1
|
Guo L, Chen Y, He Z, Wang Z, Chen Q, Chen J, Oz F, Xu Z, Zeng M. Genomic and Transcriptomic Analysis of Mutant Bacillus subtilis with Enhanced Nattokinase Production via ARTP Mutagenesis. Foods 2025; 14:898. [PMID: 40077601 PMCID: PMC11899143 DOI: 10.3390/foods14050898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Nattokinase (NK), a serine protease with high thrombolytic activity, has significant potential for application in foods intended for special health benefits. However, the NK production in wild-type Bacillus subtilis natto is relatively low. In this study, a high-yielding NK and genetically stable mutant strain (B. subtilis JNC002.001, 300.0 ± 4.7 FU/mL) was obtained through atmospheric and room temperature plasma (ARTP) mutagenesis. It increased NK activity by 1.84 times compared to the initial strain SD2, demonstrating significant prospects for NK production and food fermentation applications. Additionally, the B. subtilis JNC002.001 exhibited notable alterations in growth characteristics, glucose consumption, and sporulation. This study further elucidated the mechanism of enhanced NK production at the molecular level. Genome resequencing revealed that the mutant genes in JNC002.001 included 10 single nucleotide polymorphisms (SNPs) and one insertion, among which the kinA and gltA genes were associated with sporulation and NK synthesis, respectively. In terms of the transcriptional level, the NK-coding gene aprN was up-regulated 9.4 times relative to the wild-type strain. Most of the genes related to central carbon metabolism and the Sec secretion pathway were up-regulated. In addition, the expression of regulatory factors associated with the transcription of the aprN gene and the sporulation process provided evidence for high NK expression and sporulation deficiency in JNC002.001. These results could provide insights into the mechanism of NK production and facilitate the construction of engineered strains with high NK yield.
Collapse
Affiliation(s)
- Liuyu Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (L.G.); (Y.C.); (Z.H.); (Z.W.); (Q.C.); (J.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (L.G.); (Y.C.); (Z.H.); (Z.W.); (Q.C.); (J.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (L.G.); (Y.C.); (Z.H.); (Z.W.); (Q.C.); (J.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (L.G.); (Y.C.); (Z.H.); (Z.W.); (Q.C.); (J.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (L.G.); (Y.C.); (Z.H.); (Z.W.); (Q.C.); (J.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (L.G.); (Y.C.); (Z.H.); (Z.W.); (Q.C.); (J.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey;
| | - Zhimin Xu
- School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (L.G.); (Y.C.); (Z.H.); (Z.W.); (Q.C.); (J.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Hou ZJ, Cao CY, Gao GR, Ding MZ, Xu QM, Cheng JS. Enhanced Iturin A Production of Engineered Bacillus amyloliquefaciens by Knockout of Endogenous Plasmid and Rap Phosphatase Genes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11577-11586. [PMID: 38721818 DOI: 10.1021/acs.jafc.4c02810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Iturin A biosynthesis has garnered considerable interest, yet bottlenecks persist in its low productivity in wild strains and the ability to engineer Bacillus amyloliquefaciens producers. This study reveals that deleting the endogenous plasmid, plas1, from the wild-type B. amyloliquefaciens HM618 notably enhances iturin A synthesis, likely related to the effect of the Rap phosphatase gene within plas1. Furthermore, inactivating Rap phosphatase-related genes (rapC, rapF, and rapH) in the genome of the strain also improved the iturin A level and specific productivity while reducing cell growth. Strategic rap genes and plasmid elimination achieved a synergistic balance between cell growth and iturin A production. Engineered strain HM-DR13 exhibited an increase in iturin A level to 849.9 mg/L within 48 h, significantly shortening the production period. These insights underscore the critical roles of endogenous plasmids and Rap phosphatases in iturin A biosynthesis, presenting a novel engineering strategy to optimize iturin A production in B. amyloliquefaciens.
Collapse
Affiliation(s)
- Zheng-Jie Hou
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Chun-Yang Cao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Geng-Rong Gao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Ming-Zhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin 300387, People's Republic of China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| |
Collapse
|
3
|
Yannarell SM, Beaudoin ES, Talley HS, Schoenborn AA, Orr G, Anderton CR, Chrisler WB, Shank EA. Extensive cellular multi-tasking within Bacillus subtilis biofilms. mSystems 2023; 8:e0089122. [PMID: 37527273 PMCID: PMC10469600 DOI: 10.1128/msystems.00891-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/08/2023] [Indexed: 08/03/2023] Open
Abstract
Bacillus subtilis is a soil-dwelling bacterium that can form biofilms, or communities of cells surrounded by a self-produced extracellular matrix. In biofilms, genetically identical cells often exhibit heterogeneous transcriptional phenotypes, so that subpopulations of cells carry out essential yet costly cellular processes that allow the entire population to thrive. Surprisingly, the extent of phenotypic heterogeneity and the relationships between subpopulations of cells within biofilms of even in well-studied bacterial systems like B. subtilis remains largely unknown. To determine relationships between these subpopulations of cells, we created 182 strains containing pairwise combinations of fluorescent transcriptional reporters for the expression state of 14 different genes associated with potential cellular subpopulations. We determined the spatial organization of the expression of these genes within biofilms using confocal microscopy, which revealed that many reporters localized to distinct areas of the biofilm, some of which were co-localized. We used flow cytometry to quantify reporter co-expression, which revealed that many cells "multi-task," simultaneously expressing two reporters. These data indicate that prior models describing B. subtilis cells as differentiating into specific cell types, each with a specific task or function, were oversimplified. Only a few subpopulations of cells, including surfactin and plipastatin producers, as well as sporulating and competent cells, appear to have distinct roles based on the set of genes examined here. These data will provide us with a framework with which to further study and make predictions about the roles of diverse cellular phenotypes in B. subtilis biofilms. IMPORTANCE Many microbes differentiate, expressing diverse phenotypes to ensure their survival in various environments. However, studies on phenotypic differentiation have typically examined only a few phenotypes at one time, thus limiting our knowledge about the extent of differentiation and phenotypic overlap in the population. We investigated the spatial organization and gene expression relationships for genes important in B. subtilis biofilms. In doing so, we mapped spatial gene expression patterns and expanded the number of cell populations described in the B. subtilis literature. It is likely that other bacteria also display complex differentiation patterns within their biofilms. Studying the extent of cellular differentiation in other microbes may be important when designing therapies for disease-causing bacteria, where studying only a single phenotype may be masking underlying phenotypic differentiation relevant to infection outcomes.
