1
|
Osborn MJ, Panda S, Reineke TM, Tolar J, Nyström A. Progress in skin gene therapy: From the inside and out. Mol Ther 2025; 33:2065-2081. [PMID: 40077969 DOI: 10.1016/j.ymthe.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025] Open
Abstract
The skin is the largest organ of the body and forms and serves as the barrier for preventing external material from accessing and damaging internal organs. As the outward interface to the environment, it is accessible for the application of therapeutic agents and cellular and gene therapy represent attractive and promising options to treat severe genetic conditions for which palliation has long been the main stay. However, because of its barrier function, transit across and to the subdermal compartment can be challenging. This commentary examines the current approaches of cell and gene therapies for genetic skin disorders. We write this from a local and systemic "outside and inside." perspective. Delivery from the outside encompasses topical, intradermal, and transdermal strategies for cell and vector delivery and ex vivo cell expansion and grafting. The inside approach details systemic delivery via infusion of cells or agents toward providing benefit to the skin. We use recessive dystrophic epidermolysis bullosa (RDEB) as a representative and paradigmatic disease to showcase these approaches as a means to highlight potential broader applicability to other conditions.
Collapse
Affiliation(s)
- Mark J Osborn
- Medical School, Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular and Gene Therapy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Sidharth Panda
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jakub Tolar
- Medical School, Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular and Gene Therapy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
2
|
Bubenik JL, Scotti MM, Swanson MS. Therapeutic targeting of RNA for neurological and neuromuscular disease. Genes Dev 2024; 38:698-717. [PMID: 39142832 PMCID: PMC11444190 DOI: 10.1101/gad.351612.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Neurological and neuromuscular diseases resulting from familial, sporadic, or de novo mutations have devasting personal, familial, and societal impacts. As the initial product of DNA transcription, RNA transcripts and their associated ribonucleoprotein complexes provide attractive targets for modulation by increasing wild-type or blocking mutant allele expression, thus relieving downstream pathological consequences. Therefore, it is unsurprising that many existing and under-development therapeutics have focused on targeting disease-associated RNA transcripts as a frontline drug strategy for these genetic disorders. This review focuses on the current range of RNA targeting modalities using examples of both dominant and recessive neurological and neuromuscular diseases.
Collapse
Affiliation(s)
- Jodi L Bubenik
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Marina M Scotti
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
3
|
Trouvé P, Saint Pierre A, Férec C. Cystic Fibrosis: A Journey through Time and Hope. Int J Mol Sci 2024; 25:9599. [PMID: 39273547 PMCID: PMC11394767 DOI: 10.3390/ijms25179599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Just over thirty years is the span of a generation. It is also the time that has passed since the discovery of the gene responsible for cystic fibrosis. Today, it is safe to say that this discovery has revolutionized our understanding, research perspectives, and management of this disease, which was, thirty years ago, a pediatric condition with a grim prognosis. The aim of this review is to present the advances that science and medicine have brought to our understanding of the pathophysiology of the disease and its management, which in many ways, epitomizes modern molecular genetic research. Since the discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in 1989, modeling the CFTR protein, deciphering its function as an ion channel, and identifying its molecular partners have led to numerous therapeutic advances. The most significant advancement in this field has been the discovery of protein modulators that can target its membrane localization and chloride channel activity. However, further progress is needed to ensure that all patients can benefit from a therapy tailored to their mutations, with the primary challenge being the development of treatments for mutations leading to a complete absence of the protein. The present review delves into the history of the multifaceted world of CF, covering main historical facts, current landscape, clinical management, emerging therapies, patient perspectives, and the importance of ongoing research, bridging science and medicine in the fight against the disease.
Collapse
Affiliation(s)
- Pascal Trouvé
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Aude Saint Pierre
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| |
Collapse
|
4
|
Zandanell J, Wießner M, Bauer JW, Wagner RN. Stop codon readthrough as a treatment option for epidermolysis bullosa-Where we are and where we are going. Exp Dermatol 2024; 33:e15042. [PMID: 38459626 DOI: 10.1111/exd.15042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/24/2024] [Accepted: 02/17/2024] [Indexed: 03/10/2024]
Abstract
In the context of rare genetic diseases caused by nonsense mutations, the concept of induced stop codon readthrough (SCR) represents an attractive avenue in the ongoing search for improved treatment options. Epidermolysis bullosa (EB)-exemplary for this group of diseases-describes a diverse group of rare, blistering genodermatoses. Characterized by extreme skin fragility upon minor mechanical trauma, the most severe forms often result from nonsense mutations that lead to premature translation termination and loss of function of essential proteins at the dermo-epidermal junction. Since no curative interventions are currently available, medical care is mainly limited to alleviating symptoms and preventing complications. Complementary to attempts of gene, cell and protein therapy in EB, SCR represents a promising medical alternative. While gentamicin has already been examined in several clinical trials involving EB, other potent SCR inducers, such as ataluren, may also show promise in treating the hitherto non-curative disease. In addition to the extensively studied aminoglycosides and their derivatives, several other substance classes-non-aminoglycoside antibiotics and non-aminoglycoside compounds-are currently under investigation. The extensive data gathered in numerous in vitro experiments and the perspectives they reveal in the clinical setting will be discussed in this review.
Collapse
Affiliation(s)
- Johanna Zandanell
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Michael Wießner
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Johann W Bauer
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Roland N Wagner
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
5
|
Roberts TC, Wood MJA, Davies KE. Therapeutic approaches for Duchenne muscular dystrophy. Nat Rev Drug Discov 2023; 22:917-934. [PMID: 37652974 DOI: 10.1038/s41573-023-00775-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/02/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a monogenic muscle-wasting disorder and a priority candidate for molecular and cellular therapeutics. Although rare, it is the most common inherited myopathy affecting children and so has been the focus of intense research activity. It is caused by mutations that disrupt production of the dystrophin protein, and a plethora of drug development approaches are under way that aim to restore dystrophin function, including exon skipping, stop codon readthrough, gene replacement, cell therapy and gene editing. These efforts have led to the clinical approval of four exon skipping antisense oligonucleotides, one stop codon readthrough drug and one gene therapy product, with other approvals likely soon. Here, we discuss the latest therapeutic strategies that are under development and being deployed to treat DMD. Lessons from these drug development programmes are likely to have a major impact on the DMD field, but also on molecular and cellular medicine more generally. Thus, DMD is a pioneer disease at the forefront of future drug discovery efforts, with these experimental treatments paving the way for therapies using similar mechanisms of action being developed for other genetic diseases.
Collapse
Affiliation(s)
- Thomas C Roberts
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- MDUK Oxford Neuromuscular Centre, Oxford, UK.
| | - Matthew J A Wood
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
- MDUK Oxford Neuromuscular Centre, Oxford, UK
| | - Kay E Davies
- MDUK Oxford Neuromuscular Centre, Oxford, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Bez Batti Angulski A, Hosny N, Cohen H, Martin AA, Hahn D, Bauer J, Metzger JM. Duchenne muscular dystrophy: disease mechanism and therapeutic strategies. Front Physiol 2023; 14:1183101. [PMID: 37435300 PMCID: PMC10330733 DOI: 10.3389/fphys.2023.1183101] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 07/13/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive, and ultimately fatal disease of skeletal muscle wasting, respiratory insufficiency, and cardiomyopathy. The identification of the dystrophin gene as central to DMD pathogenesis has led to the understanding of the muscle membrane and the proteins involved in membrane stability as the focal point of the disease. The lessons learned from decades of research in human genetics, biochemistry, and physiology have culminated in establishing the myriad functionalities of dystrophin in striated muscle biology. Here, we review the pathophysiological basis of DMD and discuss recent progress toward the development of therapeutic strategies for DMD that are currently close to or are in human clinical trials. The first section of the review focuses on DMD and the mechanisms contributing to membrane instability, inflammation, and fibrosis. The second section discusses therapeutic strategies currently used to treat DMD. This includes a focus on outlining the strengths and limitations of approaches directed at correcting the genetic defect through dystrophin gene replacement, modification, repair, and/or a range of dystrophin-independent approaches. The final section highlights the different therapeutic strategies for DMD currently in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
7
|
Li S, Li J, Shi W, Nie Z, Zhang S, Ma F, Hu J, Chen J, Li P, Xie X. Pharmaceuticals Promoting Premature Termination Codon Readthrough: Progress in Development. Biomolecules 2023; 13:988. [PMID: 37371567 DOI: 10.3390/biom13060988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Around 11% of all known gene lesions causing human genetic diseases are nonsense mutations that introduce a premature stop codon (PTC) into the protein-coding gene sequence. Drug-induced PTC readthrough is a promising therapeutic strategy for treating hereditary diseases caused by nonsense mutations. To date, it has been found that more than 50 small-molecular compounds can promote PTC readthrough, known as translational readthrough-inducing drugs (TRIDs), and can be divided into two major categories: aminoglycosides and non-aminoglycosides. This review summarizes the pharmacodynamics and clinical application potential of the main TRIDs discovered so far, especially some newly discovered TRIDs in the past decade. The discovery of these TRIDs brings hope for treating nonsense mutations in various genetic diseases. Further research is still needed to deeply understand the mechanism of eukaryotic cell termination and drug-induced PTC readthrough so that patients can achieve the greatest benefit from the various TRID treatments.
Collapse
Affiliation(s)
- Shan Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Juan Li
- Central Laboratory, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Genetic Study of Hematopathy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Wenjing Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ziyan Nie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shasha Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fengdie Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jun Hu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianjun Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peiqiang Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Hou PC, del Agua N, Lwin SM, Hsu CK, McGrath JA. Innovations in the Treatment of Dystrophic Epidermolysis Bullosa (DEB): Current Landscape and Prospects. Ther Clin Risk Manag 2023; 19:455-473. [PMID: 37337559 PMCID: PMC10277004 DOI: 10.2147/tcrm.s386923] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
Dystrophic epidermolysis bullosa (DEB) is one of the major types of EB, a rare hereditary group of trauma-induced blistering skin disorders. DEB is caused by inherited pathogenic variants in the COL7A1 gene, which encodes type VII collagen, the major component of anchoring fibrils which maintain adhesion between the outer epidermis and underlying dermis. DEB can be subclassified into dominant (DDEB) and recessive (RDEB) forms. Generally, DDEB has a milder phenotype, while RDEB patients often have more extensive blistering, chronic inflammation, skin fibrosis, and a propensity for squamous cell carcinoma development, collectively impacting on daily activities and life expectancy. At present, best practice treatments are mostly supportive, and thus there is a considerable burden of disease with unmet therapeutic need. Over the last 20 years, considerable translational research efforts have focused on either trying to cure DEB by direct correction of the COL7A1 gene pathology, or by modifying secondary inflammation to lessen phenotypic severity and improve patient symptoms such as poor wound healing, itch, and pain. In this review, we provide an overview and update on various therapeutic innovations for DEB, including gene therapy, cell-based therapy, protein therapy, and disease-modifying and symptomatic control agents. We outline the progress and challenges for each treatment modality and identify likely prospects for future clinical impact.
