1
|
Xiong S, Liu Z, Yao J, Huang S, Ding X, Yu H, Lin T, Zhang X, Zhao F. HIF-1α regulated GLUT1-mediated glycolysis enhances Treponema pallidum-induced cytokine responses. Cell Commun Signal 2025; 23:219. [PMID: 40346557 PMCID: PMC12065375 DOI: 10.1186/s12964-025-02211-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/22/2025] [Indexed: 05/11/2025] Open
Abstract
Syphilis, caused by Treponema pallidum (Tp), represents a significant public health challenge. The clinical manifestations of syphilis are attributed to local inflammatory responses induced by Tp, notably monocyte infiltration into local lesions and the secretion of inflammatory cytokines. However, the mechanisms driving cytokine production in response to Tp infection remain largely unknown. Given that increased glycolysis is associated with inflammatory responses, we aimed to investigate the role of glycolysis in Tp-induced secretion of inflammatory cytokines. In this study, we found that Tp promotes the secretion of inflammatory cytokines IL-6, IL-8, and CCL2 from monocytes while enhancing glycolysis through increased GLUT1 plasma membrane expression and glucose uptake. Importantly, inhibiting glycolysis and GLUT1 reduced the Tp-induced secretion of monocyte inflammatory cytokines. Additionally, Tp significantly increased HIF-1α expression and induced its nuclear translocation, thereby promoting glycolysis by upregulating the expression of GLUT1 and LDHA glycolytic enzymes. Knockdown of HIF-1α inhibits Tp-induced monocyte cytokine secretion, highlighting the crucial role of HIF-1α-mediated glycolysis in the cytokine response to Tp. Also, expression of HIF-1α and an increase in glycolysis were confirmed in patients with syphilis. In conclusion, we demonstrated that HIF-1α-regulated GLUT1-mediated glycolysis enhances inflammatory cytokine secretion following Tp infection. Our findings not only elucidate the mechanism of glycolysis in Tp-induced inflammatory responses in monocytes but also contribute to the development of a potential biomarker in syphilis diagnosis and treatment.
Collapse
Affiliation(s)
- Shun Xiong
- MOE Key Lab of Rare Pediatric Diseases & Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
| | - Zhaoping Liu
- MOE Key Lab of Rare Pediatric Diseases & Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Jiangchen Yao
- MOE Key Lab of Rare Pediatric Diseases & Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Shaobin Huang
- MOE Key Lab of Rare Pediatric Diseases & Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
| | - Xuan Ding
- MOE Key Lab of Rare Pediatric Diseases & Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
| | - Han Yu
- MOE Key Lab of Rare Pediatric Diseases & Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
| | - Ting Lin
- MOE Key Lab of Rare Pediatric Diseases & Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaohong Zhang
- MOE Key Lab of Rare Pediatric Diseases & Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China.
| | - Feijun Zhao
- MOE Key Lab of Rare Pediatric Diseases & Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China.
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China.
- Department of Clinical Laboratory Medicine, Changsha Central Hospital, Changsha, 410004, P.R. China.
| |
Collapse
|
2
|
Pauzaite T, Nathan JA. A closer look at the role of deubiquitinating enzymes in the Hypoxia Inducible Factor pathway. Biochem Soc Trans 2024; 52:2253-2265. [PMID: 39584532 DOI: 10.1042/bst20230861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024]
Abstract
Hypoxia Inducible transcription Factors (HIFs) are central to the metazoan oxygen-sensing response. Under low oxygen conditions (hypoxia), HIFs are stabilised and govern an adaptive transcriptional programme to cope with prolonged oxygen starvation. However, when oxygen is present, HIFs are continuously degraded by the proteasome in a process involving prolyl hydroxylation and subsequent ubiquitination by the Von Hippel Lindau (VHL) E3 ligase. The essential nature of VHL in the HIF response is well established but the role of other enzymes involved in ubiquitination is less clear. Deubiquitinating enzymes (DUBs) counteract ubiquitination and provide an important regulatory aspect to many signalling pathways involving ubiquitination. In this review, we look at the complex network of ubiquitination and deubiquitination in controlling HIF signalling in normal and low oxygen tensions. We discuss the relative importance of DUBs in opposing VHL, and explore roles of DUBs more broadly in hypoxia, in both VHL and HIF independent contexts. We also consider the catalytic and non-catalytic roles of DUBs, and elaborate on the potential benefits and challenges of inhibiting these enzymes for therapeutic use.
Collapse
Affiliation(s)
- Tekle Pauzaite
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah, Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, U.K
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah, Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, U.K
| |
Collapse
|
3
|
Nisar A, Khan S, Li W, Hu L, Samarawickrama PN, Gold NM, Zi M, Mehmood SA, Miao J, He Y. Hypoxia and aging: molecular mechanisms, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e786. [PMID: 39415849 PMCID: PMC11480526 DOI: 10.1002/mco2.786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Aging is a complex biological process characterized by the gradual decline of cellular functions, increased susceptibility to diseases, and impaired stress responses. Hypoxia, defined as reduced oxygen availability, is a critical factor that influences aging through molecular pathways involving hypoxia-inducible factors (HIFs), oxidative stress, inflammation, and epigenetic modifications. This review explores the interconnected roles of hypoxia in aging, highlighting how hypoxic conditions exacerbate cellular damage, promote senescence, and contribute to age-related pathologies, including cardiovascular diseases, neurodegenerative disorders, cancer, metabolic dysfunctions, and pulmonary conditions. By examining the molecular mechanisms linking hypoxia to aging, we identify key pathways that serve as potential therapeutic targets. Emerging interventions such as HIF modulators, antioxidants, senolytics, and lifestyle modifications hold promise in mitigating the adverse effects of hypoxia on aging tissues. However, challenges such as the heterogeneity of aging, lack of reliable biomarkers, and safety concerns regarding hypoxia-targeted therapies remain. This review emphasizes the need for personalized approaches and advanced technologies to develop effective antiaging interventions. By integrating current knowledge, this review provides a comprehensive framework that underscores the importance of targeting hypoxia-induced pathways to enhance healthy aging and reduce the burden of age-related diseases.
Collapse
Affiliation(s)
- Ayesha Nisar
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Sawar Khan
- Department of Cell Biology, School of Life SciencesCentral South UniversityChangshaHunanChina
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Wen Li
- Department of EndocrinologyThe Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province)KunmingYunnanChina
| | - Li Hu
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Priyadarshani Nadeeshika Samarawickrama
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Naheemat Modupeola Gold
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Meiting Zi
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | | | - Jiarong Miao
- Department of GastroenterologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Yonghan He
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| |
Collapse
|
4
|
Wu Y, Mohd Sani SB, Peng K, Lin T, Tan C, Huang X, Li Z. Research progress of the Otubains subfamily in hepatocellular carcinoma. Biomed Pharmacother 2024; 179:117348. [PMID: 39208669 DOI: 10.1016/j.biopha.2024.117348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
In cancer research, oncogenesis can be affected by modulating the deubiquitination pathway. Ubiquitination regulates proteins post-translationally in variety of physiological processes. The Otubain Subfamily includes OTUB1 (ovarian tumor-associated proteinase B1) and OTUB2(ovarian tumor-associated proteinase B2). They are deubiquitinating enzymes, which are research hotspots in tumor immunotherapy, with their implications extending across the spectrum of tumor development. Understanding their important role in tumorigenesis, includ-ing hepatocellular carcinoma (HCC) is crucial. HCC has alarming global incidence rates and mortality statistics, ranking among the top five prevalent cancers in Malaysia1. Numerous studies have consistently indicated significant expression of OTUB1 and OTUB2 in HCC cells. In addition, OTUB1 has important biological functions in cancer, suggesting its important role in tumorigenesis. However, the mechanism underlying the action of OTUB1 and OTUB2 in liver cancer remains inadequately explored. Therefore, Otubain Subfamily, as potential molecular target, holds promise for advancing HCC treatments. However, further clinical studies are required to verify its efficacy and application prospects.
Collapse
Affiliation(s)
- Yanming Wu
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia.
| | - Sa'udah Badriah Mohd Sani
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia.
| | - Ke Peng
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, China.
| | - Tao Lin
- Department of General Surgery, Anyang People's Hospital, Anyang, Henan 450000, China.
| | - Chenghao Tan
- Department of Social Science, Universiti Sain Malaysia, Gelugor, Penang 11700, Malaysia.
| | | | - Zhengrui Li
- Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China.
| |
Collapse
|
5
|
Wang X, Liu Y, Zhao Q, Wang X, Chen X, Hou L, Tian S, Peng ZM, Han XJ, Wang T, Zhang Z, Tou FF, Huang S, Rao J, Chen L, Zheng Z. PILRB potentiates the PI3K/AKT signaling pathway and reprograms cholesterol metabolism to drive gastric tumorigenesis and metastasis. Cell Death Dis 2024; 15:642. [PMID: 39227585 PMCID: PMC11372125 DOI: 10.1038/s41419-024-07026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
Paired immunoglobin-like type 2 receptor beta (PILRB) mainly plays a crucial role in regulating innate immunity, but whether PILRB is involved in cancer is poorly understood. Here, we report that PILRB potentiates the PI3K/AKT pathway to drive gastric tumorigenesis by binding and stabilizing IRS4, which could hyperactivate the PI3K/AKT pathway. Firstly, the levels of PILRB are upregulated in human gastric cancer (GC) specimens and associated with poor prognosis in patients with GC. In addition, our data show that PILRB promotes cell proliferation, colony formation, cell migration and invasion in GC cells in vitro and in vivo. Mechanistically, PILRB recruits the deubiquitination enzymes OTUB1 to IRS4 and relieves K48-linked ubiquitination of IRS4, protecting IRS4 protein from proteasomal-mediated degradation and subsequent activation of the PI3K/AKT pathway. Importantly, the levels of PILRB are positively correlated with IRS4 in GC specimens. Meanwhile, we also found that PILRB reprogrammed cholesterol metabolism by altering ABCA1 and SCARB1 expression levels, and PILRB-expression confers GC cell resistance to statin treatment. Taken together, our findings illustrate that the oncogenic role of PILRB in gastric tumorigenesis, providing new insights into the regulation of PI3K/AKT signaling in GC and establishing PILRB as a biomarker for simvastatin therapy resistance in GC.