Collapse
Affiliation(s)
- Sarah M. Yannarell
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eric S. Beaudoin
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Hunter S. Talley
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alexi A. Schoenborn
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher R. Anderton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - William B. Chrisler
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Elizabeth A. Shank
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
4
|
Mirmajidi SH, Irajie C, Savardashtaki A, Negahdaripour M, Nezafat N, Ghasemi Y. Identification of potential RapJ hits as sporulation pathway inducer candidates in Bacillus coagulans via structure-based virtual screening and molecular dynamics simulation studies. J Mol Model 2023; 29:256. [PMID: 37464224 DOI: 10.1007/s00894-023-05664-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND The bacterium Bacillus coagulans has attracted interest because of its ability to produce spores and advantageous probiotic traits, such as facilitating food digestion in the intestine, managing some disorders, and controlling the symbiotic microbiota. Spore-forming probiotic bacteria are especially important in the probiotic industry compared to non-spore-forming bacteria due to their stability during production and high resistance to adverse factors such as stomach acid. When spore-forming bacteria are exposed to environmental stresses, they enter the sporulation pathway to survive. This pathway is activated by the final phosphorylation of the master regulator of spore response, Spo0A, and upon achieving the phosphorylation threshold. Spo0A is indirectly inhibited by some enzymes of the aspartate response regulator phosphatase (Rap) family, such as RapJ. RapJ is one of the most important Rap enzymes in the sporogenesis pathway, which is naturally inhibited by the pentapeptides. METHODS This study used structure-based virtual screening and molecular dynamics (MD) simulation studies to find potential RapJ hits that could induce the sporulation pathway. The crystal structures of RapJ complexed with pentapeptide clearly elucidated their interactions with the enzyme active site. RESULTS Based on the binding compartment, through molecular docking, MD simulation, hydrogen bonds, and binding-free energy calculations, a series of novel hits against RapJ named tandutinib, infigratinib, sitravatinib, linifanib, epertinib, surufatinib, and acarbose were identified. Among these compounds, acarbose obtained the highest score, especially in terms of the number of hydrogen bonds, which plays a major role in stabilizing RapJ-ligand complexes, and also according to the occupancy percentages of hydrogen bonds, its hydrogen bonds were more stable during the simulation time. Consequently, acarbose is probably the most suitable hit for RapJ enzyme. Notably, experimental validation is crucial to confirm the effectiveness of the selected ligands.
Collapse
Affiliation(s)
- Seyedeh Habibeh Mirmajidi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Navid Nezafat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran.
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran.
| |
Collapse
|
5
|
Treinen C, Biermann L, Vahidinasab M, Heravi KM, Lilge L, Hausmann R, Henkel M. Deletion of Rap-phosphatases for quorum sensing control in Bacillus and its effect on surfactin production. AMB Express 2023; 13:51. [PMID: 37243871 DOI: 10.1186/s13568-023-01555-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/03/2023] [Indexed: 05/29/2023] Open
Abstract
The complex regulatory network in Bacillus, known as quorum sensing, offers many opportunities to modify bacterial gene expression and hence to control bioprocesses. One target regulated by this mechanism is the activity of the PsrfA promoter, which is engaged in the formation of lipopeptide surfactin. It was hypothesised that deletion of rapC, rapF and rapH, encoding for prominent Rap-phosphatases known to affect PsrfA activity, would enhance surfactin production. Therefore, these genes were deleted in a sfp+ derivative of B. subtilis 168 with subsequent evaluation of quantitative data. Up to the maximum product formation of the reference strain B. subtilis KM1016 after 16 h of cultivation, the titers of the rap deletion mutants did not exceed the reference. However, an increase in both product yield per biomass YP/X and specific surfactin productivity qsurfactin was observed, without any considerable effect on the ComX activity. By extending the cultivation time, a 2.7-fold increase in surfactin titer was observed after 24 h for strain CT10 (ΔrapC) and a 2.5-fold increase for CT11 (ΔrapF) compared to the reference strain KM1016. In addition, YP/X was again increased for strains CT10 and CT11, with values of 1.33 g/g and 1.13 g/g, respectively. Interestingly, the effect on surfactin titer in strain CT12 (ΔrapH) was not as distinct, although it achieved the highest promoter activity (PsrfA-lacZ). The data presented support the possibility of involving the quorum sensing system of Bacillus in bioprocess control as shown here on the example of lipopeptide production.
Collapse
Affiliation(s)
- Chantal Treinen
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, 85354, Freising, Germany
| | - Lennart Biermann
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Maliheh Vahidinasab
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Kambiz Morabbi Heravi
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Lars Lilge
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, Groningen, 9747 AG, The Netherlands
| | - Rudolf Hausmann
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Marius Henkel
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, 85354, Freising, Germany.
| |
Collapse
|
6
|
Zhao L, Liu Q, Xu FH, Liu H, Zhang J, Liu F, Wang G. Identification and analysis of Rap-Phr system in Bacillus cereus 0-9. FEMS Microbiol Lett 2022; 369:6549557. [PMID: 35293995 DOI: 10.1093/femsle/fnac026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/15/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, eight rap-related genes were found in the Bacillus cereus 0-9 genome; five rap genes were located on chromosomes and three on large plasmids. Five Rap proteins in B. cereus 0-9 were annotated as 'tetratricopeptide repeat proteins'. SMART Server analysis showed that the eight Rap proteins had typical tetrapeptide repeat sequence (TPR) domains. Biofilm assays and crystal violet staining showed that overexpression of the rapp1 and rap5 genes affected the biofilm formation of B. cereus 0-9, and the activities of Rapp1 and Rap5 proteins were inhibited by their corresponding cognate Phr, suggesting that the Rap-Phr quorum sensing (QS) system might also exist in the B. cereus 0-9 strain. In addition, overexpression of rap1 genes inhibited in the extracellular amylase decomposition capacity of B. cereus 0-9. The results of the sporulation assay indicated that overexpression of the eight rap genes inhibited the spore formation of B. cereus 0-9 to varying degrees. These results provide a reference for research on the regulation of the Rap-Phr QS system in B. cereus.
Collapse
Affiliation(s)
- Linlin Zhao
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China
| | - Qing Liu
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China
| | - Feng Hua Xu
- School of Pharmaceutical, Henan University, Kaifeng, China
| | - Huiping Liu
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China
| | - Juanmei Zhang
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China.,School of Pharmaceutical, Henan University, Kaifeng, China
| | - Fengying Liu
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China.,Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, China
| | - Gang Wang
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China.,Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, China
| |
Collapse
|
7
|
Guzzo M, Sanderlin AG, Castro LK, Laub MT. Activation of a signaling pathway by the physical translocation of a chromosome. Dev Cell 2021; 56:2145-2159.e7. [PMID: 34242584 DOI: 10.1016/j.devcel.2021.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 06/10/2021] [Indexed: 11/26/2022]
Abstract
In every organism, the cell cycle requires the execution of multiple processes in a strictly defined order. However, the mechanisms used to ensure such order remain poorly understood, particularly in bacteria. Here, we show that the activation of the essential CtrA signaling pathway that triggers cell division in Caulobacter crescentus is intrinsically coupled to the initiation of DNA replication via the physical translocation of a newly replicated chromosome, powered by the ParABS system. We demonstrate that ParA accumulation at the new cell pole during chromosome segregation recruits ChpT, an intermediate component of the CtrA signaling pathway. ChpT is normally restricted from accessing the selective PopZ polar microdomain until the new chromosome and ParA arrive. Consequently, any disruption to DNA replication initiation prevents ChpT polarization and, in turn, cell division. Collectively, our findings reveal how major cell-cycle events are coordinated in Caulobacter and, importantly, how chromosome translocation triggers an essential signaling pathway.
Collapse
Affiliation(s)
- Mathilde Guzzo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Allen G Sanderlin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lennice K Castro
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
8
|
Nordgaard M, Mortensen RMR, Kirk NK, Gallegos‐Monterrosa R, Kovács ÁT. Deletion of Rap-Phr systems in Bacillus subtilis influences in vitro biofilm formation and plant root colonization. Microbiologyopen 2021; 10:e1212. [PMID: 34180604 PMCID: PMC8236291 DOI: 10.1002/mbo3.1212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Natural isolates of the soil-dwelling bacterium Bacillus subtilis form robust biofilms under laboratory conditions and colonize plant roots. B. subtilis biofilm gene expression displays phenotypic heterogeneity that is influenced by a family of Rap-Phr regulatory systems. Most Rap-Phr systems in B. subtilis have been studied independently, in different genetic backgrounds and under distinct conditions, hampering true comparison of the Rap-Phr systems' impact on bacterial cell differentiation. Here, we investigated each of the 12 Rap-Phr systems of B.subtilis NCIB 3610 for their effect on biofilm formation. By studying single ∆rap-phr mutants, we show that despite redundancy between the cell-cell communication systems, deletion of each of the 12 Rap-Phr systems influences matrix gene expression. These Rap-Phr systems therefore enable fine-tuning of the timing and level of matrix production in response to specific conditions. Furthermore, some of the ∆rap-phr mutants demonstrated altered biofilm formation in vitro and colonization of Arabidopsis thaliana roots, but not necessarily similarly in both processes, indicating that the pathways regulating matrix gene expression and other factors important for biofilm formation may be differently regulated under these distinct conditions.