Collapse
Affiliation(s)
- Ping-Chen Hou
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nathalie del Agua
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Su M Lwin
- St John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London, UK
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - John A McGrath
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
- St John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London, UK
| |
Collapse
|
9
|
Spelier S, van Doorn EPM, van der Ent CK, Beekman JM, Koppens MAJ. Readthrough compounds for nonsense mutations: bridging the translational gap. Trends Mol Med 2023; 29:297-314. [PMID: 36828712 DOI: 10.1016/j.molmed.2023.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/28/2022] [Accepted: 01/19/2023] [Indexed: 02/24/2023]
Abstract
Approximately 10% of all pathological mutations are nonsense mutations that are responsible for several severe genetic diseases for which no treatment regimens are currently available. The most widespread strategy for treating nonsense mutations is by enhancing ribosomal readthrough of premature termination codons (PTCs) to restore the production of the full-length protein. In the past decade several compounds with readthrough potential have been identified. However, although preclinical results on these compounds are promising, clinical studies have not yielded positive outcomes. We review preclinical and clinical research related to readthrough compounds and characterize factors that contribute to the observed translational gap.
Collapse
Affiliation(s)
- Sacha Spelier
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands
| | - Eveline P M van Doorn
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands; Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| | - Martijn A J Koppens
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands; Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Wagner RN, Wießner M, Friedrich A, Zandanell J, Breitenbach-Koller H, Bauer JW. Emerging Personalized Opportunities for Enhancing Translational Readthrough in Rare Genetic Diseases and Beyond. Int J Mol Sci 2023; 24:6101. [PMID: 37047074 PMCID: PMC10093890 DOI: 10.3390/ijms24076101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Nonsense mutations trigger premature translation termination and often give rise to prevalent and rare genetic diseases. Consequently, the pharmacological suppression of an unscheduled stop codon represents an attractive treatment option and is of high clinical relevance. At the molecular level, the ability of the ribosome to continue translation past a stop codon is designated stop codon readthrough (SCR). SCR of disease-causing premature termination codons (PTCs) is minimal but small molecule interventions, such as treatment with aminoglycoside antibiotics, can enhance its frequency. In this review, we summarize the current understanding of translation termination (both at PTCs and at cognate stop codons) and highlight recently discovered pathways that influence its fidelity. We describe the mechanisms involved in the recognition and readthrough of PTCs and report on SCR-inducing compounds currently explored in preclinical research and clinical trials. We conclude by reviewing the ongoing attempts of personalized nonsense suppression therapy in different disease contexts, including the genetic skin condition epidermolysis bullosa.
Collapse
Affiliation(s)
- Roland N. Wagner
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Michael Wießner
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Andreas Friedrich
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Johanna Zandanell
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | | | - Johann W. Bauer
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
11
|
Aslam AA, Sinha IP, Southern KW. Ataluren and similar compounds (specific therapies for premature termination codon class I mutations) for cystic fibrosis. Cochrane Database Syst Rev 2023; 3:CD012040. [PMID: 36866921 PMCID: PMC9983356 DOI: 10.1002/14651858.cd012040.pub3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) is a common, life-shortening, genetic disorder in populations of Northern European descent caused by the mutation of a single gene that codes for the production of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. This protein coordinates the transport of salt (and bicarbonate) across cell surfaces, and the mutation most notably affects the airways. In the lungs of people with CF, the defective protein compromises mucociliary clearance and makes the airway prone to chronic infection and inflammation, damaging the structure of the airways and eventually leading to respiratory failure. In addition, abnormalities in the truncated CFTR protein lead to other systemic complications, including malnutrition, diabetes and subfertility. Five classes of mutation have been described, depending on the impact of the mutation on the processing of the CFTR protein in the cell. In class I mutations, premature termination codons prevent the production of any functional protein, resulting in severe CF. Therapies targeting class I mutations aim to enable the normal cellular mechanism to read through the mutation, potentially restoring the production of the CFTR protein. This could, in turn, normalise salt transport in the cells and decrease the chronic infection and inflammation that characterises lung disease in people with CF. This is an update of a previously published review. OBJECTIVES To evaluate the benefits and harms of ataluren and similar compounds on clinically important outcomes in people with CF with class I mutations (premature termination codons). SEARCH METHODS We searched the Cochrane Cystic Fibrosis Trials Register, which is compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles. The last search of the Cochrane Cystic Fibrosis Trials Register was conducted on 7 March 2022. We searched clinical trial registries maintained by the European Medicines Agency, the US National Institutes of Health and the World Health Organization. The last search of the clinical trials registries was conducted on 4 October 2022. SELECTION CRITERIA Randomised controlled trials (RCTs) of parallel design comparing ataluren and similar compounds (specific therapies for class I mutations) with placebo in people with CF who have at least one class I mutation. DATA COLLECTION AND ANALYSIS For the included trials, the review authors independently extracted data, assessed the risk of bias and evaluated the certainty of the evidence using GRADE; trial authors were contacted for additional data. MAIN RESULTS Our searches identified 56 references to 20 trials; of these, 18 trials were excluded. Both the included parallel RCTs compared ataluren to placebo for 48 weeks in 517 participants (males and females; age range six to 53 years) with CF who had at least one nonsense mutation (a type of class I mutation). The certainty of evidence and risk of bias assessments for the trials were moderate overall. Random sequence generation, allocation concealment and blinding of trial personnel were well documented; participant blinding was less clear. Some participant data were excluded from the analysis in one trial that also had a high risk of bias for selective outcome reporting. PTC Therapeutics Incorporated sponsored both trials with grant support from the Cystic Fibrosis Foundation, the US Food and Drug Administration's Office of Orphan Products Development and the National Institutes of Health. The trials reported no difference between treatment groups in terms of quality of life, and no improvement in respiratory function measures. Ataluren was associated with a higher rate of episodes of renal impairment (risk ratio 12.81, 95% confidence interval 2.46 to 66.65; P = 0.002; I2 = 0%; 2 trials, 517 participants). The trials reported no treatment effect for ataluren for the review's secondary outcomes of pulmonary exacerbation, computed tomography score, weight, body mass index and sweat chloride. No deaths were reported in the trials. The earlier trial performed a post hoc subgroup analysis of participants not receiving concomitant chronic inhaled tobramycin (n = 146). This analysis demonstrated favourable results for ataluren (n = 72) for the relative change in forced expiratory volume in one second (FEV1) per cent (%) predicted and pulmonary exacerbation rate. The later trial aimed to prospectively assess the efficacy of ataluren in participants not concomitantly receiving inhaled aminoglycosides, and found no difference between ataluren and placebo in FEV1 % predicted and pulmonary exacerbation rate. AUTHORS' CONCLUSIONS: There is currently insufficient evidence to determine the effect of ataluren as a therapy for people with CF with class I mutations. One trial reported favourable results for ataluren in a post hoc subgroup analysis of participants not receiving chronic inhaled aminoglycosides, but these were not reproduced in the later trial, suggesting that the earlier results may have occurred by chance. Future trials should carefully assess for adverse events, notably renal impairment, and consider the possibility of drug interactions. Cross-over trials should be avoided, given the potential for the treatment to change the natural history of CF.
Collapse
Affiliation(s)
- Aisha A Aslam
- The Children's Hospital, Royal London Hospital, London, UK
| | - Ian P Sinha
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | - Kevin W Southern
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
12
|
Wu MH, Lu RY, Yu SJ, Tsai YZ, Lin YC, Bai ZY, Liao RY, Hsu YC, Chen CC, Cai BH. PTC124 Rescues Nonsense Mutation of Two Tumor Suppressor Genes NOTCH1 and FAT1 to Repress HNSCC Cell Proliferation. Biomedicines 2022; 10:biomedicines10112948. [PMID: 36428516 PMCID: PMC9687978 DOI: 10.3390/biomedicines10112948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
(1) Background: PTC124 (Ataluren) is an investigational drug for the treatment of nonsense mutation-mediated genetic diseases. With the exception of the TP53 tumor suppressor gene, there has been little research on cancers with nonsense mutation. By conducting a database search, we found that another two tumor suppressor genes, NOTCH1 and FAT1, have a high nonsense mutation rate in head and neck squamous cell carcinoma (HNSCC). PTC124 may re-express the functional NOTCH1 or FAT1 in nonsense mutation NOTCH1 or FAT1 in HSNCC (2) Methods: DOK (with NOTCH1 Y550X) or HO-1-u-1 (with FAT1 E378X) HNSCC cells were treated with PTC124, and the NOTCH1 or FAT1 expression, cell viability, and NOTCH1- or FAT1-related downstream gene profiles were assayed. (3) Results: PTC124 was able to induce NOTCH1 or FAT1 expression in DOK and HO-1-u-1 cells. PTC124 was able to upregulate NOTCH downstream genes HES5, AJUBA, and ADAM10 in DOK cells. PTC124 enhanced DDIT4, which is under the control of the FAT1-YAP1 pathway, in HO-1-u-1 cells. FLI-06 (a NOTCH signaling inhibitor) reversed PTC124-mediated cell growth inhibition in DOK cells. PTC124 could reverse TT-10 (a YAP signaling activator)-mediated HO-1-u-1 cell proliferation. (4) Conclusions: PTC124 can rescue nonsense mutation of NOTCH1 and FAT1 to repress HNSCC cell proliferation.