Collapse
Affiliation(s)
- Xing Wang
- Centre for Medical Research and Translation, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Yuanyuan Liu
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Qiuyan Zhao
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xinyi Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Chaoyang, China
| | - Li Hou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Chaoyang, China
| | - Shaodan Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Chaoyang, China
| | - Zi-Mei Peng
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China
| | - Tao Wang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China
| | - Zhen Zhang
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Fang-Fang Tou
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Shan Huang
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China.
| | - Jun Rao
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi, PR China.
| | - Lixiao Chen
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Zhi Zheng
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China.
| |
Collapse
|
6
|
Ma K, Xian W, Liu H, Shu R, Ge J, Luo ZQ, Liu X, Qiu J. Bacterial ubiquitin ligases hijack the host deubiquitinase OTUB1 to inhibit MTORC1 signaling and promote autophagy. Autophagy 2024; 20:1968-1983. [PMID: 38818749 PMCID: PMC11346569 DOI: 10.1080/15548627.2024.2353492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/21/2024] [Accepted: 05/05/2024] [Indexed: 06/01/2024] Open
Abstract
Many bacterial pathogens have evolved effective strategies to interfere with the ubiquitination network to evade clearance by the innate immune system. Here, we report that OTUB1, one of the most abundant deubiquitinases (DUBs) in mammalian cells, is subjected to both canonical and noncanonical ubiquitination during Legionella pneumophila infection. The effectors SidC and SdcA catalyze OTUB1 ubiquitination at multiple lysine residues, resulting in its association with a Legionella-containing vacuole. Lysine ubiquitination by SidC and SdcA promotes interactions between OTUB1 and DEPTOR, an inhibitor of the MTORC1 pathway, thus suppressing MTORC1 signaling. The inhibition of MTORC1 leads to suppression of host protein synthesis and promotion of host macroautophagy/autophagy during L. pneumophila infection. In addition, members of the SidE family effectors (SidEs) induce phosphoribosyl (PR)-linked ubiquitination of OTUB1 at Ser16 and Ser18 and block its DUB activity. The levels of the lysine and serine ubiquitination of OTUB1 are further regulated by effectors that function to antagonize the activities of SidC, SdcA and SidEs, including Lem27, DupA, DupB, SidJ and SdjA. Our study reveals an effectors-mediated complicated mechanism in regulating the activity of a host DUB.Abbreviations: BafA1: bafilomycin A1; BMDMs: bone marrow-derived macrophages; DUB: deubiquitinase; Dot/Icm: defective for organelle trafficking/intracellular multiplication; DEPTOR: DEP domain containing MTOR interacting protein; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; L. pneumophila: Legionella pneumophila; LCV: Legionella-containing vacuole; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; MTORC1: mechanistic target of rapamycin kinase complex 1; OTUB1: OTU deubiquitinase, ubiquitin aldehyde binding 1; PR-Ub: phosphoribosyl (PR)-linked ubiquitin; PTM: posttranslational modification; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SidEs: SidE family effectors; Ub: ubiquitin.
Collapse
Affiliation(s)
- Kelong Ma
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Wei Xian
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hongtao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Rundong Shu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jinli Ge
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Volkova YL, Jucht AE, Oechsler N, Krishnankutty R, von Kriegsheim A, Wenger RH, Scholz CC. Selective Hypoxia-Sensitive Oxomer Formation by FIH Prevents Binding of the NF-κB Inhibitor IκBβ to NF-κB Subunits. Mol Cell Biol 2024; 44:138-148. [PMID: 38644795 PMCID: PMC11110689 DOI: 10.1080/10985549.2024.2338727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/31/2024] [Indexed: 04/23/2024] Open
Abstract
Pharmacologic inhibitors of cellular hydroxylase oxygen sensors are protective in multiple preclinical in vivo models of inflammation. However, the molecular mechanisms underlying this regulation are only partly understood, preventing clinical translation. We previously proposed a new mechanism for cellular oxygen sensing: oxygen-dependent, (likely) covalent protein oligomer (oxomer) formation. Here, we report that the oxygen sensor factor inhibiting HIF (FIH) forms an oxomer with the NF-κB inhibitor β (IκBβ). The formation of this protein complex required FIH enzymatic activity and was prevented by pharmacologic inhibitors. Oxomer formation was highly hypoxia-sensitive and very stable. No other member of the IκB protein family formed an oxomer with FIH, demonstrating that FIH-IκBβ oxomer formation was highly selective. In contrast to the known FIH-dependent oxomer formation with the deubiquitinase OTUB1, FIH-IκBβ oxomer formation did not occur via an IκBβ asparagine residue, but depended on the amino acid sequence VAERR contained within a loop between IκBβ ankyrin repeat domains 2 and 3. Oxomer formation prevented IκBβ from binding to its primary interaction partners p65 and c-Rel, subunits of NF-κB, the master regulator of the cellular transcriptional response to pro-inflammatory stimuli. We therefore propose that FIH-mediated oxomer formation with IκBβ contributes to the hypoxia-dependent regulation of inflammation.
Collapse
Affiliation(s)
- Yulia L. Volkova
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Nina Oechsler
- Institute of Physiology, University Medicine Greifswald, Greifswald, Germany
| | | | | | - Roland H. Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten C. Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Institute of Physiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
8
|
Zhao X, Lv S, Li N, Zou Q, Sun L, Song T. YTHDF2 protein stabilization by the deubiquitinase OTUB1 promotes prostate cancer cell proliferation via PRSS8 mRNA degradation. J Biol Chem 2024; 300:107152. [PMID: 38462165 PMCID: PMC11002313 DOI: 10.1016/j.jbc.2024.107152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024] Open
Abstract
Prostate cancer is a leading cause of cancer-related mortality in males. Dysregulation of RNA adenine N-6 methylation (m6A) contributes to cancer malignancy. m6A on mRNA may affect mRNA splicing, turnover, transportation, and translation. m6A exerts these effects, at least partly, through dedicated m6A reader proteins, including YTH domain-containing family protein 2 (YTHDF2). YTHDF2 is necessary for development while its dysregulation is seen in various cancers, including prostate cancer. However, the mechanism underlying the dysregulation and function of YTHDF2 in cancer remains elusive. Here, we find that the deubiquitinase OUT domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) increases YTHDF2 protein stability by inhibiting its ubiquitination. With in vivo and in vitro ubiquitination assays, OTUB1 is shown to block ubiquitin transfer to YTHDF2 independent of its deubiquitinase activity. Furthermore, analysis of functional transcriptomic data and m6A-sequencing data identifies PRSS8 as a potential tumor suppressor gene. OTUB1 and YTHDF2 decrease mRNA and protein levels of PRSS8, which is a trypsin-like serine protease. Mechanistically, YTHDF2 binds PRSS8 mRNA and promotes its degradation in an m6A-dependent manner. Further functional study on cellular and mouse models reveals PRSS8 is a critical downstream effector of the OTUB1-YTHDF2 axis in prostate cancer. We find in prostate cancer cells, PRSS8 decreases nuclear β-catenin level through E-cadherin, which is independent of its protease activity. Collectively, our study uncovers a key regulator of YTHDF2 protein stability and establishes a functional OTUB1-YTHDF2-PRSS8 axis in prostate cancer.
Collapse
Affiliation(s)
- Xuefeng Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suli Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Neng Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingli Zou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Cai X, Wang R, Zhu J, Li X, Liu X, Ouyang G, Wang J, Li Z, Zhu C, Deng H, Xiao W. Factor inhibiting HIF negatively regulates antiviral innate immunity via hydroxylation of IKKϵ. Cell Rep 2024; 43:113606. [PMID: 38127621 DOI: 10.1016/j.celrep.2023.113606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/20/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Activation of type I interferon (IFN-1) signaling is essential to protect host cells from viral infection. The full spectrum of IFN-I induction requires the activation of a number of cellular factors, including IκB kinase epsilon (IKKϵ). However, the regulation of IKKϵ activation in response to viral infection remains largely unknown. Here, we show that factor inhibiting hypoxia-inducible factor (HIF) (FIH), an asparaginyl hydroxylase, interacts with IKKϵ and catalyzes asparagine hydroxylation of IKKϵ at Asn-254, Asn-700, and Asn-701, resulting in the suppression of IKKϵ activation. FIH-mediated hydroxylation of IKKϵ prevents IKKϵ binding to TBK1 and TRAF3 and attenuates the cIAP1/cIAP2/TRAF2 E3 ubiquitin ligase complex-catalyzed K63-linked polyubiquitination of IKKϵ at Lys-416. In addition, Fih-deficient mice and zebrafish are more resistant to viral infection. This work uncovers a previously unrecognized role of FIH in suppressing IKKϵ activation for IFN signaling and antiviral immune responses.
Collapse
Affiliation(s)
- Xiaolian Cai
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Rui Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116000, P.R. China
| | - Junji Zhu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Xiong Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xing Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Gang Ouyang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Jing Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhi Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chunchun Zhu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Hongyan Deng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Wuhan Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; Hubei Hongshan Laboratory, Wuhan 430070, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| |
Collapse
|
10
|
Wu M, Sun L, Song T. OTUB1-mediated inhibition of ubiquitination: a growing list of effectors, multiplex mechanisms, and versatile functions. Front Mol Biosci 2024; 10:1261273. [PMID: 38264570 PMCID: PMC10803509 DOI: 10.3389/fmolb.2023.1261273] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
Protein ubiquitination plays a pivotal role in protein homeostasis. Ubiquitination may regulate the stability, activity, protein-protein interaction, and localization of a protein. Ubiquitination is subject to regulation by two groups of counteracting enzymes, the E3 ubiquitin ligases and deubiquitinases. Consistently, deubiquitinases are involved in essentially all biological processes. OTUB1, an OTU-family deubiquitinase, is a critical regulator of development, cancer, DNA damage response, and immune response. OTUB1 antagonizes the ubiquitination of a wide-spectrum of proteins through at least two different mechanisms. Besides direct deubiquitination, OTUB1 can also inhibit ubiquitination by non-canonically blocking ubiquitin transfer from certain ubiquitin-conjugases (E2). In this review, we start with a general background of protein ubiquitination and deubiquitination. Next, we introduce the basic characteristics of OTUB1 and then elaborate on the updated biological functions of OTUB1. Afterwards, we discuss potential mechanisms underlying the versatility and specificity of OTUB1 functions. In the end, we discuss the perspective that OTUB1 can be a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Miaomiao Wu
- Deparment of Obstetrics and Gynecology, Shuyang Hospital of Traditional Chinese Medicine, Suqian, China
| | - Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
11
|
Volkova YL, Jucht AE, Scholz CC. Oxomer- and Reporter Gene-Based Analysis of FIH Activity in Cells. Methods Mol Biol 2024; 2755:249-264. [PMID: 38319583 DOI: 10.1007/978-1-0716-3633-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cellular and tissue adaptations to oxygen deprivation (hypoxia) are necessary for both normal physiology and disease. Responses to hypoxia are initiated by the cellular oxygen sensors prolyl-4-hydroxylase domain (PHD) proteins 1-3 and factor inhibiting HIF (FIH). These enzymes regulate the transcription factor hypoxia-inducible factor (HIF) in a hypoxia-sensitive manner. FIH also regulates proteins outside the HIF pathway, including the deubiquitinase OTUB1. Numerous preclinical analyses have demonstrated that treatment with HIF hydroxylase inhibitors is beneficial and protective in many hypoxia-associated diseases. However, clinically available HIF hydroxylase inhibitors increase erythropoietin (EPO) gene expression and red blood cell production, which can be detrimental in hypoxia-associated conditions, such as ischemia/reperfusion injury of the heart or chronic inflammation. Our understanding of the relevance of FIH in (patho)physiology is only in its infancy, but FIH activity does not govern erythropoietin expression. Therefore, it is of prime interest to assess the relevance of FIH activity in (patho)physiology in detail, as it may contribute to developing novel therapeutic options for treating hypoxia-associated diseases that do not affect Epo regulation. Here, we describe specific protocols for two different methods to assess FIH enzymatic activity within cells, using a HIF-dependent firefly luciferase-reporter gene and an oxomer-dependent assay. Oxomers are oxygen-dependent stable protein oligomers formed by FIH, for example, with the deubiquitinase OTUB1. Oxomer formation directly depends on FIH activity, providing a suitable cellular readout for an easy-to-use analysis of FIH enzymatic activity in cellulo. These techniques permit an analysis of FIH activity toward HIF and outside the HIF pathway, allowing the investigation of FIH activity under different (patho)physiological conditions and assessment of novel (putative) inhibitors.