Collapse
Affiliation(s)
- Mathilde Nordgaard
- Bacterial Interactions and Evolution GroupDTU BioengineeringTechnical University of DenmarkLyngbyDenmark
| | | | - Nikolaj Kaae Kirk
- Bacterial Interactions and Evolution GroupDTU BioengineeringTechnical University of DenmarkLyngbyDenmark
| | | | - Ákos T. Kovács
- Bacterial Interactions and Evolution GroupDTU BioengineeringTechnical University of DenmarkLyngbyDenmark
| |
Collapse
|
9
|
Gallegos-Monterrosa R, Christensen MN, Barchewitz T, Koppenhöfer S, Priyadarshini B, Bálint B, Maróti G, Kempen PJ, Dragoš A, Kovács ÁT. Impact of Rap-Phr system abundance on adaptation of Bacillus subtilis. Commun Biol 2021; 4:468. [PMID: 33850233 PMCID: PMC8044106 DOI: 10.1038/s42003-021-01983-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Microbes commonly display great genetic plasticity, which has allowed them to colonize all ecological niches on Earth. Bacillus subtilis is a soil-dwelling organism that can be isolated from a wide variety of environments. An interesting characteristic of this bacterium is its ability to form biofilms that display complex heterogeneity: individual, clonal cells develop diverse phenotypes in response to different environmental conditions within the biofilm. Here, we scrutinized the impact that the number and variety of the Rap-Phr family of regulators and cell-cell communication modules of B. subtilis has on genetic adaptation and evolution. We examine how the Rap family of phosphatase regulators impacts sporulation in diverse niches using a library of single and double rap-phr mutants in competition under 4 distinct growth conditions. Using specific DNA barcodes and whole-genome sequencing, population dynamics were followed, revealing the impact of individual Rap phosphatases and arising mutations on the adaptability of B. subtilis.
Collapse
Affiliation(s)
- Ramses Gallegos-Monterrosa
- grid.9613.d0000 0001 1939 2794Terrestrial Biofilms Group, Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Mathilde Nordgaard Christensen
- grid.5170.30000 0001 2181 8870Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tino Barchewitz
- grid.9613.d0000 0001 1939 2794Terrestrial Biofilms Group, Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Sonja Koppenhöfer
- grid.9613.d0000 0001 1939 2794Terrestrial Biofilms Group, Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany ,grid.25055.370000 0000 9130 6822Present Address: Department of Biology, Memorial University of Newfoundland, St. John’s, NL Canada
| | - B. Priyadarshini
- grid.5170.30000 0001 2181 8870Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Balázs Bálint
- grid.475919.7Seqomics Biotechnology Ltd., Mórahalom, Hungary
| | - Gergely Maróti
- grid.5018.c0000 0001 2149 4407Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Paul J. Kempen
- grid.5170.30000 0001 2181 8870Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Dragoš
- grid.5170.30000 0001 2181 8870Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ákos T. Kovács
- grid.9613.d0000 0001 1939 2794Terrestrial Biofilms Group, Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany ,grid.5170.30000 0001 2181 8870Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
10
|
Modulation of quorum sensing-associated virulence in bacteria: carbohydrate as a key factor. Arch Microbiol 2021; 203:1881-1890. [PMID: 33641039 DOI: 10.1007/s00203-021-02235-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/11/2020] [Accepted: 02/11/2021] [Indexed: 01/21/2023]
Abstract
Quorum sensing (QS) is a method of inter-cellular communication that permits bacteria to dispense information about cell density and to synchronize the gene expression accordingly. Gram-positive and Gram-negative bacteria utilize distinct quorum sensing mechanisms for effective pathogenesis. Virulence factor production by pathogenic bacteria is one of the important traits that is under the control of QS. A growing body of evidence has indicated the role of the nutritional environment notably by carbohydrates in dictating the QS-associated virulence gene regulation. The modulation of QS by carbohydrates mitigates the survival and establishment of the pathogen within its host which in turn leads to an increase in morbidity and mortality. This mini-review throws light on the predilection of pathogenic bacteria to rapidly regulate its QS-linked virulence gene expression based on the changing nutrient levels that assist them in prospering within diverse niches.
Collapse
|
11
|
Blake C, Christensen MN, Kovács ÁT. Molecular Aspects of Plant Growth Promotion and Protection by Bacillus subtilis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:15-25. [PMID: 32986513 DOI: 10.1094/mpmi-08-20-0225-cr] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Bacillus subtilis is one of the most widely studied plant growth-promoting rhizobacteria. It is able to promote plant growth as well as control plant pathogens through diverse mechanisms, including the improvement of nutrient availability and alteration of phytohormone homeostasis as well as the production of antimicrobials and triggering induced systemic resistance, respectively. Even though its benefits for crop production have been recognized and studied extensively under laboratory conditions, the success of its application in fields varies immensely. It is widely accepted that agricultural application of B. subtilis often fails because the bacteria are not able to persist in the rhizosphere. Bacterial colonization of plant roots is a crucial step in the interaction between microbe and plant and seems, therefore, to be of great importance for its growth promotion and biocontrol effects. A successful root colonization depends thereby on both bacterial traits, motility and biofilm formation, as well as on a signal interplay with the plant. This review addresses current knowledge about plant-microbial interactions of the B. subtilis species, including the various mechanisms for supporting plant growth as well as the necessity for the establishment of the relationship.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Collapse
Affiliation(s)
- Christopher Blake
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
12
|
A novel Rap-Phr system in Bacillus velezensis NAU-B3 regulates surfactin production and sporulation via interaction with ComA. Appl Microbiol Biotechnol 2020; 104:10059-10074. [PMID: 33043389 DOI: 10.1007/s00253-020-10942-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/10/2020] [Accepted: 10/04/2020] [Indexed: 10/23/2022]
Abstract
Several quorum sensing systems occurring in Bacillus subtilis, e.g. Rap-Phr systems, were reported to interact with major regulatory proteins, such as ComA, DegU, and Spo0A, in order to regulate competence, sporulation, and synthesis of secondary metabolites. In this study, we characterized a novel Rap-Phr system, RapA4-PhrA4, in Bacillus velezensis NAU-B3. We found that the rapA4 and phrA4 genes were co-transcribed in NAU-B3. When rapA4 was expressed in the heterologous host Bacillus subtilis OKB105, surfactin production and sporulation were severely inhibited. However, when the phrA4 was co-expressed, the RapA4 activity was inhibited. The transcription of the surfactin synthetase srfA gene and sporulation-related genes were also regulated by the RapA4-PhrA4 system. In vitro results obtained from electrophoretic mobility shift assay (EMSA) proved that RapA4 inhibits ComA binding to the promoter of the srfA operon, and the PhrA4 pentapeptide acts as anti-activator of RapA4. We also found that the F24 residue plays a key role in RapA4 function. This study indicated that the novel RapA4-PhrA4 system regulates the surfactin synthesis and sporulation via interaction with ComA, thereby supporting the bacterium to compete and to survive in a hostile environment. KEY POINTS: •Bacillus velezensis NAU-B3 has a novel Rap-Phr quorum sensing system, which does not occur in model strains Bacillus subtilis 168 and B. velezensis FZB42. •RapA4-PhrA4 regulates surfactin production and sporulation. •RapA4-PhrA4 interacts with the ComA protein from ComP/ComA two-component system.