Collapse
Affiliation(s)
- Ming-Han Wu
- School of Medicine, I-Shou University, No.8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan
| | - Rui-Yu Lu
- Department of Medical Laboratory Science, I-Shou University, No.8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan
| | - Si-Jie Yu
- Department of Medical Laboratory Science, I-Shou University, No.8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan
| | - Yi-Zhen Tsai
- Department of Medical Laboratory Science, I-Shou University, No.8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan
| | - Ying-Chen Lin
- Department of Medical Laboratory Science, I-Shou University, No.8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan
| | - Zhi-Yu Bai
- Department of Medical Laboratory Science, I-Shou University, No.8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan
| | - Ruo-Yu Liao
- Department of Medical Laboratory Science, I-Shou University, No.8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan
| | - Yi-Chiang Hsu
- School of Medicine, I-Shou University, No.8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan
- Correspondence: (Y.-C.H.); (C.-C.C.); (B.-H.C.)
| | - Chia-Chi Chen
- Department of Pathology, E-Da Hospital, No.1, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan
- College of Medicine, I-Shou University, No.8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan
- Correspondence: (Y.-C.H.); (C.-C.C.); (B.-H.C.)
| | - Bi-He Cai
- School of Medicine, I-Shou University, No.8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan
- Correspondence: (Y.-C.H.); (C.-C.C.); (B.-H.C.)
| |
Collapse
|
13
|
Ataluren suppresses a premature termination codon in an MPS I-H mouse. J Mol Med (Berl) 2022; 100:1223-1235. [PMID: 35857082 PMCID: PMC9329424 DOI: 10.1007/s00109-022-02232-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/26/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022]
Abstract
Abstarct Suppressing translation termination at premature termination codons (PTCs), termed readthrough, is a potential therapy for genetic diseases caused by nonsense mutations. Ataluren is a compound that has shown promise for clinical use as a readthrough agent. However, some reports suggest that ataluren is ineffective at suppressing PTCs. To further evaluate the effectiveness of ataluren as a readthrough agent, we examined its ability to suppress PTCs in a variety of previously untested models. Using NanoLuc readthrough reporters expressed in two different cell types, we found that ataluren stimulated a significant level of readthrough. We also explored the ability of ataluren to suppress a nonsense mutation associated with Mucopolysaccharidosis I-Hurler (MPS I-H), a genetic disease that is caused by a deficiency of α-L-iduronidase that leads to lysosomal accumulation of glycosaminoglycans (GAGs). Using mouse embryonic fibroblasts (MEFs) derived from Idua-W402X mice, we found that ataluren partially rescued α-L-iduronidase function and significantly reduced GAG accumulation relative to controls. Two-week oral administration of ataluren to Idua-W402X mice led to significant GAG reductions in most tissues compared to controls. Together, these data reveal important details concerning the efficiency of ataluren as a readthrough agent and the mechanisms that govern its ability to suppress PTCs. Key messages Ataluren promotes readthrough of PTCs in a wide variety of contexts. Ataluren reduces glycosaminoglyan storage in MPS I-H cell and mouse models. Ataluren has a bell-shaped dose–response curve and a narrow effective range.
Collapse
|
14
|
Bezzerri V, Lentini L, Api M, Busilacchi EM, Cavalieri V, Pomilio A, Diomede F, Pegoraro A, Cesaro S, Poloni A, Pace A, Trubiani O, Lippi G, Pibiri I, Cipolli M. Novel Translational Read-through-Inducing Drugs as a Therapeutic Option for Shwachman-Diamond Syndrome. Biomedicines 2022; 10:biomedicines10040886. [PMID: 35453634 PMCID: PMC9024944 DOI: 10.3390/biomedicines10040886] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Shwachman-Diamond syndrome (SDS) is one of the most commonly inherited bone marrow failure syndromes (IBMFS). In SDS, bone marrow is hypocellular, with marked neutropenia. Moreover, SDS patients have a high risk of developing myelodysplastic syndrome (MDS), which in turn increases the risk of acute myeloid leukemia (AML) from an early age. Most SDS patients are heterozygous for the c.183-184TA>CT (K62X) SBDS nonsense mutation. Fortunately, a plethora of translational read-through inducing drugs (TRIDs) have been developed and tested for several rare inherited diseases due to nonsense mutations so far. The authors previously demonstrated that ataluren (PTC124) can restore full-length SBDS protein expression in bone marrow stem cells isolated from SDS patients carrying the nonsense mutation K62X. In this study, the authors evaluated the effect of a panel of ataluren analogues in restoring SBDS protein resynthesis and function both in hematological and non-hematological SDS cells. Besides confirming that ataluren can efficiently induce SBDS protein re-expression in SDS cells, the authors found that another analogue, namely NV848, can restore full-length SBDS protein synthesis as well, showing very low toxicity in zebrafish. Furthermore, NV848 can improve myeloid differentiation in bone marrow hematopoietic progenitors, enhancing neutrophil maturation and reducing the number of dysplastic granulocytes in vitro. Therefore, these findings broaden the possibilities of developing novel therapeutic options in terms of nonsense mutation suppression for SDS. Eventually, this study may act as a proof of concept for the development of similar approaches for other IBMFS caused by nonsense mutations.
Collapse
Affiliation(s)
- Valentino Bezzerri
- Cystic Fibrosis Center of Verona, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (V.B.); (A.P.)
| | - Laura Lentini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, 90128 Palermo, Italy; (L.L.); (V.C.); (A.P.); (I.P.)
| | - Martina Api
- Cystic Fibrosis Center of Ancona, Azienda Ospedaliero Universitaria Ospedali Riuniti, 60126 Ancona, Italy;
| | - Elena Marinelli Busilacchi
- Hematology Clinic, Università Politecnica delle Marche, AOU Ospedali Riuniti, 60126 Ancona, Italy; (E.M.B.); (A.P.)
| | - Vincenzo Cavalieri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, 90128 Palermo, Italy; (L.L.); (V.C.); (A.P.); (I.P.)
- Zebrafish Laboratory, Advanced Technologies Network (ATeN) Center, University of Palermo, 90128 Palermo, Italy
| | - Antonella Pomilio
- Department of Medical, Oral and Biotechnological Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Francesca Diomede
- Dipartimento di Tecnologie Innovative in Medicina e Odontoiatria, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (O.T.)
| | - Anna Pegoraro
- Cystic Fibrosis Center of Verona, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (V.B.); (A.P.)
| | - Simone Cesaro
- Unit of Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy;
| | - Antonella Poloni
- Hematology Clinic, Università Politecnica delle Marche, AOU Ospedali Riuniti, 60126 Ancona, Italy; (E.M.B.); (A.P.)
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, 90128 Palermo, Italy; (L.L.); (V.C.); (A.P.); (I.P.)
| | - Oriana Trubiani
- Dipartimento di Tecnologie Innovative in Medicina e Odontoiatria, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (O.T.)
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, 37126 Verona, Italy;
| | - Ivana Pibiri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, 90128 Palermo, Italy; (L.L.); (V.C.); (A.P.); (I.P.)
| | - Marco Cipolli
- Cystic Fibrosis Center of Verona, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (V.B.); (A.P.)
- Correspondence: ; Tel.: +39-045-812-2293
| |
Collapse
|
15
|
Monaghan AE, Porter A, Hunter I, Morrison A, McElroy SP, McEwan IJ. Development of a High-Throughput Screening Assay for Small-Molecule Inhibitors of Androgen Receptor Splice Variants. Assay Drug Dev Technol 2022; 20:111-124. [PMID: 35333596 PMCID: PMC9057896 DOI: 10.1089/adt.2021.128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The role of the androgen receptor (AR) in the progression of prostate cancer (PCa) is well established and competitive inhibition of AR ligand binding domain (LBD) has been the mainstay of antiandrogen therapies for advanced and metastatic disease. However, the efficacy of such drugs is often limited by the emergence of resistance, mediated through point mutations and receptor splice variants lacking the AR-LBD. As a result, the prognosis for patients with malignant, castrate-resistant disease remains poor. The amino terminal domain (NTD) of the AR has been shown to be critical for AR function. Its modular activation function (AF-1) is important for both gene regulation and participation in protein–protein interactions. However, due to the intrinsically disordered structure of the domain, its potential as a candidate for therapeutic intervention has been generally overlooked. In this article, we describe the design and development of a functional cell-based assay aimed at identifying small-molecule inhibitors of the AR-NTD. We demonstrate the suitability of the assay for high-throughput screening platforms and validate two initial hits emerging from a small, targeted, library screen in PCa cells.
Collapse
Affiliation(s)
- Amy E. Monaghan
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Alison Porter
- European Screening Centre (ESC), University of Dundee, Lanarkshire, United Kingdom
| | - Irene. Hunter
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Angus Morrison
- European Screening Centre (ESC), University of Dundee, Lanarkshire, United Kingdom
| | - Stuart P. McElroy
- European Screening Centre (ESC), University of Dundee, Lanarkshire, United Kingdom
| | - Iain J. McEwan
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
16
|
Yu J, Tang B, He X, Zou P, Zeng Z, Xiao R. Nonsense Suppression Therapy: An Emerging Treatment for Hereditary Skin Diseases. Acta Derm Venereol 2022; 102:adv00658. [DOI: 10.2340/actadv.v102.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nonsense mutations cause the premature termination of protein translation via premature termination codons (PTCs), leading to the synthesis of incomplete functional proteins and causing large numbers of genetic disorders. The emergence of nonsense suppression therapy is considered to be an effective method for the treatment of hereditary diseases, but its application in hereditary skin diseases is relatively limited. This review summarizes the current research status of nonsense suppression therapy for hereditary skin diseases, and discusses the potential opportunities and challenges of applying new technologies related to nonsense suppression therapy to dermatology. Further research is needed into the possible use of nonsense suppression therapy as a strategy for the safer and specific treatment of hereditary skin diseases.
Collapse
|
17
|
Natsuga K, Shinkuma S, Hsu CK, Fujita Y, Ishiko A, Tamai K, McGrath JA. Current topics in Epidermolysis bullosa: Pathophysiology and therapeutic challenges. J Dermatol Sci 2021; 104:164-176. [PMID: 34916041 DOI: 10.1016/j.jdermsci.2021.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/06/2021] [Indexed: 12/14/2022]
Abstract
Epidermolysis bullosa (EB) is a group of inherited skin and mucosal fragility disorders resulting from mutations in genes encoding basement membrane zone (BMZ) components or proteins that maintain the integrity of BMZ and adjacent keratinocytes. More than 30 years have passed since the first causative gene for EB was identified, and over 40 genes are now known to be responsible for the protean collection of mechanobullous diseases included under the umbrella term of EB. Through the elucidation of disease mechanisms using human skin samples, animal models, and cultured cells, we have now reached the stage of developing more effective therapeutics for EB. This review will initially focus on what is known about blister wound healing in EB, since recent and emerging basic science data are very relevant to clinical translation and therapeutic strategies for patients. We then place these studies in the context of the latest information on gene therapy, read-through therapy, and cell therapy that provide optimism for improved clinical management of people living with EB.