Collapse
Affiliation(s)
- Yulia L Volkova
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Carsten C Scholz
- Institute of Physiology, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
12
|
Batie M, Fasanya T, Kenneth NS, Rocha S. Oxygen-regulated post-translation modifications as master signalling pathway in cells. EMBO Rep 2023; 24:e57849. [PMID: 37877678 DOI: 10.15252/embr.202357849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Oxygen is essential for viability in mammalian organisms. However, cells are often exposed to changes in oxygen availability, due to either increased demand or reduced oxygen supply, herein called hypoxia. To be able to survive and/or adapt to hypoxia, cells activate a variety of signalling cascades resulting in changes to chromatin, gene expression, metabolism and viability. Cellular signalling is often mediated via post-translational modifications (PTMs), and this is no different in response to hypoxia. Many enzymes require oxygen for their activity and oxygen can directly influence several PTMS. Here, we review the direct impact of changes in oxygen availability on PTMs such as proline, asparagine, histidine and lysine hydroxylation, lysine and arginine methylation and cysteine dioxygenation, with a focus on mammalian systems. In addition, indirect hypoxia-dependent effects on phosphorylation, ubiquitination and sumoylation will also be discussed. Direct and indirect oxygen-regulated changes to PTMs are coordinated to achieve the cell's ultimate response to hypoxia. However, specific oxygen sensitivity and the functional relevance of some of the identified PTMs still require significant research.
Collapse
Affiliation(s)
- Michael Batie
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Temitope Fasanya
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Niall S Kenneth
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sonia Rocha
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
13
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
14
|
García-del Río A, Prieto-Fernández E, Egia-Mendikute L, Antoñana-Vildosola A, Jimenez-Lasheras B, Lee SY, Barreira-Manrique A, Zanetti SR, de Blas A, Velasco-Beltrán P, Bosch A, Aransay AM, Palazon A. Factor-inhibiting HIF (FIH) promotes lung cancer progression. JCI Insight 2023; 8:e167394. [PMID: 37707961 PMCID: PMC10619494 DOI: 10.1172/jci.insight.167394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Factor-inhibiting HIF (FIH) is an asparagine hydroxylase that acts on hypoxia-inducible factors (HIFs) to control cellular adaptation to hypoxia. FIH is expressed in several tumor types, but its impact in tumor progression remains largely unexplored. We observed that FIH was expressed on human lung cancer tissue. Deletion of FIH in mouse and human lung cancer cells resulted in an increased glycolytic metabolism, consistent with increased HIF activity. FIH-deficient lung cancer cells exhibited decreased proliferation. Analysis of RNA-Seq data confirmed changes in the cell cycle and survival and revealed molecular pathways that were dysregulated in the absence of FIH, including the upregulation of angiomotin (Amot), a key component of the Hippo tumor suppressor pathway. We show that FIH-deficient tumors were characterized by higher immune infiltration of NK and T cells compared with FIH competent tumor cells. In vivo studies demonstrate that FIH deletion resulted in reduced tumor growth and metastatic capacity. Moreover, high FIH expression correlated with poor overall survival in non-small cell lung cancer (NSCLC). Our data unravel FIH as a therapeutic target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Ana García-del Río
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Endika Prieto-Fernández
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Leire Egia-Mendikute
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Asier Antoñana-Vildosola
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Borja Jimenez-Lasheras
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - So Young Lee
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Adrián Barreira-Manrique
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Samanta Romina Zanetti
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Ander de Blas
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Paloma Velasco-Beltrán
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Alexandre Bosch
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Ana M. Aransay
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Genome Analysis Platform, CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Asis Palazon
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
15
|
Faivre A, Dissard R, Kuo W, Verissimo T, Legouis D, Arnoux G, Heckenmeyer C, Fernandez M, Tihy M, Rajaram RD, Delitsikou V, Le NA, Spingler B, Mueller B, Shulz G, Lindenmeyer M, Cohen C, Rutkowski JM, Moll S, Scholz CC, Kurtcuoglu V, de Seigneux S. Evolution of hypoxia and hypoxia-inducible factor asparaginyl hydroxylase regulation in chronic kidney disease. Nephrol Dial Transplant 2023; 38:2276-2288. [PMID: 37096392 PMCID: PMC10539236 DOI: 10.1093/ndt/gfad075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND The roles of hypoxia and hypoxia inducible factor (HIF) during chronic kidney disease (CKD) are much debated. Interventional studies with HIF-α activation in rodents have yielded contradictory results. The HIF pathway is regulated by prolyl and asparaginyl hydroxylases. While prolyl hydroxylase inhibition is a well-known method to stabilize HIF-α, little is known about the effect asparaginyl hydroxylase factor inhibiting HIF (FIH). METHODS We used a model of progressive proteinuric CKD and a model of obstructive nephropathy with unilateral fibrosis. In these models we assessed hypoxia with pimonidazole and vascularization with three-dimensional micro-computed tomography imaging. We analysed a database of 217 CKD biopsies from stage 1 to 5 and we randomly collected 15 CKD biopsies of various severity degrees to assess FIH expression. Finally, we modulated FIH activity in vitro and in vivo using a pharmacologic approach to assess its relevance in CKD. RESULTS In our model of proteinuric CKD, we show that early CKD stages are not characterized by hypoxia or HIF activation. At late CKD stages, some areas of hypoxia are observed, but these are not colocalizing with fibrosis. In mice and in humans, we observed a downregulation of the HIF pathway, together with an increased FIH expression in CKD, according to its severity. Modulating FIH in vitro affects cellular metabolism, as described previously. In vivo, pharmacologic FIH inhibition increases the glomerular filtration rate of control and CKD animals and is associated with decreased development of fibrosis. CONCLUSIONS The causative role of hypoxia and HIF activation in CKD progression is questioned. A pharmacological approach of FIH downregulation seems promising in proteinuric kidney disease.
Collapse
Affiliation(s)
- Anna Faivre
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Service of Nephrology, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Romain Dissard
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Willy Kuo
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Centre of Competence in Research, Kidney. CH, University of Zurich, Zurich, Switzerland
| | - Thomas Verissimo
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - David Legouis
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Grégoire Arnoux
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Service of Clinical Pathology, Department of Pathology and Immunology, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Carolyn Heckenmeyer
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Marylise Fernandez
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Matthieu Tihy
- Service of Clinical Pathology, Department of Pathology and Immunology, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Renuga D Rajaram
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Vasiliki Delitsikou
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Ngoc An Le
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | | | - Bert Mueller
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Georg Shulz
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
- Micro- and Nanotomography Core Facility, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Maja Lindenmeyer
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clemens Cohen
- Nephrological Center, Medical Clinic and Polyclinic IV, University of Munich, Munich, Germany
| | - Joseph M Rutkowski
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Solange Moll
- Service of Clinical Pathology, Department of Pathology and Immunology, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Centre of Competence in Research, Kidney. CH, University of Zurich, Zurich, Switzerland
- Institute of Physiology, University Medicine Greifswald, Greifswald, Germany
| | - Vartan Kurtcuoglu
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Centre of Competence in Research, Kidney. CH, University of Zurich, Zurich, Switzerland
| | - Sophie de Seigneux
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Service of Nephrology, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
- National Centre of Competence in Research, Kidney. CH, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Li L, Shen S, Bickler P, Jacobson MP, Wu LF, Altschuler SJ. Searching for molecular hypoxia sensors among oxygen-dependent enzymes. eLife 2023; 12:e87705. [PMID: 37494095 PMCID: PMC10371230 DOI: 10.7554/elife.87705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/09/2023] [Indexed: 07/27/2023] Open
Abstract
The ability to sense and respond to changes in cellular oxygen levels is critical for aerobic organisms and requires a molecular oxygen sensor. The prototypical sensor is the oxygen-dependent enzyme PHD: hypoxia inhibits its ability to hydroxylate the transcription factor HIF, causing HIF to accumulate and trigger the classic HIF-dependent hypoxia response. A small handful of other oxygen sensors are known, all of which are oxygen-dependent enzymes. However, hundreds of oxygen-dependent enzymes exist among aerobic organisms, raising the possibility that additional sensors remain to be discovered. This review summarizes known and potential hypoxia sensors among human O2-dependent enzymes and highlights their possible roles in hypoxia-related adaptation and diseases.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Susan Shen
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Department of Psychiatry, University of California, San FranciscoSan FranciscoUnited States
| | - Philip Bickler
- Hypoxia Research Laboratory, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Center for Health Equity in Surgery and Anesthesia, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Anesthesia and Perioperative Care, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| |
Collapse
|
17
|
Sharma K, Sizova I, Sanyal SK, Pandey GK, Hegemann P, Kateriya S. Deciphering the role of cytoplasmic domain of Channelrhodopsin in modulating the interactome and SUMOylome of Chlamydomonas reinhardtii. Int J Biol Macromol 2023:125135. [PMID: 37247713 DOI: 10.1016/j.ijbiomac.2023.125135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Translocation of channelrhodopsins (ChRs) is mediated by the intraflagellar transport (IFT) machinery. However, the functional role of the network involving photoreceptors, IFT and other proteins in controlling algal ciliary motility is still not fully delineated. In the current study, we have identified two important motifs at the C-terminus of ChR1, VXPX and LKNE. VXPX is a known ciliary targeting sequence in animals, and LKNE is a well-known SUMOylation motif. To the best of our knowledge, this study gives prima facie insight into the role of SUMOylation in Chlamydomonas. We prove that VMPS of ChR1 is important for interaction with GTPase CrARL11. We show that SUMO motifs are present in the C-terminus of putative ChR1s from green algae. Performing experiments with n-Ethylmaleimide (NEM) and Ubiquitin-like protease 1 (ULP-1) we show that SUMOylation may modulate ChR1 protein in Chlamydomonas. Experiments with 2D08, a known sumoylation blocker, increased the concentration of ChR1 protein. Finally, we show the endogenous SUMOylated proteins (SUMOylome) of C. reinhardtii, identified by using immunoprecipitation followed by nano-LC-MS/MS detection. This report establishes a link between evolutionarily conserved SUMOylation, and ciliary machinery for the maintenance and functioning of cilia across the eukaryotes. Our enriched SUMOylome of C. reinhardtii comprehends the proteins related to ciliary development and, photo-signaling, along with orthologue(s) associated to human ciliopathies as SUMO targets.