Collapse
|
13
|
Rap-Phr Systems from Plasmids pAW63 and pHT8-1 Act Together To Regulate Sporulation in the Bacillus thuringiensis Serovar kurstaki HD73 Strain. Appl Environ Microbiol 2020; 86:AEM.01238-20. [PMID: 32680861 DOI: 10.1128/aem.01238-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Bacillus thuringiensis is a Gram-positive spore-forming bacterium pathogenic to various insect species. This property is due to the Cry toxins encoded by plasmid genes and mostly produced during sporulation. B. thuringiensis contains a remarkable number of extrachromosomal DNA molecules and a great number of plasmid rap-phr genes. Rap-Phr quorum-sensing systems regulate different bacterial processes, notably the commitment to sporulation in Bacillus species. Rap proteins are quorum sensors acting as phosphatases on Spo0F, an intermediate of the sporulation phosphorelay, and are inhibited by Phr peptides that function as signaling molecules. In this study, we characterize the Rap63-Phr63 system encoded by the pAW63 plasmid from the B. thuringiensis serovar kurstaki HD73 strain. Rap63 has moderate activity on sporulation and is inhibited by the Phr63 peptide. The rap63-phr63 genes are cotranscribed, and the phr63 gene is also transcribed from a σH-specific promoter. We show that Rap63-Phr63 regulates sporulation together with the Rap8-Phr8 system harbored by plasmid pHT8_1 of the HD73 strain. Interestingly, the deletion of both phr63 and phr8 genes in the same strain has a greater negative effect on sporulation than the sum of the loss of each phr gene. Despite the similarities in the Phr8 and Phr63 sequences, there is no cross talk between the two systems. Our results suggest a synergism of these two Rap-Phr systems in the regulation of the sporulation of B. thuringiensis at the end of the infectious cycle in insects, thus pointing out the roles of the plasmids in the fitness of the bacterium.IMPORTANCE The life cycle of Bacillus thuringiensis in insect larvae is regulated by quorum-sensing systems of the RNPP family. After the toxemia caused by Cry insecticidal toxins, the sequential activation of these systems allows the bacterium to trigger first a state of virulence (regulated by PlcR-PapR) and then a necrotrophic lifestyle (regulated by NprR-NprX); ultimately, sporulation is controlled by the Rap-Phr systems. Our study describes a new rap-phr operon carried by a B. thuringiensis plasmid and shows that the Rap protein has a moderate effect on sporulation. However, this system, in combination with another plasmidic rap-phr operon, provides effective control of sporulation when the bacteria develop in the cadavers of infected insect larvae. Overall, this study highlights the important adaptive role of the plasmid Rap-Phr systems in the developmental fate of B. thuringiensis and its survival within its ecological niche.
Collapse
|
14
|
Summers DK, Perry DS, Rao B, Madhani HD. Coordinate genomic association of transcription factors controlled by an imported quorum sensing peptide in Cryptococcus neoformans. PLoS Genet 2020; 16:e1008744. [PMID: 32956370 PMCID: PMC7537855 DOI: 10.1371/journal.pgen.1008744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/06/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Qsp1 is a secreted quorum sensing peptide required for virulence of the fungal meningitis pathogen Cryptococcus neoformans. Qsp1 functions to control cell wall integrity in vegetatively growing cells and also functions in mating. Rather than acting on a cell surface receptor, Qsp1 is imported to act intracellularly via the predicted oligopeptide transporter Opt1. Here, we identify a transcription factor network as a target of Qsp1. Using whole-genome chromatin immunoprecipitation, we find Qsp1 controls the genomic associations of three transcription factors to genes whose outputs are regulated by Qsp1. One of these transcription factors, Cqs2, is also required for the action of Qsp1 during mating, indicating that it might be a shared proximal target of Qsp1. Consistent with this hypothesis, deletion of CQS2 impacts the binding of other network transcription factors specifically to Qsp1-regulated genes. These genetic and genomic studies illuminate mechanisms by which an imported peptide acts to modulate eukaryotic gene expression.
Collapse
Affiliation(s)
- Diana K. Summers
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
| | - Daniela S. Perry
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
| | - Beiduo Rao
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
| | - Hiten D. Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
- Chan-Zuckerberg Biohub, San Francisco, CA, United States of America
| |
Collapse
|
15
|
Multiple and Overlapping Functions of Quorum Sensing Proteins for Cell Specialization in Bacillus Species. J Bacteriol 2020; 202:JB.00721-19. [PMID: 32071096 DOI: 10.1128/jb.00721-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In bacterial populations, quorum sensing (QS) systems participate in the regulation of specialization processes and regulate collective behaviors that mediate interactions and allow survival of the species. In Gram-positive bacteria, QS systems of the RRNPP family (Rgg, Rap, NprR, PlcR, and PrgX) consist of intracellular receptors and their cognate signaling peptides. Two of these receptors, Rap and NprR, have regained attention in Bacillus subtilis and the Bacillus cereus group. Some Rap proteins, such as RapH and Rap60, are multifunctional and/or redundant in function, linking the specialization processes of sporulation and competence, as well as global expression changes in the transition phase in B. subtilis NprR, an evolutionary intermediate between Rap and RRNPP transcriptional activators, is a bifunctional regulator that modulates sporulation initiation and activates nutrient scavenging genes. In this review, we discuss how these receptors switch between functions and connect distinct signaling pathways. Based on structural evidence, we propose that RapH and Rap60 should be considered moonlighting proteins. Additionally, we analyze an evolutionary and ecological perspective to understand the multifunctionality and functional redundancy of these regulators in both Bacillus spp. and non-Bacillus Firmicutes Understanding the mechanistic, structural, ecological, and evolutionary basis for the multifunctionality and redundancy of these QS systems is a key step for achieving the development of innovative technologies for health and agriculture.
Collapse
|
16
|
Rap Protein Paralogs of Bacillus thuringiensis: a Multifunctional and Redundant Regulatory Repertoire for the Control of Collective Functions. J Bacteriol 2020; 202:JB.00747-19. [PMID: 31871034 DOI: 10.1128/jb.00747-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/20/2019] [Indexed: 01/01/2023] Open
Abstract
Quorum sensing (QS) is a mechanism of synthesis and detection of signaling molecules to regulate gene expression and coordinate behaviors in bacterial populations. In Bacillus subtilis, multiple paralog Rap-Phr QS systems (receptor-signaling peptides) are highly redundant and multifunctional, interconnecting the regulation of differentiation processes such as sporulation and competence. However, their functions in the Bacillus cereus group are largely unknown. We evaluated the functions of Rap proteins in Bacillus thuringiensis Bt8741, which codes for eight Rap-Phr systems; these were individually overexpressed to study their participation in sporulation, biofilm formation, spreading, and extracellular proteolytic activity. Our results show that four Rap-Phr systems (RapC, RapK, RapF, and RapLike) inhibit sporulation, two of which (RapK and RapF) probably dephosphorylate Spo0F from the Spo0A phosphorelay; these two Rap proteins also inhibit biofilm formation. Four systems (RapC, RacF1, RacF2, and RapLike) participate in spreading inhibition; finally, six systems (RapC, -F, -F2, -I, and -I1 and RapLike) decrease extracellular proteolytic activity. We foresee that functions performed by Rap proteins of Bt8741 could also be carried out by Rap homologs in other strains within the B. cereus group. These results indicate that Rap-Phr systems constitute a highly multifunctional and redundant regulatory repertoire that enables B. thuringiensis and other species from the B. cereus group to efficiently regulate collective functions during their life cycle in the face of changing environments.IMPORTANCE The Bacillus cereus group of bacteria includes species of high economic, clinical, biological warfare, and biotechnological interest, e.g., B. anthracis in bioterrorism, B. cereus in food intoxications, and B. thuringiensis in biocontrol. Knowledge about the ecology of these bacteria is hindered by our limited understanding of the regulatory circuits that control differentiation and specialization processes. Here, we uncover the participation of eight Rap quorum-sensing receptors in collective functions of B. thuringiensis These proteins are highly multifunctional and redundant in their functions, linking ecologically relevant processes such as sporulation, biofilm formation, spreading, extracellular proteolytic activity, and probably other functions in species from the B. cereus group.