Collapse
Affiliation(s)
- Ken Natsuga
- Department of Dermatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Hokkaido, Japan.
| | - Satoru Shinkuma
- Department of Dermatology, Nara Medical University School of Medicine, Kashihara, Japan
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Yasuyuki Fujita
- Department of Dermatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Hokkaido, Japan; Department of Dermatology, Sapporo City General Hospital, Sapporo, Japan
| | - Akira Ishiko
- Department of Dermatology, Toho University School of Medicine, Tokyo, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - John A McGrath
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| |
Collapse
|
18
|
Laselva O, Guerra L, Castellani S, Favia M, Di Gioia S, Conese M. Small-molecule drugs for cystic fibrosis: Where are we now? Pulm Pharmacol Ther 2021; 72:102098. [PMID: 34793977 DOI: 10.1016/j.pupt.2021.102098] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/24/2021] [Accepted: 11/12/2021] [Indexed: 01/05/2023]
Abstract
The cystic fibrosis (CF) lung disease is due to the lack/dysfunction of the CF Transmembrane Conductance Regulator (CFTR), a chloride channel expressed by epithelial cells as the main regulator of ion and fluid homeostasis. More than 2000 genetic variation in the CFTR gene are known, among which those with identified pathomechanism have been divided into six VI mutation classes. A major advancement in the pharmacotherapy of CF has been the development of small-molecule drugs hitting the root of the disease, i.e. the altered ion and fluid transport through the airway epithelium. These drugs, called CFTR modulators, have been advanced to the clinics to treat nearly 90% of CF patients, including the CFTR potentiator ivacaftor, approved for residual function mutations (Classes III and IV), and combinations of correctors (lumacaftor, tezacaftor, elexacaftor) and ivacaftor for patients bearing at least one the F508del mutation, the most frequent mutation belonging to class II. To cover the 10% of CF patients without etiological therapies, other novel small-molecule CFTR modulators are in evaluation of their effectiveness in all the CFTR mutation classes: read-through agents for Class I, correctors, potentiators and amplifiers from different companies for Class II-V, stabilizers for Class VI. In alternative, other solute carriers, such as SLC26A9 and SLC6A14, are the focus of intensive investigation. Finally, other molecular targets are being evaluated for patients with no approved CFTR modulator therapy or as means of enhancing CFTR modulatory therapy, including small molecules forming ion channels, inhibitors of the ENaC sodium channel and potentiators of the calcium-activated chloride channel TMEM16A. This paper aims to give an up-to-date overview of old and novel CFTR modulators as well as of novel strategies based on small-molecule drugs. Further investigations in in-vivo and cell-based models as well as carrying out large prospective studies will be required to determine if novel CFTR modulators, stabilizers, amplifiers, and the ENaC inhibitors or TMEM16A potentiators will further improve the clinical outcomes in CF management.
Collapse
Affiliation(s)
- Onofrio Laselva
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Stefano Castellani
- Department of Medical Sciences and Human Oncology, University of Bari, Bari, Italy
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
19
|
Abstract
Epidermolysis bullosa (EB) is a heterogeneous group of rare inherited blistering skin disorders characterized by skin fragility following minor trauma, usually present since birth. EB can be categorized into four classical subtypes, EB simplex, junctional EB, dystrophic EB and Kindler EB, distinguished on clinical features, plane of blister formation in the skin, and molecular pathology. Treatment for EB is mostly supportive, focusing on wound care and patient symptoms such as itch or pain. However, therapeutic advances have also been made in targeting the primary genetic abnormalities as well as the secondary inflammatory footprint of EB. Pre-clinical or clinical testing of gene therapies (gene replacement, gene editing, RNA-based therapy, natural gene therapy), cell-based therapies (fibroblasts, bone marrow transplantation, mesenchymal stromal cells, induced pluripotential stem cells), recombinant protein therapies, and small molecule and drug repurposing approaches, have generated new hope for better patient care. In this article, we review advances in translational research that are impacting on the quality of life for people living with different forms of EB and which offer hope for improved clinical management.
Collapse
|
20
|
Functional Restoration of CFTR Nonsense Mutations in Intestinal Organoids. J Cyst Fibros 2021; 21:246-253. [PMID: 34666947 DOI: 10.1016/j.jcf.2021.09.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Pharmacotherapies for people with cystic fibrosis (pwCF) who have premature termination codons (PTCs) in the cystic fibrosis transmembrane conductance regulator (CFTR) gene are under development. Thus far, clinical studies focused on compounds that induce translational readthrough (RT) at the mRNA PTC location. Recent studies using primary airway cells showed that PTC functional restoration can be achieved through combining compounds with multiple mode-of-actions. Here, we assessed induction of CFTR function in PTC-containing intestinal organoids using compounds targeting RT, nonsense mRNA mediated decay (NMD) and CFTR protein modulation. METHODS Rescue of PTC CFTR protein was assessed by forskolin-induced swelling of 12 intestinal organoid cultures carrying distinct PTC mutations. Effects of compounds on mRNA CFTR level was assessed by RT-qPCRs. RESULTS Whilst response varied between donors, significant rescue of CFTR function was achieved for most donors with the quintuple combination of a commercially available pharmacological equivalent of the RT compound (ELX-02-disulfate or ELX-02ds), NMD inhibitor SMG1i, correctors VX-445 and VX-661 and potentiator VX-770. The quintuple combination of pharmacotherapies reached swelling quantities higher than the mean swelling of three VX-809/VX-770-rescued F508del/F508del organoid cultures, indicating level of rescue is of clinical relevance as VX-770/VX-809-mediated F508del/F508del rescue in organoids correlate with substantial improvement of clinical outcome. CONCLUSIONS Whilst variation in efficacy was observed between genotypes as well as within genotypes, the data suggests that strong pharmacological rescue of PTC requires a combination of drugs that target RT, NMD and protein function.
Collapse
|
21
|
Ataluren-Promising Therapeutic Premature Termination Codon Readthrough Frontrunner. Pharmaceuticals (Basel) 2021; 14:ph14080785. [PMID: 34451881 PMCID: PMC8398184 DOI: 10.3390/ph14080785] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 02/08/2023] Open
Abstract
Around 12% of hereditary disease-causing mutations are in-frame nonsense mutations. The expression of genes containing nonsense mutations potentially leads to the production of truncated proteins with residual or virtually no function. However, the translation of transcripts containing premature stop codons resulting in full-length protein expression can be achieved using readthrough agents. Among them, only ataluren was approved in several countries to treat nonsense mutation Duchenne muscular dystrophy (DMD) patients. This review summarizes ataluren’s journey from its identification, via first in vitro activity experiments, to clinical trials in DMD, cystic fibrosis, and aniridia. Additionally, data on its pharmacokinetics and mechanism of action are presented. The range of diseases with underlying nonsense mutations is described for which ataluren therapy seems to be promising. What is more, experiments in which ataluren did not show its readthrough activity are also included, and reasons for their failures are discussed.
Collapse
|
22
|
Born JR, Chenniappan VK, Davis DP, Dahlin JL, Marugan JJ, Patnaik S. The Impact of Assay Design on Medicinal Chemistry: Case Studies. SLAS DISCOVERY 2021; 26:1243-1255. [PMID: 34225522 DOI: 10.1177/24725552211026238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Joshua R Born
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Vinoth Kumar Chenniappan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Danielle P Davis
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Jayme L Dahlin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Juan J Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Samarjit Patnaik
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
23
|
Abstract
Epidermolysis bullosa (EB) is a group of rare genetic disorders for which significant progress has been achieved in the development of molecular therapies in the last few decades. Such therapies require knowledge of mutant genes and specific mutations, some of them being allele specific. A relatively large number of clinical trials are ongoing and ascertaining the clinical efficacy of gene, protein or cell therapies or of repurposed drugs, mainly in recessive dystrophic EB. It is expected that some new drugs may emerge in the near future and that combinations of different approaches may result in improved treatment outcomes for individuals with EB.
Collapse
|
24
|
Seo K, Kim EK, Choi J, Kim DS, Shin JH. Functional recovery of a novel knockin mouse model of dysferlinopathy by readthrough of nonsense mutation. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:702-709. [PMID: 34141825 PMCID: PMC8181533 DOI: 10.1016/j.omtm.2021.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/27/2021] [Indexed: 12/04/2022]
Abstract
Biallelic mutations in the dysferlin gene cause limb-girdle muscular dystrophy 2B or Miyoshi distal myopathy. We found that nonsense mutations are the most common mutation type among Korean patients with dysferlinopathy; more than half of the patients have at least one nonsense allele, which may be amenable to readthrough therapy. We generated a knockin mouse, dqx, harboring DYSF p.Q832∗ mutation. Homozygous dqx mice lacked dysferlin in skeletal muscle, while 2 weeks of oral ataluren restored dysferlin expression and ameliorated skeletal muscle pathology. Their physical performance improved, and protection against eccentric contractions was noted. The improvement was most evident in mice treated with oral ataluren of 0.9 mg/mL. These improvements were sustained for 8 weeks in ataluren-treated dqx mice, while the parameters of A/J mice treated with ataluren over the same period did not improve. These results support that readthrough therapy by oral ataluren may also be applicable to dysferlinopathy patients with nonsense mutation.
Collapse
Affiliation(s)
- Kyowon Seo
- Neurology, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnamdo 50612, Republic of Korea
| | - Eun Kyoung Kim
- Neurology, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnamdo 50612, Republic of Korea
| | - Jaeil Choi
- Neurology, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnamdo 50612, Republic of Korea
| | - Dae-Seong Kim
- Neurology, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnamdo 50612, Republic of Korea
| | - Jin-Hong Shin
- Neurology, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnamdo 50612, Republic of Korea
| |
Collapse
|
25
|
Dahlin JL, Auld DS, Rothenaigner I, Haney S, Sexton JZ, Nissink JWM, Walsh J, Lee JA, Strelow JM, Willard FS, Ferrins L, Baell JB, Walters MA, Hua BK, Hadian K, Wagner BK. Nuisance compounds in cellular assays. Cell Chem Biol 2021; 28:356-370. [PMID: 33592188 PMCID: PMC7979533 DOI: 10.1016/j.chembiol.2021.01.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/02/2021] [Accepted: 01/27/2021] [Indexed: 12/17/2022]
Abstract
Compounds that exhibit assay interference or undesirable mechanisms of bioactivity ("nuisance compounds") are routinely encountered in cellular assays, including phenotypic and high-content screening assays. Much is known regarding compound-dependent assay interferences in cell-free assays. However, despite the essential role of cellular assays in chemical biology and drug discovery, there is considerably less known about nuisance compounds in more complex cell-based assays. In our view, a major obstacle to realizing the full potential of chemical biology will not just be difficult-to-drug targets or even the sheer number of targets, but rather nuisance compounds, due to their ability to waste significant resources and erode scientific trust. In this review, we summarize our collective academic, government, and industry experiences regarding cellular nuisance compounds. We describe assay design strategies to mitigate the impact of nuisance compounds and suggest best practices to efficiently address these compounds in complex biological settings.
Collapse
Affiliation(s)
- Jayme L Dahlin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.
| | - Douglas S Auld
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Ina Rothenaigner
- Assay Development and Screening Platform, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
| | - Steve Haney
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | - Jonathan Z Sexton
- Department of Internal Medicine, Gastroenterology, Michigan Medicine at the University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Jarrod Walsh
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park SK10 4TG, UK
| | | | | | | | - Lori Ferrins
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Jonathan B Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Michael A Walters
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Bruce K Hua
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02140, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02140, USA
| | - Kamyar Hadian
- Assay Development and Screening Platform, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
| | - Bridget K Wagner
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02140, USA
| |
Collapse
|
26
|
Abstract
Inhibiting eukaryotic protein translation with small molecules is emerging as a powerful therapeutic strategy. The advantage of targeting cellular translational machinery is that it is required for the highly proliferative state of many neoplastic cells, replication of certain viruses, and ultimately the expression of a wide variety of protein targets. Although, this approach has been exploited to develop clinical agents, such as homoharringtonine (HHT, 1), used to treat chronic myeloid leukemia (CML), inhibiting components of the translational machinery is often associated with cytotoxic phenotypes. However, recent studies have demonstrated that certain small molecules can inhibit the translation of specific subsets of proteins, leading to lower cytotoxicity, and opening-up therapeutic opportunities for translation inhibitors to be deployed in indications beyond oncology and infectious disease. This review summarizes efforts to develop inhibitors of the eukaryotic translational machinery as therapeutic agents and highlights emerging opportunities for translation inhibitors in the future.