Collapse
Affiliation(s)
- Komal Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India; Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Irina Sizova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre, «Kurchatov Institute», St. Petersburg, Gatchina 1 188300, Russia
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India; Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Peter Hegemann
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany.
| | - Suneel Kateriya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
18
|
Sheryazdanova A, Amoedo ND, Dufour S, Impens F, Rossignol R, Sablina A. The deubiquitinase OTUB1 governs lung cancer cell fitness by modulating proteostasis of OXPHOS proteins. Biochim Biophys Acta Mol Basis Dis 2023:166767. [PMID: 37245529 DOI: 10.1016/j.bbadis.2023.166767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Aerobic glycolysis is a hallmark of cancer development, but this dogma has been challenged by reports showing a key role of oxidative phosphorylation (OXPHOS) in cancer cell survival. It has been proposed that increased levels of intramitochondrial proteins in cancer cells are associated with high OXPHOS activity and increased sensitivity to OXPHOS inhibitors. However, the molecular mechanisms leading to the high expression of OXPHOS proteins in cancer cells remain unknown. Multiple proteomics studies have detected the ubiquitination of intramitochondrial proteins, suggesting the contribution of the ubiquitin system to the proteostatic regulation of OXPHOS proteins. Here, we identified the ubiquitin hydrolase OTUB1 as a regulator of the mitochondrial metabolic machinery essential for lung cancer cell survival. Mitochondria-localized OTUB1 modulates respiration by inhibiting K48-linked ubiquitination and turnover of OXPHOS proteins. An increase in OTUB1 expression is commonly observed in one-third of non-small-cell lung carcinomas and is associated with high OXPHOS signatures. Moreover, OTUB1 expression highly correlates with the sensitivity of lung cancer cells to mitochondrial inhibitors.
Collapse
Affiliation(s)
- Aidana Sheryazdanova
- VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KULeuven, Leuven, Belgium
| | - Nivea Dias Amoedo
- INSERM U1211 Rare Diseases, Genetics and Metabolism, University of Bordeaux, Bordeaux, France
| | - Sara Dufour
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Center for Medical Biotechnology, Ghent, Belgium; VIB Proteomics Core, Ghent, Belgium
| | - Francis Impens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Center for Medical Biotechnology, Ghent, Belgium; VIB Proteomics Core, Ghent, Belgium
| | - Rodrigue Rossignol
- INSERM U1211 Rare Diseases, Genetics and Metabolism, University of Bordeaux, Bordeaux, France
| | - Anna Sablina
- VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KULeuven, Leuven, Belgium.
| |
Collapse
|
19
|
Deng H, Jia S, Tang J, Rong F, Xu C, Chen X, Wang Z, Zhu C, Sun X, Liao Q, Liu W, Li W, Xiao W, Liu X. SET7 methylates the deubiquitinase OTUB1 at Lys 122 to impair its binding to E2 enzyme UBC13 and relieve its suppressive role on ferroptosis. J Biol Chem 2023; 299:103054. [PMID: 36822329 PMCID: PMC10040876 DOI: 10.1016/j.jbc.2023.103054] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
The deubiquitinating enzyme OTUB1 possesses canonical deubiquitinase (DUB) activity and noncanonical, catalytic-independent activity, which has been identified as an essential regulator of diverse physiological processes. Posttranslational modifications of OTUB1 affect both its DUB activity and its noncanonical activity of binding to the E2 ubiquitin-conjugation enzyme UBC13, but further investigation is needed to characterize the full inventory of modifications to OTUB1. Here, we demonstrate that SET7, a lysine monomethylase, directly interacts with OTUB1 to catalyze OTUB1 methylation at lysine 122. This modification does not affect DUB activity of OTUB1 but impairs its noncanonical activity, binding to UBC13. Moreover, we found using cell viability analysis and intracellular reactive oxygen species assay that SET7-mediated methylation of OTUB1 relieves its suppressive role on ferroptosis. Notably, the methylation-mimic mutant of OTUB1 not only loses the ability to bind to UBC13 but also relieves its suppressive role on Tert-Butyl hydroperoxide-induced cell death and Cystine starvation/Erastin-induced cellular reactive oxygen species. Collectively, our data identify a novel modification of OTUB1 that is critical for inhibiting its noncanonical activity.
Collapse
Affiliation(s)
- Hongyan Deng
- College of Life Science, Wuhan University, Wuhan, P. R. China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Shuke Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jinhua Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Fangjing Rong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Chenxi Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaoyun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Zixuan Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Chunchun Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xueyi Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Qian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Wen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Wenhua Li
- College of Life Science, Wuhan University, Wuhan, P. R. China.
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China; Hubei Hongshan Laboratory, Wuhan, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, P. R. China.
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China; Hubei Hongshan Laboratory, Wuhan, P. R. China.
| |
Collapse
|
20
|
Li M, Peng Y, Chen W, Gao Y, Yang M, Li J, He J. Active Nrf2 signaling flexibly regulates HO-1 and NQO-1 in hypoxic Gansu Zokor (Eospalax cansus). Comp Biochem Physiol B Biochem Mol Biol 2023; 264:110811. [PMID: 36372272 DOI: 10.1016/j.cbpb.2022.110811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Gansu zokor (Eospalax cansus) is a typical subterranean rodent species with resistance to ambient hypoxia. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling plays a key role in regulating redox homeostasis. However, little is known about the regulation of Nrf2 signaling in Gansu zokor. We exposed Gansu zokors and SD rats to chronic hypoxia (44 h at 10.5% O2) or acute hypoxia (6 h at 6.5% O2) andmeasured the activities of heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase-1 (NQO-1),gene expression of HO-1, NQO-1, Nrf2, Kelch-like ECH-associated protein-1 (KEAP1), and β-transducin repeat-containing protein (β-TRCP) in the brain and liver. We found that Gansu zokor increased the NQO-1 protein content and activity, HO-1 protein content in the brain, and increased HO-1 activity and mRNA level, NQO-1 activity and protein content in the liver by up regulating Nrf2 gene expression under chronic hypoxia. Although acute hypoxia enhanced the expression of Nrf2 gene, only the level of HO-1 mRNA in the liver increased. Besides, the HO-1 and NQO-1 genes in the brain, HO-1 genes and NQO-1 mRNA in the Gansu zokor liver were significantly higher than those in SD rats under normoxia. Negative regulators of Nrf2 signaling were tissue specific: KEAP1 protein decreased in the brain, and β-TRCP decreased in the liver. The Nrf2 signaling and expression of downstream antioxidant enzymes were different under different oxygen concentrations, reflecting the flexible characteristics of Gansu zokor to deal with the hypoxic environment.
Collapse
Affiliation(s)
- Meng Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Yifan Peng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Wenjun Chen
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Yongjiao Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Maohong Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Jingang Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Jianping He
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
21
|
Galindo-Hernández O, García-Salazar LA, García-González VG, Díaz-Molina R, Vique-Sánchez JL. Potential Inhibitors of The OTUB1 Catalytic Site to Develop an Anti-Cancer Drug Using In-Silico Approaches. Rep Biochem Mol Biol 2023; 11:684-693. [PMID: 37131907 PMCID: PMC10149122 DOI: 10.52547/rbmb.11.4.684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/13/2022] [Indexed: 05/04/2023]
Abstract
Background : Cancer continues worldwide. It has been reported that OTUB1, a cysteine protease, plays a critical role in a variety of tumors and is strongly related to tumor proliferation, migration, and clinical prognosis by its functions on deubiquitination. Drug advances continue against new therapeutic targets. In this study we used OTUB1 to develop a specific pharmacological treatment to regulate deubiquitination by OTUB1. The aim of this research is to regulate OTUB1 functions. Methods By molecular docking in a specific potential OTUB1 interaction site between Asp88, Cys91, and His26 amino acids, using a chemical library of over 500,000 compounds, we selected potential inhibitors of the OTUB1 catalytic site. Results Ten compounds (OT1 - OT10) were selected by molecular docking to develop a new anti-cancer drug to decrease OTUB1 functions in cancer processes. Conclusion OT1 - OT10 compounds could be interacting in the potential site between Asp88, Cys91, and His265 amino acids in OTUB1. This site is necessary for the deubiquitinating function of OTUB1. Therefore, this study shows another way to attack cancer.
Collapse
Affiliation(s)
- Octavio Galindo-Hernández
- Autonomous University of Baja California, School of Medicine Campus Mexicali, Mexicali, BC, México.
- Corresponding author: José Luis Vique-Sánchez; Tel: +52 5549928664; E-mail: .
| | | | | | - Raúl Díaz-Molina
- Autonomous University of Baja California, School of Medicine Campus Mexicali, Mexicali, BC, México.
| | - José Luis Vique-Sánchez
- Autonomous University of Baja California, School of Medicine Campus Mexicali, Mexicali, BC, México.
- Corresponding author: José Luis Vique-Sánchez; Tel: +52 5549928664; E-mail: .
| |
Collapse
|
22
|
Volkova YL, Pickel C, Jucht AE, Wenger RH, Scholz CC. The Asparagine Hydroxylase FIH: A Unique Oxygen Sensor. Antioxid Redox Signal 2022; 37:913-935. [PMID: 35166119 DOI: 10.1089/ars.2022.0003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Limited oxygen availability (hypoxia) commonly occurs in a range of physiological and pathophysiological conditions, including embryonic development, physical exercise, inflammation, and ischemia. It is thus vital for cells and tissues to monitor their local oxygen availability to be able to adjust in case the oxygen supply is decreased. The cellular oxygen sensor factor inhibiting hypoxia-inducible factor (FIH) is the only known asparagine hydroxylase with hypoxia sensitivity. FIH uniquely combines oxygen and peroxide sensitivity, serving as an oxygen and oxidant sensor. Recent Advances: FIH was first discovered in the hypoxia-inducible factor (HIF) pathway as a modulator of HIF transactivation activity. Several other FIH substrates have now been identified outside the HIF pathway. Moreover, FIH enzymatic activity is highly promiscuous and not limited to asparagine hydroxylation. This includes the FIH-mediated catalysis of an oxygen-dependent stable (likely covalent) bond formation between FIH and selected substrate proteins (called oxomers [oxygen-dependent stable protein oligomers]). Critical Issues: The (patho-)physiological function of FIH is only beginning to be understood and appears to be complex. Selective pharmacologic inhibition of FIH over other oxygen sensors is possible, opening new avenues for therapeutic targeting of hypoxia-associated diseases, increasing the interest in its (patho-)physiological relevance. Future Directions: The contribution of FIH enzymatic activity to disease development and progression should be analyzed in more detail, including the assessment of underlying molecular mechanisms and relevant FIH substrate proteins. Also, the molecular mechanism(s) involved in the physiological functions of FIH remain(s) to be determined. Furthermore, the therapeutic potential of recently developed FIH-selective pharmacologic inhibitors will need detailed assessment. Antioxid. Redox Signal. 37, 913-935.