Collapse
|
17
|
Manandhar A, Chakraborty K, Tang PK, Kang M, Zhang P, Cui H, Loverde SM. Rational Coarse-Grained Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes. J Phys Chem B 2019; 123:10582-10593. [DOI: 10.1021/acs.jpcb.9b07417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Anjela Manandhar
- Department of Chemistry, College of Staten Island, City University of New York, New York 10314, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York 10016, United States
| | - Kaushik Chakraborty
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York 10016, United States
| | - Phu K. Tang
- Department of Chemistry, College of Staten Island, City University of New York, New York 10314, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York 10016, United States
| | - Myungshim Kang
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York 10016, United States
| | - Pengcheng Zhang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Sharon M. Loverde
- Department of Chemistry, College of Staten Island, City University of New York, New York 10314, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York 10016, United States
| |
Collapse
|
18
|
The oligopeptide ABC-importers are essential communication channels in Gram-positive bacteria. Res Microbiol 2019; 170:338-344. [PMID: 31376485 DOI: 10.1016/j.resmic.2019.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/12/2019] [Indexed: 12/27/2022]
Abstract
The transport of peptides in microorganisms plays an important role in their physiology and behavior, both as a nutrient source and as a proxy to sense their environment. This latter function is evidenced in Gram-positive bacteria where cell-cell communication is mediated by small peptides. Here, we highlight the importance of the oligopeptide permease (Opp) systems in the various major processes controlled by signaling peptides, such as sporulation, virulence and conjugation. We underline that the functioning of these communication systems is tightly linked to the developmental status of the bacteria via the regulation of opp gene expression by transition phase regulators.
Collapse
|
19
|
Yehuda A, Slamti L, Malach E, Lereclus D, Hayouka Z. Elucidating the Hot Spot Residues of Quorum Sensing Peptidic Autoinducer PapR by Multiple Amino Acid Replacements. Front Microbiol 2019; 10:1246. [PMID: 31231335 PMCID: PMC6568020 DOI: 10.3389/fmicb.2019.01246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/20/2019] [Indexed: 11/29/2022] Open
Abstract
The quorum sensing (QS) system of Bacillus cereus, an opportunistic human pathogen, utilizes the autoinducing PapR peptide signal that mediates the activation of the pleiotropic virulence regulator PlcR. A set of synthetic 7-mer PapR-derived peptides (PapR7; ADLPFEF) have been shown to inhibit efficiently the PlcR regulon activity and the production of virulence factors, reflected by a loss in hemolytic activity without affecting bacterial growth. Interestingly, these first potent synthetic inhibitors involved D-amino acid or alanine replacements of three amino acids; proline, glutamic acid, and phenylalanine of the heptapeptide PapR. To better understand the role of these three positions in PlcR activity, we report herein the second generation design, synthesis, and characterization of PapR7-derived combinations, alternate double and triple alanine and D-amino acids replacement at these positions. Our findings generate a new set of non-native PapR7-derived peptides that inhibit the PlcR regulon activity and the production of virulence factors. Using the amino acids substitution strategy, we revealed the role of proline and glutamic acid on PlcR regulon activation. Moreover, we demonstrated that the D-Glutamic acid substitution was crucial for the design of stronger PlcR antagonists. These peptides represent potent synthetic inhibitors of B. cereus QS and constitute new and readily accessible chemical tools for the study of the PlcR system. Our method might be applied to other quorum sensing systems to design new anti-virulence agents.
Collapse
Affiliation(s)
- Avishag Yehuda
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Leyla Slamti
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Einav Malach
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
20
|
Cardoso PDF, Perchat S, Vilas-Boas LA, Lereclus D, Vilas-Bôas GT. Diversity of the Rap-Phr quorum-sensing systems in the Bacillus cereus group. Curr Genet 2019; 65:1367-1381. [PMID: 31104082 DOI: 10.1007/s00294-019-00993-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022]
Abstract
Bacteria of the Bacillus cereus group colonize several ecological niches and infect different hosts. Bacillus cereus, a ubiquitous species causing food poisoning, Bacillus thuringiensis, an entomopathogen, and Bacillus anthracis, which is highly pathogenic to mammals, are the most important species of this group. These species are closely related genetically, and their specific toxins are encoded by plasmids. The infectious cycle of B. thuringiensis in its insect host is regulated by quorum-sensing systems from the RNPP family. Among them, the Rap-Phr systems, which are well-described in Bacillus subtilis, regulate essential processes, such as sporulation. Given the importance of these systems, we performed a global in silico analysis to investigate their prevalence, distribution, diversity and their role in sporulation in B. cereus group species. The rap-phr genes were identified in all selected strains with 30% located on plasmids, predominantly in B. thuringiensis. Despite a high variability in their sequences, there is a remarkable association between closely related strains and their Rap-Phr profile. Based on the key residues involved in RapH phosphatase activity, we predicted that 32% of the Rap proteins could regulate sporulation by preventing the phosphorylation of Spo0F. These Rap are preferentially located on plasmids and mostly related to B. thuringiensis. The predictions were partially validated by in vivo sporulation experiments suggesting that the residues linked to the phosphatase function are necessary but not sufficient to predict this activity. The wide distribution and diversity of Rap-Phr systems could strictly control the commitment to sporulation and then improve the adaptation capacities of the bacteria to environmental changes.
Collapse
Affiliation(s)
- Priscilla de F Cardoso
- Depto. Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil.,Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Stéphane Perchat
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
21
|
Ehling-Schulz M, Lereclus D, Koehler TM. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0032-2018. [PMID: 31111815 PMCID: PMC6530592 DOI: 10.1128/microbiolspec.gpp3-0032-2018] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
The Bacillus cereus group includes several Bacillus species with closely related phylogeny. The most well-studied members of the group, B. anthracis, B. cereus, and B. thuringiensis, are known for their pathogenic potential. Here, we present the historical rationale for speciation and discuss shared and unique features of these bacteria. Aspects of cell morphology and physiology, and genome sequence similarity and gene synteny support close evolutionary relationships for these three species. For many strains, distinct differences in virulence factor synthesis provide facile means for species assignment. B. anthracis is the causative agent of anthrax. Some B. cereus strains are commonly recognized as food poisoning agents, but strains can also cause localized wound and eye infections as well as systemic disease. Certain B. thuringiensis strains are entomopathogens and have been commercialized for use as biopesticides, while some strains have been reported to cause infection in immunocompromised individuals. In this article we compare and contrast B. anthracis, B. cereus, and B. thuringiensis, including ecology, cell structure and development, virulence attributes, gene regulation and genetic exchange systems, and experimental models of disease.
