1
|
Dickson KP, Costales JA, Domagalska MA, Vander Veken F, Llewellyn MS. Innovation through instability? Genome (dis)organisation in Trypanosoma cruzi. Trends Parasitol 2025:S1471-4922(25)00102-3. [PMID: 40399166 DOI: 10.1016/j.pt.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 05/23/2025]
Abstract
Chagas disease affects millions globally and is caused by Trypanosoma cruzi, a parasite with a remarkable ability to adapt and persist in complex environments. Emerging evidence suggests that this adaptability may be driven by its extensive genome instability yet the underlying mechanisms remain poorly understood. Drawing insights from related trypanosomatids, we explore how processes such as aneuploidy, copy number variations and genetic rearrangements can be strategically exploited for immune evasion, host adaptation and drug resistance, and consider whether similar processes shape the adaptive potential of T. cruzi. Unravelling the fundamental biology governing genome instability in this parasite will undoubtedly advance our understanding of its evolution, pathogenesis and resilience - crucial steps towards reducing the burden of Chagas disease.
Collapse
Affiliation(s)
- Kyrie P Dickson
- School of Biodiversity, One Health and Veterinary Medicine, School of Infection & Immunity, University of Glasgow, Glasgow, UK.
| | - Jaime A Costales
- Centro de Investigacion para la Salud en America Latina, Pontificia Universidad Catolica del Ecuador, Quito, Ecuador
| | - Malgorzata A Domagalska
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ferre Vander Veken
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Martin S Llewellyn
- School of Biodiversity, One Health and Veterinary Medicine, School of Infection & Immunity, University of Glasgow, Glasgow, UK
| |
Collapse
|
2
|
Damasceno JD, Briggs EM, Krasilnikova M, Marques CA, Lapsley C, McCulloch R. R-loops acted on by RNase H1 influence DNA replication timing and genome stability in Leishmania. Nat Commun 2025; 16:1470. [PMID: 39922816 PMCID: PMC11807225 DOI: 10.1038/s41467-025-56785-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/31/2025] [Indexed: 02/10/2025] Open
Abstract
Genomes in eukaryotes normally undergo DNA replication in a choreographed temporal order, resulting in early and late replicating chromosome compartments. Leishmania, a human protozoan parasite, displays an unconventional DNA replication program in which the timing of DNA replication completion is chromosome size-dependent: larger chromosomes complete replication later then smaller ones. Here we show that both R-loops and RNase H1, a ribonuclease that resolves RNA-DNA hybrids, accumulate in Leishmania major chromosomes in a pattern that reflects their replication timing. Furthermore, we demonstrate that such differential organisation of R-loops, RNase H1 and DNA replication timing across the parasite's chromosomes correlates with size-dependent differences in chromatin accessibility, G quadruplex distribution and sequence content. Using conditional gene excision, we show that loss of RNase H1 leads to transient growth perturbation and permanently abrogates the differences in DNA replication timing across chromosomes, as well as altering levels of aneuploidy and increasing chromosome instability in a size-dependent manner. This work provides a link between R-loop homeostasis and DNA replication timing in a eukaryotic parasite and demonstrates that orchestration of DNA replication dictates levels of genome plasticity in Leishmania.
Collapse
Affiliation(s)
- Jeziel D Damasceno
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
| | - Emma M Briggs
- University of Edinburgh, Institute for Immunology and Infection Research, School of Biological Sciences, Edinburgh, UK
- Biosciences Institute, Cookson Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Marija Krasilnikova
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Catarina A Marques
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Craig Lapsley
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Richard McCulloch
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
3
|
Krasiļņikova M, Marques CA, Briggs EM, Lapsley C, Hamilton G, Beraldi D, Crouch K, McCulloch R. Nanopore sequencing reveals that DNA replication compartmentalisation dictates genome stability and instability in Trypanosoma brucei. Nat Commun 2025; 16:751. [PMID: 39820334 PMCID: PMC11739655 DOI: 10.1038/s41467-025-56087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
The Trypanosoma brucei genome is structurally complex. Eleven megabase-sized chromosomes each comprise a transcribed core flanked by silent subtelomeres, housing thousands of Variant Surface Glycoprotein (VSG) genes. Additionally, hundreds of sub-megabase chromosomes contain 177 bp repeats of unknown function, and VSG transcription sites localise to many telomeres. DNA replication dynamics have only been described in the megabase chromosome cores, and in the single active VSG transcription site. Using a Nanopore genome assembly, we show that megabase chromosome subtelomeres display a paucity of replication initiation events relative to the core, correlating with increased instability. In addition, replication of the active VSG transcription site is shown to originate from the telomere, likely causing targeted VSG recombination. Lastly, we provide evidence that the 177 bp repeats act as conserved DNA replication origins, explaining submegabase chromosome stability. Compartmentalized DNA replication therefore explains how T. brucei balances stable genome transmission with localised instability driving immune evasion.
Collapse
Affiliation(s)
- Marija Krasiļņikova
- University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, United Kingdom
| | - Catarina A Marques
- University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, United Kingdom.
| | - Emma M Briggs
- University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, United Kingdom
- University of Edinburgh, Institute for Immunology and Infection Research, School of Biological Sciences, Edinburgh, United Kingdom
- Biosciences Institute, Cookson Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Craig Lapsley
- University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, United Kingdom
| | - Graham Hamilton
- MVLS Research Facilities, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Rd, Bearsden, Glasgow, G61 1QH, United Kingdom
| | - Dario Beraldi
- University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, United Kingdom
| | - Kathryn Crouch
- University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, United Kingdom
| | - Richard McCulloch
- University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, United Kingdom.
| |
Collapse
|
4
|
Glans H, Matos GM, Bradley M, Downing T, Andersson B. Genetic coping mechanisms observed in Leishmania tropica, from the Middle East region, enhance the survival of the parasite after drug exposure. PLoS One 2024; 19:e0310821. [PMID: 39625894 PMCID: PMC11614225 DOI: 10.1371/journal.pone.0310821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/07/2024] [Indexed: 12/06/2024] Open
Abstract
INTRODUCTION Cutaneous leishmaniasis caused by L. tropica is common in the Middle East and treatment failure and drug resistance are known to occur. Several genetic mechanisms: aneuploidy, recombination and loss of heterozygosity, single nucleotide polymorphism (SNP) changes, copy number variation (CNV), and mutation of the H locus associated with drug resistance have been described. MATERIALS AND METHODS We studied SNP and CNV patterns in 22 isolates of L. tropica from Afghanistan, Iran and Syria in a geographic, phylogenetic and antimony exposure context. RESULTS A high SNP frequency was observed in isolates from Syria on chromosome 23, including the H locus, linked to different ancestry at that chromosome segment. Among the isolates from Afghanistan and Iran, an elevated frequency of nonsynonymous SNPs was observed on several chromosomes. Changes in CNV patterns were seen in isolates exposed to drug pressure, especially for the ferric iron reductase gene. Expanded genes were categorised into five functional categories: translational elongation, mitochondrial transmembrane transport, positive regulation of cellular component organisation, response to stimulus and response to hypoxia. No CNV was identified at the H locus, the MAPK1 gene, the APQ1 gene, nor chromosomes 23, 31 or 36 regardless of previous antimonial exposure. DISCUSSION In our study, Leishmania tropica had a jump in the nonsynonymous SNP rates at chromosome 23, including the H locus. CNV was observed among isolates exposed to antimonials, especially involving the gene encoding a ferric iron reductase. Several essential genetic coping mechanisms in the cell were enhanced when exposed to antimony, possibly for the survival of the parasite. Our work supports the perspective that Leishmania uses several mechanisms to adapt to environmental changes and drug exposure.
Collapse
Affiliation(s)
- Hedvig Glans
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Dermatology and Venerology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Gabriel M. Matos
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Bradley
- Division of Dermatology and Venerology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Tim Downing
- School of Biotechnology, Dublin City University, Dublin, Ireland
- The Pirbright Institute, Woking, United Kingdom
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Anuntasomboon P, Siripattanapipong S, Unajak S, Choowongkomon K, Burchmore R, Leelayoova S, Mungthin M, E-Kobon T. Genome alteration of Leishmania orientalis under Amphotericin B inhibiting conditions. PLoS Negl Trop Dis 2024; 18:e0012716. [PMID: 39689148 DOI: 10.1371/journal.pntd.0012716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/31/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
Amphotericin B (AmB) is a potent antifungal and antiparasitic medication that exerts its action by disrupting the cell membrane of the leishmanial parasite, leading to its death. Understanding the genetic alterations induced by Amphotericin B is crucial for gaining insights into drug resistance mechanisms and developing more effective treatments against Leishmania infections. As a new Leishmania species, the molecular response of Leishmania orientalis to anti-leishmanial drugs has not been fully explored. In this study, Leishmania orientalis strain PCM2 culture was subjected to AmB exposure at a concentration of 0.03 uM over 72 hours compared to the control. The genomic alteration and transcriptomic changes were investigated by utilising the whole genome and RNA sequencing methods, followed by the analysis of single nucleotide polymorphisms (SNPs), differential gene expression, and chromosomal copy number variations (CNVs) assessed using read depth coverage (RDC) values across the entire genome. The chromosomal CNV analysis showed no significant difference between L. orientalis from the control and AmB-treated groups. The distribution of SNPs displayed notable variability, with higher SNP incidence in the control group compared to the AmB-treated group. Gene ontology analysis unveiled functions of the SNPs -associated genes involved in transporter function, genetic precursor synthesis, and purine nucleotide metabolism. Notably, the impact of AmB treatment on the L. orientalis gene expression profiles exhibited diverse expressional alterations, particularly the downregulation of pivotal genes such as the tubulin alpha chain gene. The intricate interplay between SNPs and gene expression alterations might underscore the complex regulatory networks underlying the AmB resistance of L. orientalis strain PCM2.
Collapse
Affiliation(s)
- Pornchai Anuntasomboon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | | | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Richard Burchmore
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Saovanee Leelayoova
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Teerasak E-Kobon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| |
Collapse
|
6
|
Flores-Vega JJ, Puente-Rivera J, Sosa-Mondragón SI, Camacho-Nuez M, Alvarez-Sánchez ME. RAD51 recombinase and its paralogs: Orchestrating homologous recombination and unforeseen functions in protozoan parasites. Exp Parasitol 2024; 267:108847. [PMID: 39414114 DOI: 10.1016/j.exppara.2024.108847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
The DNA of protozoan parasites is highly susceptible to damage, either induced by environmental agents or spontaneously generated during cellular metabolism through reactive oxygen species (ROS). Certain phases of the cell cycle, such as meiotic recombination, and external factors like ionizing radiation (IR), ultraviolet light (UV), or chemical genotoxic agents further increase this susceptibility. Among the various types of DNA damage, double-stranded breaks (DSBs) are the most critical, as they are challenging to repair and can result in genetic instability or cell death. DSBs caused by environmental stressors are primarily repaired via one of two major pathways: non-homologous end joining (NHEJ) or homologous recombination (HR). In multicellular eukaryotes, NHEJ predominates, but in unicellular eukaryotes such as protozoan parasites, HR seems to be the principal mechanism for DSB repair. The HR pathway is orchestrated by proteins from the RAD52 epistasis group, including RAD51, RAD52, RAD54, RAD55, and the MRN complex. This review focuses on elucidating the diverse roles and significance of RAD51 recombinase and its paralogs in protozoan parasites, such as Acanthamoeba castellanii, Entamoeba histolytica (Amoebozoa), apicomplexan parasites (Chromalveolata), Naegleria fowleri, Giardia spp., Trichomonas vaginalis, and trypanosomatids (Excavata), where they primarily function in HR. Additionally, we analyze the diversity of proteins involved in HR, both upstream and downstream of RAD51, and discuss the implications of these processes in parasitic protozoa.