Collapse
Affiliation(s)
- Yulia L Volkova
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Christina Pickel
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Liu X, Deng H, Tang J, Wang Z, Zhu C, Cai X, Rong F, Chen X, Sun X, Jia S, Ouyang G, Li W, Xiao W. OTUB1 augments hypoxia signaling via its non-canonical ubiquitination inhibition of HIF-1α during hypoxia adaptation. Cell Death Dis 2022; 13:560. [PMID: 35732631 PMCID: PMC9217984 DOI: 10.1038/s41419-022-05008-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 01/21/2023]
Abstract
As a main regulator of cellular responses to hypoxia, the protein stability of hypoxia-inducible factor (HIF)-1α is strictly controlled by oxygen tension dependent of PHDs-catalyzed protein hydroxylation and pVHL complex-mediated proteasomal degradation. Whether HIF-1α protein stability as well as its activity can be further regulated under hypoxia is not well understood. In this study, we found that OTUB1 augments hypoxia signaling independent of PHDs/VHL and FIH. OTUB1 binds to HIF-1α and depletion of OTUB1 reduces endogenous HIF-1α protein under hypoxia. In addition, OTUB1 inhibits K48-linked polyubiquitination of HIF-1α via its non-canonical inhibition of ubiquitination activity. Furthermore, OTUB1 promotes hypoxia-induced glycolytic reprogramming for cellular metabolic adaptation. These findings define a novel regulation of HIF-1α under hypoxia and demonstrate that OTUB1-mediated HIF-1α stabilization positively regulates HIF-1α transcriptional activity and benefits cellular hypoxia adaptation.
Collapse
Affiliation(s)
- Xing Liu
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China ,grid.9227.e0000000119573309The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072 PR China ,Hubei Hongshan Laboratory, Wuhan, 430070 PR China
| | - Hongyan Deng
- grid.49470.3e0000 0001 2331 6153College of Life Science, Wuhan University, Wuhan, 430072 PR China ,grid.49470.3e0000 0001 2331 6153Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 PR China
| | - Jinhua Tang
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Zixuan Wang
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Chunchun Zhu
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Xiaolian Cai
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.9227.e0000000119573309The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072 PR China
| | - Fangjing Rong
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Xiaoyun Chen
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Xueyi Sun
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Shuke Jia
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Gang Ouyang
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.9227.e0000000119573309The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072 PR China
| | - Wenhua Li
- grid.49470.3e0000 0001 2331 6153College of Life Science, Wuhan University, Wuhan, 430072 PR China ,grid.49470.3e0000 0001 2331 6153Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 PR China
| | - Wuhan Xiao
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China ,grid.9227.e0000000119573309The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072 PR China ,Hubei Hongshan Laboratory, Wuhan, 430070 PR China
| |
Collapse
|
24
|
Abstract
Cellular hypoxia occurs when the demand for sufficient molecular oxygen needed to produce the levels of ATP required to perform physiological functions exceeds the vascular supply, thereby leading to a state of oxygen depletion with the associated risk of bioenergetic crisis. To protect against the threat of hypoxia, eukaryotic cells have evolved the capacity to elicit oxygen-sensitive adaptive transcriptional responses driven primarily (although not exclusively) by the hypoxia-inducible factor (HIF) pathway. In addition to the canonical regulation of HIF by oxygen-dependent hydroxylases, multiple other input signals, including gasotransmitters, non-coding RNAs, histone modifiers and post-translational modifications, modulate the nature of the HIF response in discreet cell types and contexts. Activation of HIF induces various effector pathways that mitigate the effects of hypoxia, including metabolic reprogramming and the production of erythropoietin. Drugs that target the HIF pathway to induce erythropoietin production are now approved for the treatment of chronic kidney disease-related anaemia. However, HIF-dependent changes in cell metabolism also have profound implications for functional responses in innate and adaptive immune cells, and thereby heavily influence immunity and the inflammatory response. Preclinical studies indicate a potential use of HIF therapeutics to treat inflammatory diseases, such as inflammatory bowel disease. Understanding the links between HIF, cellular metabolism and immunity is key to unlocking the full therapeutic potential of drugs that target the HIF pathway. Hypoxia-dependent changes in cellular metabolism have important implications for the effective functioning of multiple immune cell subtypes. This Review describes the inputs that shape the hypoxic response in individual cell types and contexts, and the implications of this response for cellular metabolism and associated alterations in immune cell function. Hypoxia is a common feature of particular microenvironments and at sites of immunity and inflammation, resulting in increased activity of the hypoxia-inducible factor (HIF). In addition to hypoxia, multiple inputs modulate the activity of the HIF pathway, allowing nuanced downstream responses in discreet cell types and contexts. HIF-dependent changes in cellular metabolism mitigate the effects of hypoxia and ensure that energy needs are met under conditions in which oxidative phosphorylation is reduced. HIF-dependent changes in metabolism also profoundly affect the phenotype and function of immune cells. The immunometabolic effects of HIF have important implications for targeting the HIF pathway in inflammatory disease.
Collapse
Affiliation(s)
- Cormac T Taylor
- School of Medicine, The Conway Institute & Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Institute of Physiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
25
|
Schützhold V, Gravemeyer J, Bicker A, Hager T, Padberg C, Schäfer J, Wrobeln A, Steinbrink M, Zeynel S, Hankeln T, Becker JC, Fandrey J, Winning S. Knockout of Factor-Inhibiting HIF ( Hif1an) in Colon Epithelium Attenuates Chronic Colitis but Does Not Reduce Colorectal Cancer in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1280-1291. [PMID: 35121641 DOI: 10.4049/jimmunol.2100418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Inflammatory bowel disease such as chronic colitis promotes colorectal cancer, which is a common cause of cancer mortality worldwide. Hypoxia is a characteristic of inflammation as well as of solid tumors and enforces a gene expression response controlled by hypoxia-inducible factors (HIFs). Once established, solid tumors are immunosuppressive to escape their abatement through immune cells. Although HIF activity is known to 1) promote cancer development and 2) drive tumor immune suppression through the secretion of adenosine, both prolyl hydroxylases and an asparaginyl hydroxylase termed factor-inhibiting HIF (FIH) negatively regulate HIF. Thus, FIH may act as a tumor suppressor in colorectal cancer development. In this study, we examined the role of colon epithelial FIH in a mouse model of colitis-induced colorectal cancer. We recapitulated colitis-associated colorectal cancer development in mice using the azoxymethane/dextran sodium sulfate model in Vil1-Cre/FIH+f/+f and wild-type siblings. Colon samples were analyzed regarding RNA and protein expression and histology. Vil1-Cre/FIH+f/+f mice showed a less severe colitis progress compared with FIH+f/+f animals and a lower number of infiltrating macrophages in the inflamed tissue. RNA sequencing analyses of colon tissue revealed a lower expression of genes associated with the immune response in Vil1-Cre/FIH+f/+f mice. However, tumor occurrence did not significantly differ between Vil1-Cre/FIH+f/+f and wild-type mice. Thus, FIH knockout in colon epithelial cells did not modulate colorectal cancer development but reduced the inflammatory response in chronic colitis.
Collapse
Affiliation(s)
- Vera Schützhold
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | - Jan Gravemeyer
- Translational Skin Cancer Research, Dermatologie, Universitätsmedizin Essen, Essen, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Anne Bicker
- Molekulargenetik und Genomanalyse, Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany; and
| | - Thomas Hager
- Institut für Pathologie, Universität Duisburg-Essen, Essen, Germany
| | - Claudia Padberg
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | - Jana Schäfer
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | - Anna Wrobeln
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | | | - Seher Zeynel
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | - Thomas Hankeln
- Molekulargenetik und Genomanalyse, Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany; and
| | - Jürgen Christian Becker
- Translational Skin Cancer Research, Dermatologie, Universitätsmedizin Essen, Essen, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Joachim Fandrey
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany;
| | - Sandra Winning
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
26
|
Brereton CJ, Yao L, Davies ER, Zhou Y, Vukmirovic M, Bell JA, Wang S, Ridley RA, Dean LSN, Andriotis OG, Conforti F, Brewitz L, Mohammed S, Wallis T, Tavassoli A, Ewing RM, Alzetani A, Marshall BG, Fletcher SV, Thurner PJ, Fabre A, Kaminski N, Richeldi L, Bhaskar A, Schofield CJ, Loxham M, Davies DE, Wang Y, Jones MG. Pseudohypoxic HIF pathway activation dysregulates collagen structure-function in human lung fibrosis. eLife 2022; 11:e69348. [PMID: 35188460 PMCID: PMC8860444 DOI: 10.7554/elife.69348] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
Extracellular matrix (ECM) stiffening with downstream activation of mechanosensitive pathways is strongly implicated in fibrosis. We previously reported that altered collagen nanoarchitecture is a key determinant of pathogenetic ECM structure-function in human fibrosis (Jones et al., 2018). Here, through human tissue, bioinformatic and ex vivo studies we provide evidence that hypoxia-inducible factor (HIF) pathway activation is a critical pathway for this process regardless of the oxygen status (pseudohypoxia). Whilst TGFβ increased the rate of fibrillar collagen synthesis, HIF pathway activation was required to dysregulate post-translational modification of fibrillar collagen, promoting pyridinoline cross-linking, altering collagen nanostructure, and increasing tissue stiffness. In vitro, knockdown of Factor Inhibiting HIF (FIH), which modulates HIF activity, or oxidative stress caused pseudohypoxic HIF activation in the normal fibroblasts. By contrast, endogenous FIH activity was reduced in fibroblasts from patients with lung fibrosis in association with significantly increased normoxic HIF pathway activation. In human lung fibrosis tissue, HIF-mediated signalling was increased at sites of active fibrogenesis whilst subpopulations of human lung fibrosis mesenchymal cells had increases in both HIF and oxidative stress scores. Our data demonstrate that oxidative stress can drive pseudohypoxic HIF pathway activation which is a critical regulator of pathogenetic collagen structure-function in fibrosis.