Collapse
Affiliation(s)
- Angela Fan
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Phillip P Sharp
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| |
Collapse
|
27
|
Sheikh O, Yokota T. Developing DMD therapeutics: a review of the effectiveness of small molecules, stop-codon readthrough, dystrophin gene replacement, and exon-skipping therapies. Expert Opin Investig Drugs 2021; 30:167-176. [PMID: 33393390 DOI: 10.1080/13543784.2021.1868434] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the dystrophin (DMD) gene. Most patients die from respiratory failure or cardiomyopathy. There are significant unmet needs for treatments for DMD as the standard of care is principally limited to symptom relief through treatments including steroids. AREAS COVERED This review summarizes safety and efficacy in promising areas of DMD therapeutics - small molecules, stop codon readthrough, gene replacement, and exon skipping - under clinical examination from 2015-2020 as demonstrated in the NIH Clinical Trials and PubMed search engines. EXPERT OPINION Currently, steroids persist as the most accessible medicine for DMD. Stop-codon readthrough, gene replacement, and exon-skipping therapies all aim to restore dystrophin expression. Of these strategies, gene replacement therapy has recently gained momentum while exon-skipping retains great traction. The FDA approval of three exon-skipping antisense oligonucleotides illustrate this regulatory momentum, though the effectiveness and sequence design of eteplirsen remain controversial. Cell-penetrating peptides promise to more efficaciously treat DMD-related cardiomyopathy.The recent success of antisense therapies, however, poses major regulatory challenges. To fully realize the benefits of exon-skipping, including cocktail oligonucleotide-mediated multiple exon-skipping and oligonucleotide drugs for very rare mutations, regulatory challenges need to be addressed in coordination with scientific advances.
Collapse
Affiliation(s)
- Omar Sheikh
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Canada
| |
Collapse
|
28
|
Nonsense Suppression Therapy: New Hypothesis for the Treatment of Inherited Bone Marrow Failure Syndromes. Int J Mol Sci 2020; 21:ijms21134672. [PMID: 32630050 PMCID: PMC7369780 DOI: 10.3390/ijms21134672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFS) are a group of cancer-prone genetic diseases characterized by hypocellular bone marrow with impairment in one or more hematopoietic lineages. The pathogenesis of IBMFS involves mutations in several genes which encode for proteins involved in DNA repair, telomere biology and ribosome biogenesis. The classical IBMFS include Shwachman–Diamond syndrome (SDS), Diamond–Blackfan anemia (DBA), Fanconi anemia (FA), dyskeratosis congenita (DC), and severe congenital neutropenia (SCN). IBMFS are associated with high risk of myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), and solid tumors. Unfortunately, no specific pharmacological therapies have been highly effective for IBMFS. Hematopoietic stem cell transplantation provides a cure for aplastic or myeloid neoplastic complications. However, it does not affect the risk of solid tumors. Since approximately 28% of FA, 24% of SCN, 21% of DBA, 20% of SDS, and 17% of DC patients harbor nonsense mutations in the respective IBMFS-related genes, we discuss the use of the nonsense suppression therapy in these diseases. We recently described the beneficial effect of ataluren, a nonsense suppressor drug, in SDS bone marrow hematopoietic cells ex vivo. A similar approach could be therefore designed for treating other IBMFS. In this review we explain in detail the new generation of nonsense suppressor molecules and their mechanistic roles. Furthermore, we will discuss strengths and limitations of these molecules which are emerging from preclinical and clinical studies. Finally we discuss the state-of-the-art of preclinical and clinical therapeutic studies carried out for IBMFS.
Collapse
|
29
|
Kadunc L, Svetličič M, Forstnerič V, Hafner Bratkovič I, Jerala R. Increased gene translation stringency in mammalian cells by nonsense suppression at multiple permissive sites with a single noncanonical amino acid. FEBS Lett 2020; 594:2452-2461. [PMID: 32401336 DOI: 10.1002/1873-3468.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 11/10/2022]
Abstract
The considerable potential of engineered cells compels the development of strategies for the stringent control of gene expression. A promising approach is the introduction of a premature stop codon (PTC) into a selected gene that is expressed only in the presence of noncanonical amino acids through nonsense suppression. Here, different strategies of amber PTC readthrough in mammalian cells were tested. The use of a tRNA synthetase together with a TAG codon-specific tRNA achieved PTC readthrough depending on the addition of a noncanonical amino acid (4-benzoyl-L-phenylalanine; Bpa). While single TAG codon incorporation exhibited detectable expression of the reporter protein even in the absence of Bpa, the use of a double PTC enabled virtually leakage-free functional gene translation. The introduction of an additional 5'-PTC, therefore, represents a generally applicable strategy to increase stringency in gene translation.
Collapse
Affiliation(s)
- Lucija Kadunc
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.,Graduate School of Biomedicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Svetličič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Vida Forstnerič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Iva Hafner Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.,EN-FIST Centre of Excellence, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.,EN-FIST Centre of Excellence, Ljubljana, Slovenia
| |
Collapse
|
30
|
Screening Readthrough Compounds to Suppress Nonsense Mutations: Possible Application to β-Thalassemia. J Clin Med 2020; 9:jcm9020289. [PMID: 31972957 PMCID: PMC7073686 DOI: 10.3390/jcm9020289] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Several types of thalassemia (including β039-thalassemia) are caused by nonsense mutations in genes controlling globin production, leading to premature translation termination and mRNA destabilization mediated by the nonsense mediated mRNA decay. Drugs (for instance, aminoglycosides) can be designed to suppress premature translation termination by inducing readthrough (or nonsense suppression) at the premature termination codon. These findings have introduced new hopes for the development of a pharmacologic approach to cure this genetic disease. In the present review, we first summarize the principle and current status of the chemical relief for the expression of functional proteins from genes otherwise unfruitful for the presence of nonsense mutations. Second, we compare data available on readthrough molecules for β0-thalassemia. The examples reported in the review strongly suggest that ribosomal readthrough should be considered as a therapeutic approach for the treatment of β0-thalassemia caused by nonsense mutations. Concluding, the discovery of molecules, exhibiting the property of inducing β-globin, such as readthrough compounds, is of great interest and represents a hope for several patients, whose survival will depend on the possible use of drugs rendering blood transfusion and chelation therapy unnecessary.
Collapse
|
31
|
Tarrasó G, Real-Martinez A, Parés M, Romero-Cortadellas L, Puigros L, Moya L, de Luna N, Brull A, Martín MA, Arenas J, Lucia A, Andreu AL, Barquinero J, Vissing J, Krag TO, Pinós T. Absence of p.R50X Pygm read-through in McArdle disease cellular models. Dis Model Mech 2020; 13:dmm.043281. [PMID: 31848135 PMCID: PMC6994938 DOI: 10.1242/dmm.043281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
McArdle disease is an autosomal recessive disorder caused by the absence of muscle glycogen phosphorylase, which leads to blocked muscle glycogen breakdown. We used three different cellular models to evaluate the efficiency of different read-through agents (including amlexanox, Ataluren, RTC13 and G418) in McArdle disease. The first model consisted of HeLa cells transfected with two different GFP-PYGM constructs presenting the Pygm p.R50X mutation (GFP-PYGM p.R50X and PYGM Ex1-GFP p.R50X). The second cellular model was based on the creation of HEK293T cell lines stably expressing the PYGM Ex1-GFP p.R50X construct. As these plasmids encode murine Pygm cDNA without any intron sequence, their transfection in cells would allow for analysis of the efficacy of read-through agents with no concomitant nonsense-mediated decay interference. The third model consisted of skeletal muscle cultures derived from the McArdle mouse model (knock-in for the p.R50X mutation in the Pygm gene). We found no evidence of read-through at detectable levels in any of the models evaluated. We performed a literature search and compared the premature termination codon context sequences with reported positive and negative read-through induction, identifying a potential role for nucleotide positions −9, −8, −3, −2, +13 and +14 (the first nucleotide of the stop codon is assigned as +1). The Pygm p.R50X mutation presents TGA as a stop codon, G nucleotides at positions −1 and −9, and a C nucleotide at −3, which potentially generate a good context for read-through induction, counteracted by the presence of C at −2 and its absence at +4. Summary: Here, we evaluated the efficiency of different read-through agents in McArdle disease cell culture models, revealing that read-through compounds do not restore full-length muscle glycogen phosphorylase.
Collapse
Affiliation(s)
- Guillermo Tarrasó
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Alberto Real-Martinez
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Marta Parés
- Gene and Cell Therapy Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Lídia Romero-Cortadellas
- Gene and Cell Therapy Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Laura Puigros
- Gene and Cell Therapy Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Laura Moya
- Gene and Cell Therapy Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Noemí de Luna
- Laboratori de Malalties Neuromusculars, Institut de Recerca Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08041, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Astrid Brull
- Sorbonne Université, INSERM UMRS_974, Center of Research in Myology, 75013 Paris, France
| | - Miguel Angel Martín
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Joaquin Arenas
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Alejandro Lucia
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), Madrid 28041, Spain.,Faculty of Sport Sciences, European University, Madrid 28670, Spain
| | - Antoni L Andreu
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Jordi Barquinero
- Gene and Cell Therapy Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Thomas O Krag
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Tomàs Pinós
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| |
Collapse
|
32
|
Serum starvation enhances nonsense mutation readthrough. J Mol Med (Berl) 2019; 97:1695-1710. [PMID: 31786671 DOI: 10.1007/s00109-019-01847-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/03/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
Of all genetic mutations causing human disease, premature termination codons (PTCs) that result from splicing defaults, insertions, deletions, and point mutations comprise around 30%. From these mutations, around 11% are a substitution of a single nucleotide that change a codon into a premature termination codon. These types of mutations affect several million patients suffering from a large variety of genetic diseases, ranging from relatively common inheritable cancer syndromes to muscular dystrophy or very rare neuro-metabolic disorders. Over the past three decades, genetic and biochemical studies have revealed that certain antibiotics and other synthetic molecules can act as nonsense mutation readthrough-inducing drugs. These compounds bind a specific site on the rRNA and, as a result, the stop codon is misread and an amino acid (that may or may not differ from the wild-type amino acid) is inserted and translation occurs through the premature termination codon. This strategy has great therapeutic potential. Unfortunately, many readthrough agents are toxic and cannot be administered over the extended period usually required for the chronic treatment of genetic diseases. Furthermore, readthrough compounds only restore protein production in very few disease models and the readthrough levels are usually low, typically achieving no more than 5% of normal protein expression. Efforts have been made over the years to overcome these obstacles so that readthrough treatment can become clinically relevant. Here, we present the creation of a stable cell line system that constitutively expresses our dual-reporter vector harboring two cancer initiating nonsense mutations in the adenomatous polyposis coli (APC) gene. This system will be used as an improved screening method for isolation of new nonsense mutation readthrough inducers. Using these cell lines as well as colorectal cancer cell lines, we demonstrate that serum starvation enhances drug-induced readthrough activity, an observation which may prove beneficial in a therapeutic scenario that requires higher levels of the restored protein. KEY MESSAGES: Nonsense mutations affects millions of people worldwide. We have developed a nonsense mutation read-through screening tool. We find that serum starvation enhances antibiotic-induced nonsense mutation read-through. Our results suggest new strategies for enhancing nonsense mutation read-through that may have positive effects on a large number of patients.