Collapse
Affiliation(s)
- Jose Jesús Flores-Vega
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo #290, Col. Del Valle, CP 03100, Mexico City, Mexico
| | - Jonathan Puente-Rivera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo #290, Col. Del Valle, CP 03100, Mexico City, Mexico; División de Investigación. Hospital Juárez de México, Ciudad de México, 07760, Mexico.
| | - Sharon Itzel Sosa-Mondragón
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo #290, Col. Del Valle, CP 03100, Mexico City, Mexico
| | - Minerva Camacho-Nuez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo #290, Col. Del Valle, CP 03100, Mexico City, Mexico
| | - María Elizbeth Alvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo #290, Col. Del Valle, CP 03100, Mexico City, Mexico.
| |
Collapse
|
7
|
Ferreira GR, Emond-Rheault JG, Alves L, Leprohon P, Smith MA, Papadopoulou B. Evolutionary divergent clusters of transcribed extinct truncated retroposons drive low mRNA expression and developmental regulation in the protozoan Leishmania. BMC Biol 2024; 22:249. [PMID: 39468514 PMCID: PMC11520807 DOI: 10.1186/s12915-024-02051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND The Leishmania genome harbors formerly active short interspersed degenerated retroposons (SIDERs) representing the largest family of repetitive elements among trypanosomatids. Their substantial expansion in Leishmania is a strong predictor of important biological functions. In this study, we combined multilevel bioinformatic predictions with high-throughput genomic and transcriptomic analyses to gain novel insights into the diversified roles retroposons of the SIDER2 subfamily play in Leishmania genome evolution and expression. RESULTS We show that SIDER2 retroposons form various evolutionary divergent clusters, each harboring homologous SIDER2 sequences usually located nearby in the linear sequence of chromosomes. This intriguing genomic organization underscores the importance of SIDER2 proximity in shaping chromosome dynamics and co-regulation. Accordingly, we show that transcripts belonging to the same SIDER2 cluster can display similar levels of expression. SIDER2 retroposons are mostly transcribed as part of 3'UTRs and account for 13% of the Leishmania transcriptome. Genome-wide expression profiling studies underscore SIDER2 association generally with low mRNA expression. The remarkable link of SIDER2 retroposons with downregulation of gene expression supports their co-option as major regulators of mRNA abundance. SIDER2 sequences also add to the diversification of the Leishmania gene expression repertoire since ~ 35% of SIDER2-containing transcripts can be differentially regulated throughout the parasite development, with a few encoding key virulence factors. In addition, we provide evidence for a functional bias of SIDER2-containing transcripts with protein kinase and transmembrane transporter activities being most represented. CONCLUSIONS Altogether, these findings provide important conceptual advances into evolutionary innovations of transcribed extinct retroposons acting as major RNA cis-regulators.
Collapse
Affiliation(s)
- Gabriel Reis Ferreira
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC, G1V 4G2, Canada
| | - Jean-Guillaume Emond-Rheault
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC, G1V 4G2, Canada
| | - Lysangela Alves
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada
- , Rua Prof. Algacyr Munhoz Mader 3775, Curitiba/PR, CIC, 81310-020, Brazil
| | - Philippe Leprohon
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC, G1V 4G2, Canada
| | - Martin A Smith
- CHU Sainte-Justine Research Centre, Montreal, QC, H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, QC, Montreal, H3T 1J4, Canada
- School of Biotechnology and Molecular Bioscience, Faculty of Science, UNSW Sydney, NSW, Sydney, 2052, Australia
| | - Barbara Papadopoulou
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada.
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC, G1V 4G2, Canada.
| |
Collapse
|
8
|
Gumińska N, Hałakuc P, Zakryś B, Milanowski R. Circular extrachromosomal DNA in Euglena gracilis under normal and stress conditions. Protist 2024; 175:126033. [PMID: 38574508 DOI: 10.1016/j.protis.2024.126033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/10/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Extrachromosomal circular DNA (eccDNA) enhances genomic plasticity, augmenting its coding and regulatory potential. Advances in high-throughput sequencing have enabled the investigation of these structural variants. Although eccDNAs have been investigated in numerous taxa, they remained understudied in euglenids. Therefore, we examined eccDNAs predicted from Illumina sequencing data of Euglena gracilis Z SAG 1224-5/25, grown under optimal photoperiod and exposed to UV irradiation. We identified approximately 1000 unique eccDNA candidates, about 20% of which were shared across conditions. We also observed a significant enrichment of mitochondrially encoded eccDNA in the UV-irradiated sample. Furthermore, we found that the heterogeneity of eccDNA was reduced in UV-exposed samples compared to cells that were grown in optimal conditions. Hence, eccDNA appears to play a role in the response to oxidative stress in Euglena, as it does in other studied organisms. In addition to contributing to the understanding of Euglena genomes, our results contribute to the validation of bioinformatics pipelines on a large, non-model genome.
Collapse
Affiliation(s)
- Natalia Gumińska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, 101 Żwirki i Wigury Street, 02-089 Warsaw, Poland; Laboratory of RNA Biology, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland.
| | - Paweł Hałakuc
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, 101 Żwirki i Wigury Street, 02-089 Warsaw, Poland
| | - Bożena Zakryś
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, 101 Żwirki i Wigury Street, 02-089 Warsaw, Poland
| | - Rafał Milanowski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, 101 Żwirki i Wigury Street, 02-089 Warsaw, Poland.
| |
Collapse
|
9
|
Tandoh KZ, Ibarra-Meneses AV, Langlais D, Olivier M, Torrecilhas AC, Fernandez-Prada C, Regev-Rudzki N, Duah-Quashie NO. Extracellular Vesicles: Translational Agenda Questions for Three Protozoan Parasites. Traffic 2024; 25:e12935. [PMID: 38629580 DOI: 10.1111/tra.12935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
The protozoan parasites Plasmodium falciparum, Leishmania spp. and Trypanosoma cruzi continue to exert a significant toll on the disease landscape of the human population in sub-Saharan Africa and Latin America. Control measures have helped reduce the burden of their respective diseases-malaria, leishmaniasis and Chagas disease-in endemic regions. However, the need for new drugs, innovative vaccination strategies and molecular markers of disease severity and outcomes has emerged because of developing antimicrobial drug resistance, comparatively inadequate or absent vaccines, and a lack of trustworthy markers of morbid outcomes. Extracellular vesicles (EVs) have been widely reported to play a role in the biology and pathogenicity of P. falciparum, Leishmania spp. and T. cruzi ever since they were discovered. EVs are secreted by a yet to be fully understood mechanism in protozoans into the extracellular milieu and carry a cargo of diverse molecules that reflect the originator cell's metabolic state. Although our understanding of the biogenesis and function of EVs continues to deepen, the question of how EVs in P. falciparum, Leishmania spp. and T. cruzi can serve as targets for a translational agenda into clinical and public health interventions is yet to be fully explored. Here, as a consortium of protozoan researchers, we outline a plan for future researchers and pose three questions to direct an EV's translational agenda in P. falciparum, Leishmania spp. and T. cruzi. We opine that in the long term, executing this blueprint will help bridge the current unmet needs of these medically important protozoan diseases in sub-Saharan Africa and Latin America.
Collapse
Affiliation(s)
- Kwesi Z Tandoh
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ana Victoria Ibarra-Meneses
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, Université de Montréal, Montreal, Canada
| | - David Langlais
- Department of Human Genetics, Dahdaleh Institute of Genomic Medicine, Montreal, Canada
- Department of Microbiology and Immunology, McGill Research Centre on Complex Traits, Montreal, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill Research Centre on Complex Traits, Montreal, Canada
- IDIGH, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| | - Ana Claudia Torrecilhas
- Departamento de Ciências Farmacêuticas, Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Universidade Federal de São Paulo (UNIFESP), Instituto de Ciências Ambientais, Químicas e Farmacêuticas, São Paulo, Brazil
| | - Christopher Fernandez-Prada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, Université de Montréal, Montreal, Canada
- Department of Microbiology and Immunology, McGill Research Centre on Complex Traits, Montreal, Canada
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Nancy O Duah-Quashie
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
10
|
Bernardo L, Ibarra-Meneses AV, Douanne N, Corbeil A, Solana JC, Beaudry F, Carrillo E, Moreno J, Fernandez-Prada C. Potential selection of antimony and methotrexate cross-resistance in Leishmania infantum circulating strains. PLoS Negl Trop Dis 2024; 18:e0012015. [PMID: 38422164 DOI: 10.1371/journal.pntd.0012015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/12/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) resolution depends on a wide range of factors, including the instauration of an effective treatment coupled to a functional host immune system. Patients with a depressed immune system, like the ones receiving methotrexate (MTX), are at higher risk of developing VL and refusing antileishmanial drugs. Moreover, the alarmingly growing levels of antimicrobial resistance, especially in endemic areas, contribute to the increasing the burden of this complex zoonotic disease. PRINCIPAL FINDINGS To understand the potential links between immunosuppressants and antileishmanial drugs, we have studied the interaction of antimony (Sb) and MTX in a Leishmania infantum reference strain (LiWT) and in two L. infantum clinical strains (LiFS-A and LiFS-B) naturally circulating in non-treated VL dogs in Spain. The LiFS-A strain was isolated before Sb treatment in a case that responded positively to the treatment, while the LiFS-B strain was recovered from a dog before Sb treatment, with the dog later relapsing after the treatment. Our results show that, exposure to Sb or MTX leads to an increase in the production of reactive oxygen species (ROS) in LiWT which correlates with a sensitive phenotype against both drugs in promastigotes and intracellular amastigotes. LiFS-A was sensitive against Sb but resistant against MTX, displaying high levels of protection against ROS when exposed to MTX. LiFS-B was resistant to both drugs. Evaluation of the melting proteomes of the two LiFS, in the presence and absence of Sb and MTX, showed a differential enrichment of direct and indirect targets for both drugs, including common and unique pathways. CONCLUSION Our results show the potential selection of Sb-MTX cross-resistant parasites in the field, pointing to the possibility to undermine antileishmanial treatment of those patients being treated with immunosuppressant drugs in Leishmania endemic areas.
Collapse
Affiliation(s)
- Lorena Bernardo
- WHO Collaborating Centre for Leishmaniasis, Spanish National Center for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Ana Victoria Ibarra-Meneses
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Noelie Douanne
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Audrey Corbeil
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Jose Carlos Solana
- WHO Collaborating Centre for Leishmaniasis, Spanish National Center for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Francis Beaudry
- Département de Biomédecine, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Quebec, Canada
| | - Eugenia Carrillo
- WHO Collaborating Centre for Leishmaniasis, Spanish National Center for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Javier Moreno
- WHO Collaborating Centre for Leishmaniasis, Spanish National Center for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Christopher Fernandez-Prada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
11
|
Madusanka RK, Karunaweera ND, Silva H, Selvapandiyan A. Antimony resistance and gene expression in Leishmania: spotlight on molecular and proteomic aspects. Parasitology 2024; 151:1-14. [PMID: 38012864 PMCID: PMC10941051 DOI: 10.1017/s0031182023001129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
Leishmaniasis is a vector-borne parasitic disease caused by Leishmania parasites with a spectrum of clinical manifestations, ranging from skin lesions to severe visceral complications. Treatment of this infection has been extremely challenging with the concurrent emergence of drug resistance. The differential gene expression and the discrepancies in protein functions contribute to the appearance of 2 distinct phenotypes: resistant and sensitive, but the current diagnostic tools fail to differentiate between them. The identification of gene expression patterns and molecular mechanisms coupled with antimony (Sb) resistance can be leveraged to prompt diagnosis and select the most effective treatment methods. The present study attempts to use comparative expression of Sb resistance-associated genes in resistant and sensitive Leishmania, to disclose their relative abundance in clinical or in vitro selected isolates to gain an understanding of the molecular mechanisms of Sb response/resistance. Data suggest that the analysis of resistance gene expression would verify the Sb resistance or susceptibility only to a certain extent; however, none of the individual expression patterns of the studied genes was diagnostic as a biomarker of Sb response of Leishmania. The findings highlighted will be useful in bridging the knowledge gap and discovering innovative diagnostic tools and novel therapeutic targets.
Collapse
Affiliation(s)
- Rajamanthrilage Kasun Madusanka
- Department of Parasitology, Faculty of Medicine, University of Colombo, No. 25, Kynsey Road, Colombo 8, Sri Lanka
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Nadira D. Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, No. 25, Kynsey Road, Colombo 8, Sri Lanka
| | - Hermali Silva
- Department of Parasitology, Faculty of Medicine, University of Colombo, No. 25, Kynsey Road, Colombo 8, Sri Lanka
| | - Angamuthu Selvapandiyan
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
12
|
Potvin JÉ, Fani F, Queffeulou M, Gazanion É, Leprohon P, Ouellette M. Increased copy number of the target gene squalene monooxygenase as the main resistance mechanism to terbinafine in Leishmania infantum. Int J Parasitol Drugs Drug Resist 2023; 23:37-43. [PMID: 37703646 PMCID: PMC10502319 DOI: 10.1016/j.ijpddr.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
We use here two genomic screens in an attempt to understand the mode of action and resistance mechanism of terbinafine, an antifungal contemplated as a potential drug against the parasite Leishmania. One screen consisted in in vitro drug evolution where 5 independent mutants were selected step-by-step for terbinafine resistance. Sequencing of the genome of the 5 mutants revealed no single nucleotide polymorphisms related to the resistance phenotype. However, the ERG1 gene was found amplified as part of a linear amplicon, and transfection of ERG1 fully recapitulated the terbinafine resistance phenotype of the mutants. The second screen, Cos-seq, consisted in selecting a gene overexpression library with terbinafine followed by the sequencing of the enriched cosmids. This screen identified two cosmids derived from loci on chromosomes 13 and 29 encoding the squalene monooxygenase (ERG1) and the C8 sterol isomerase (ERG2), respectively. Transfection of the ERG1-cosmid, but not the ERG2-cosmid, produced resistance to terbinafine. Our screens suggest that ERG1 is the main, if not only, target for terbinafine in Leishmania and amplification of its gene is the main resistance mechanism.