Collapse
Affiliation(s)
- Christopher J Brereton
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Liudi Yao
- Biological Sciences, Faculty of Environmental and Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Elizabeth R Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- Biological Sciences, Faculty of Environmental and Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Yilu Zhou
- Biological Sciences, Faculty of Environmental and Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Milica Vukmirovic
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale University School of MedicineNew HavenUnited States
- Leslie Dan Faculty of Pharmacy, University of TorontoTorontoCanada
| | - Joseph A Bell
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Siyuan Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Robert A Ridley
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Lareb SN Dean
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Orestis G Andriotis
- Institute of Lightweight Design and Structural Biomechanics, TU WienViennaAustria
| | - Franco Conforti
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Lennart Brewitz
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research LaboratoryOxfordUnited Kingdom
| | - Soran Mohammed
- School of Chemistry, University of SouthamptonSouthamptonUnited Kingdom
| | - Timothy Wallis
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Ali Tavassoli
- School of Chemistry, University of SouthamptonSouthamptonUnited Kingdom
| | - Rob M Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Aiman Alzetani
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Benjamin G Marshall
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Sophie V Fletcher
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Philipp J Thurner
- Institute of Lightweight Design and Structural Biomechanics, TU WienViennaAustria
| | - Aurelie Fabre
- Department of Histopathology, St. Vincent's University Hospital & UCD School of Medicine, University College DublinDublinIreland
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale University School of MedicineNew HavenUnited States
| | - Luca Richeldi
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli IRCCSRomeItaly
| | - Atul Bhaskar
- Faculty of Engineering and Physical Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Christopher J Schofield
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research LaboratoryOxfordUnited Kingdom
| | - Matthew Loxham
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Donna E Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Yihua Wang
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- Biological Sciences, Faculty of Environmental and Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Mark G Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| |
Collapse
|
27
|
The Deubiquitinase OTUB1 Is a Key Regulator of Energy Metabolism. Int J Mol Sci 2022; 23:ijms23031536. [PMID: 35163456 PMCID: PMC8836018 DOI: 10.3390/ijms23031536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Dysregulated energy metabolism is a major contributor to a multitude of pathologies, including obesity and diabetes. Understanding the regulation of metabolic homeostasis is of utmost importance for the identification of therapeutic targets for the treatment of metabolically driven diseases. We previously identified the deubiquitinase OTUB1 as substrate for the cellular oxygen sensor factor-inhibiting HIF (FIH) with regulatory effects on cellular energy metabolism, but the physiological relevance of OTUB1 is unclear. Here, we report that the induced global deletion of OTUB1 in adult mice (Otub1 iKO) elevated energy expenditure, reduced age-dependent body weight gain, facilitated blood glucose clearance and lowered basal plasma insulin levels. The respiratory exchange ratio was maintained, indicating an unaltered nutrient oxidation. In addition, Otub1 deletion in cells enhanced AKT activity, leading to a larger cell size, higher ATP levels and reduced AMPK phosphorylation. AKT is an integral part of insulin-mediated signaling and Otub1 iKO mice presented with increased AKT phosphorylation following acute insulin administration combined with insulin hypersensitivity. We conclude that OTUB1 is an important regulator of metabolic homeostasis.
Collapse
|
28
|
Zhu B, Zhong W, Cao X, Pan G, Xu M, Zheng J, Chen H, Feng X, Luo C, Lu C, Xiao J, Lin W, Lai C, Li M, Du X, Yi Q, Yan D. Loss of miR-31-5p drives hematopoietic stem cell malignant transformation and restoration eliminates leukemia stem cells in mice. Sci Transl Med 2022; 14:eabh2548. [PMID: 35080912 DOI: 10.1126/scitranslmed.abh2548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Leukemia stem cells (LSCs) propagate leukemia and are responsible for the high frequency of relapse of treated patients. The ability to target LSCs remains elusive, indicating a need to understand the underlying mechanism of LSC formation. Here, we report that miR-31-5p is reduced or undetectable in human LSCs compared to hematopoietic stem progenitor cells (HSPCs). Inhibition of miR-31-5p in HSPCs promotes the expression of its target gene FIH, encoding FIH [factor inhibiting hypoxia-inducing factor 1α (HIF-1α)], to suppress HIF-1α signaling. Increased FIH resulted in a switch from glycolysis to oxidative phosphorylation (OXPHOS) as the predominant mode of energy metabolism and increased the abundance of the oncometabolite fumarate. Increased fumarate promoted the conversion of HSPCs to LSCs and initiated myeloid leukemia-like disease in NOD-Prkdcscid IL2rgtm1/Bcgen (B-NDG) mice. We further demonstrated that miR-31-5p inhibited long- and short-term hematopoietic stem cells with a high frequency of LSCs. In combination with the chemotherapeutic agent Ara-C (cytosine arabinoside), restoration of miR-31-5p using G7 poly (amidoamine) nanosized dendriplex encapsulating miR-31-5p eliminated LSCs and inhibited acute myeloid leukemia (AML) progression in patient-derived xenograft mouse models. These results demonstrated a mechanism of HSC malignant transformation through altered energy metabolism and provided a potential therapeutic strategy to treat patients with AML.
Collapse
Affiliation(s)
- Biying Zhu
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Wenbin Zhong
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Xiuye Cao
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Guoping Pan
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Mengyang Xu
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Jie Zheng
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Huanzhao Chen
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Xiaoqin Feng
- Hematology and Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chengwei Luo
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Chen Lu
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Jie Xiao
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Weize Lin
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Chaofeng Lai
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Mingchuan Li
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Xin Du
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Qing Yi
- Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Daoguang Yan
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
29
|
Ruiz-Serrano A, Monné Rodríguez JM, Günter J, Sherman SPM, Jucht AE, Fluechter P, Volkova YL, Pfundstein S, Pellegrini G, Wagner CA, Schneider C, Wenger RH, Scholz CC. OTUB1 regulates lung development, adult lung tissue homeostasis, and respiratory control. FASEB J 2021; 35:e22039. [PMID: 34793600 DOI: 10.1096/fj.202100346r] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/17/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022]
Abstract
OTUB1 is one of the most highly expressed deubiquitinases, counter-regulating the two most abundant ubiquitin chain types. OTUB1 expression is linked to the development and progression of lung cancer and idiopathic pulmonary fibrosis in humans. However, the physiological function of OTUB1 is unknown. Here, we show that constitutive whole-body Otub1 deletion in mice leads to perinatal lethality by asphyxiation. Analysis of (single-cell) RNA sequencing and proteome data demonstrated that OTUB1 is expressed in all lung cell types with a particularly high expression during late-stage lung development (E16.5, E18.5). At E18.5, the lungs of animals with Otub1 deletion presented with increased cell proliferation that decreased saccular air space and prevented inhalation. Flow cytometry-based analysis of E18.5 lung tissue revealed that Otub1 deletion increased proliferation of major lung parenchymal and mesenchymal/other non-hematopoietic cell types. Adult mice with conditional whole-body Otub1 deletion (wbOtub1del/del ) also displayed increased lung cell proliferation in addition to hyperventilation and failure to adapt the respiratory pattern to hypoxia. On the molecular level, Otub1 deletion enhanced mTOR signaling in embryonic and adult lung tissues. Based on these results, we propose that OTUB1 is a negative regulator of mTOR signaling with essential functions for lung cell proliferation, lung development, adult lung tissue homeostasis, and respiratory regulation.
Collapse
Affiliation(s)
| | - Josep M Monné Rodríguez
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Julia Günter
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research 'Kidney.CH', Zurich, Switzerland
| | | | | | - Pascal Fluechter
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Yulia L Volkova
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Giovanni Pellegrini
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research 'Kidney.CH', Zurich, Switzerland
| | | | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research 'Kidney.CH', Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research 'Kidney.CH', Zurich, Switzerland
| |
Collapse
|
30
|
Hydroxylation of the Acetyltransferase NAA10 Trp38 Is Not an Enzyme-Switch in Human Cells. Int J Mol Sci 2021; 22:ijms222111805. [PMID: 34769235 PMCID: PMC8583962 DOI: 10.3390/ijms222111805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
NAA10 is a major N-terminal acetyltransferase (NAT) that catalyzes the cotranslational N-terminal (Nt-) acetylation of 40% of the human proteome. Several reports of lysine acetyltransferase (KAT) activity by NAA10 exist, but others have not been able to find any NAA10-derived KAT activity, the latter of which is supported by structural studies. The KAT activity of NAA10 towards hypoxia-inducible factor 1α (HIF-1α) was recently found to depend on the hydroxylation at Trp38 of NAA10 by factor inhibiting HIF-1α (FIH). In contrast, we could not detect hydroxylation of Trp38 of NAA10 in several human cell lines and found no evidence that NAA10 interacts with or is regulated by FIH. Our data suggest that NAA10 Trp38 hydroxylation is not a switch in human cells and that it alters its catalytic activity from a NAT to a KAT.
Collapse
|
31
|
AMPK-mTOR Signaling and Cellular Adaptations in Hypoxia. Int J Mol Sci 2021; 22:ijms22189765. [PMID: 34575924 PMCID: PMC8465282 DOI: 10.3390/ijms22189765] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular energy is primarily provided by the oxidative degradation of nutrients coupled with mitochondrial respiration, in which oxygen participates in the mitochondrial electron transport chain to enable electron flow through the chain complex (I-IV), leading to ATP production. Therefore, oxygen supply is an indispensable chapter in intracellular bioenergetics. In mammals, oxygen is delivered by the bloodstream. Accordingly, the decrease in cellular oxygen level (hypoxia) is accompanied by nutrient starvation, thereby integrating hypoxic signaling and nutrient signaling at the cellular level. Importantly, hypoxia profoundly affects cellular metabolism and many relevant physiological reactions induce cellular adaptations of hypoxia-inducible gene expression, metabolism, reactive oxygen species, and autophagy. Here, we introduce the current knowledge of hypoxia signaling with two-well known cellular energy and nutrient sensing pathways, AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin complex 1 (mTORC1). Additionally, the molecular crosstalk between hypoxic signaling and AMPK/mTOR pathways in various hypoxic cellular adaptions is discussed.
Collapse
|
32
|
Iskandar A, Zulkifli NW, Ahmad MK, Theva Das K, Zulkifle N. OTUB1 expression and interaction network analyses in MCF-7 breast cancer cells. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Wang Y, Wang F. Post-Translational Modifications of Deubiquitinating Enzymes: Expanding the Ubiquitin Code. Front Pharmacol 2021; 12:685011. [PMID: 34177595 PMCID: PMC8224227 DOI: 10.3389/fphar.2021.685011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Post-translational modifications such as ubiquitination play important regulatory roles in several biological processes in eukaryotes. This process could be reversed by deubiquitinating enzymes (DUBs), which remove conjugated ubiquitin molecules from target substrates. Owing to their role as essential enzymes in regulating all ubiquitin-related processes, the abundance, localization, and catalytic activity of DUBs are tightly regulated. Dysregulation of DUBs can cause dramatic physiological consequences and a variety of disorders such as cancer, and neurodegenerative and inflammatory diseases. Multiple factors, such as transcription and translation of associated genes, and the presence of accessory domains, binding proteins, and inhibitors have been implicated in several aspects of DUB regulation. Beyond this level of regulation, emerging studies show that the function of DUBs can be regulated by a variety of post-translational modifications, which significantly affect the abundance, localization, and catalytic activity of DUBs. The most extensively studied post-translational modification of DUBs is phosphorylation. Besides phosphorylation, ubiquitination, SUMOylation, acetylation, oxidation, and hydroxylation are also reported in DUBs. In this review, we summarize the current knowledge on the regulatory effects of post-translational modifications of DUBs.