Collapse
Affiliation(s)
- Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Theresa M Koehler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX 77030
| |
Collapse
|
22
|
Dubois T, Lemy C, Perchat S, Lereclus D. The signaling peptide NprX controlling sporulation and necrotrophism is imported into Bacillus thuringiensis by two oligopeptide permease systems. Mol Microbiol 2019; 112:219-232. [PMID: 31017318 DOI: 10.1111/mmi.14264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2019] [Indexed: 11/30/2022]
Abstract
The infectious cycle of Bacillus thuringiensis in the insect host is regulated by quorum sensors of the RNPP family. The activity of these regulators is modulated by their cognate signaling peptides translocated into the bacterial cells by oligopeptide permeases (Opp systems). In B. thuringiensis, the quorum sensor NprR is a bi-functional regulator that connects sporulation to necrotrophism. The binding of the signaling peptide NprX switches NprR from a dimeric inhibitor of sporulation to a tetrameric transcriptional activator involved in the necrotrophic lifestyle of B. thuringiensis. Here, we report that NprX is imported into the bacterial cells by two different oligopeptide permease systems. The first one is Opp, the system known to be involved in the import of the signaling peptide PapR in B. thuringiensis and Bacillus cereus. The second, designated as Npp (NprX peptide permease), was not previously described. We show that at least two substrate binding proteins (SBPs) are able to translocate NprX through OppBCDF. In contrast, we demonstrate that a unique SBP (NppA) can translocate NprX through NppDFBC. We identified the promoter of the npp operon, and we showed that transcription starts at the onset of stationary phase and is repressed by the nutritional regulator CodY during the exponential growth phase.
Collapse
Affiliation(s)
- Thomas Dubois
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Christelle Lemy
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Stéphane Perchat
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| |
Collapse
|
23
|
Structural basis of the arbitrium peptide–AimR communication system in the phage lysis–lysogeny decision. Nat Microbiol 2018; 3:1266-1273. [DOI: 10.1038/s41564-018-0239-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 08/06/2018] [Indexed: 11/08/2022]
|
24
|
Yehuda A, Slamti L, Bochnik-Tamir R, Malach E, Lereclus D, Hayouka Z. Turning off Bacillus cereus quorum sensing system with peptidic analogs. Chem Commun (Camb) 2018; 54:9777-9780. [PMID: 30105347 DOI: 10.1039/c8cc05496g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We explored quenching of the PlcR-PapR quorum-sensing system in Bacillus cereus. We generated PapR7-peptidic derivatives that inhibit this system and thus the production of virulence factors, reflected by a loss in hemolytic activity, without affecting bacterial growth. To our knowledge, these peptides represent the first potent synthetic inhibitors of quorum-sensing in B. cereus.
Collapse
Affiliation(s)
- Avishag Yehuda
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
This is a tale of how technology drove the discovery of the molecular basis for signal transduction in the initiation of sporulation in Bacillus subtilis and in bacterial two-component systems. It progresses from genetics to cloning and sequencing to biochemistry to structural biology to an understanding of how proteins evolve interaction specificity and to identification of interaction surfaces by statistical physics. This is about how the people in my laboratory accomplished this feat; without them little would have been done.
Collapse
Affiliation(s)
- James A Hoch
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037;
| |
Collapse
|
26
|
Fazion F, Perchat S, Buisson C, Vilas-Bôas G, Lereclus D. A plasmid-borne Rap-Phr system regulates sporulation ofBacillus thuringiensisin insect larvae. Environ Microbiol 2017; 20:145-155. [DOI: 10.1111/1462-2920.13946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/28/2017] [Accepted: 09/23/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Fernanda Fazion
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay; 78350 Jouy-en-Josas France
- Universidade Estadual de Londrina, Bio/CCB; Londrina Brazil
| | - Stéphane Perchat
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay; 78350 Jouy-en-Josas France
| | - Christophe Buisson
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay; 78350 Jouy-en-Josas France
| | | | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay; 78350 Jouy-en-Josas France
| |
Collapse
|
27
|
Communication between viruses guides lysis-lysogeny decisions. Nature 2017; 541:488-493. [PMID: 28099413 PMCID: PMC5378303 DOI: 10.1038/nature21049] [Citation(s) in RCA: 377] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/13/2016] [Indexed: 01/24/2023]
Abstract
Temperate viruses can become dormant in their host cells, a process called lysogeny. In every infection, such viruses decide between the lytic and the lysogenic cycles, that is, whether to replicate and lyse their host or to lysogenize and keep the host viable. Here we show that viruses (phages) of the SPbeta group use a small-molecule communication system to coordinate lysis-lysogeny decisions. During infection of its Bacillus host cell, the phage produces a six amino-acids-long communication peptide that is released into the medium. In subsequent infections, progeny phages measure the concentration of this peptide and lysogenize if the concentration is sufficiently high. We found that different phages encode different versions of the communication peptide, demonstrating a phage-specific peptide communication code for lysogeny decisions. We term this communication system the 'arbitrium' system, and further show that it is encoded by three phage genes: aimP, which produces the peptide; aimR, the intracellular peptide receptor; and aimX, a negative regulator of lysogeny. The arbitrium system enables a descendant phage to 'communicate' with its predecessors, that is, to estimate the amount of recent previous infections and hence decide whether to employ the lytic or lysogenic cycle.
Collapse
|
28
|
Babel H, Bischofs IB. Molecular and cellular factors control signal transduction via switchable allosteric modulator proteins (SAMPs). BMC SYSTEMS BIOLOGY 2016; 10:35. [PMID: 27122155 PMCID: PMC4849100 DOI: 10.1186/s12918-016-0274-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/05/2016] [Indexed: 11/21/2022]
Abstract
Background Rap proteins from Bacilli directly target response regulators of bacterial two-component systems and modulate their activity. Their effects are controlled by binding of signaling peptides to an allosteric site. Hence Raps exemplify a class of monomeric signaling receptors, which we call switchable allosteric modulator proteins (SAMPs). These proteins have potential applications in diverse biomedical and biotechnical settings, but a quantitative understanding of the impact of molecular and cellular factors on signal transduction is lacking. Here we introduce mathematical models that elucidate how signals are propagated though the network upon receptor stimulation and control the level of active response regulator. Results Based on a systematic parameter analysis of the models, we show that key features of the dose-response behavior at steady state are controlled either by the molecular properties of the modulator or the signaling context. In particular, we find that the biochemical activity (i.e. non-enzymatic vs. enzymatic) and allosteric properties of the modulator control the response amplitude. The Hill coefficient and the EC50 are controlled in addition by the relative ligand affinities. By tuning receptor properties, either graded or more switch-like (memory-less) response functions can be fashioned. Furthermore, we show that other contextual factors (e.g. relative concentrations of network components and kinase activity) have a substantial impact on the response, and we predict that there exists a modulator concentration which is optimal for response amplitude. Conclusion We discuss data on Rap-Phr systems in B. subtilis to show how our models can contribute to an integrated view of SAMP signaling by combining biochemical, structural and physiological insights. Our results also suggest that SAMPs could be evolved or engineered to implement diverse response behaviors. However—without additional regulatory controls—they can generate rather variable cellular outputs. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0274-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heiko Babel
- Center for Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany.,Center for the Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany
| | - Ilka B Bischofs
- Center for Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany. .,Center for the Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
29
|
Schultz D. Coordination of cell decisions and promotion of phenotypic diversity in B. subtilis via pulsed behavior of the phosphorelay. Bioessays 2016; 38:440-5. [PMID: 26941227 DOI: 10.1002/bies.201500199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The phosphorelay of Bacillus subtilis, a kinase cascade that activates master regulator Spo0A ~ P in response to starvation signals, is the core of a large network controlling the cell's decision to differentiate into sporulation and other phenotypes. This article reviews recent advances in understanding the origins and purposes of the complex dynamical behavior of the phosphorelay, which pulses with peaks of activity coordinated with the cell cycle. The transient imbalance in the expression of two critical genes caused by their strategic placement at opposing ends of the chromosome proved to be the key for this pulsed behavior. Feedback control loops in the phosphorelay use these pulses to implement a timer mechanism, which creates several windows of opportunity for phenotypic transitions over multiple generations. This strategy allows the cell to coordinate multiple differentiation programs in a decision process that fosters phenotypic diversity and adapts to current conditions.