Collapse
Affiliation(s)
- Jade-Éva Potvin
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Fereshteh Fani
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Marine Queffeulou
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Élodie Gazanion
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada.
| |
Collapse
|
13
|
Girasol MJ, Krasilnikova M, Marques CA, Damasceno JD, Lapsley C, Lemgruber L, Burchmore R, Beraldi D, Carruthers R, Briggs EM, McCulloch R. RAD51-mediated R-loop formation acts to repair transcription-associated DNA breaks driving antigenic variation in Trypanosoma brucei. Proc Natl Acad Sci U S A 2023; 120:e2309306120. [PMID: 37988471 PMCID: PMC10691351 DOI: 10.1073/pnas.2309306120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/13/2023] [Indexed: 11/23/2023] Open
Abstract
RNA-DNA hybrids are epigenetic features of all genomes that intersect with many processes, including transcription, telomere homeostasis, and centromere function. Increasing evidence suggests that RNA-DNA hybrids can provide two conflicting roles in the maintenance and transmission of genomes: They can be the triggers of DNA damage, leading to genome change, or can aid the DNA repair processes needed to respond to DNA lesions. Evasion of host immunity by African trypanosomes, such as Trypanosoma brucei, relies on targeted recombination of silent Variant Surface Glycoprotein (VSG) genes into a specialized telomeric locus that directs transcription of just one VSG from thousands. How such VSG recombination is targeted and initiated is unclear. Here, we show that a key enzyme of T. brucei homologous recombination, RAD51, interacts with RNA-DNA hybrids. In addition, we show that RNA-DNA hybrids display a genome-wide colocalization with DNA breaks and that this relationship is impaired by mutation of RAD51. Finally, we show that RAD51 acts to repair highly abundant, localised DNA breaks at the single transcribed VSG and that mutation of RAD51 alters RNA-DNA hybrid abundance at 70 bp repeats both around the transcribed VSG and across the silent VSG archive. This work reveals a widespread, generalised role for RNA-DNA hybrids in directing RAD51 activity during recombination and uncovers a specialised application of this interplay during targeted DNA break repair needed for the critical T. brucei immune evasion reaction of antigenic variation.
Collapse
Affiliation(s)
- Mark John Girasol
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
- Faculty of the MD-PhD in Molecular Medicine Program, College of Medicine, University of the Philippines Manila, Manila1000, Philippines
| | - Marija Krasilnikova
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Catarina A. Marques
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Jeziel D. Damasceno
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Craig Lapsley
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Leandro Lemgruber
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Richard Burchmore
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Dario Beraldi
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Ross Carruthers
- College of Medical, Veterinary and Life Sciences, School of Cancer Sciences, University of Glasgow, GlasgowG12 0YN, United Kingdom
| | - Emma M. Briggs
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3FL, United Kingdom
| | - Richard McCulloch
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| |
Collapse
|
14
|
Goes WM, Brasil CRF, Reis-Cunha JL, Coqueiro-Dos-Santos A, Grazielle-Silva V, de Souza Reis J, Souto TC, Laranjeira-Silva MF, Bartholomeu DC, Fernandes AP, Teixeira SMR. Complete assembly, annotation of virulence genes and CRISPR editing of the genome of Leishmania amazonensis PH8 strain. Genomics 2023; 115:110661. [PMID: 37263313 DOI: 10.1016/j.ygeno.2023.110661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/04/2023] [Accepted: 05/27/2023] [Indexed: 06/03/2023]
Abstract
We report the sequencing and assembly of the PH8 strain of Leishmania amazonensis one of the etiological agents of leishmaniasis. After combining data from long Pacbio reads, short Illumina reads and synteny with the Leishmania mexicana genome, the sequence of 34 chromosomes with 8317 annotated genes was generated. Multigene families encoding three virulence factors, A2, amastins and the GP63 metalloproteases, were identified and compared to their annotation in other Leishmania species. As they have been recently recognized as virulence factors essential for disease establishment and progression of the infection, we also identified 14 genes encoding proteins involved in parasite iron and heme metabolism and compared to genes from other Trypanosomatids. To follow these studies with a genetic approach to address the role of virulence factors, we tested two CRISPR-Cas9 protocols to generate L. amazonensis knockout cell lines, using the Miltefosine transporter gene as a proof of concept.
Collapse
Affiliation(s)
- Wanessa Moreira Goes
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG CEP 31.270-901, Brazil
| | - Carlos Rodolpho Ferreira Brasil
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG CEP 31.270-901, Brazil
| | - João Luis Reis-Cunha
- Departamento de Veterinária Preventiva, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG CEP 31.270-901, Brazil; Departamento de Parasitologia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG CEP 31.270-901, Brazil
| | - Anderson Coqueiro-Dos-Santos
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG CEP 31.270-901, Brazil
| | - Viviane Grazielle-Silva
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG CEP 31.270-901, Brazil
| | - Júlia de Souza Reis
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG CEP 31.270-901, Brazil
| | - Tatiane Cristina Souto
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG CEP 31.270-901, Brazil
| | - Maria Fernanda Laranjeira-Silva
- Departamento de Fisiologia, Universidade de São Paulo, Rua do Matão 101, Cidade Universitária, São Paulo, SP CEP 05508-900, Brazil
| | - Daniella Castanheira Bartholomeu
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG CEP 31.270-901, Brazil
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG CEP 31.270-901, Brazil; Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Rua Professor José Vieira de Mendonça 770, Belo Horizonte, MG, CEP 31.210-360, Brazil
| | - Santuza Maria Ribeiro Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG CEP 31.270-901, Brazil; Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Rua Professor José Vieira de Mendonça 770, Belo Horizonte, MG, CEP 31.210-360, Brazil.
| |
Collapse
|
15
|
Leishmania allelic selection during experimental sand fly infection correlates with mutational signatures of oxidative DNA damage. Proc Natl Acad Sci U S A 2023; 120:e2220828120. [PMID: 36848551 PMCID: PMC10013807 DOI: 10.1073/pnas.2220828120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Trypanosomatid pathogens are transmitted by blood-feeding insects, causing devastating human infections. These parasites show important phenotypic shifts that often impact parasite pathogenicity, tissue tropism, or drug susceptibility. The evolutionary mechanisms that allow for the selection of such adaptive phenotypes remain only poorly investigated. Here, we use Leishmania donovani as a trypanosomatid model pathogen to assess parasite evolutionary adaptation during experimental sand fly infection. Comparing the genome of the parasites before and after sand fly infection revealed a strong population bottleneck effect as judged by allele frequency analysis. Apart from random genetic drift caused by the bottleneck effect, our analyses revealed haplotype and allelic changes during sand fly infection that seem under natural selection given their convergence between independent biological replicates. Our analyses further uncovered signature mutations of oxidative DNA damage in the parasite genomes after sand fly infection, suggesting that Leishmania suffers from oxidative stress inside the insect digestive tract. Our results propose a model of Leishmania genomic adaptation during sand fly infection, with oxidative DNA damage and DNA repair processes likely driving haplotype and allelic selection. The experimental and computational framework presented here provides a useful blueprint to assess evolutionary adaptation of other eukaryotic pathogens inside their insect vectors, such as Plasmodium spp, Trypanosoma brucei, and Trypanosoma cruzi.
Collapse
|
16
|
Kamran M, Bhattacharjee R, Das S, Mukherjee S, Ali N. The paradigm of intracellular parasite survival and drug resistance in leishmanial parasite through genome plasticity and epigenetics: Perception and future perspective. Front Cell Infect Microbiol 2023; 13:1001973. [PMID: 36814446 PMCID: PMC9939536 DOI: 10.3389/fcimb.2023.1001973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Leishmania is an intracellular, zoonotic, kinetoplastid eukaryote with more than 1.2 million cases all over the world. The leishmanial chromosomes are divided into polymorphic chromosomal ends, conserved central domains, and antigen-encoding genes found in telomere-proximal regions. The genome flexibility of chromosomal ends of the leishmanial parasite is known to cause drug resistance and intracellular survival through the evasion of host defense mechanisms. Therefore, in this review, we discuss the plasticity of Leishmania genome organization which is the primary cause of drug resistance and parasite survival. Moreover, we have not only elucidated the causes of such genome plasticity which includes aneuploidy, epigenetic factors, copy number variation (CNV), and post-translation modification (PTM) but also highlighted their impact on drug resistance and parasite survival.
Collapse
Affiliation(s)
| | | | - Sonali Das
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sohitri Mukherjee
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | | |
Collapse
|
17
|
Black JA, Reis-Cunha JL, Cruz AK, Tosi LR. Life in plastic, it's fantastic! How Leishmania exploit genome instability to shape gene expression. Front Cell Infect Microbiol 2023; 13:1102462. [PMID: 36779182 PMCID: PMC9910336 DOI: 10.3389/fcimb.2023.1102462] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Leishmania are kinetoplastid pathogens that cause leishmaniasis, a debilitating and potentially life-threatening infection if untreated. Unusually, Leishmania regulate their gene expression largely post-transcriptionally due to the arrangement of their coding genes into polycistronic transcription units that may contain 100s of functionally unrelated genes. Yet, Leishmania are capable of rapid and responsive changes in gene expression to challenging environments, often instead correlating with dynamic changes in their genome composition, ranging from chromosome and gene copy number variations to the generation of extrachromosomal DNA and the accumulation of point mutations. Typically, such events indicate genome instability in other eukaryotes, coinciding with genetic abnormalities, but for Leishmania, exploiting these products of genome instability can provide selectable substrates to catalyse necessary gene expression changes by modifying gene copy number. Unorthodox DNA replication, DNA repair, replication stress factors and DNA repeats are recognised in Leishmania as contributors to this intrinsic instability, but how Leishmania regulate genome plasticity to enhance fitness whilst limiting toxic under- or over-expression of co-amplified and co-transcribed genes is unclear. Herein, we focus on fresh, and detailed insights that improve our understanding of genome plasticity in Leishmania. Furthermore, we discuss emerging models and factors that potentially circumvent regulatory issues arising from polycistronic transcription. Lastly, we highlight key gaps in our understanding of Leishmania genome plasticity and discuss future studies to define, in higher resolution, these complex regulatory interactions.
Collapse
Affiliation(s)
- Jennifer A. Black
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil,The Wellcome Centre for Integrative Parasitology, School of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom,*Correspondence: Luiz. R.O. Tosi, ; Jennifer A. Black,
| | | | - Angela. K. Cruz
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz. R.O. Tosi
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil,*Correspondence: Luiz. R.O. Tosi, ; Jennifer A. Black,
| |
Collapse
|
18
|
Martí-Carreras J, Carrasco M, Gómez-Ponce M, Noguera-Julián M, Fisa R, Riera C, Alcover MM, Roura X, Ferrer L, Francino O. Identification of Leishmania infantum Epidemiology, Drug Resistance and Pathogenicity Biomarkers with Nanopore Sequencing. Microorganisms 2022; 10:2256. [PMID: 36422326 PMCID: PMC9697816 DOI: 10.3390/microorganisms10112256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 12/31/2023] Open
Abstract
The emergence of drug-resistant strains of the parasite Leishmania infantum infecting dogs and humans represents an increasing threat. L. infantum genomes are complex and unstable with extensive structural variations, ranging from aneuploidies to multiple copy number variations (CNVs). These CNVs have recently been validated as biomarkers of Leishmania concerning virulence, tissue tropism, and drug resistance. As a proof-of-concept to develop a novel diagnosis platform (LeishGenApp), four L. infantum samples from humans and dogs were nanopore sequenced. Samples were epidemiologically typed within the Mediterranean L. infantum group, identifying members of the JCP5 and non-JCP5 subgroups, using the conserved region (CR) of the maxicircle kinetoplast. Aneuploidies were frequent and heterogenous between samples, yet only chromosome 31 tetrasomy was common between all the samples. A high frequency of aneuploidies was observed for samples with long passage history (MHOM/TN/80/IPT-1), whereas fewer were detected for samples maintained in vivo (MCRI/ES/2006/CATB033). Twenty-two genes were studied to generate a genetic pharmacoresistance profile against miltefosine, allopurinol, trivalent antimonials, amphotericin, and paromomycin. MHOM/TN/80/IPT-1 and MCRI/ES/2006/CATB033 displayed a genetic profile with potential resistance against miltefosine and allopurinol. Meanwhile, MHOM/ES/2016/CATB101 and LCAN/ES/2020/CATB102 were identified as potentially resistant against paromomycin. All four samples displayed a genetic profile for resistance against trivalent antimonials. Overall, this proof-of-concept revealed the potential of nanopore sequencing and LeishGenApp for the determination of epidemiological, drug resistance, and pathogenicity biomarkers in L. infantum.
