intracellular regulators activated directly by signaling oligopeptides in Gram-positive bacteria. In Bacillus thuringiensis (Bt), nprR is located in a transcriptional cassette with nprRB that codes for the precursor of the signaling peptide NprRB. NprR is a transcriptional regulator activated by binding of reimported NprRB; however, several reports suggest that NprR also participates in sporulation but the mechanism is unknown. Our in silico results, based on the structural similarity between NprR from Bt and Spo0F-binding Rap proteins from Bacillus subtilis, suggested that NprR could bind Spo0F to modulate the sporulation phosphorelay in Bt. Deletion of nprR-nprRB cassette from Bt caused a delay in sporulation and defective trigger of the Spo0A∼P-activated genes spoIIA and spoIIIG. The DNA-binding domain of NprR was not necessary for this second function, since truncated NprRΔHTH together with nprRB gene was able to restore the sporulation wild type phenotype in the ΔnprR-nprRB mutant. Fluorescence assays showed direct binding between NprR and Spo0F, supporting that NprR is a bifunctional protein. To understand how the NprR activation by NprRB could result in two different functions, we studied the molecular recognition mechanism between the signaling peptide and the receptor. Using synthetic variants of NprRB, we found that SSKPDIVG displayed the highest affinity (Kd = 7.19 nM) toward the recombinant NprR and demonstrated that recognition involves conformational selection. We propose that the peptide concentration in the cell controls the oligomerization state of the NprR-NprRB complex for switching between its two functions.
Collapse
Affiliation(s)
- Rosina Cabrera
- Centro de Investigación en Alimentación y Desarrollo A. C., Km 0.6 Carretera a La Victoria, 83304, Hermosillo, Sonora, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Within Gram-positive bacteria, the expression of target genes is controlled at the population level via signaling peptides, also known as pheromones. Pheromones control a wide range of functions, including competence, virulence, and others that remain unknown. Until now, their role in bacterial gene regulation has probably been underestimated; indeed, bacteria are able to produce, by ribosomal synthesis or surface protein degradation, an extraordinary variety of peptides which are released outside bacteria and among which, some are pheromones that mediate cell-to-cell communication. The review aims at giving an updated overview of these peptide-dependant communication pathways. More specifically, it follows the whole peptide circuit from the peptide production and secretion in the extracellular medium to its interaction with sensors at bacterial surface or re-import into the bacteria where it plays its regulation role. In recent years, as we have accumulated more knowledge about these systems, it has become apparent that they are more complex than they first appeared. For this reason, more research on peptide-dependant pathways is needed to develop new strategies for controlling functions of interest in Gram-positive bacteria. In particular, such research could lead to alternatives to the use of antibiotics against pathogenic bacteria. In perspective, the review identifies new research questions that emerge in this field and that have to be addressed.
Collapse
Affiliation(s)
| | | | - Rozenn Gardan
- a INRA, MICALIS, Domaine de Vilvert , Jouy-en-Josas , France
| |
Collapse
|
46
|
Slamti L, Perchat S, Huillet E, Lereclus D. Quorum sensing in Bacillus thuringiensis is required for completion of a full infectious cycle in the insect. Toxins (Basel) 2014; 6:2239-55. [PMID: 25089349 PMCID: PMC4147580 DOI: 10.3390/toxins6082239] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/10/2014] [Accepted: 07/15/2014] [Indexed: 11/16/2022] Open
Abstract
Bacterial cell-cell communication or quorum sensing (QS) is a biological process commonly described as allowing bacteria belonging to a same pherotype to coordinate gene expression to cell density. In Gram-positive bacteria, cell-cell communication mainly relies on cytoplasmic sensors regulated by secreted and re-imported signaling peptides. The Bacillus quorum sensors Rap, NprR, and PlcR were previously identified as the first members of a new protein family called RNPP. Except for the Rap proteins, these RNPP regulators are transcription factors that directly regulate gene expression. QS regulates important biological functions in bacteria of the Bacillus cereus group. PlcR was first characterized as the main regulator of virulence in B. thuringiensis and B. cereus. More recently, the PlcR-like regulator PlcRa was characterized for its role in cysteine metabolism and in resistance to oxidative stress. The NprR regulator controls the necrotrophic properties allowing the bacteria to survive in the infected host. The Rap proteins negatively affect sporulation via their interaction with a phosphorelay protein involved in the activation of Spo0A, the master regulator of this differentiation pathway. In this review we aim at providing a complete picture of the QS systems that are sequentially activated during the lifecycle of B. cereus and B. thuringiensis in an insect model of infection.