Collapse
Affiliation(s)
- Daniel Schultz
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Slamti L, Lemy C, Henry C, Guillot A, Huillet E, Lereclus D. CodY Regulates the Activity of the Virulence Quorum Sensor PlcR by Controlling the Import of the Signaling Peptide PapR in Bacillus thuringiensis. Front Microbiol 2016; 6:1501. [PMID: 26779156 PMCID: PMC4701985 DOI: 10.3389/fmicb.2015.01501] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/14/2015] [Indexed: 01/17/2023] Open
Abstract
In Gram-positive bacteria, cell–cell communication mainly relies on cytoplasmic sensors of the RNPP family. Activity of these regulators depends on their binding to secreted signaling peptides that are imported into the cell. These quorum sensing regulators control important biological functions in bacteria of the Bacillus cereus group, such as virulence and necrotrophism. The RNPP quorum sensor PlcR, in complex with its cognate signaling peptide PapR, is the main regulator of virulence in B. cereus and Bacillus thuringiensis (Bt). Recent reports have shown that the global stationary phase regulator CodY, involved in adaptation to nutritional limitation, is required for the expression of virulence genes belonging to the PlcR regulon. However, the mechanism underlying this regulation was not described. Using genetics and proteomics approaches, we showed that CodY regulates the expression of the virulence genes through the import of PapR. We report that CodY positively controls the production of the proteins that compose the oligopeptide permease OppABCDF, and of several other Opp-like proteins. It was previously shown that the pore components of this oligopeptide permease, OppBCDF, were required for the import of PapR. However, the role of OppA, the substrate-binding protein (SBP), was not investigated. Here, we demonstrated that OppA is not the only SBP involved in the recognition of PapR, and that several other OppA-like proteins can allow the import of this peptide. Altogether, these data complete our model of quorum sensing during the lifecycle of Bt and indicate that RNPPs integrate environmental conditions, as well as cell density, to coordinate the behavior of the bacteria throughout growth.
Collapse
Affiliation(s)
- Leyla Slamti
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Christelle Lemy
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Céline Henry
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Alain Guillot
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Eugénie Huillet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| |
Collapse
|
31
|
Rösch TC, Graumann PL. Induction of Plasmid Conjugation in Bacillus subtilis Is Bistable and Driven by a Direct Interaction of a Rap/Phr Quorum-sensing System with a Master Repressor. J Biol Chem 2015; 290:20221-32. [PMID: 26112413 DOI: 10.1074/jbc.m115.664110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 12/23/2022] Open
Abstract
Conjugation of plasmid pLS20 from Bacillus subtilis is limited to a time window between early and late exponential growth. Genetic evidence has suggested that pLS20-encoded protein RcoLS20 represses expression of a large conjugation operon, whereas Rap protein RapLS20 relieves repression. We show that RapLS20 is a true antirepressor protein that forms dimers in vivo and in vitro and that it directly binds to the repressor protein RcoLS20 in a 1:1 stoichiometry. We provide evidence that RapLS20 binds to the helix-turn-helix-containing domain of RcoLS20 in vivo, probably obstructing DNA binding of RcoLS20, as seen in competitive DNA binding experiments. The activity of RapLS20 in turn is counteracted by the addition of the cognate PhrLS20 peptide, which directly binds to the Rap protein and presumably induces a conformational change of the antirepressor. Thus, a Rap protein acts directly as an antirepressor protein during regulation of plasmid conjugation, turning on conjugation, and is counteracted by the PhrLS20 peptide, which, by analogy to known Rap/Phr systems, is secreted and taken back up into the cells, mediating cell density-driven regulation. Finally, we show that this switchlike process establishes a population heterogeneity, where up to 30% of the cells induce transcription of the conjugation operon.
Collapse
Affiliation(s)
- Thomas C Rösch
- From the LOEWE Zentrum für synthetische Mikrobiologie (SYNMIKRO), 35043 Marburg, Germany, the Spemann Graduate School of Biology and Medicine (SGBM), 79104 Freiburg, Germany, and the Fachbereich für Chemie, Hans-Meerwein Strasse, Universität Marburg, 35043 Marburg, Germany
| | - Peter L Graumann
- From the LOEWE Zentrum für synthetische Mikrobiologie (SYNMIKRO), 35043 Marburg, Germany, the Fachbereich für Chemie, Hans-Meerwein Strasse, Universität Marburg, 35043 Marburg, Germany
| |
Collapse
|
32
|
Monnet V, Gardan R. Quorum-sensing regulators in Gram-positive bacteria: 'cherchez le peptide'. Mol Microbiol 2015; 97:181-4. [PMID: 25988215 DOI: 10.1111/mmi.13060] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2015] [Indexed: 12/29/2022]
Abstract
Gram-positive bacteria can regulate gene expression at the population level via a mechanism known as quorum sensing. Oligopeptides serve as the signaling molecules; they are secreted and then are either detected at the bacterial surface by two-component systems or reinternalized via an oligopeptide transport system. In the latter case, imported peptides interact with cognate regulators (phosphatases or transcriptional regulators) that modulate the expression of target genes. These regulators help control crucial functions such as virulence, persistence, conjugation and competence and have been reported in bacilli, enterococci and streptococci. They form the rapidly growing RRNPP group. In this issue of Molecular Microbiology, Hoover et al. (2015) highlight the group's importance: they have identified a new family of regulators, Tprs (Transcription factor regulated by a Phr peptide), which work with internalized Phr-like peptides. The mechanisms underlying the expression of the genes that encode these internalized peptides are poorly documented. However, Hoover et al. (2015) have provided a new insight: an environmental molecule, glucose, can inhibit expression of the Phr-like peptide gene via catabolic repression. This previously undescribed regulatory pathway, controlling the production of a bacteriocin, might influence Streptococcus pneumonia's fitness in the nasopharynx, where galactose is present.
Collapse
Affiliation(s)
- V Monnet
- UMR1319 MICALIS, INRA, Jouy en Josas, France.,UMR MICALIS, AgroParistech, Jouy en Josas, France
| | - R Gardan
- UMR1319 MICALIS, INRA, Jouy en Josas, France.,UMR MICALIS, AgroParistech, Jouy en Josas, France
| |
Collapse
|
33
|
A complex path for domestication of B. subtilis sociality. Curr Genet 2015; 61:493-6. [PMID: 25680358 DOI: 10.1007/s00294-015-0479-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 12/14/2022]
Abstract
Microorganisms adapt to the lab environment by eliminating unnecessary genetic systems. In Bacillus subtilis, such adaptation resulted in the lab strain being unable to form complex, matrix-associated structures known as biofilms. We recently showed that the ancestor of the lab strain, which is considered by the research community to be a stereotypical 'wild' strain, carries an atypical mutation in the RapP-PhrP quorum-sensing system. We have found that this mutation has profound effects on the biofilm phenotype of the ancestral strain. Here we discuss these recent findings and present more data that focuses on the lessons that can be learned from this work on the domestication of microorganisms.