Collapse
Affiliation(s)
- Joan Martí-Carreras
- Nano1Health S.L. (N1H), Edifici EUREKA, Parc de Recerca UAB, Bellaterra, 08193 Barcelona, Spain
| | - Marina Carrasco
- Nano1Health S.L. (N1H), Edifici EUREKA, Parc de Recerca UAB, Bellaterra, 08193 Barcelona, Spain
| | - Marcel Gómez-Ponce
- Nano1Health S.L. (N1H), Edifici EUREKA, Parc de Recerca UAB, Bellaterra, 08193 Barcelona, Spain
| | - Marc Noguera-Julián
- Nano1Health S.L. (N1H), Edifici EUREKA, Parc de Recerca UAB, Bellaterra, 08193 Barcelona, Spain
| | - Roser Fisa
- Laboratori de Parasitologia, Departament de Biologia Sanitat i Mediambient, Facultat de Farmàcia I Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Cristina Riera
- Laboratori de Parasitologia, Departament de Biologia Sanitat i Mediambient, Facultat de Farmàcia I Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Maria Magdalena Alcover
- Laboratori de Parasitologia, Departament de Biologia Sanitat i Mediambient, Facultat de Farmàcia I Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Xavier Roura
- Nano1Health S.L. (N1H), Edifici EUREKA, Parc de Recerca UAB, Bellaterra, 08193 Barcelona, Spain
- Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Lluís Ferrer
- Nano1Health S.L. (N1H), Edifici EUREKA, Parc de Recerca UAB, Bellaterra, 08193 Barcelona, Spain
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Olga Francino
- Nano1Health S.L. (N1H), Edifici EUREKA, Parc de Recerca UAB, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
19
|
A feedback mechanism controls rDNA copy number evolution in yeast independently of natural selection. PLoS One 2022; 17:e0272878. [PMID: 36048821 PMCID: PMC9436098 DOI: 10.1371/journal.pone.0272878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
Ribosomal DNA (rDNA) is the genetic loci that encodes rRNA in eukaryotes. It is typically arranged as tandem repeats that vary in copy number within the same species. We have recently shown that rDNA repeats copy number in the yeast Saccharomyces cerevisiae is controlled by cell volume via a feedback circuit that senses cell volume by means of the concentration of the free upstream activator factor (UAF). The UAF strongly binds the rDNA gene promoter, but is also able to repress SIR2 deacetylase gene transcription that, in turn, represses rDNA amplification. In this way, the cells with a smaller DNA copy number than what is optimal evolve to increase that copy number until they reach a number that sequestrates free UAF and provokes SIR2 derepression that, in turn, blocks rDNA amplification. Here we propose a mathematical model to show that this evolutionary process can amplify rDNA repeats independently of the selective advantage of yeast cells having bigger or smaller rDNA copy numbers. We test several variants of this process and show that it can explain the observed experimental results independently of natural selection. These results predict that an autoregulated feedback circuit may, in some instances, drive to non Darwinian deterministic evolution for a limited time period.
Collapse
|
20
|
Llanes A, Cruz G, Morán M, Vega C, Pineda VJ, Ríos M, Penagos H, Suárez JA, Saldaña A, Lleonart R, Restrepo CM. Genomic diversity and genetic variation of Leishmania panamensis within its endemic range. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105342. [PMID: 35878820 DOI: 10.1016/j.meegid.2022.105342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Species belonging to the Leishmania (Viannia) subgenus are important causative agents of cutaneous and mucocutaneous leishmaniasis in Central and South America. These parasites possess several distinctive biological features that are influenced by their genetics, population structure, and genome instability. To date, several studies have revealed varying degrees of genetic diversity within Leishmania species. Particularly, in species of the L. (Viannia) subgenus, a generalized high intraspecific genetic diversity has been reported, although, conflicting conclusions have been drawn using different molecular techniques. Despite being the most common Leishmania species circulating in Panama and Colombia, few studies have analyzed clinical samples of Leishmania panamensis using whole-genome sequencing, and their restricted number of samples has limited the information they can provide to understand the population structure of L. panamensis. Here, we used next generation sequencing (NGS) to explore the genetic diversity of L. panamensis within its endemic range, analyzing data from 43 isolates of Colombian and Panamanian origin. Our results show the occurrence of three well-defined geographically correlated groups, and suggests the possible occurrence of additional phylogeographic groups. Furthermore, these results support the existence of a mixed mode of reproduction in L. panamensis, with varying frequencies of events of genetic recombination occurring primarily within subpopulations of closely related strains. This study offers important insights into the population genetics and reproduction mode of L. panamensis, paving the way to better understand their population structure and the emergence and maintenance of key eco-epidemiological traits.
Collapse
Affiliation(s)
- Alejandro Llanes
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama, Panama
| | - Génesis Cruz
- Escuela de Biología, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panama City, Panama, Panama
| | - Mitchelle Morán
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama, Panama
| | - Carlos Vega
- Escuela de Biología, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panama City, Panama, Panama
| | - Vanessa J Pineda
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama, Panama
| | - Margarita Ríos
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama, Panama
| | - Homero Penagos
- Hospital Regional Dr. Rafael Hernández, Caja de Seguro Social, David, Chiriquí, Panama; Sistema Nacional de Investigación-Secretaría Nacional de Ciencia, Tecnología e Innovación (SNI-SENACYT), Panama City, Panama, Panama
| | - José A Suárez
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama, Panama; Sistema Nacional de Investigación-Secretaría Nacional de Ciencia, Tecnología e Innovación (SNI-SENACYT), Panama City, Panama, Panama
| | - Azael Saldaña
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama, Panama; Sistema Nacional de Investigación-Secretaría Nacional de Ciencia, Tecnología e Innovación (SNI-SENACYT), Panama City, Panama, Panama
| | - Ricardo Lleonart
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama, Panama; Sistema Nacional de Investigación-Secretaría Nacional de Ciencia, Tecnología e Innovación (SNI-SENACYT), Panama City, Panama, Panama.
| | - Carlos M Restrepo
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama, Panama; Sistema Nacional de Investigación-Secretaría Nacional de Ciencia, Tecnología e Innovación (SNI-SENACYT), Panama City, Panama, Panama.
| |
Collapse
|
21
|
Douanne N, Dong G, Amin A, Bernardo L, Blanchette M, Langlais D, Olivier M, Fernandez-Prada C. Leishmania parasites exchange drug-resistance genes through extracellular vesicles. Cell Rep 2022; 40:111121. [PMID: 35858561 DOI: 10.1016/j.celrep.2022.111121] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/02/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Leishmania are eukaryotic parasites that have retained the ability to produce extracellular vesicles (EVs) through evolution. To date, it has been unclear if different DNA entities could be associated with Leishmania EVs and whether these could constitute a mechanism of horizontal gene transfer (HGT). Herein, we investigate the DNA content of EVs derived from drug-resistant parasites, as well as the EVs' potential to act as shuttles for DNA transfer. Next-generation sequencing and PCR assays confirm the enrichment of amplicons carrying drug-resistance genes associated with EVs. Transfer assays of drug-resistant EVs highlight a significant impact on the phenotype of recipient parasites induced by the expression of the transferred DNA. Recipient parasites display an enhanced growth and better control of oxidative stress. We provide evidence that eukaryotic EVs function as efficient mediators in HGT, thereby facilitating the transmission of drug-resistance genes and increasing the fitness of cells when encountering stressful environments.
Collapse
Affiliation(s)
- Noélie Douanne
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, 626 CIMIA Sicotte Street, Saint-Hyacinthe, QC J2S 2M2, Canada; The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - George Dong
- IDIGH, The Research Institute of the McGill University Health Centre, 2155 Guy Street, Montreal, QC H3H 2L9, Canada
| | - Atia Amin
- Department of Human Genetics, McGill University Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Lorena Bernardo
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, 626 CIMIA Sicotte Street, Saint-Hyacinthe, QC J2S 2M2, Canada; The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Mathieu Blanchette
- School of Computer Science, McGill University, Montreal, QC H3A 0E9, Canada
| | - David Langlais
- Department of Human Genetics, McGill University Genome Centre, Montreal, QC H3A 0G1, Canada; Department of Microbiology and Immunology, McGill Research Centre on Complex Traits, Montreal, QC, Canada
| | - Martin Olivier
- IDIGH, The Research Institute of the McGill University Health Centre, 2155 Guy Street, Montreal, QC H3H 2L9, Canada; Department of Microbiology and Immunology, McGill Research Centre on Complex Traits, Montreal, QC, Canada.
| | - Christopher Fernandez-Prada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, 626 CIMIA Sicotte Street, Saint-Hyacinthe, QC J2S 2M2, Canada; The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; Department of Microbiology and Immunology, McGill Research Centre on Complex Traits, Montreal, QC, Canada.
| |
Collapse
|
22
|
Cruz-Saavedra L, Schwabl P, Vallejo GA, Carranza JC, Muñoz M, Patino LH, Paniz-Mondolfi A, Llewellyn MS, Ramírez JD. Genome plasticity driven by aneuploidy and loss of heterozygosity in Trypanosoma cruzi. Microb Genom 2022; 8. [PMID: 35748878 PMCID: PMC9455712 DOI: 10.1099/mgen.0.000843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma cruzi the causative agent of Chagas disease shows a marked genetic diversity and divided into at least six Discrete Typing Units (DTUs). High intra genetic variability has been observed in the TcI DTU, the most widely distributed DTU, where patterns of genomic diversity can provide information on ecological and evolutionary processes driving parasite population structure and genome organization. Chromosomal aneuploidies and rearrangements across multigene families represent an evidence of T. cruzi genome plasticity. We explored genomic diversity among 18 Colombian T. cruzi I clones and 15 T. cruzi I South American strains. Our results confirm high genomic variability, heterozygosity and presence of a clade compatible with the TcIdom genotype, described for strains from humans in Colombia and Venezuela. TcI showed high structural plasticity across the geographical region studied. Differential events of whole and segmental aneuploidy (SA) along chromosomes even between clones from the same strain were found and corroborated by the depth and allelic frequency. We detected loss of heterozygosity (LOH) events in different chromosomes, however, the size and location of segments under LOH varied between clones. Genes adjacent to breakpoints were evaluated, and retrotransposon hot spot genes flanked the beginning of segmental aneuploidies. Our results suggest that T. cruzi genomes, like those of Leishmania, may have a highly unstable structure and there is now an urgent need to design experiments to explore any potential adaptive role for the plasticity observed.
Collapse
Affiliation(s)
- Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Philipp Schwabl
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gustavo A Vallejo
- Laboratorio de Investigación en Parasitología Tropical, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Julio C Carranza
- Laboratorio de Investigación en Parasitología Tropical, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz Helena Patino
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Alberto Paniz-Mondolfi
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Martin S Llewellyn
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.,Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
23
|
Divergent binding mode for a protozoan BRC repeat to RAD51. Biochem J 2022; 479:1031-1043. [PMID: 35502837 PMCID: PMC9162458 DOI: 10.1042/bcj20220141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/20/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
Abstract
Interaction of BRCA2 through ca. 30 amino acid residue motifs, BRC repeats, with RAD51 is a conserved feature of the double-strand DNA break repair by homologous recombination in eukaryotes. In humans the binding of the eight BRC repeats is defined by two sequence motifs, FxxA and LFDE, interacting with distinct sites on RAD51. Little is known of the interaction of BRC repeats in other species, especially in protozoans, where variable number of BRC repeats are found in BRCA2 proteins. Here, we have studied in detail the interactions of the two BRC repeats in Leishmania infantum BRCA2 with RAD51. We show LiBRC1 is a high-affinity repeat and determine the crystal structure of its complex with LiRAD51. Using truncation mutagenesis of the LiBRC1 repeat, we demonstrate that high affinity binding is maintained in the absence of an LFDE-like motif and suggest compensatory structural features. These observations point towards a divergent evolution of BRC repeats, where a common FxxA-binding ancestor evolved additional contacts for affinity maturation and fine-tuning.