Collapse
|
33
|
Lentini L, Melfi R, Cancemi P, Pibiri I, Di Leonardo A. Caffeine boosts Ataluren's readthrough activity. Heliyon 2019; 5:e01963. [PMID: 31294114 PMCID: PMC6595402 DOI: 10.1016/j.heliyon.2019.e01963] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/31/2019] [Accepted: 06/12/2019] [Indexed: 01/19/2023] Open
Abstract
The readthrough of nonsense mutations by small molecules like Ataluren is considered a novel therapeutic approach to overcome the gene defect in several genetic diseases as cystic fibrosis (CF). This pharmacological approach suppresses translation termination at premature termination codons (PTCs readthrough) thus restoring the expression of a functional protein. However, readthrough might be limited by the nonsense-mediated mRNA decay (NMD), a cell process that reduces the amount/level of PTCs containing mRNAs. Here we investigate the combined action of Ataluren and caffeine to enhance the readthrough of PTCs. IB3.1 CF cells with a nonsense mutation were treated with caffeine to attenuate the Nonsense-Mediated mRNA Decay (NMD) activity and thus enhance the stability of the nonsense (ns)-CFTR-mRNA to be targeted by Ataluren. Our results show that NMD attenuation by caffeine enhances mRNA stability and more importantly when combined with Ataluren increase the recovery of the full-length CFTR protein.
Collapse
Affiliation(s)
- Laura Lentini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128, Palermo, Italy
- Corresponding author.
| | - Raffaella Melfi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128, Palermo, Italy
| | - Patrizia Cancemi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128, Palermo, Italy
- Centro di OncoBiologia Sperimentale (COBS) via San Lorenzo Colli 90145 Palermo, Italy
| | - Ivana Pibiri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128, Palermo, Italy
| | - Aldo Di Leonardo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128, Palermo, Italy
- Centro di OncoBiologia Sperimentale (COBS) via San Lorenzo Colli 90145 Palermo, Italy
- Corresponding author.
| |
Collapse
|
34
|
Dourado Alcorte M, Sogayar MC, Demasi MA. Patent landscape of molecular and cellular targeted therapies for recessive dystrophic epidermolysis bullosa. Expert Opin Ther Pat 2019; 29:327-337. [PMID: 31017019 DOI: 10.1080/13543776.2019.1608181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a monogenetic inherited genodermatosis associated with deleterious mutations in the gene encoding type VII collagen (COL7A1). COL7A1 is essential for promoting attachment of the epidermis to the dermis, and its dysfunction may lead to generalized mucosal and cutaneous blistering associated to severe deformities. Currently, management of RDEB patients is limited to supportive care, being aimed at treating and preventing common complications associated with this condition. There is a great demand to develop targeted therapies for this devastating disease and RDEB research advances are currently being translated into clinical trials. AREAS COVERED Based on the literature and patent search, the authors have grouped the RDEB targeted therapies into five categories: a) cell-based therapies; b) gene therapy; c) protein replacement therapy; d) molecular therapy based on exon skipping; and e) drug-mediated premature termination codon read-through. The patent searching strategy involved inquiring Google and USPTO patent databases to reveal companies and institutions that are active in the area of RDEB targeted therapies. EXPERT OPINION The patent landscape related to targeted therapies for RDEB is quite heterogeneous, with each targeted therapeutic approach being associated with its own challenges in achieving robust patent protection and identifying opportunities for future development.
Collapse
Affiliation(s)
| | - Mari Cleide Sogayar
- a NUCEL - School of Medicine , University of Sao Paulo , São Paulo , SP , Brazil
| | - Marcos Angelo Demasi
- a NUCEL - School of Medicine , University of Sao Paulo , São Paulo , SP , Brazil
| |
Collapse
|
35
|
Chowdhury HM, Siddiqui MA, Kanneganti S, Sharmin N, Chowdhury MW, Nasim MT. Aminoglycoside-mediated promotion of translation readthrough occurs through a non-stochastic mechanism that competes with translation termination. Hum Mol Genet 2019; 27:373-384. [PMID: 29177465 DOI: 10.1093/hmg/ddx409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/14/2017] [Indexed: 01/26/2023] Open
Abstract
Attempts have been made to treat nonsense-associated genetic disorders by chemical agents and hence an improved mechanistic insight into the decoding of readthrough signals is essential for the identification and characterisation of factors for the treatment of these disorders. To identify either novel compounds or genes that modulate translation readthrough, we have employed dual reporter-based high-throughput screens that use enzymatic and fluorescence activities and screened bioactive National Institute of Neurological Disease Syndrome (NINDS) compounds (n = 1000) and siRNA (n = 288) libraries. Whilst siRNAs targeting kinases such as CSNK1G3 and NME3 negatively regulate readthrough, neither the bioactive NINDS compounds nor PTC124 promote readthrough. Of note, PTC124 has previously been shown to promote readthrough. Furthermore, the impacts of G418 on the components of eukaryotic selenocysteine incorporation machinery have also been investigated. The selenocysteine machinery decodes the stop codon UGA specifying selenocysteine in natural selenoprotein genes. We have found that the eukaryotic SelC gene promotes the selenocysteine insertion sequence (SECIS)-mediated readthrough but inhibits the readthrough activity induced by G418. We have previously reported that SECIS-mediated readthrough at UGA codons follows a non-processive mechanism. Here, we show that G418-mediated promotion of readthrough also occurs through a non-processive mechanism which competes with translation termination. Based on our observations, we suggest that proteins generated through a non-processive mechanism may be therapeutically beneficial for the resolution of nonsense-associated genetic disorders.
Collapse
Affiliation(s)
- H M Chowdhury
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - M A Siddiqui
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - S Kanneganti
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - N Sharmin
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| | - M W Chowdhury
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| | - M Talat Nasim
- Department of Medical and Molecular Genetics, King's College London, London, UK.,School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK.,Biomedical Research Centre, National Institute for Health Research (NIHR), St. Thomas' NHS Foundation Trust and King's College London, London, UK.,Centre for Health Agricultural and Socio-economic Advancements (CHASA), Lalmonirhat, Bangladesh
| |
Collapse
|
36
|
Personalized gene and cell therapy for Duchenne Muscular Dystrophy. Neuromuscul Disord 2018; 28:803-824. [DOI: 10.1016/j.nmd.2018.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 01/09/2023]
|
37
|
Hellen CUT. Translation Termination and Ribosome Recycling in Eukaryotes. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a032656. [PMID: 29735640 DOI: 10.1101/cshperspect.a032656] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Termination of mRNA translation occurs when a stop codon enters the A site of the ribosome, and in eukaryotes is mediated by release factors eRF1 and eRF3, which form a ternary eRF1/eRF3-guanosine triphosphate (GTP) complex. eRF1 recognizes the stop codon, and after hydrolysis of GTP by eRF3, mediates release of the nascent peptide. The post-termination complex is then disassembled, enabling its constituents to participate in further rounds of translation. Ribosome recycling involves splitting of the 80S ribosome by the ATP-binding cassette protein ABCE1 to release the 60S subunit. Subsequent dissociation of deacylated transfer RNA (tRNA) and messenger RNA (mRNA) from the 40S subunit may be mediated by initiation factors (priming the 40S subunit for initiation), by ligatin (eIF2D) or by density-regulated protein (DENR) and multiple copies in T-cell lymphoma-1 (MCT1). These events may be subverted by suppression of termination (yielding carboxy-terminally extended read-through polypeptides) or by interruption of recycling, leading to reinitiation of translation near the stop codon.
Collapse
Affiliation(s)
- Christopher U T Hellen
- Department of Cell Biology, State University of New York, Downstate Medical Center, New York, New York 11203
| |
Collapse
|
38
|
McElvaney OJ, Gunaratnam C, McElvaney OF, Bagwe I, Reeves EP, McElvaney NG. Emerging pharmacotherapies in cystic fibrosis. Expert Rev Respir Med 2018; 12:843-855. [DOI: 10.1080/17476348.2018.1512409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Oliver J McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Cedric Gunaratnam
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Oisin Fiachra McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Isha Bagwe
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Emer P Reeves
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
39
|
Bezzerri V, Bardelli D, Morini J, Vella A, Cesaro S, Sorio C, Biondi A, Danesino C, Farruggia P, Assael BM, D'amico G, Cipolli M. Ataluren-driven restoration of Shwachman-Bodian-Diamond syndrome protein function in Shwachman-Diamond syndrome bone marrow cells. Am J Hematol 2018; 93:527-536. [PMID: 29285795 DOI: 10.1002/ajh.25025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/21/2017] [Accepted: 12/26/2017] [Indexed: 12/31/2022]
Abstract
Shwachman-Diamond syndrome (SDS) is a rare inherited recessive disease mainly caused by mutations in the Shwachman-Bodian-Diamond syndrome (SBDS) gene, which encodes for the homonymous protein SBDS, whose function still remains to be fully established. SDS affects several organs causing bone marrow failure, exocrine pancreatic insufficiency, skeletal malformations, and cognitive disorders. About 15% of SDS patients develop myelodysplastic syndrome (MDS) and are at higher risk of developing acute myeloid leukemia (AML). Deficiency in SBDS expression has been associated with increased apoptosis and lack of myeloid differentiation in bone marrow hematopoietic progenitors. Importantly, most SDS patients carry nonsense mutations in SBDS. Since ataluren is a well-characterized small molecule inhibitor that can suppress nonsense mutations, here, we have assessed the efficacy of this drug in restoring SBDS expression in hematopoietic cells obtained from a cohort of SDS patients. Remarkably, we show that ataluren treatment readily restores SBDS protein expression in different cell types, particularly bone marrow stem cells. Furthermore, ataluren promotes myeloid differentiation in hematopoietic progenitors, reduces apoptotic rate in primary PBMCs, and brings mammalian target of rapamycin phosphorylation levels back to normal in both lymphoblasts and bone marrow mesenchymal stromal cells (BM-MSCs). Since a specific therapy against SDS is currently lacking, these results provide the rationale for ataluren repurposing clinical trials.