Collapse
Affiliation(s)
- Leyla Slamti
- INRA, Unité MICALIS UMR-1319, La Minière, 78280 Guyancourt, France.
| | - Stéphane Perchat
- INRA, Unité MICALIS UMR-1319, La Minière, 78280 Guyancourt, France.
| | - Eugénie Huillet
- INRA, Unité MICALIS UMR-1319, La Minière, 78280 Guyancourt, France.
| | - Didier Lereclus
- INRA, Unité MICALIS UMR-1319, La Minière, 78280 Guyancourt, France.
| |
Collapse
|
47
|
Juanhuix J, Gil-Ortiz F, Cuní G, Colldelram C, Nicolás J, Lidón J, Boter E, Ruget C, Ferrer S, Benach J. Developments in optics and performance at BL13-XALOC, the macromolecular crystallography beamline at the ALBA synchrotron. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:679-89. [PMID: 24971961 PMCID: PMC4073956 DOI: 10.1107/s160057751400825x] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/11/2014] [Indexed: 05/20/2023]
Abstract
BL13-XALOC is currently the only macromolecular crystallography beamline at the 3 GeV ALBA synchrotron near Barcelona, Spain. The optics design is based on an in-vacuum undulator, a Si(111) channel-cut crystal monochromator and a pair of KB mirrors. It allows three main operation modes: a focused configuration, where both mirrors can focus the beam at the sample position to 52 µm × 5.5 µm FWHM (H × V); a defocused configuration that can match the size of the beam to the dimensions of the crystals or to focus the beam at the detector; and an unfocused configuration, where one or both mirrors are removed from the photon beam path. To achieve a uniform defocused beam, the slope errors of the mirrors were reduced down to 55 nrad RMS by employing a novel method that has been developed at the ALBA high-accuracy metrology laboratory. Thorough commissioning with X-ray beam and user operation has demonstrated an excellent energy and spatial stability of the beamline. The end-station includes a high-accuracy single-axis diffractometer, a removable mini-kappa stage, an automated sample-mounting robot and a photon-counting detector that allows shutterless operation. The positioning tables of the diffractometer and the detector are based on a novel and highly stable design. This equipment, together with the operation flexibility of the beamline, allows a large variety of types of crystals to be tackled, from medium-sized crystals with large unit-cell parameters to microcrystals. Several examples of data collections measured during beamline commissioning are described. The beamline started user operation on 18 July 2012.
Collapse
Affiliation(s)
- Jordi Juanhuix
- ALBA Synchrotron, BP 1413, km 3.3, Cerdanyola del Vallès, Spain
| | | | - Guifré Cuní
- ALBA Synchrotron, BP 1413, km 3.3, Cerdanyola del Vallès, Spain
| | | | - Josep Nicolás
- ALBA Synchrotron, BP 1413, km 3.3, Cerdanyola del Vallès, Spain
| | - Julio Lidón
- ALBA Synchrotron, BP 1413, km 3.3, Cerdanyola del Vallès, Spain
- MAX IV Laboratory, Ole Römers väg 1, 223 63 Lund, Sweden
| | - Eva Boter
- ALBA Synchrotron, BP 1413, km 3.3, Cerdanyola del Vallès, Spain
- Fusion for Energy, Josep Pla 2, 08019 Barcelona, Spain
| | - Claude Ruget
- ALBA Synchrotron, BP 1413, km 3.3, Cerdanyola del Vallès, Spain
| | - Salvador Ferrer
- ALBA Synchrotron, BP 1413, km 3.3, Cerdanyola del Vallès, Spain
| | - Jordi Benach
- ALBA Synchrotron, BP 1413, km 3.3, Cerdanyola del Vallès, Spain
| |
Collapse
|
48
|
Tan IS, Ramamurthi KS. Spore formation in Bacillus subtilis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:212-25. [PMID: 24983526 PMCID: PMC4078662 DOI: 10.1111/1758-2229.12130] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/05/2013] [Accepted: 11/19/2013] [Indexed: 05/04/2023]
Abstract
Although prokaryotes ordinarily undergo binary fission to produce two identical daughter cells, some are able to undergo alternative developmental pathways that produce daughter cells of distinct cell morphology and fate. One such example is a developmental programme called sporulation in the bacterium Bacillus subtilis, which occurs under conditions of environmental stress. Sporulation has long been used as a model system to help elucidate basic processes of developmental biology including transcription regulation, intercellular signalling, membrane remodelling, protein localization and cell fate determination. This review highlights some of the recent work that has been done to further understand prokaryotic cell differentiation during sporulation and its potential applications.