Collapse
|
24
|
Piel L, Rajan KS, Bussotti G, Varet H, Legendre R, Proux C, Douché T, Giai-Gianetto Q, Chaze T, Cokelaer T, Vojtkova B, Gordon-Bar N, Doniger T, Cohen-Chalamish S, Rengaraj P, Besse C, Boland A, Sadlova J, Deleuze JF, Matondo M, Unger R, Volf P, Michaeli S, Pescher P, Späth GF. Experimental evolution links post-transcriptional regulation to Leishmania fitness gain. PLoS Pathog 2022; 18:e1010375. [PMID: 35294501 PMCID: PMC8959184 DOI: 10.1371/journal.ppat.1010375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/28/2022] [Accepted: 02/15/2022] [Indexed: 12/30/2022] Open
Abstract
The protozoan parasite Leishmania donovani causes fatal human visceral leishmaniasis in absence of treatment. Genome instability has been recognized as a driver in Leishmania fitness gain in response to environmental change or chemotherapy. How genome instability generates beneficial phenotypes despite potential deleterious gene dosage effects is unknown. Here we address this important open question applying experimental evolution and integrative systems approaches on parasites adapting to in vitro culture. Phenotypic analyses of parasites from early and late stages of culture adaptation revealed an important fitness tradeoff, with selection for accelerated growth in promastigote culture (fitness gain) impairing infectivity (fitness costs). Comparative genomics, transcriptomics and proteomics analyses revealed a complex regulatory network associated with parasite fitness gain, with genome instability causing highly reproducible, gene dosage-independent and -dependent changes. Reduction of flagellar transcripts and increase in coding and non-coding RNAs implicated in ribosomal biogenesis and protein translation were not correlated to dosage changes of the corresponding genes, revealing a gene dosage-independent, post-transcriptional mechanism of regulation. In contrast, abundance of gene products implicated in post-transcriptional regulation itself correlated to corresponding gene dosage changes. Thus, RNA abundance during parasite adaptation is controled by direct and indirect gene dosage changes. We correlated differential expression of small nucleolar RNAs (snoRNAs) with changes in rRNA modification, providing first evidence that Leishmania fitness gain in culture may be controlled by post-transcriptional and epitranscriptomic regulation. Our findings propose a novel model for Leishmania fitness gain in culture, where differential regulation of mRNA stability and the generation of modified ribosomes may potentially filter deleterious from beneficial gene dosage effects and provide proteomic robustness to genetically heterogenous, adapting parasite populations. This model challenges the current, genome-centric approach to Leishmania epidemiology and identifies the Leishmania transcriptome and non-coding small RNome as potential novel sources for the discovery of biomarkers that may be associated with parasite phenotypic adaptation in clinical settings. Genome instability plays a central yet poorly understood role in human disease. Gene amplifications and deletions drive cancer development, microbial infection and therapeutic failure. The molecular mechanisms that harness the deleterious effects of genome instability to generate beneficial phenotypes in pathogenic systems are unknown. Here we study this important open question in the protozoan parasite Leishmania that causes devastating human diseases termed leishmaniases. Leishmania parasites lack transcriptional control and instead exploit genome instability to adapt to their host environment. Analyzing in vitro adaptation of hamster-derived parasites via gene copy number (genomic level) and gene expression changes (transcriptomic and proteomic levels), we show that these parasites likely exploit small nucleolar RNAs (snoRNAs) to mitigate toxic effects of genome instability by post-transcriptional regulation and the establishment of modified ribosomes. Our findings propose non-coding RNAs as potential novel biomarkers with diagnostic and prognostic value that may be linked to changes in parasite tissue tropism or drug susceptibility. This novel insight into Leishmania adaptation will be likely applicable to other fast evolving eukaryotic systems with unstable genomes, such as fungi or cancer cells.
Collapse
Affiliation(s)
- Laura Piel
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - K. Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Giovanni Bussotti
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Paris, France
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Department of Computational Biology, USR 3756 IP CNRS, Paris, France
| | - Hugo Varet
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Department of Computational Biology, USR 3756 IP CNRS, Paris, France
- Institut Pasteur, Biomics, Paris, France; Institut Pasteur, UTechS MSBio, Paris, France
| | - Rachel Legendre
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Department of Computational Biology, USR 3756 IP CNRS, Paris, France
- Institut Pasteur, Biomics, Paris, France; Institut Pasteur, UTechS MSBio, Paris, France
| | - Caroline Proux
- Institut Pasteur, Biomics, Paris, France; Institut Pasteur, UTechS MSBio, Paris, France
| | - Thibaut Douché
- Institut Pasteur, Proteomics Platform Mass Spectrometry for Biology UTechS, C2RT, USR2000 CNRS, Paris, France
| | - Quentin Giai-Gianetto
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Department of Computational Biology, USR 3756 IP CNRS, Paris, France
- Institut Pasteur, Proteomics Platform Mass Spectrometry for Biology UTechS, C2RT, USR2000 CNRS, Paris, France
| | - Thibault Chaze
- Institut Pasteur, Proteomics Platform Mass Spectrometry for Biology UTechS, C2RT, USR2000 CNRS, Paris, France
| | - Thomas Cokelaer
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Department of Computational Biology, USR 3756 IP CNRS, Paris, France
- Institut Pasteur, Biomics, Paris, France; Institut Pasteur, UTechS MSBio, Paris, France
| | - Barbora Vojtkova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Nadav Gordon-Bar
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Praveenkumar Rengaraj
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Céline Besse
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Jovana Sadlova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Mariette Matondo
- Institut Pasteur, Proteomics Platform Mass Spectrometry for Biology UTechS, C2RT, USR2000 CNRS, Paris, France
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Pascale Pescher
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Paris, France
- * E-mail: (PP); (GS)
| | - Gerald F. Späth
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Paris, France
- * E-mail: (PP); (GS)
| |
Collapse
|
25
|
Monte-Neto RL, Fernandez-Prada C, Moretti NS. Recent research brings hope for reshaping the co-evolutionary arms race against parasitic infectious diseases. Drug Dev Res 2022; 83:219-221. [PMID: 35106826 DOI: 10.1002/ddr.21922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Rubens L Monte-Neto
- Biotecnologia Aplicada ao Estudo de Patógenos (BAP), Instituto René Rachou Fundação Oswaldo Cruz, Av. Augusto de Lima, 1715, Belo Horizonte, Minas Gerais, 30190-009, Brazil
| | - Christopher Fernandez-Prada
- Faculté de Médecine Vétérinaire, Département de Pathologie et Microbiologie, Université de Montréal, 3200, rue Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
| | - Nilmar S Moretti
- Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Rua Botucatu 862 - 6º andar, São Paulo, São Paulo, 04023-062, Brazil
| |
Collapse
|
26
|
Santi AMM, Murta SMF. Impact of Genetic Diversity and Genome Plasticity of Leishmania spp. in Treatment and the Search for Novel Chemotherapeutic Targets. Front Cell Infect Microbiol 2022; 12:826287. [PMID: 35141175 PMCID: PMC8819175 DOI: 10.3389/fcimb.2022.826287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 11/21/2022] Open
Abstract
Leishmaniasis is one of the major public health concerns in Latin America, Africa, Asia, and Europe. The absence of vaccines for human use and the lack of effective vector control programs make chemotherapy the main strategy to control all forms of the disease. However, the high toxicity of available drugs, limited choice of therapeutic agents, and occurrence of drug-resistant parasite strains are the main challenges related to chemotherapy. Currently, only a small number of drugs are available for leishmaniasis treatment, including pentavalent antimonials (SbV), amphotericin B and its formulations, miltefosine, paromomycin sulphate, and pentamidine isethionate. In addition to drug toxicity, therapeutic failure of leishmaniasis is a serious concern. The occurrence of drug-resistant parasites is one of the causes of therapeutic failure and is closely related to the diversity of parasites in this genus. Owing to the enormous plasticity of the genome, resistance can occur by altering different metabolic pathways, demonstrating that resistance mechanisms are multifactorial and extremely complex. Genetic variability and genome plasticity cause not only the available drugs to have limitations, but also make the search for new drugs challenging. Here, we examined the biological characteristics of parasites that hinder drug discovery.
Collapse
|
27
|
Glans H, Lind Karlberg M, Advani R, Bradley M, Alm E, Andersson B, Downing T. High genome plasticity and frequent genetic exchange in Leishmania tropica isolates from Afghanistan, Iran and Syria. PLoS Negl Trop Dis 2021; 15:e0010110. [PMID: 34968388 PMCID: PMC8754299 DOI: 10.1371/journal.pntd.0010110] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/12/2022] [Accepted: 12/17/2021] [Indexed: 11/23/2022] Open
Abstract
Background The kinetoplastid protozoan Leishmania tropica mainly causes cutaneous leishmaniasis in humans in the Middle East, and relapse or treatment failure after treatment are common in this area. L. tropica’s digenic life cycle includes distinct stages in the vector sandfly and the mammalian host. Sexual reproduction and genetic exchange appear to occur more frequently than in other Leishmania species. Understanding these processes is complicated by chromosome instability during cell division that yields aneuploidy, recombination and heterozygosity. This combination of rare recombination and aneuploid permits may reveal signs of hypothetical parasexual mating, where diploid cells fuse to form a transient tetraploid that undergoes chromosomal recombination and gradual chromosomal loss. Methodology/principal findings The genome-wide SNP diversity from 22 L. tropica isolates showed chromosome-specific runs of patchy heterozygosity and extensive chromosome copy number variation. All these isolates were collected during 2007–2017 in Sweden from patients infected in the Middle East and included isolates from a patient possessing two genetically distinct leishmaniasis infections three years apart with no evidence of re-infection. We found differing ancestries on the same chromosome (chr36) across multiple samples: matching the reference genome with few derived alleles, followed by blocks of heterozygous SNPs, and then by clusters of homozygous SNPs with specific recombination breakpoints at an inferred origin of replication. Other chromosomes had similar marked changes in heterozygosity at strand-switch regions separating polycistronic transcriptional units. Conclusion/significance These large-scale intra- and inter-chromosomal changes in diversity driven by recombination and aneuploidy suggest multiple mechanisms of cell reproduction and diversification in L. tropica, including mitotic, meiotic and parasexual processes. It underpins the need for more genomic surveillance of Leishmania, to detect emerging hybrids that could spread more widely and to better understand the association between genetic variation and treatment outcome. Furthering our understanding of Leishmania genome evolution and ancestry will aid better diagnostics and treatment for cutaneous leishmaniasis caused by L.tropica in the Middle East. Cutaneous leishmaniasis is mainly caused by Leishmania tropica in the Middle East, where it is known for treatment failure and a need for prolonged and/or multiple treatments. Several factors affect the clinical presentation and treatment outcome, such as host genetic variability and specific immune response, as well as environmental factors and the vector species. Little is known about the parasite genome and its influence on treatment response. By analysing the genome of 22 isolates of L. tropica, we have revealed extensive genomic variation and a complex population structure with evidence of genetic exchange within and among the isolates, indicating a possible presence of sexual or parasexual mechanisms. Understanding the Leishmania genome better may improve future treatment and better understanding of treatment failure and relapse.
Collapse
Affiliation(s)
- Hedvig Glans
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Dermatology & Venerology, Dept of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Maria Lind Karlberg
- Department of Microbiology, The Public Health Agency of Sweden, Stockholm, Sweden
| | - Reza Advani
- Department of Microbiology, The Public Health Agency of Sweden, Stockholm, Sweden
| | - Maria Bradley
- Division of Dermatology & Venerology, Dept of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Dermatology and Venerology, Karolinska University Hospital, Stockholm, Sweden
| | - Erik Alm
- The European Center for Disease Prevention and Control, Stockholm, Sweden
| | - Björn Andersson
- Department of Cell & Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tim Downing
- School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
28
|
Confining Trypanosoma brucei in emulsion droplets reveals population variabilities in division rates and improves in vitro cultivation. Sci Rep 2021; 11:18192. [PMID: 34521865 PMCID: PMC8440574 DOI: 10.1038/s41598-021-97356-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/30/2021] [Indexed: 11/08/2022] Open
Abstract
Trypanosome parasites are infecting mammals in Sub-Saharan Africa and are transmitted between hosts through bites of the tsetse fly. The transmission from the insect vector to the mammal host causes a number of metabolic and physiological changes. A fraction of the population continuously adapt to the immune system of the host, indicating heterogeneity at the population level. Yet, the cell to cell variability in populations is mostly unknown. We develop here an analytical method for quantitative measurements at the single cell level based on encapsulation and cultivation of single-cell Trypanosoma brucei in emulsion droplets. We first show that mammalian stage trypanosomes survive for several hours to days in droplets, with an influence of droplet size on both survival and growth. We unravel various growth patterns within a population and find that droplet cultivation of trypanosomes results in 10-fold higher cell densities of the highest dividing cell variants compared to standard cultivation techniques. Some variants reach final cell titers in droplets closer to what is observed in nature than standard culture, of practical interest for cell production. Droplet microfluidics is therefore a promising tool for trypanosome cultivation and analysis with further potential for high-throughput single cell trypanosome analysis.
Collapse
|
29
|
Ling X, Han Y, Meng J, Zhong B, Chen J, Zhang H, Qin J, Pang J, Liu L. Small extrachromosomal circular DNA (eccDNA): major functions in evolution and cancer. Mol Cancer 2021; 20:113. [PMID: 34479546 PMCID: PMC8414719 DOI: 10.1186/s12943-021-01413-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/22/2021] [Indexed: 12/13/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) refers to a type of circular DNA that originate from but are likely independent of chromosomes. Due to technological advancements, eccDNAs have recently emerged as multifunctional molecules with numerous characteristics. The unique topological structure and genetic characteristics of eccDNAs shed new light on the monitoring, early diagnosis, treatment, and prediction of cancer. EccDNAs are commonly observed in both normal and cancer cells and function via different mechanisms in the stress response to exogenous and endogenous stimuli, aging, and carcinogenesis and in drug resistance during cancer treatment. The structural diversity of eccDNAs contributes to the function and numerical diversity of eccDNAs and thereby endows eccDNAs with powerful roles in evolution and in cancer initiation and progression by driving genetic plasticity and heterogeneity from extrachromosomal sites, which has been an ignored function in evolution in recent decades. EccDNAs show great potential in cancer, and we summarize the features, biogenesis, evaluated functions, functional mechanisms, related methods, and clinical utility of eccDNAs with a focus on their role in evolution and cancer.