Collapse
Affiliation(s)
| | - Donatella Bardelli
- Unit of Immunology and Immunotherapy, Centro Ricerca Tettamanti, Pediatric Department; University of Milano Bicocca, Fondazione MBBM; Italy
| | | | - Antonio Vella
- Unit of Immunology; Azienda Ospedaliera Universitaria Integrata di Verona; Italy
| | - Simone Cesaro
- Unit of Pediatric Hematology Oncology; Azienda Ospedaliera Universitaria Integrata di Verona; Italy
| | | | - Andrea Biondi
- School of Medicine and Surgery; University of Milano-Bicocca; Italy
| | - Cesare Danesino
- Department of Molecular Medicine; University of Pavia; Italy
| | - Piero Farruggia
- Department of Oncology; ARNAS Ospedale Civico Palermo; Italy
| | - Baroukh Maurice Assael
- Department of Pulmonology; Adult CF center, IRCCS Fondazione Cà Granda; Policlinico Milano Italy
| | - Giovanna D'amico
- Unit of Immunology and Immunotherapy, Centro Ricerca Tettamanti, Pediatric Department; University of Milano Bicocca, Fondazione MBBM; Italy
| | - Marco Cipolli
- Cystic Fibrosis Center; Azienda Ospedaliero Universitaria Ospedali Riuniti; Ancona Italy
| |
Collapse
|
40
|
Lincoln V, Cogan J, Hou Y, Hirsch M, Hao M, Alexeev V, De Luca M, De Rosa L, Bauer JW, Woodley DT, Chen M. Gentamicin induces LAMB3 nonsense mutation readthrough and restores functional laminin 332 in junctional epidermolysis bullosa. Proc Natl Acad Sci U S A 2018; 115:E6536-E6545. [PMID: 29946029 PMCID: PMC6048497 DOI: 10.1073/pnas.1803154115] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Herlitz junctional epidermolysis bullosa (H-JEB) is an incurable, devastating, and mostly fatal inherited skin disease for which there is only supportive care. H-JEB is caused by loss-of-function mutations in LAMA3, LAMB3, or LAMC2, leading to complete loss of laminin 332, the major component of anchoring filaments, which mediate epidermal-dermal adherence. LAMB3 (laminin β3) mutations account for 80% of patients with H-JEB, and ∼95% of H-JEB-associated LAMB3 mutations are nonsense mutations leading to premature termination codons (PTCs). In this study, we evaluated the ability of gentamicin to induce PTC readthrough in H-JEB laminin β3-null keratinocytes transfected with expression vectors encoding eight different LAMB3 nonsense mutations. We found that gentamicin induced PTC readthrough in all eight nonsense mutations tested. We next used lentiviral vectors to generate stably transduced H-JEB cells with the R635X and C290X nonsense mutations. Incubation of these cell lines with various concentrations of gentamicin resulted in the synthesis and secretion of full-length laminin β3 in a dose-dependent and sustained manner. Importantly, the gentamicin-induced laminin β3 led to the restoration of laminin 332 assembly, secretion, and deposition within the dermal/epidermal junction, as well as proper polarization of α6β4 integrin in basal keratinocytes, as assessed by immunoblot analysis, immunofluorescent microscopy, and an in vitro 3D skin equivalent model. Finally, newly restored laminin 332 corrected the abnormal cellular phenotype of H-JEB cells by reversing abnormal cell morphology, poor growth potential, poor cell-substratum adhesion, and hypermotility. Therefore, gentamicin may offer a therapy for H-JEB and other inherited skin diseases caused by PTC mutations.
Collapse
Affiliation(s)
- Vadim Lincoln
- Department of Dermatology, The Keck School of Medicine of University of Southern California, Los Angeles, CA 90033
| | - Jon Cogan
- Department of Dermatology, The Keck School of Medicine of University of Southern California, Los Angeles, CA 90033
| | - Yingping Hou
- Department of Dermatology, The Keck School of Medicine of University of Southern California, Los Angeles, CA 90033
| | - Michaela Hirsch
- Department of Dermatology, The Keck School of Medicine of University of Southern California, Los Angeles, CA 90033
| | - Michelle Hao
- Department of Dermatology, The Keck School of Medicine of University of Southern California, Los Angeles, CA 90033
| | - Vitali Alexeev
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Michele De Luca
- Center for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Laura De Rosa
- Center for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Johann W Bauer
- EB House Austria and Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - David T Woodley
- Department of Dermatology, The Keck School of Medicine of University of Southern California, Los Angeles, CA 90033
| | - Mei Chen
- Department of Dermatology, The Keck School of Medicine of University of Southern California, Los Angeles, CA 90033;
| |
Collapse
|
41
|
Ramalho TC, de Castro AA, Tavares TS, Silva MC, Silva DR, Cesar PH, Santos LA, da Cunha EFF, Nepovimova E, Kuca K. Insights into the pharmaceuticals and mechanisms of neurological orphan diseases: Current Status and future expectations. Prog Neurobiol 2018; 169:135-157. [PMID: 29981392 DOI: 10.1016/j.pneurobio.2018.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 06/30/2018] [Indexed: 12/20/2022]
Abstract
Several rare or orphan diseases have been characterized that singly affect low numbers of people, but cumulatively reach ∼6%-10% of the population in Europe and in the United States. Human genetics has shown to be broadly effective when evaluating subjacent genetic defects such as orphan genetic diseases, but on the other hand, a modest progress has been achieved toward comprehending the molecular pathologies and designing new therapies. Chemical genetics, placed at the interface of chemistry and genetics, could be employed to understand the molecular mechanisms of subjacent illnesses and for the discovery of new remediation processes. This review debates current progress in chemical genetics, and how a variety of compounds and reaction mechanisms can be used to study and ultimately treat rare genetic diseases. We focus here on a study involving Amyotrophic lateral sclerosis (ALS), Duchenne Muscular Dystrophy (DMD), Spinal muscular atrophy (SMA) and Familial Amyloid Polyneuropathy (FAP), approaching different treatment methods and the reaction mechanisms of several compounds, trying to elucidate new routes capable of assisting in the treatment profile.
Collapse
Affiliation(s)
- Teodorico C Ramalho
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil; Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| | | | - Tássia S Tavares
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Maria C Silva
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Daniela R Silva
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Pedro H Cesar
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Lucas A Santos
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Elaine F F da Cunha
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
42
|
McHugh DR, Steele MS, Valerio DM, Miron A, Mann RJ, LePage DF, Conlon RA, Cotton CU, Drumm ML, Hodges CA. A G542X cystic fibrosis mouse model for examining nonsense mutation directed therapies. PLoS One 2018; 13:e0199573. [PMID: 29924856 PMCID: PMC6010256 DOI: 10.1371/journal.pone.0199573] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/08/2018] [Indexed: 12/22/2022] Open
Abstract
Nonsense mutations are present in 10% of patients with CF, produce a premature termination codon in CFTR mRNA causing early termination of translation, and lead to lack of CFTR function. There are no currently available animal models which contain a nonsense mutation in the endogenous Cftr locus that can be utilized to test nonsense mutation therapies. In this study, we create a CF mouse model carrying the G542X nonsense mutation in Cftr using CRISPR/Cas9 gene editing. The G542X mouse model has reduced Cftr mRNA levels, demonstrates absence of CFTR function, and displays characteristic manifestations of CF mice such as reduced growth and intestinal obstruction. Importantly, CFTR restoration is observed in G542X intestinal organoids treated with G418, an aminoglycoside with translational readthrough capabilities. The G542X mouse model provides an invaluable resource for the identification of potential therapies of CF nonsense mutations as well as the assessment of in vivo effectiveness of these potential therapies targeting nonsense mutations.
Collapse
Affiliation(s)
- Daniel R. McHugh
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Miarasa S. Steele
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Dana M. Valerio
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Alexander Miron
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Rachel J. Mann
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - David F. LePage
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Ronald A. Conlon
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Calvin U. Cotton
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mitchell L. Drumm
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Craig A. Hodges
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
43
|
The effect of PTC124 on choroideremia fibroblasts and iPSC-derived RPE raises considerations for therapy. Sci Rep 2018; 8:8234. [PMID: 29844446 PMCID: PMC5974348 DOI: 10.1038/s41598-018-26481-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 05/04/2018] [Indexed: 11/24/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are caused by mutations in over 200 genes, resulting in a range of therapeutic options. Translational read-through inducing drugs (TRIDs) offer the possibility of treating multiple IRDs regardless of the causative gene. TRIDs promote ribosomal misreading of premature stop codons, which results in the incorporation of a near-cognate amino acid to produce a full-length protein. The IRD choroideremia (CHM) is a pertinent candidate for TRID therapy, as nonsense variants cause 30% of cases. Recently, treatment of the UAA nonsense-carrying CHM zebrafish model with the TRID PTC124 corrected the underlying biochemical defect and improved retinal phenotype. To be clinically relevant, we studied PTC124 efficiency in UAA nonsense-carrying human fibroblasts and induced pluripotent stem cell-derived retinal pigment epithelium, as well as in a UAA-mutated CHM overexpression system. We showed that PTC124 treatment induces a non-significant trend for functional rescue, which could not be improved by nonsense-mediated decay inhibition. Furthermore, it does not produce a detectable CHM-encoded protein even when coupled with a proteasome inhibitor. We suggest that drug efficiency may depend upon on the target amino acid and its evolutionary conservation, and argue that patient cells should be screened in vitro prior to inclusion in a clinical trial.
Collapse
|
44
|
Dowling JJ, D. Gonorazky H, Cohn RD, Campbell C. Treating pediatric neuromuscular disorders: The future is now. Am J Med Genet A 2018; 176:804-841. [PMID: 28889642 PMCID: PMC5900978 DOI: 10.1002/ajmg.a.38418] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
Pediatric neuromuscular diseases encompass all disorders with onset in childhood and where the primary area of pathology is in the peripheral nervous system. These conditions are largely genetic in etiology, and only those with a genetic underpinning will be presented in this review. This includes disorders of the anterior horn cell (e.g., spinal muscular atrophy), peripheral nerve (e.g., Charcot-Marie-Tooth disease), the neuromuscular junction (e.g., congenital myasthenic syndrome), and the muscle (myopathies and muscular dystrophies). Historically, pediatric neuromuscular disorders have uniformly been considered to be without treatment possibilities and to have dire prognoses. This perception has gradually changed, starting in part with the discovery and widespread application of corticosteroids for Duchenne muscular dystrophy. At present, several exciting therapeutic avenues are under investigation for a range of conditions, offering the potential for significant improvements in patient morbidities and mortality and, in some cases, curative intervention. In this review, we will present the current state of treatment for the most common pediatric neuromuscular conditions, and detail the treatment strategies with the greatest potential for helping with these devastating diseases.