Collapse
Affiliation(s)
- Irene S Tan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA; NIH-Johns Hopkins University Graduate Partnerships Program, Baltimore, MD, 21218, USA
| | | |
Collapse
|
49
|
Zouhir S, Perchat S, Nicaise M, Perez J, Guimaraes B, Lereclus D, Nessler S. Peptide-binding dependent conformational changes regulate the transcriptional activity of the quorum-sensor NprR. Nucleic Acids Res 2013; 41:7920-33. [PMID: 23793817 PMCID: PMC3763537 DOI: 10.1093/nar/gkt546] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The transcriptional regulator NprR controls the expression of genes essential for the adaptative response of Bacillus cereus. NprR belongs to the RNPP family of directly regulated quorum sensors from Gram-positive bacteria. It is activated by the re-imported signaling peptide NprX. To elucidate the activation mechanism of this quorum-sensing system, we analyzed the conformation changes induced on binding of NprX. We solved the crystal structure of the NprR/NprX binary complex and characterized the apo form of NprR in solution. We demonstrated that apo NprR is a dimer that switches to a tetramer in the presence of NprX. Mutagenesis, and functional analysis allowed us to identify the protein and peptide residues directly involved in the NprR activation process. Based on the comparison with the Rap proteins, we propose a model for the peptide-induced conformational change allowing the apo dimer to switch to an active tetramer specifically recognizing target DNA sequences.
Collapse
Affiliation(s)
- Samira Zouhir
- CNRS, UPR3082, Laboratoire d'Enzymologie et Biochimie Structurales, Gif sur Yvette 91198, France, INRA, UMR1319 Micalis, La Minière, Guyancourt 78280, France, AgroParisTech, UMR1319 Micalis, Jouy-en-Josas 78350, France, Université Paris-Sud, UMR8619, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Orsay 91405, France and Synchrotron SOLEIL, 91192 Gif sur Yvette, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Perego M. Forty years in the making: understanding the molecular mechanism of peptide regulation in bacterial development. PLoS Biol 2013; 11:e1001516. [PMID: 23526885 PMCID: PMC3601992 DOI: 10.1371/journal.pbio.1001516] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Signal transduction systems are influenced by positive and negative forces resulting in an output reflecting the sum of the opposing forces. The Rap family of regulatory protein modules control the output of two-component signal transduction systems through protein∶protein and protein∶peptide interactions. These modules and their peptide regulators are found in complex signaling pathways, including the bacterial developmental pathway to sporulation, competence, and protease secretion. Two articles published in the current issue of PLOS Biology reveal by means of crystallographic analyses how the Rap proteins of bacilli are regulated by their inhibitor Phr peptide and provide a mechanistic explanation for a genetic phenotype isolated decades earlier. The Rap-Phr module of bacterial regulators was the prototype of a family that now extends to other bacterial signaling proteins that involve the use of the tetratricopeptide repeat structural fold. The results invite speculation regarding the potential exploitation of this module as a molecular tool for applications in therapeutic design and biotechnology.
Collapse
Affiliation(s)
- Marta Perego
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America.
| |
Collapse
|