Collapse
Affiliation(s)
- Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
34
|
Wu Y, Li Z, McDonough MA, Schofield CJ, Zhang X. Inhibition of the Oxygen-Sensing Asparaginyl Hydroxylase Factor Inhibiting Hypoxia-Inducible Factor: A Potential Hypoxia Response Modulating Strategy. J Med Chem 2021; 64:7189-7209. [PMID: 34029087 DOI: 10.1021/acs.jmedchem.1c00415] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Factor inhibiting hypoxia-inducible factor (FIH) is a JmjC domain 2-oxogluarate and Fe(II)-dependent oxygenase that catalyzes hydroxylation of specific asparagines in the C-terminal transcriptional activation domain of hypoxia-inducible factor alpha (HIF-α) isoforms. This modification suppresses the transcriptional activity of HIF by reducing its interaction with the transcriptional coactivators p300/CBP. By contrast with inhibition of the HIF prolyl hydroxylases (PHDs), inhibitors of FIH, which accepts multiple non-HIF substrates, are less studied; they are of interest due to their potential ability to alter metabolism (either in a HIF-dependent and/or -independent manner) and, provided HIF is upregulated, to modulate the course of the HIF-mediated hypoxic response. Here we review studies on the mechanism and inhibition of FIH. We discuss proposed biological roles of FIH including its regulation of HIF activity and potential roles of FIH-catalyzed oxidation of non-HIF substrates. We highlight potential therapeutic applications of FIH inhibitors.
Collapse
Affiliation(s)
- Yue Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Zhihong Li
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Michael A McDonough
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Xiaojin Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
35
|
Zhu Q, Fu Y, Li L, Liu CH, Zhang L. The functions and regulation of Otubains in protein homeostasis and diseases. Ageing Res Rev 2021; 67:101303. [PMID: 33609777 DOI: 10.1016/j.arr.2021.101303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022]
Abstract
OTU domain-containing ubiquitin aldehyde-binding proteins Otubain1 (OTUB1) and Otubain2 (OTUB2) were initially identified as OTU deubiquitinases (DUBs). Recently, Otubains have emerged as essential regulators of diverse physiological processes, such as immune signaling and DNA damage response. Dysregulation of those processes is likely to increase the risk in multiple aspects of aging-related diseases, including cancers, neurodegenerative disorders, chronic kidney diseases, bone dysplasia and pulmonary fibrosis. Consistently, Otubains are aberrantly expressed in cancers and have been identified to be both tumor suppressors and tumor promoters in different types of cancers. Therefore, the regulatory mechanism of the activity and expression of Otubains is very important for better understanding of Otubains-associated biological networks and human diseases. This review provides a comprehensive description of functions and regulatory axis of Otubains, highlighting experimental evidences indicating Otubains as potential therapeutic targets against aging-related disorders.
Collapse
Affiliation(s)
- Qiong Zhu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Yesheng Fu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Lei Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology (Chinese Academy of Sciences), Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China.
| |
Collapse
|
36
|
Zong Z, Zhang Z, Wu L, Zhang L, Zhou F. The Functional Deubiquitinating Enzymes in Control of Innate Antiviral Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002484. [PMID: 33511009 PMCID: PMC7816709 DOI: 10.1002/advs.202002484] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/09/2020] [Indexed: 05/11/2023]
Abstract
Innate antiviral immunity is the first line of host defense against invading viral pathogens. Immunity activation primarily relies on the recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). Viral proteins or nucleic acids mainly engage three classes of PRRs: Toll-like receptors (TLRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), and DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These receptors initiate a series of signaling cascades that lead to the production of proinflammatory cytokines and type I interferon (IFN-I) in response to viral infection. This system requires precise regulation to avoid aberrant activation. Emerging evidence has unveiled the crucial roles that the ubiquitin system, especially deubiquitinating enzymes (DUBs), play in controlling immune responses. In this review, an overview of the most current findings on the function of DUBs in the innate antiviral immune pathways is provided. Insights into the role of viral DUBs in counteracting host immune responses are also provided. Furthermore, the prospects and challenges of utilizing DUBs as therapeutic targets for infectious diseases are discussed.
Collapse
Affiliation(s)
- Zhi Zong
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Zhengkui Zhang
- Institute of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Liming Wu
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
| | - Long Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Fangfang Zhou
- Institute of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| |
Collapse
|
37
|
Abstract
Anaplerosis and the associated mitochondrial metabolite transporters generate unique cytosolic metabolic signaling molecules that can regulate insulin release from pancreatic β-cells. It has been shown that mitochondrial metabolites, transported by the citrate carrier (CIC), dicarboxylate carrier (DIC), oxoglutarate carrier (OGC), and mitochondrial pyruvate carrier (MPC) play a vital role in the regulation of glucose-stimulated insulin secretion (GSIS). Metabolomic studies on static and biphasic insulin secretion, suggests that several anaplerotic derived metabolites, including α-ketoglutarate (αKG), are strongly associated with nutrient regulated insulin secretion. Support for a role of αKG in the regulation of insulin secretion comes from studies looking at αKG dependent enzymes, including hypoxia-inducible factor-prolyl hydroxylases (PHDs) in clonal β-cells, and rodent and human islets. This review will focus on the possible link between defective anaplerotic-derived αKG, PHDs, and the development of type 2 diabetes (T2D).
Collapse
Affiliation(s)
- M. Hoang
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
| | - J. W. Joseph
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
- CONTACT J. W. Joseph School of Pharmacy, University of Waterloo, Kitchener, ONN2G1C5, Canada
| |
Collapse
|
38
|
Rodriguez J, Haydinger CD, Peet DJ, Nguyen LK, von Kriegsheim A. Asparagine Hydroxylation is a Reversible Post-translational Modification. Mol Cell Proteomics 2020; 19:1777-1789. [PMID: 32759169 DOI: 10.1074/mcp.ra120.002189] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
Amino acid hydroxylation is a common post-translational modification, which generally regulates protein interactions or adds a functional group that can be further modified. Such hydroxylation is currently considered irreversible, necessitating the degradation and re-synthesis of the entire protein to reset the modification. Here we present evidence that the cellular machinery can reverse FIH-mediated asparagine hydroxylation on intact proteins. These data suggest that asparagine hydroxylation is a flexible and dynamic post-translational modification akin to modifications involved in regulating signaling networks, such as phosphorylation, methylation and ubiquitylation.
Collapse
Affiliation(s)
- Javier Rodriguez
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK; Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Lan K Nguyen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
39
|
Liao C, Zhang Q. Understanding the Oxygen-Sensing Pathway and Its Therapeutic Implications in Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1584-1595. [PMID: 32339495 DOI: 10.1016/j.ajpath.2020.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022]
Abstract
Maintaining oxygen homeostasis is a most basic cellular process for adapting physiological oxygen variations, and its abnormality typically leads to various disorders in the human body. The key molecules of the oxygen-sensing system include the transcriptional regulator hypoxia-inducible factor (HIF), which controls a wide range of oxygen responsive target genes (eg, EPO and VEGF), certain members of the oxygen/2-oxoglutarate-dependent dioxygenase family, including the HIF proline hydroxylase (PHD, alias EGLN), and an E3 ubiquitin ligase component for HIF destruction called von Hippel-Lindau. In this review, we summarize the physiological role and highlight the pathologic function for each protein of the oxygen-sensing system. A better understanding of their molecular mechanisms of action will help uncover novel therapeutic targets and develop more effective treatment approaches for related human diseases, including cancer.
Collapse
Affiliation(s)
- Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
40
|
Dengler F. Activation of AMPK under Hypoxia: Many Roads Leading to Rome. Int J Mol Sci 2020; 21:ijms21072428. [PMID: 32244507 PMCID: PMC7177550 DOI: 10.3390/ijms21072428] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is known as a pivotal cellular energy sensor, mediating the adaptation to low energy levels by deactivating anabolic processes and activating catabolic processes in order to restore the cellular ATP supply when the cellular AMP/ATP ratio is increased. Besides this well-known role, it has also been shown to exert protective effects under hypoxia. While an insufficient supply with oxygen might easily deplete cellular energy levels, i.e., ATP concentration, manifold other mechanisms have been suggested and are heavily disputed regarding the activation of AMPK under hypoxia independently from cellular AMP concentrations. However, an activation of AMPK preceding energy depletion could induce a timely adaptation reaction preventing more serious damage. A connection between AMPK and the master regulator of hypoxic adaptation via gene transcription, hypoxia-inducible factor (HIF), has also been taken into account, orchestrating their concerted protective action. This review will summarize the current knowledge on mechanisms of AMPK activation under hypoxia and its interrelationship with HIF.
Collapse
Affiliation(s)
- Franziska Dengler
- Institute of Veterinary Physiology, University of Leipzig, D-04103 Leipzig, Germany
| |
Collapse
|
41
|
Abstract
OTUB1 is a highly expressed cysteine protease that specifically cleaves K48-linked polyubiquitin chains. This unique deubiquitinating enzyme (DUB) can bind to a subset of E2 ubiquitin conjugating enzymes, forming complexes in which the two enzymes can regulate one another's activity. OTUB1 can noncatalytically suppress the ubiquitin conjugating activity of its E2 partners by sequestering the charged E2∼Ub thioester and preventing ubiquitin transfer. The same E2 enzymes, when uncharged, can stimulate the DUB activity of OTUB1 in vitro, although the importance of OTUB1 stimulation in vivo remains unclear. To assess the potential balance between these activities that might occur in cells, we characterized the kinetics and thermodynamics governing the formation and activity of OTUB1:E2 complexes. We show that both stimulation of OTUB1 by E2 enzymes and noncatalytic inhibition of E2 enzymes by OTUB1 occur at physiologically relevant concentrations of both partners. Whereas E2 partners differ in their ability to stimulate OTUB1 activity, we find that this variability is not correlated with the affinity of each E2 for OTUB1. In addition to UBE2N and the UBE2D isoforms, we find that OTUB1 inhibits the polyubiquitination activity of all three UBE2E enzymes, UBE2E1, UBE2E2, and UBE2E3. Interestingly, although OTUB1 also inhibits the auto-monoubiquitination and autopolyubiquitination activity of UBE2E1 and UBE2E2, it is unable to suppress autoubiquitination by UBE2E3. Our quantitative analysis provides a basis for further exploring the biological roles of OTUB1:E2 complexes in cells.
Collapse
Affiliation(s)
- Lauren T. Que
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21210-2185 USA
| | - Marie E. Morrow
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21210-2185 USA
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21210-2185 USA
| |
Collapse
|
42
|
Mader J, Huber J, Bonn F, Dötsch V, Rogov VV, Bremm A. Oxygen-dependent asparagine hydroxylation of the ubiquitin-associated (UBA) domain in Cezanne regulates ubiquitin binding. J Biol Chem 2020; 295:2160-2174. [PMID: 31937588 DOI: 10.1074/jbc.ra119.010315] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/27/2019] [Indexed: 12/26/2022] Open
Abstract
Deubiquitinases (DUBs) are vital for the regulation of ubiquitin signals, and both catalytic activity of and target recruitment by DUBs need to be tightly controlled. Here, we identify asparagine hydroxylation as a novel posttranslational modification involved in the regulation of Cezanne (also known as OTU domain-containing protein 7B (OTUD7B)), a DUB that controls key cellular functions and signaling pathways. We demonstrate that Cezanne is a substrate for factor inhibiting HIF1 (FIH1)- and oxygen-dependent asparagine hydroxylation. We found that FIH1 modifies Asn35 within the uncharacterized N-terminal ubiquitin-associated (UBA)-like domain of Cezanne (UBACez), which lacks conserved UBA domain properties. We show that UBACez binds Lys11-, Lys48-, Lys63-, and Met1-linked ubiquitin chains in vitro, establishing UBACez as a functional ubiquitin-binding domain. Our findings also reveal that the interaction of UBACez with ubiquitin is mediated via a noncanonical surface and that hydroxylation of Asn35 inhibits ubiquitin binding. Recently, it has been suggested that Cezanne recruitment to specific target proteins depends on UBACez Our results indicate that UBACez can indeed fulfill this role as regulatory domain by binding various ubiquitin chain types. They also uncover that this interaction with ubiquitin, and thus with modified substrates, can be modulated by oxygen-dependent asparagine hydroxylation, suggesting that Cezanne is regulated by oxygen levels.