Collapse
Affiliation(s)
- James J. Dowling
- Division of NeurologyHospital for Sick ChildrenTorontoOntarioCanada
- Program for Genetics and Genome BiologyHospital for Sick ChildrenTorontoOntarioCanada
- Departments of Paediatrics and Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | | | - Ronald D. Cohn
- Program for Genetics and Genome BiologyHospital for Sick ChildrenTorontoOntarioCanada
- Departments of Paediatrics and Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | - Craig Campbell
- Department of PediatricsClinical Neurological SciencesEpidemiologyWestern UniversityLondonOntarioCanada
| |
Collapse
|
45
|
Salmaninejad A, Valilou SF, Bayat H, Ebadi N, Daraei A, Yousefi M, Nesaei A, Mojarrad M. Duchenne muscular dystrophy: an updated review of common available therapies. Int J Neurosci 2018; 128:854-864. [PMID: 29351004 DOI: 10.1080/00207454.2018.1430694] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND PURPOSE Duchenne muscular dystrophy (DMD) is a lethal progressive pediatric muscle disorder and genetically inherited as an X-linked disease that caused by mutations in the dystrophin gene. DMD leads to progressive muscle weakness, degeneration, and wasting; finally, follows with the premature demise in affected individuals due to respiratory and/or cardiac failure typically by age of 30. For decades, scientists tried massively to find an effective therapy method, but there is no absolute cure currently for patients with DMD, nevertheless, recent advanced progressions on the treatment of DMD will be hopeful in the future. Several promising gene therapies are currently under investigation. These include gene replacement, exon skipping, suppression of stop codons. More recently, a promising gene editing tool referred to as CRISPR/Cas9 offers exciting perspectives for restoring dystrophin expression in patients with DMD. This review intents to briefly describe these methods and comment on their advances. Since DMD is a genetic disorder, it should be treated by replacing the deficient DMD copy with a functional one. However, there are different types of mutations in this gene, so such therapeutic approaches are highly mutation specific and thus are personalized. Therefore, DMD has arisen as a model of genetic disorder for understanding and overcoming of the challenges of developing personalized genetic medicines, consequently, the lessons learned from these approaches will be applicable to many other disorders. CONCLUSIONS This review provides an update on the recent gene therapies for DMD that aim to compensate for dystrophin deficiency and the related clinical trials.
Collapse
Affiliation(s)
- Arash Salmaninejad
- a Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,b Student Research Committee, Department of Medical Genetics, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran.,c Medical Genetics Research Center, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Saeed Farajzadeh Valilou
- d Medical Genetics Network (MeGeNe) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Hadi Bayat
- e Department of Tissue Engineering, School of Advanced Technologies in Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Nader Ebadi
- f Department of Medical Genetics, Faculty of Medicine , Tehran University of Medical Science , Tehran , Iran
| | - Abdolreza Daraei
- g Genetic Department, Faculty of Medicine , Babol University of Medical Sciences , Babol , Iran
| | - Meysam Yousefi
- b Student Research Committee, Department of Medical Genetics, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran.,c Medical Genetics Research Center, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Abolfazl Nesaei
- h Department of Basic Sciences, Faculty of Medicine , Gonabad University of Medical Sciences , Gonabad , Iran
| | - Majid Mojarrad
- b Student Research Committee, Department of Medical Genetics, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran.,c Medical Genetics Research Center, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
46
|
Therapies for genetic extracellular matrix diseases of the skin. Matrix Biol 2017; 71-72:330-347. [PMID: 29274938 DOI: 10.1016/j.matbio.2017.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/26/2022]
Abstract
A specialized, highly developed dermal extracellular matrix (ECM) provides the skin with its unique mechano-resilient properties and is vital for organ function. Accordingly, genetically acquired deficiency of dermal ECM proteins or proteins essential for the post-translational modification and homeostasis of the dermal ECM, results in diseases affecting the skin. Some of these diseases are lethal or lead to severe complications for the affected individuals. At present limited efficient and evidence-based treatment options exist for genetic ECM diseases of the skin. There is thus a high unmet medical need, creating an urgent demand to develop improved care for these diseases. Here, by drawing examples from the wealth of research on epidermolysis bullosa, we present the current status of biological and small molecule therapies for genetic ECM diseases with skin manifestations. We discuss challenges, and using existing data to propose strategies and future directions allowing development of more efficacious therapies and advancement of them into clinical practice.
Collapse
|
47
|
Banning A, Schiff M, Tikkanen R. Amlexanox provides a potential therapy for nonsense mutations in the lysosomal storage disorder Aspartylglucosaminuria. Biochim Biophys Acta Mol Basis Dis 2017; 1864:668-675. [PMID: 29247835 DOI: 10.1016/j.bbadis.2017.12.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/17/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
Abstract
Aspartylglucosaminuria (AGU) is a lysosomal storage disorder caused by mutations in the gene for aspartylglucosaminidase (AGA). This enzyme participates in glycoprotein degradation in lysosomes. AGU results in progressive mental retardation, and no curative therapy is currently available. We have here characterized the consequences of AGA gene mutations in a compound heterozygous patient who exhibits a missense mutation producing a Ser72Pro substitution in one allele, and a nonsense mutation Trp168X in the other. Ser72 is not a catalytic residue, but is required for the stabilization of the active site conformation. Thus, Ser72Pro exchange impairs the autocatalytic activation of the AGA precursor, and results in a considerable reduction of the enzyme activity and in altered AGA precursor processing. Betaine, which can partially rescue the AGA activity in AGU patients carrying certain missense mutations, turned out to be ineffective in the case of Ser72Pro substitution. The Trp168X nonsense allele results in complete lack of AGA polypeptide due to nonsense-mediated decay (NMD) of the mRNA. Amlexanox, which inhibits NMD and causes a translational read-through, facilitated the synthesis of a full-length, functional AGA protein from the nonsense allele. This could be demonstrated as presence of the AGA polypeptide and increased enzyme activity upon Amlexanox treatment. Furthermore, in the Ser72Pro/Trp168X expressing cells, Amlexanox induced a synergistic increase in AGA activity and polypeptide processing due to enhanced processing of the Ser72Pro polypeptide. Our data show for the first time that Amlexanox might provide a valid therapy for AGU.
Collapse
Affiliation(s)
- Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Manuel Schiff
- AP-HP, Robert Debré Hospital, Reference Center for Inherited Metabolic Diseases, University Paris Diderot-Sorbonne Paris Cité, PROTECT, INSERM U1141, Paris, France
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| |
Collapse
|
48
|
Guimbellot J, Sharma J, Rowe SM. Toward inclusive therapy with CFTR modulators: Progress and challenges. Pediatr Pulmonol 2017; 52:S4-S14. [PMID: 28881097 PMCID: PMC6208153 DOI: 10.1002/ppul.23773] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/29/2017] [Indexed: 12/29/2022]
Abstract
Cystic fibrosis is caused by gene mutations that result in an abnormal Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein on the surface of cells. CFTR modulators are a novel class of drugs that directly target the molecular defect. CFTR modulators include potentiators that result in improved activity of the channel; correctors that help the protein traffic to the cell surface properly; and readthrough agents that restore full-length CFTR by suppression of premature termination codons, among other novel classes more recently established. While some of these drugs, CFTR potentiators in particular, have provided remarkable improvements for CF patients, others have yet to achieve profoundly improved outcomes, and many CF patients are not yet impacted by CFTR modulators due to lack of knowledge regarding susceptibility of their mutations to treatment. One limitation to expanding these types of therapies to the maximum number of patients with CF is the lack of rigorously validated clinical biomarkers that can determine efficacy on an individual basis, as well as few pre-clinical tools that can predict whether an individual with a rare combination of mutant alleles will respond to a particular CFTR modulator regimen. In this review, we discuss the various groups of CFTR modulators and their status in clinical development, as well as address the current literature on biomarkers, pre-clinical cell-based tools, and the role of pharmacometrics in creating therapeutic strategies to improve the lives of all patients with cystic fibrosis, regardless of their specific mutation.
Collapse
Affiliation(s)
- Jennifer Guimbellot
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Jyoti Sharma
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama
- Cell Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Steven M. Rowe
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama
- Cell Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama
- Departments of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
49
|
Ohguchi Y, Nomura T, Suzuki S, Takeda M, Miyauchi T, Mizuno O, Shinkuma S, Fujita Y, Nemoto O, Ono K, McLean WHI, Shimizu H. Gentamicin-Induced Readthrough and Nonsense-Mediated mRNA Decay of SERPINB7 Nonsense Mutant Transcripts. J Invest Dermatol 2017; 138:836-843. [PMID: 29106929 DOI: 10.1016/j.jid.2017.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/19/2017] [Accepted: 10/10/2017] [Indexed: 10/18/2022]
Abstract
Nagashima-type palmoplantar keratosis (NPPK) is an autosomal recessive skin disorder with a high, unmet medical need that is caused by mutations in SERPINB7. Almost all NPPK patients carry the founder nonsense mutation c.796C>T (p.Arg266Ter) in the last exon of SERPINB7. Here we sought to determine whether topical nonsense-suppression (readthrough) therapy using gentamicin is applicable to NPPK. First, we demonstrated that gentamicin enhanced readthrough activity in cells transfected with SERPINB7 cDNA carrying the mutation and promoted full-length SERPINB7 protein synthesis in NPPK keratinocytes. We next conducted an investigator-blinded, randomized, bilaterally controlled compassionate use study of topical gentamicin in which five NPPK patients with c.796C>T were enrolled. Patients' self-reported improvement of hyperkeratosis was significantly greater on the gentamicin side than the control side (P = 0.0349). In two patients, hyperkeratosis was improved on the gentamicin side, as determined by a blinded-investigator assessment. These results indicate the therapeutic potential of topical gentamicin for NPPK. Unexpectedly, we also found that mutant SERPINB7 mRNAs harboring r.796c>u were degraded by nonsense-mediated mRNA decay. Furthermore, the truncated SERPINB7 protein was degraded via a proteasome-mediated pathway. These findings provide important insights into the mRNA/protein quality-control system in humans, which could be a potential therapeutic target for genetic diseases.
Collapse
Affiliation(s)
- Yuka Ohguchi
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshifumi Nomura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Shotaro Suzuki
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masae Takeda
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshinari Miyauchi
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Osamu Mizuno
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoru Shinkuma
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yasuyuki Fujita
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | - Kota Ono
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - W H Irwin McLean
- Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| |
Collapse
|
50
|
Zainal Abidin N, Haq IJ, Gardner AI, Brodlie M. Ataluren in cystic fibrosis: development, clinical studies and where are we now? Expert Opin Pharmacother 2017; 18:1363-1371. [DOI: 10.1080/14656566.2017.1359255] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Noreen Zainal Abidin
- Paediatric Respiratory Medicine, Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust , Newcastle upon Tyne, UK
| | - Iram J. Haq
- Paediatric Respiratory Medicine, Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust , Newcastle upon Tyne, UK
- Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne, UK
| | - Aaron I. Gardner
- Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne, UK
| | - Malcolm Brodlie
- Paediatric Respiratory Medicine, Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust , Newcastle upon Tyne, UK
- Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne, UK
| |
Collapse
|