Collapse
Affiliation(s)
- Xiaoxuan Ling
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| | - Yali Han
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| | - Jinxue Meng
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| | - Bohuan Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| | - Jialong Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| | - He Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| | - Jiheng Qin
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| | - Jing Pang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| | - Linhua Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| |
Collapse
|
30
|
Camacho E, González-de la Fuente S, Solana JC, Rastrojo A, Carrasco-Ramiro F, Requena JM, Aguado B. Gene Annotation and Transcriptome Delineation on a De Novo Genome Assembly for the Reference Leishmania major Friedlin Strain. Genes (Basel) 2021; 12:genes12091359. [PMID: 34573340 PMCID: PMC8468144 DOI: 10.3390/genes12091359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 01/05/2023] Open
Abstract
Leishmania major is the main causative agent of cutaneous leishmaniasis in humans. The Friedlin strain of this species (LmjF) was chosen when a multi-laboratory consortium undertook the objective of deciphering the first genome sequence for a parasite of the genus Leishmania. The objective was successfully attained in 2005, and this represented a milestone for Leishmania molecular biology studies around the world. Although the LmjF genome sequence was done following a shotgun strategy and using classical Sanger sequencing, the results were excellent, and this genome assembly served as the reference for subsequent genome assemblies in other Leishmania species. Here, we present a new assembly for the genome of this strain (named LMJFC for clarity), generated by the combination of two high throughput sequencing platforms, Illumina short-read sequencing and PacBio Single Molecular Real-Time (SMRT) sequencing, which provides long-read sequences. Apart from resolving uncertain nucleotide positions, several genomic regions were reorganized and a more precise composition of tandemly repeated gene loci was attained. Additionally, the genome annotation was improved by adding 542 genes and more accurate coding-sequences defined for around two hundred genes, based on the transcriptome delimitation also carried out in this work. As a result, we are providing gene models (including untranslated regions and introns) for 11,238 genes. Genomic information ultimately determines the biology of every organism; therefore, our understanding of molecular mechanisms will depend on the availability of precise genome sequences and accurate gene annotations. In this regard, this work is providing an improved genome sequence and updated transcriptome annotations for the reference L. major Friedlin strain.
Collapse
|
31
|
Medina J, Cruz-Saavedra L, Patiño LH, Muñoz M, Ramírez JD. Comparative analysis of the transcriptional responses of five Leishmania species to trivalent antimony. Parasit Vectors 2021; 14:419. [PMID: 34419127 PMCID: PMC8380399 DOI: 10.1186/s13071-021-04915-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leishmaniasis is a neglected tropical disease caused by several species of Leishmania. The resistance phenotype of these parasites depends on the characteristics of each species, which contributes to increased therapeutic failures. Understanding the mechanism used by the parasite to survive under treatment pressure in order to identify potential common and specific therapeutic targets is essential for the control of leishmaniasis. The aim of this study was to investigate the expression profiles and potential shared and specific resistance markers of the main Leishmania species of medical importance [subgenus L. (Leishmania): L. donovani, L. infantum and L. amazonensis; subgenus L. (Viannia): L. panamensis and L. braziliensis)] resistant and sensitive to trivalent stibogluconate (SbIII). METHODS We conducted comparative analysis of the transcriptomic profiles (only coding sequences) of lines with experimentally induced resistance to SbIII from biological replicates of five Leishmania species available in the databases of four articles based on ortholog attribution. Simultaneously, we carried out functional analysis of ontology and reconstruction of metabolic pathways of the resulting differentially expressed genes (DEGs). RESULTS Resistant lines for each species had differential responses in metabolic processes, compound binding, and membrane components concerning their sensitive counterpart. One hundred and thirty-nine metabolic pathways were found, with the three main pathways comprising cysteine and methionine metabolism, glycolysis, and the ribosome. Differentially expressed orthologous genes assigned to species-specific responses predominated, with 899 self-genes. No differentially expressed genes were found in common among the five species. Two common upregulated orthologous genes were found among four species (L. donovani, L. braziliensis, L. amazonensis, and L. panamensis) related to an RNA-binding protein and the NAD(P)H cytochrome-B5-oxidoreductase complex, associated with transcriptional control and de novo synthesis of linoleic acid, critical mechanisms in resistance to antimonials. CONCLUSION Herein, we identified potential species-specific genes related to resistance to SbIII. Therefore, we suggest that future studies consider a treatment scheme that is species-specific. Despite the limitations of our study, this is the first approach toward unraveling the pan-genus genetic mechanisms of resistance in leishmaniasis.
Collapse
Affiliation(s)
- Julián Medina
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
32
|
Abstract
Leishmania donovani is a parasitic protist that causes the lethal Kala-azar fever in India and East Africa. Gene expression in Leishmania is regulated by gene copy number variation and inducible translation while RNA synthesis initiates at a small number of sites per chromosome and proceeds through polycistronic transcription units, precluding a gene-specific regulation (C. Clayton and M. Shapira, Mol Biochem Parasitol 156:93–101, 2007, https://doi.org/10.1016/j.molbiopara.2007.07.007). Here, we analyze the dynamics of chromatin structure in both life cycle stages of the parasite and find evidence for an additional, epigenetic gene regulation pathway in this early branching eukaryote. The assay for transposase-accessible chromatin using sequencing (ATAC-seq) analysis (J. D. Buenrostro, P. G. Giresi, L. C. Zaba, H. Y. Chang, and W. J. Greenleaf, Nat Methods 10:1213–1218, 2013, https://doi.org/10.1038/nmeth.2688) predominantly shows euchromatin at transcription start regions in fast-growing promastigotes, but mostly heterochromatin in the slowly proliferating amastigotes, the mammalian stage, reflecting a previously shown increase of histone synthesis in the latter stage. IMPORTANCELeishmania parasites are important pathogens with a global impact and cause poverty-related illness and death. They are devoid of classic cis- and trans-acting transcription regulators but use regulated translation and gene copy number variations to adapt to hosts and environments. In this work, we show that transcription start regions present as open euchromatin in fast-growing insect stages but as less-accessible heterochromatin in the slowly proliferating amastigote stage, indicating an epigenetic control of gene accessibility in this early branching eukaryotic pathogen. This finding should stimulate renewed interest in the control of RNA synthesis in Leishmania and related parasites.
Collapse
|
33
|
Lau R, Mukkala AN, Kariyawasam R, Clarke S, Valencia BM, Llanos-Cuentas A, Boggild AK. Comparison of Whole Genome Sequencing versus Standard Molecular Diagnostics for Species Identification in the Leishmania Viannia Subgenus. Am J Trop Med Hyg 2021; 105:660-669. [PMID: 34270450 PMCID: PMC8592345 DOI: 10.4269/ajtmh.21-0273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/04/2021] [Indexed: 11/07/2022] Open
Abstract
The prognosis and treatment of New World tegumentary leishmaniasis is dependent on the infecting species, yet such species identification in the Leishmania Viannia subgenus poses a diagnostic challenge. Currently, speciation relies on standard molecular techniques such as restriction fragment length polymorphism (RFLP) analysis, and Sanger sequencing (SS). Whole-genome sequencing (WGS) is a robust and increasingly cost-efficient tool that may improve Leishmania species identification. We evaluated WGS versus standard RFLP-SS for species identification in three reference and five clinical strains of Leishmania Viannia spp. Internal transcribed spacer1 (its1), cysteine proteinase b (cpb), and heat shock protein 70 (hsp70) polymerase chain reaction-restriction fragment length polymorphism (RFLP) was performed, followed by SS of the its2, cpb, hsp70, and mannose phosphate isomerase (mpi) loci. After de novo assembly, sequences were mapped, and homology compared with both reference strains and reference genomes on National Center for Biotechnology Information. All American Type Culture Collection strains were confirmed to be single-species of L. V. braziliensis, L. V. guyanensis, or L. V. panamensis by WGS. Conversely, RFLP-SS was able to definitively identify one of three isolates to the species level. Clinical samples were identified as either single-species (N = 3), mixed (N = 1), or hybrid (N = 1) infections by WGS, while standard molecular diagnosis required multi-target composite analysis for identification due to loci-dependent results by RFLP-SS. We have corroborated the utility of WGS as a diagnostic tool to speciate members of the L. Viannia subgenus and to discriminate between mixed and hybrid infections. WGS is a potentially useful complement to multistaged RFLP-SS for species identification in Leishmania infections.
Collapse
Affiliation(s)
- Rachel Lau
- Public Health Ontario Laboratory, Toronto, Ontario, Canada
| | - Avinash N. Mukkala
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ruwandi Kariyawasam
- Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Precision Laboratories–Public Health, Edmonton, Alberta, Canada
| | - Shareese Clarke
- Faculty of Nursing, University of Toronto, Toronto, Ontario, Canada
| | - Braulio M. Valencia
- Kirby Institute, University of New South Wales, Sydney, Australia
- Instituto de Medicina Tropical Alejandro von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alejandro Llanos-Cuentas
- Public Health Ontario Laboratory, Toronto, Ontario, Canada
- Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Andrea K. Boggild
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Tropical Disease Unit, Toronto General Hospital, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
da Silva MS. DNA Double-Strand Breaks: A Double-Edged Sword for Trypanosomatids. Front Cell Dev Biol 2021; 9:669041. [PMID: 33937271 PMCID: PMC8085331 DOI: 10.3389/fcell.2021.669041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 01/09/2023] Open
Abstract
For nearly all eukaryotic cells, stochastic DNA double-strand breaks (DSBs) are one of the most deleterious types of DNA lesions. DSB processing and repair can cause sequence deletions, loss of heterozygosity, and chromosome rearrangements resulting in cell death or carcinogenesis. However, trypanosomatids (single-celled eukaryotes parasites) do not seem to follow this premise strictly. Several studies have shown that trypanosomatids depend on DSBs to perform several events of paramount importance during their life cycle. For Trypanosoma brucei, DSBs formation is associated with host immune evasion via antigenic variation. In Trypanosoma cruzi, DSBs play a crucial role in the genetic exchange, a mechanism that is still little explored but appear to be of fundamental importance for generating variability. In Leishmania spp., DSBs are necessary to generate genomic changes by gene copy number variation (CNVs), events that are essential for these organisms to overcome inhospitable conditions. As DSB repair in trypanosomatids is primarily conducted via homologous recombination (HR), most of the events associated with DSBs are HR-dependent. This review will discuss the latest findings on how trypanosomatids balance the benefits and inexorable challenges caused by DSBs.
Collapse
Affiliation(s)
- Marcelo Santos da Silva
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
35
|
Bartholomeu DC, Teixeira SMR, Cruz AK. Genomics and functional genomics in Leishmania and Trypanosoma cruzi: statuses, challenges and perspectives. Mem Inst Oswaldo Cruz 2021; 116:e200634. [PMID: 33787768 PMCID: PMC8011669 DOI: 10.1590/0074-02760200634] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
The availability of Trypanosomatid genomic data in public databases has opened myriad experimental possibilities that have contributed to a more comprehensive understanding of the biology of these parasites and their interactions with hosts. In this review, after brief remarks on the history of the Trypanosoma cruzi and Leishmania genome initiatives, we present an overview of the relevant contributions of genomics, transcriptomics and functional genomics, discussing the primary obstacles, challenges, relevant achievements and future perspectives of these technologies.
Collapse
Affiliation(s)
- Daniella C Bartholomeu
- Universidade Federal de Minas Gerais, Departamento de Parasitologia, Belo Horizonte, MG, Brasil
| | | | - Angela Kaysel Cruz
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular, Ribeirão Preto, SP, Brasil
| |
Collapse
|
36
|
Wargnies M, Plazolles N, Schenk R, Villafraz O, Dupuy JW, Biran M, Bachmaier S, Baudouin H, Clayton C, Boshart M, Bringaud F. Metabolic selection of a homologous recombination-mediated gene loss protects Trypanosoma brucei from ROS production by glycosomal fumarate reductase. J Biol Chem 2021; 296:100548. [PMID: 33741344 PMCID: PMC8065229 DOI: 10.1016/j.jbc.2021.100548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
The genome of trypanosomatids rearranges by using repeated sequences as platforms for amplification or deletion of genomic segments. These stochastic recombination events have a direct impact on gene dosage and foster the selection of adaptive traits in response to environmental pressure. We provide here such an example by showing that the phosphoenolpyruvate carboxykinase (PEPCK) gene knockout (Δpepck) leads to the selection of a deletion event between two tandemly arranged fumarate reductase (FRDg and FRDm2) genes to produce a chimeric FRDg-m2 gene in the Δpepck∗ cell line. FRDg is expressed in peroxisome-related organelles, named glycosomes, expression of FRDm2 has not been detected to date, and FRDg-m2 is nonfunctional and cytosolic. Re-expression of FRDg significantly impaired growth of the Δpepck∗ cells, but FRD enzyme activity was not required for this negative effect. Instead, glycosomal localization as well as the covalent flavinylation motif of FRD is required to confer growth retardation and intracellular accumulation of reactive oxygen species (ROS). The data suggest that FRDg, similar to Escherichia coli FRD, can generate ROS in a flavin-dependent process by transfer of electrons from NADH to molecular oxygen instead of fumarate when the latter is unavailable, as in the Δpepck background. Hence, growth retardation is interpreted as a consequence of increased production of ROS, and rearrangement of the FRD locus liberates Δpepck∗ cells from this obstacle. Interestingly, intracellular production of ROS has been shown to be required to complete the parasitic cycle in the insect vector, suggesting that FRDg may play a role in this process.