Collapse
|
34
|
The RapP-PhrP quorum-sensing system of Bacillus subtilis strain NCIB3610 affects biofilm formation through multiple targets, due to an atypical signal-insensitive allele of RapP. J Bacteriol 2014; 197:592-602. [PMID: 25422306 DOI: 10.1128/jb.02382-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The genome of Bacillus subtilis 168 encodes eight rap-phr quorum-sensing pairs. Rap proteins of all characterized Rap-Phr pairs inhibit the function of one or several important response regulators: ComA, Spo0F, or DegU. This inhibition is relieved upon binding of the peptide encoded by the cognate phr gene. Bacillus subtilis strain NCIB3610, the biofilm-proficient ancestor of strain 168, encodes, in addition, the rapP-phrP pair on the plasmid pBS32. RapP was shown to dephosphorylate Spo0F and to regulate biofilm formation, but unlike other Rap-Phr pairs, RapP does not interact with PhrP. In this work we extend the analysis of the RapP pathway by reexamining its transcriptional regulation, its effect on downstream targets, and its interaction with PhrP. At the transcriptional level, we show that rapP and phrP regulation is similar to that of other rap-phr pairs. We further find that RapP has an Spo0F-independent negative effect on biofilm-related genes, which is mediated by the response regulator ComA. Finally, we find that the insensitivity of RapP to PhrP is due to a substitution of a highly conserved residue in the peptide binding domain of the rapP allele of strain NCIB3610. Reversing this substitution to the consensus amino acid restores the PhrP dependence of RapP activity and eliminates the effects of the rapP-phrP locus on ComA activity and biofilm formation. Taken together, our results suggest that RapP strongly represses biofilm formation through multiple targets and that PhrP does not counteract RapP due to a rare mutation in rapP.
Collapse
|
35
|
Cabrera R, Rocha J, Flores V, Vázquez-Moreno L, Guarneros G, Olmedo G, Rodríguez-Romero A, de la Torre M. Regulation of sporulation initiation by NprR and its signaling peptide NprRB: molecular recognition and conformational changes. Appl Microbiol Biotechnol 2014; 98:9399-412. [PMID: 25256619 DOI: 10.1007/s00253-014-6094-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/01/2014] [Accepted: 09/10/2014] [Indexed: 12/17/2022]
Abstract
NprR belongs to the RNPP family of quorum-sensing receptors, a group of intracellular regulators activated directly by signaling oligopeptides in Gram-positive bacteria. In Bacillus thuringiensis (Bt), nprR is located in a transcriptional cassette with nprRB that codes for the precursor of the signaling peptide NprRB. NprR is a transcriptional regulator activated by binding of reimported NprRB; however, several reports suggest that NprR also participates in sporulation but the mechanism is unknown. Our in silico results, based on the structural similarity between NprR from Bt and Spo0F-binding Rap proteins from Bacillus subtilis, suggested that NprR could bind Spo0F to modulate the sporulation phosphorelay in Bt. Deletion of nprR-nprRB cassette from Bt caused a delay in sporulation and defective trigger of the Spo0A∼P-activated genes spoIIA and spoIIIG. The DNA-binding domain of NprR was not necessary for this second function, since truncated NprRΔHTH together with nprRB gene was able to restore the sporulation wild type phenotype in the ΔnprR-nprRB mutant. Fluorescence assays showed direct binding between NprR and Spo0F, supporting that NprR is a bifunctional protein. To understand how the NprR activation by NprRB could result in two different functions, we studied the molecular recognition mechanism between the signaling peptide and the receptor. Using synthetic variants of NprRB, we found that SSKPDIVG displayed the highest affinity (Kd = 7.19 nM) toward the recombinant NprR and demonstrated that recognition involves conformational selection. We propose that the peptide concentration in the cell controls the oligomerization state of the NprR-NprRB complex for switching between its two functions.
Collapse
Affiliation(s)
- Rosina Cabrera
- Centro de Investigación en Alimentación y Desarrollo A. C., Km 0.6 Carretera a La Victoria, 83304, Hermosillo, Sonora, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Slamti L, Perchat S, Huillet E, Lereclus D. Quorum sensing in Bacillus thuringiensis is required for completion of a full infectious cycle in the insect. Toxins (Basel) 2014; 6:2239-55. [PMID: 25089349 PMCID: PMC4147580 DOI: 10.3390/toxins6082239] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/10/2014] [Accepted: 07/15/2014] [Indexed: 11/16/2022] Open
Abstract
Bacterial cell-cell communication or quorum sensing (QS) is a biological process commonly described as allowing bacteria belonging to a same pherotype to coordinate gene expression to cell density. In Gram-positive bacteria, cell-cell communication mainly relies on cytoplasmic sensors regulated by secreted and re-imported signaling peptides. The Bacillus quorum sensors Rap, NprR, and PlcR were previously identified as the first members of a new protein family called RNPP. Except for the Rap proteins, these RNPP regulators are transcription factors that directly regulate gene expression. QS regulates important biological functions in bacteria of the Bacillus cereus group. PlcR was first characterized as the main regulator of virulence in B. thuringiensis and B. cereus. More recently, the PlcR-like regulator PlcRa was characterized for its role in cysteine metabolism and in resistance to oxidative stress. The NprR regulator controls the necrotrophic properties allowing the bacteria to survive in the infected host. The Rap proteins negatively affect sporulation via their interaction with a phosphorelay protein involved in the activation of Spo0A, the master regulator of this differentiation pathway. In this review we aim at providing a complete picture of the QS systems that are sequentially activated during the lifecycle of B. cereus and B. thuringiensis in an insect model of infection.
Collapse
Affiliation(s)
- Leyla Slamti
- INRA, Unité MICALIS UMR-1319, La Minière, 78280 Guyancourt, France.
| | - Stéphane Perchat
- INRA, Unité MICALIS UMR-1319, La Minière, 78280 Guyancourt, France.
| | - Eugénie Huillet
- INRA, Unité MICALIS UMR-1319, La Minière, 78280 Guyancourt, France.
| | - Didier Lereclus
- INRA, Unité MICALIS UMR-1319, La Minière, 78280 Guyancourt, France.
| |
Collapse
|
37
|
Konovalova A, Søgaard-Andersen L, Kroos L. Regulated proteolysis in bacterial development. FEMS Microbiol Rev 2013; 38:493-522. [PMID: 24354618 DOI: 10.1111/1574-6976.12050] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/03/2013] [Accepted: 10/14/2013] [Indexed: 11/30/2022] Open
Abstract
Bacteria use proteases to control three types of events temporally and spatially during the processes of morphological development. These events are the destruction of regulatory proteins, activation of regulatory proteins, and production of signals. While some of these events are entirely cytoplasmic, others involve intramembrane proteolysis of a substrate, transmembrane signaling, or secretion. In some cases, multiple proteolytic events are organized into pathways, for example turnover of a regulatory protein activates a protease that generates a signal. We review well-studied and emerging examples and identify recurring themes and important questions for future research. We focus primarily on paradigms learned from studies of model organisms, but we note connections to regulated proteolytic events that govern bacterial adaptation, biofilm formation and disassembly, and pathogenesis.
Collapse
Affiliation(s)
- Anna Konovalova
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | | |
Collapse
|