Collapse
Affiliation(s)
- Julia Mader
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jessica Huber
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Florian Bonn
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Vladimir V Rogov
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Anja Bremm
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
43
|
The function and regulation of OTU deubiquitinases. Front Med 2019; 14:542-563. [PMID: 31884527 DOI: 10.1007/s11684-019-0734-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including cell division, immune responses, and apoptosis. Ubiquitin-mediated control over these processes can be reversed by deubiquitinases (DUBs), which remove ubiquitin from target proteins and depolymerize polyubiquitin chains. Recently, much progress has been made in the DUBs. In humans, the ovarian tumor protease (OTU) subfamily of DUBs includes 16 members, most of which mediate cell signaling cascades. These OTUs show great variation in structure and function, which display a series of mechanistic features. In this review, we provide a comprehensive analysis of current progress in character, structure and function of OTUs, such as the substrate specificity and catalytic activity regulation. Then we discuss the relationship between some diseases and OTUs. Finally, we summarize the structure of viral OTUs and their function in immune escape and viral survival. Despite the challenges, OTUs might provide new therapeutic targets, due to their involvement in key regulatory processes.
Collapse
|
44
|
Sulser P, Pickel C, Günter J, Leissing TM, Crean D, Schofield CJ, Wenger RH, Scholz CC. HIF hydroxylase inhibitors decrease cellular oxygen consumption depending on their selectivity. FASEB J 2019; 34:2344-2358. [PMID: 31908020 DOI: 10.1096/fj.201902240r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022]
Abstract
Pharmacologic HIF hydroxylase inhibitors (HIs) are effective for the treatment of anemia in chronic kidney disease patients and may also be beneficial for the treatment of diseases such as chronic inflammation and ischemia-reperfusion injury. The selectivities of many HIs for HIF hydroxylases and possible off-target effects in cellulo are unclear, delaying the translation from preclinical studies to clinical trials. We developed a novel assay that discriminates between the inhibition of HIF-α prolyl-4-hydroxylase domain (PHD) enzymes and HIF-α asparagine hydroxylase factor inhibiting HIF (FIH). We characterized 15 clinical and preclinical HIs, categorizing them into pan-HIF-α hydroxylase (broad spectrum), PHD-selective, and FIH-selective inhibitors, and investigated their effects on HIF-dependent transcriptional regulation, erythropoietin production, and cellular energy metabolism. While energy homeostasis was generally maintained following HI treatment, the pan-HIs led to a stronger increase in pericellular pO2 than the PHD/FIH-selective HIs. Combined knockdown of FIH and PHD-selective inhibition did not further increase pericellular pO2 . Hence, the additional increase in pericellular pO2 by pan- over PHD-selective HIs likely reflects HIF hydroxylase independent off-target effects. Overall, these analyses demonstrate that HIs can lead to oxygen redistribution within the cellular microenvironment, which should be considered as a possible contributor to HI effects in the treatment of hypoxia-associated diseases.
Collapse
Affiliation(s)
- Pascale Sulser
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Christina Pickel
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Julia Günter
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Thomas M Leissing
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Daniel Crean
- School of Veterinary Medicine & UCD Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland
| | | | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research "Kidney.CH", Zurich, Switzerland
| |
Collapse
|
45
|
Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer 2019; 1872:188312. [DOI: 10.1016/j.bbcan.2019.188312] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
46
|
Mennerich D, Kubaichuk K, Kietzmann T. DUBs, Hypoxia, and Cancer. Trends Cancer 2019; 5:632-653. [PMID: 31706510 DOI: 10.1016/j.trecan.2019.08.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 02/08/2023]
Abstract
Alterations in protein ubiquitylation and hypoxia are commonly associated with cancer. Ubiquitylation is carried out by three sequentially acting ubiquitylating enzymes and can be opposed by deubiquitinases (DUBs), which have emerged as promising drug targets. Apart from protein localization and activity, ubiquitylation regulates degradation of proteins, among them hypoxia-inducible factors (HIFs). Thereby, various E3 ubiquitin ligases and DUBs regulate HIF abundance. Conversely, several E3s and DUBs are regulated by hypoxia. While hypoxia is a powerful HIF regulator, less is known about hypoxia-regulated DUBs and their impact on HIFs. Here, we review current knowledge about the relationship of E3s, DUBs, and hypoxia signaling. We also discuss the reciprocal regulation of DUBs by hypoxia and use of DUB-specific drugs in cancer.
Collapse
Affiliation(s)
- Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, 90570, Finland
| | - Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, 90570, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, 90570, Finland; Biocenter Oulu, University of Oulu, Oulu, 90570, Finland.
| |
Collapse
|
47
|
Dengler F, Gäbel G. The Fast Lane of Hypoxic Adaptation: Glucose Transport Is Modulated via A HIF-Hydroxylase-AMPK-Axis in Jejunum Epithelium. Int J Mol Sci 2019; 20:ijms20204993. [PMID: 31601024 PMCID: PMC6834319 DOI: 10.3390/ijms20204993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022] Open
Abstract
The intestinal epithelium is able to adapt to varying blood flow and, thus, oxygen availability. Still, the adaptation fails under pathologic situations. A better understanding of the mechanisms underlying the epithelial adaptation to hypoxia could help to improve the therapeutic approach. We hypothesized that the short-term adaptation to hypoxia is mediated via AMP-activated protein kinase (AMPK) and that it is coupled to the long-term adaptation by a common regulation mechanism, the HIF-hydroxylase enzymes. Further, we hypothesized the transepithelial transport of glucose to be part of this short-term adaptation. We conducted Ussing chamber studies using isolated lagomorph jejunum epithelium and cell culture experiments with CaCo-2 cells. The epithelia and cells were incubated under 100% and 21% O2, respectively, with the panhydroxylase inhibitor dimethyloxalylglycine (DMOG) or under 1% O2. We showed an activation of AMPK under hypoxia and after incubation with DMOG by Western blot. This could be related to functional effects like an impairment of Na+-coupled glucose transport. Inhibitor studies revealed a recruitment of glucose transporter 1 under hypoxia, but not after incubation with DMOG. Summing up, we showed an influence of hydroxylase enzymes on AMPK activity and similarities between hypoxia and the effects of hydroxylase inhibition on functional changes.
Collapse
Affiliation(s)
- Franziska Dengler
- Institute of Veterinary Physiology, University of Leipzig, 04103 Leipzig, Germany.
| | - Gotthold Gäbel
- Institute of Veterinary Physiology, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
48
|
Pickel C, Günter J, Ruiz-Serrano A, Spielmann P, Fabrizio JA, Wolski W, Peet DJ, Wenger RH, Scholz CC. Oxygen-dependent bond formation with FIH regulates the activity of the client protein OTUB1. Redox Biol 2019; 26:101265. [PMID: 31299612 PMCID: PMC6624438 DOI: 10.1016/j.redox.2019.101265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 12/30/2022] Open
Abstract
Protein:protein interactions are the basis of molecular communication and are usually of transient non-covalent nature, while covalent interactions other than ubiquitination are rare. For cellular adaptations, the cellular oxygen and peroxide sensor factor inhibiting HIF (FIH) confers oxygen and oxidant stress sensitivity to the hypoxia inducible factor (HIF) by asparagine hydroxylation. We investigated whether FIH contributes to hypoxia adaptation also through other mechanisms and identified a hypoxia sensitive, likely covalent, bond formation by FIH with several client proteins, including the deubiquitinase ovarian tumor domain containing ubiquitin aldehyde binding protein 1 (OTUB1). Biochemical analyses were consistent with a co-translational amide bond formation between FIH and OTUB1, occurring within mammalian and bacterial cells but not between separately purified proteins. Bond formation is catalysed by FIH and highly dependent on oxygen availability in the cellular microenvironment. Within cells, a heterotrimeric complex is formed, consisting of two FIH and one covalently linked OTUB1. Complexation of OTUB1 by FIH regulates OTUB1 deubiquitinase activity. Our findings reveal an alternative mechanism for hypoxia adaptation with remarkably high oxygen sensitivity, mediated through covalent protein-protein interactions catalysed by an asparagine modifying dioxygenase. FIH forms a (likely amide) bond with client proteins. Bond formation is highly hypoxia sensitive and occurs co-translationally. FIH forms a heterotrimer with the client protein OTUB1 (FIH2OTUB11). Complex formation between OTUB1 and FIH regulates OTUB1 deubiquitinase activity. Bond formation by hydroxylases is an alternative mechanism for hypoxia adaptation.
Collapse
Affiliation(s)
- Christina Pickel
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland
| | - Julia Günter
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland; National Centre of Competence in Research 'Kidney.CH', Switzerland
| | | | - Patrick Spielmann
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland
| | | | - Witold Wolski
- Functional Genomics Center Zurich, University of Zurich, 8057, Zurich, Switzerland
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland; National Centre of Competence in Research 'Kidney.CH', Switzerland.
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland; National Centre of Competence in Research 'Kidney.CH', Switzerland.
| |
Collapse
|
49
|
Involvement of E3 Ligases and Deubiquitinases in the Control of HIF-α Subunit Abundance. Cells 2019; 8:cells8060598. [PMID: 31208103 PMCID: PMC6627837 DOI: 10.3390/cells8060598] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
The ubiquitin and hypoxia-inducible factor (HIF) pathways are cellular processes involved in the regulation of a variety of cellular functions. Enzymes called ubiquitin E3 ligases perform protein ubiquitylation. The action of these enzymes can be counteracted by another group of enzymes called deubiquitinases (DUBs), which remove ubiquitin from target proteins. The balanced action of these enzymes allows cells to adapt their protein content to a variety of cellular and environmental stress factors, including hypoxia. While hypoxia appears to be a powerful regulator of the ubiquitylation process, much less is known about the impact of DUBs on the HIF system and hypoxia-regulated DUBs. Moreover, hypoxia and DUBs play crucial roles in many diseases, such as cancer. Hence, DUBs are considered to be promising targets for cancer cell-specific treatment. Here, we review the current knowledge about the role DUBs play in the control of HIFs, the regulation of DUBs by hypoxia, and their implication in cancer progression.
Collapse
|
50
|
|