Collapse
Affiliation(s)
- Marion Wargnies
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France; Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, Bordeaux, France
| | - Nicolas Plazolles
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | - Robin Schenk
- Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Oriana Villafraz
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | | | - Marc Biran
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, Bordeaux, France
| | - Sabine Bachmaier
- Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Hélène Baudouin
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France; Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, Bordeaux, France
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZBMH), Universität Heidelberg, Heidelberg, Germany
| | - Michael Boshart
- Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München, Martinsried, Germany.
| | - Frédéric Bringaud
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France; Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, Bordeaux, France.
| |
Collapse
|
37
|
Grünebast J, Clos J. Leishmania: Responding to environmental signals and challenges without regulated transcription. Comput Struct Biotechnol J 2020; 18:4016-4023. [PMID: 33363698 PMCID: PMC7744640 DOI: 10.1016/j.csbj.2020.11.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023] Open
Abstract
Here we describe the non-canonical control of gene expression in Leishmania, a single-cell parasite that is responsible for one of the major neglected tropical diseases. We discuss the lack of regulated RNA synthesis, the post-transcriptional gene regulation including RNA stability and regulated translation. We also show that genetic adaptations such as mosaic aneuploidy, gene copy number variations and DNA sequence polymorphisms are important means for overcoming drug challenge and environmental diversity. These mechanisms are discussed in the context of the unique flow of genetic information found in Leishmania and related protists.
Collapse
Affiliation(s)
- Janne Grünebast
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Joachim Clos
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
38
|
Bea A, Kröber-Boncardo C, Sandhu M, Brinker C, Clos J. The Leishmania donovani SENP Protease Is Required for SUMO Processing but Not for Viability. Genes (Basel) 2020; 11:E1198. [PMID: 33066659 PMCID: PMC7602377 DOI: 10.3390/genes11101198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 01/13/2023] Open
Abstract
The protozoan parasite Leishmania donovani is part of an early eukaryotic branch and depends on post-transcriptional mechanisms for gene expression regulation. This includes post-transcriptional protein modifications, such as protein phosphorylation. The presence of genes for protein SUMOylation, i.e., the covalent attachment of small ubiquitin-like modifier (SUMO) polypeptides, in the Leishmania genomes prompted us to investigate the importance of the sentrin-specific protease (SENP) and its putative client, SUMO, for the vitality and infectivity of Leishmania donovani. While SENP null mutants are viable with reduced vitality, viable SUMO null mutant lines could not be obtained. SUMO C-terminal processing is disrupted in SENP null mutants, preventing SUMO from covalent attachment to proteins and nuclear translocation. Infectivity in vitro is not affected by the loss of SENP-dependent SUMO processing. We conclude that SENP is required for SUMO processing, but that functions of unprocessed SUMO are critical for Leishmania viability.
Collapse
Affiliation(s)
- Annika Bea
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, D-20359 Hamburg, Germany; (A.B.); (C.K.-B.); (M.S.); (C.B.)
| | - Constanze Kröber-Boncardo
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, D-20359 Hamburg, Germany; (A.B.); (C.K.-B.); (M.S.); (C.B.)
| | - Manpreet Sandhu
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, D-20359 Hamburg, Germany; (A.B.); (C.K.-B.); (M.S.); (C.B.)
- Boehringer Ingelheim RCV, A-1121 Vienna, Austria
| | - Christine Brinker
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, D-20359 Hamburg, Germany; (A.B.); (C.K.-B.); (M.S.); (C.B.)
| | - Joachim Clos
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, D-20359 Hamburg, Germany; (A.B.); (C.K.-B.); (M.S.); (C.B.)
| |
Collapse
|
39
|
Kröber-Boncardo C, Lorenzen S, Brinker C, Clos J. Casein kinase 1.2 over expression restores stress resistance to Leishmania donovani HSP23 null mutants. Sci Rep 2020; 10:15969. [PMID: 32994468 PMCID: PMC7525241 DOI: 10.1038/s41598-020-72724-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/04/2020] [Indexed: 01/25/2023] Open
Abstract
Leishmania donovani is a trypanosomatidic parasite and causes the lethal kala-azar fever, a neglected tropical disease. The Trypanosomatida are devoid of transcriptional gene regulation and rely on gene copy number variations and translational control for their adaption to changing conditions. To survive at mammalian tissue temperatures, L. donovani relies on the small heat shock protein HSP23, the loss of which renders the parasites stress sensitive and impairs their proliferation. Here, we analysed a spontaneous escape mutant with wild type-like in vitro growth. Further selection of this escape strains resulted in a complete reversion of the phenotype. Whole genome sequencing revealed a correlation between stress tolerance and the massive amplification of a six-gene cluster on chromosome 35, with further analysis showing over expression of the casein kinase 1.2 gene as responsible. In vitro phosphorylation experiments established both HSP23 and the related P23 co-chaperone as substrates and modulators of casein kinase 1.2, providing evidence for another crucial link between chaperones and signal transduction protein kinases in this early branching eukaryote.
Collapse
Affiliation(s)
- Constanze Kröber-Boncardo
- Leishmania Group, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St 74, 20359, Hamburg, Germany
| | - Stephan Lorenzen
- Department of Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christine Brinker
- Leishmania Group, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St 74, 20359, Hamburg, Germany
| | - Joachim Clos
- Leishmania Group, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St 74, 20359, Hamburg, Germany.
| |
Collapse
|
40
|
Damasceno JD, Marques CA, Black J, Briggs E, McCulloch R. Read, Write, Adapt: Challenges and Opportunities during Kinetoplastid Genome Replication. Trends Genet 2020; 37:21-34. [PMID: 32993968 PMCID: PMC9213392 DOI: 10.1016/j.tig.2020.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022]
Abstract
The genomes of all organisms are read throughout their growth and development, generating new copies during cell division and encoding the cellular activities dictated by the genome’s content. However, genomes are not invariant information stores but are purposefully altered in minor and major ways, adapting cellular behaviour and driving evolution. Kinetoplastids are eukaryotic microbes that display a wide range of such read–write genome activities, in many cases affecting critical aspects of their biology, such as host adaptation. Here we discuss the range of read–write genome changes found in two well-studied kinetoplastid parasites, Trypanosoma brucei and Leishmania, focusing on recent work that suggests such adaptive genome variation is linked to novel strategies the parasites use to replicate their unconventional genomes. Polycistronic transcription dominates and shapes kinetoplastid genomes, inevitably leading to clashes with DNA replication. By harnessing the resultant DNA damage for adaptation, kinetoplastids have huge potential for dynamic read–write genome variation. Major origins of DNA replication are confined to the boundaries of polycistronic transcription units in the Trypanosoma brucei and Leishmania genomes, putatively limiting DNA damage. Subtelomeres may lack this arrangement, generating read–write hotspots. In T. brucei, early replication of the highly transcribed subtelomeric variant surface glycoprotein (VSG) expression site may ensure replication-transcription clashes within this site to trigger DNA recombination, an event critical for antigenic variation. Leishmania genomes show extensive aneuploidy and copy number variation. Notably, DNA replication requires recombination factors and relies on post-S phase replication of subtelomeres. Evolution of compartmentalised DNA replication programmes underpin important aspects of genome biology in kinetoplastids, illustrating the consolidation of genome maintenance strategies to promote genome plasticity.
Collapse
Affiliation(s)
- Jeziel D Damasceno
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
| | - Catarina A Marques
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Jennifer Black
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Emma Briggs
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK; Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
41
|
Damasceno JD, Marques CA, Beraldi D, Crouch K, Lapsley C, Obonaga R, Tosi LR, McCulloch R. Genome duplication in Leishmania major relies on persistent subtelomeric DNA replication. eLife 2020; 9:58030. [PMID: 32897188 PMCID: PMC7511235 DOI: 10.7554/elife.58030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
DNA replication is needed to duplicate a cell’s genome in S phase and segregate it during cell division. Previous work in Leishmania detected DNA replication initiation at just a single region in each chromosome, an organisation predicted to be insufficient for complete genome duplication within S phase. Here, we show that acetylated histone H3 (AcH3), base J and a kinetochore factor co-localise in each chromosome at only a single locus, which corresponds with previously mapped DNA replication initiation regions and is demarcated by localised G/T skew and G4 patterns. In addition, we describe previously undetected subtelomeric DNA replication in G2/M and G1-phase-enriched cells. Finally, we show that subtelomeric DNA replication, unlike chromosome-internal DNA replication, is sensitive to hydroxyurea and dependent on 9-1-1 activity. These findings indicate that Leishmania’s genome duplication programme employs subtelomeric DNA replication initiation, possibly extending beyond S phase, to support predominantly chromosome-internal DNA replication initiation within S phase.
Collapse
Affiliation(s)
- Jeziel Dener Damasceno
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Catarina A Marques
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Dario Beraldi
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Kathryn Crouch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Craig Lapsley
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Ricardo Obonaga
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Ro Tosi
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| |
Collapse
|
42
|
Antileishmanial Aminopyrazoles: Studies into Mechanisms and Stability of Experimental Drug Resistance. Antimicrob Agents Chemother 2020; 64:AAC.00152-20. [PMID: 32601168 PMCID: PMC7449183 DOI: 10.1128/aac.00152-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
Current antileishmanial treatment is hampered by limitations, such as drug toxicity and the risk of treatment failure, which may be related to parasitic drug resistance. Given the urgent need for novel drugs, the Drugs for Neglected Diseases initiative (DNDi) has undertaken a drug discovery program, which has resulted in the identification of aminopyrazoles, a highly promising antileishmanial chemical series. Multiple experiments have been performed to anticipate the propensity for resistance development. Current antileishmanial treatment is hampered by limitations, such as drug toxicity and the risk of treatment failure, which may be related to parasitic drug resistance. Given the urgent need for novel drugs, the Drugs for Neglected Diseases initiative (DNDi) has undertaken a drug discovery program, which has resulted in the identification of aminopyrazoles, a highly promising antileishmanial chemical series. Multiple experiments have been performed to anticipate the propensity for resistance development. Resistance selection was performed by successive exposure of Leishmania infantum promastigotes (in vitro) and intracellular amastigotes (both in vitro and in golden Syrian hamsters). The stability of the resistant phenotypes was assessed after passage in mice and Lutzomyia longipalpis sandflies. Whole-genome sequencing (WGS) was performed to identify mutated genes, copy number variations (CNVs), and somy changes. The potential role of efflux pumps (the MDR and MRP efflux pumps) in the development of resistance was assessed by coincubation of aminopyrazoles with specific efflux pump inhibitors (verapamil, cyclosporine, and probenecid). Repeated drug exposure of amastigotes did not result in the emergence of drug resistance either in vitro or in vivo. Selection at the promastigote stage, however, was able to select for parasites with reduced susceptibility (resistance index, 5.8 to 24.5). This phenotype proved to be unstable after in vivo passage in mice and sandflies, suggesting that nonfixed alterations are responsible for the elevated resistance. In line with this, single nucleotide polymorphisms and indels identified by whole-genome sequencing could not be directly linked to the decreased drug susceptibility. Copy number variations were absent, whereas somy changes were detected, which may have accounted for the transient acquisition of resistance. Finally, aminopyrazole activity was not influenced by the MDR and MRP efflux pump inhibitors tested. The selection performed does not suggest the rapid development of resistance against aminopyrazoles in the field. Karyotype changes may confer elevated levels of resistance, but these do not seem to be stable in the vertebrate and invertebrate hosts. MDR/MRP efflux pumps are not likely to significantly impact the activity of the aminopyrazole leads.
Collapse
|
43
|
Damasceno JD, Reis-Cunha J, Crouch K, Beraldi D, Lapsley C, Tosi LRO, Bartholomeu D, McCulloch R. Conditional knockout of RAD51-related genes in Leishmania major reveals a critical role for homologous recombination during genome replication. PLoS Genet 2020; 16:e1008828. [PMID: 32609721 PMCID: PMC7360064 DOI: 10.1371/journal.pgen.1008828] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 07/14/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Homologous recombination (HR) has an intimate relationship with genome replication, both during repair of DNA lesions that might prevent DNA synthesis and in tackling stalls to the replication fork. Recent studies led us to ask if HR might have a more central role in replicating the genome of Leishmania, a eukaryotic parasite. Conflicting evidence has emerged regarding whether or not HR genes are essential, and genome-wide mapping has provided evidence for an unorthodox organisation of DNA replication initiation sites, termed origins. To answer this question, we have employed a combined CRISPR/Cas9 and DiCre approach to rapidly generate and assess the effect of conditional ablation of RAD51 and three RAD51-related proteins in Leishmania major. Using this approach, we demonstrate that loss of any of these HR factors is not immediately lethal but in each case growth slows with time and leads to DNA damage and accumulation of cells with aberrant DNA content. Despite these similarities, we show that only loss of RAD51 or RAD51-3 impairs DNA synthesis and causes elevated levels of genome-wide mutation. Furthermore, we show that these two HR factors act in distinct ways, since ablation of RAD51, but not RAD51-3, has a profound effect on DNA replication, causing loss of initiation at the major origins and increased DNA synthesis at subtelomeres. Our work clarifies questions regarding the importance of HR to survival of Leishmania and reveals an unanticipated, central role for RAD51 in the programme of genome replication in a microbial eukaryote.
Collapse
Affiliation(s)
- Jeziel D. Damasceno
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, United Kingdom
- * E-mail: (JDD); (RM)
| | - João Reis-Cunha
- Laboratório de Imunologia e Genômica de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Kathryn Crouch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, United Kingdom
| | - Dario Beraldi
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, United Kingdom
| | - Craig Lapsley
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, United Kingdom
| | - Luiz R. O. Tosi
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo; Ribeirão Preto, SP, Brazil
| | - Daniella Bartholomeu
- Laboratório de Imunologia e Genômica de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, United Kingdom
- * E-mail: (JDD); (RM)
| |
Collapse
|
44
|
Bhattacharya A, Corbeil A, do Monte-Neto RL, Fernandez-Prada C. Of Drugs and Trypanosomatids: New Tools and Knowledge to Reduce Bottlenecks in Drug Discovery. Genes (Basel) 2020; 11:genes11070722. [PMID: 32610603 PMCID: PMC7397081 DOI: 10.3390/genes11070722] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Leishmaniasis (Leishmania species), sleeping sickness (Trypanosoma brucei), and Chagas disease (Trypanosoma cruzi) are devastating and globally spread diseases caused by trypanosomatid parasites. At present, drugs for treating trypanosomatid diseases are far from ideal due to host toxicity, elevated cost, limited access, and increasing rates of drug resistance. Technological advances in parasitology, chemistry, and genomics have unlocked new possibilities for novel drug concepts and compound screening technologies that were previously inaccessible. In this perspective, we discuss current models used in drug-discovery cascades targeting trypanosomatids (from in vitro to in vivo approaches), their use and limitations in a biological context, as well as different examples of recently discovered lead compounds.
Collapse
Affiliation(s)
- Arijit Bhattacharya
- Department of Microbiology, Adamas University, Kolkata, West Bengal 700 126, India;
| | - Audrey Corbeil
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | | | - Christopher Fernandez-Prada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
- Correspondence: ; Tel.: +1-450-773-8521 (ext. 32802)
| |
Collapse
|
45
|
The adaptive potential of circular DNA accumulation in ageing cells. Curr Genet 2020; 66:889-894. [PMID: 32296868 PMCID: PMC7497353 DOI: 10.1007/s00294-020-01069-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/20/2022]
Abstract
Carefully maintained and precisely inherited chromosomal DNA provides long-term genetic stability, but eukaryotic cells facing environmental challenges can benefit from the accumulation of less stable DNA species. Circular DNA molecules lacking centromeres segregate randomly or asymmetrically during cell division, following non-Mendelian inheritance patterns that result in high copy number instability and massive heterogeneity across populations. Such circular DNA species, variously known as extrachromosomal circular DNA (eccDNA), microDNA, double minutes or extrachromosomal DNA (ecDNA), are becoming recognised as a major source of the genetic variation exploited by cancer cells and pathogenic eukaryotes to acquire drug resistance. In budding yeast, circular DNA molecules derived from the ribosomal DNA (ERCs) have been long known to accumulate with age, but it is now clear that aged yeast also accumulate other high-copy protein-coding circular DNAs acquired through both random and environmentally-stimulated recombination processes. Here, we argue that accumulation of circular DNA provides a reservoir of heterogeneous genetic material that can allow rapid adaptation of aged cells to environmental insults, but avoids the negative fitness impacts on normal growth of unsolicited gene amplification in the young population.
Collapse
|
46
|
Franssen SU, Durrant C, Stark O, Moser B, Downing T, Imamura H, Dujardin JC, Sanders MJ, Mauricio I, Miles MA, Schnur LF, Jaffe CL, Nasereddin A, Schallig H, Yeo M, Bhattacharyya T, Alam MZ, Berriman M, Wirth T, Schönian G, Cotton JA. Global genome diversity of the Leishmania donovani complex. eLife 2020; 9:e51243. [PMID: 32209228 PMCID: PMC7105377 DOI: 10.7554/elife.51243] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/27/2020] [Indexed: 12/30/2022] Open
Abstract
Protozoan parasites of the Leishmania donovani complex - L. donovani and L. infantum - cause the fatal disease visceral leishmaniasis. We present the first comprehensive genome-wide global study, with 151 cultured field isolates representing most of the geographical distribution. L. donovani isolates separated into five groups that largely coincide with geographical origin but vary greatly in diversity. In contrast, the majority of L. infantum samples fell into one globally-distributed group with little diversity. This picture is complicated by several hybrid lineages. Identified genetic groups vary in heterozygosity and levels of linkage, suggesting different recombination histories. We characterise chromosome-specific patterns of aneuploidy and identified extensive structural variation, including known and suspected drug resistance loci. This study reveals greater genetic diversity than suggested by geographically-focused studies, provides a resource of genomic variation for future work and sets the scene for a new understanding of the evolution and genetics of the Leishmania donovani complex.
Collapse
Affiliation(s)
| | - Caroline Durrant
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | | | | | - Tim Downing
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- Dublin City UniversityDublinIreland
| | | | - Jean-Claude Dujardin
- Institute of Tropical MedicineAntwerpBelgium
- Department of Biomedical Sciences, University of AntwerpAntwerpBelgium
| | - Mandy J Sanders
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Isabel Mauricio
- Universidade Nova de Lisboa Instituto de Higiene e MedicinaLisboaPortugal
| | - Michael A Miles
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Lionel F Schnur
- Kuvin Centre for the Study of Infectious and Tropical Diseases, IMRIC, Hebrew University-Hadassah, Medical SchoolJerusalemIsrael
| | - Charles L Jaffe
- Kuvin Centre for the Study of Infectious and Tropical Diseases, IMRIC, Hebrew University-Hadassah, Medical SchoolJerusalemIsrael
| | - Abdelmajeed Nasereddin
- Kuvin Centre for the Study of Infectious and Tropical Diseases, IMRIC, Hebrew University-Hadassah, Medical SchoolJerusalemIsrael
| | - Henk Schallig
- Amsterdam University Medical Centres – Academic Medical Centre at the University of Amsterdam, Department of Medical Microbiology – Experimental ParasitologyAmsterdamNetherlands
| | - Matthew Yeo
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | | | - Mohammad Z Alam
- Department of Parasitology, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Thierry Wirth
- Institut de Systématique, Evolution, Biodiversité, ISYEB, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des AntillesParisFrance
- École Pratique des Hautes Études (EPHE)Paris Sciences & Lettres (PSL)ParisFrance
| | | | - James A Cotton
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| |
Collapse
|
47
|
Zhang WW, Lypaczewski P, Matlashewski G. Application of CRISPR/Cas9-Mediated Genome Editing in Leishmania. Methods Mol Biol 2020; 2116:199-224. [PMID: 32221923 DOI: 10.1007/978-1-0716-0294-2_14] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CRISPR-Cas9 is an RNA guided endonuclease derived from the bacterium Streptococcus pyogenes. Due to its simplicity, versatility, and high efficiency, it has been widely used for genome editing in a variety of organisms including the protozoan parasite Leishmania, the causative agent of human leishmaniasis. Compared to the traditional homologous recombination gene targeting method, CRISPR-Cas9 has been shown to be a more efficient method to delete or disrupt Leishmania genes, generate point mutations, and add tags to endogenous genes. Notably, the stable CRISPR expression systems were shown to delete multicopy family Leishmania genes and genes present in multiploid chromosomes, identify essential Leishmania genes, and create specific chromosome translocations. In this chapter, we describe detailed procedures on using the stable CRISPR expression system for genome editing in Leishmania. These procedures include CRISPR targeting site selection, gRNA design, cloning single and double gRNA coding sequences into the Leishmania CRISPR vector pLdCN, oligonucleotide donor and drug resistance selection donor design, Leishmania cell transfection, screening, and isolation of CRISPR-edited mutants. As the principles of gene editing are generally similar, many of these procedures could also apply to the transient Leishmania CRISPR systems described by other labs.
Collapse
Affiliation(s)
- Wen-Wei Zhang
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Patrick Lypaczewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
48
|
Calarco L, Barratt J, Ellis J. Detecting sequence variants in clinically important protozoan parasites. Int J Parasitol 2019; 50:1-18. [PMID: 31857072 DOI: 10.1016/j.ijpara.2019.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023]
Abstract
Second and third generation sequencing methods are crucial for population genetic studies, and variant detection is a popular approach for exploiting this sequence data. While mini- and microsatellites are historically useful markers for studying important Protozoa such as Toxoplasma and Plasmodium spp., detecting non-repetitive variants such as those found in genes can be fundamental to investigating a pathogen's biology. These variants, namely single nucleotide polymorphisms and insertions and deletions, can help elucidate the genetic basis of an organism's pathogenicity, identify selective pressures, and resolve phylogenetic relationships. They also have the added benefit of possessing a comparatively low mutation rate, which contributes to their stability. However, there is a plethora of variant analysis tools with nuanced pipelines and conflicting recommendations for best practise, which can be confounding. This lack of standardisation means that variant analysis requires careful parameter optimisation, an understanding of its limitations, and the availability of high quality data. This review explores the value of variant detection when applied to non-model organisms such as clinically important protozoan pathogens. The limitations of current methods are discussed, including special considerations that require the end-users' attention to ensure that the results generated are reproducible, and the biological conclusions drawn are valid.
Collapse
Affiliation(s)
- Larissa Calarco
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia.
| | - Joel Barratt
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| |
Collapse
|
49
|
Coupling chemical mutagenesis to next generation sequencing for the identification of drug resistance mutations in Leishmania. Nat Commun 2019; 10:5627. [PMID: 31819054 PMCID: PMC6901541 DOI: 10.1038/s41467-019-13344-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
Current genome-wide screens allow system-wide study of drug resistance but detecting small nucleotide variants (SNVs) is challenging. Here, we use chemical mutagenesis, drug selection and next generation sequencing to characterize miltefosine and paromomycin resistant clones of the parasite Leishmania. We highlight several genes involved in drug resistance by sequencing the genomes of 41 resistant clones and by concentrating on recurrent SNVs. We associate genes linked to lipid metabolism or to ribosome/translation functions with miltefosine or paromomycin resistance, respectively. We prove by allelic replacement and CRISPR-Cas9 gene-editing that the essential protein kinase CDPK1 is crucial for paromomycin resistance. We have linked CDPK1 in translation by functional interactome analysis, and provide evidence that CDPK1 contributes to antimonial resistance in the parasite. This screen is powerful in exploring networks of drug resistance in an organism with diploid to mosaic aneuploid genome, hence widening the scope of its applicability. Here, Bhattacharya et al. chemically mutagenize Leishmania and identify genes associated with resistance to miltefosine and paromomycin by next generation sequencing. The study shows that a protein kinase (CDPK1) can mediate resistance to paromomycin by affecting translation.
Collapse
|
50
|
Hull RM, King M, Pizza G, Krueger F, Vergara X, Houseley J. Transcription-induced formation of extrachromosomal DNA during yeast ageing. PLoS Biol 2019; 17:e3000471. [PMID: 31794573 PMCID: PMC6890164 DOI: 10.1371/journal.pbio.3000471] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) facilitates adaptive evolution by allowing rapid and extensive gene copy number variation and is implicated in the pathology of cancer and ageing. Here, we demonstrate that yeast aged under environmental copper accumulate high levels of eccDNA containing the copper-resistance gene CUP1. Transcription of the tandemly repeated CUP1 gene causes CUP1 eccDNA accumulation, which occurs in the absence of phenotypic selection. We have developed a sensitive and quantitative eccDNA sequencing pipeline that reveals CUP1 eccDNA accumulation on copper exposure to be exquisitely site specific, with no other detectable changes across the eccDNA complement. eccDNA forms de novo from the CUP1 locus through processing of DNA double-strand breaks (DSBs) by Sae2, Mre11 and Mus81, and genome-wide analyses show that other protein coding eccDNA species in aged yeast share a similar biogenesis pathway. Although abundant, we find that CUP1 eccDNA does not replicate efficiently, and high-copy numbers in aged cells arise through frequent formation events combined with asymmetric DNA segregation. The transcriptional stimulation of CUP1 eccDNA formation shows that age-linked genetic change varies with transcription pattern, resulting in gene copy number profiles tailored by environment. Transcription can cause the de novo formation of protein-coding extrachromosomal DNA that accumulates in ageing yeast cells; these extrachromosomal circular DNA molecules form frequently by a DNA double strand break repair mechanism.
Collapse
Affiliation(s)
- Ryan M. Hull
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Michelle King
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Grazia Pizza
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Felix Krueger
- Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom
| | - Xabier Vergara
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Jonathan Houseley
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|