1
|
Scalavino V, Piccinno E, Giannelli G, Serino G. miR-369-3p Ameliorates Inflammation and Apoptosis in Intestinal Epithelial Cells via the MEK/ERK Signaling Pathway. Int J Mol Sci 2025; 26:4288. [PMID: 40362525 PMCID: PMC12072081 DOI: 10.3390/ijms26094288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Inflammatory Bowel Disease (IBD) is a group of chronic and recurrent inflammatory diseases characterized by prolonged inflammation of the intestinal tract. Although it has been proven that the immune system plays a crucial role in the pathogenesis of IBD, a defective intestinal epithelium is also responsible for chronic inflammation, hence causing an over-activation of the immune response. For this reason, a therapeutic approach that acts by improving impaired intestinal homeostasis could ensure a greater therapeutic efficacy in IBD. Mitogen-activated protein kinases (MAPKs) signaling pathways may be involved in the pathogenesis of IBD. It has been demonstrated that the inhibition of mitogen-activated protein kinase kinase 1 (MEK1) may be a potential treatment against IBD since it may restore the normal epithelial function and reduce apoptosis of intestinal epithelial cells (IECs). New therapeutic strategies are emerging including small molecules such as microRNAs (miRNAs). In this study, we aimed to demonstrate that miR-369-3p was able to modulate the MEK/ERK signaling pathway. As reported by in silico analysis, miR-369-3p was capable of pairing the 3'UTR of the MAP2K1 gene. In vitro analysis demonstrated that mimic transfection with miR-369-3p in epithelial cells downregulated the expression of MEK1, reduced the activation of ERK signaling, and modulated apoptosis of epithelial cells in response to TNF-α. Moreover, miR-369-3p significantly decreased the release of pro-inflammatory cytokine IL-8. These results support the potential of miR-369-3p to prevent apoptosis of IECs, responsible for a persistent inflammatory condition in IBD, highlighting its application value in the treatment of inflammatory disorders.
Collapse
Affiliation(s)
| | | | | | - Grazia Serino
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (V.S.); (E.P.); (G.G.)
| |
Collapse
|
2
|
Cadavid JL, Li NT, McGuigan AP. Bridging systems biology and tissue engineering: Unleashing the full potential of complex 3D in vitro tissue models of disease. BIOPHYSICS REVIEWS 2024; 5:021301. [PMID: 38617201 PMCID: PMC11008916 DOI: 10.1063/5.0179125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
Rapid advances in tissue engineering have resulted in more complex and physiologically relevant 3D in vitro tissue models with applications in fundamental biology and therapeutic development. However, the complexity provided by these models is often not leveraged fully due to the reductionist methods used to analyze them. Computational and mathematical models developed in the field of systems biology can address this issue. Yet, traditional systems biology has been mostly applied to simpler in vitro models with little physiological relevance and limited cellular complexity. Therefore, integrating these two inherently interdisciplinary fields can result in new insights and move both disciplines forward. In this review, we provide a systematic overview of how systems biology has been integrated with 3D in vitro tissue models and discuss key application areas where the synergies between both fields have led to important advances with potential translational impact. We then outline key directions for future research and discuss a framework for further integration between fields.
Collapse
|
3
|
Mobbs CL, Darling NJ, Przyborski S. An in vitro model to study immune activation, epithelial disruption and stromal remodelling in inflammatory bowel disease and fistulising Crohn's disease. Front Immunol 2024; 15:1357690. [PMID: 38410518 PMCID: PMC10894943 DOI: 10.3389/fimmu.2024.1357690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
At present, preclinical models of inflammatory bowel disease (IBD) are insufficient, limiting translation between research and new therapeutics. This is especially true for fistulising Crohn's disease (CD), as the severe lack of relevant models hinders research progression. To address this, we present in vitro human IBD mucosal models that recapitulate multiple pathological hallmarks of IBD simultaneously in one model system - immune cell infiltration, stromal remodelling and epithelial disruption. Stimulation of models induces epithelial aberrations common in IBD tissue including altered morphology, microvilli abnormalities, claudin gene expression changes and increased permeability. Inflammatory biomarkers are also significantly increased including cytokines and chemokines integral to IBD pathogenesis. Evidence of extracellular matrix remodelling, including upregulated matrix-metalloproteinases and altered basement membrane components, suggests the models simulate pathological stromal remodelling events that closely resemble fistulising CD. Importantly, MMP-9 is the most abundant MMP and mimics the unique localisation observed in IBD tissue. The inflamed models were subsequently used to elucidate the involvement of TNF-α and IFN- γ in intestinal stromal remodelling, in which TNF-α but not IFN- γ induced MMP upregulation, specifically of MMP-3 and MMP-9. Collectively, our results demonstrate the potential of the IBD models for use in preclinical research in IBD, particularly for fistulising CD.
Collapse
Affiliation(s)
- Claire L. Mobbs
- Department of Biosciences, Durham University, Durham, United Kingdom
- Reprocell Europe Ltd, West of Scotland Science Park, Glasgow, United Kingdom
| | - Nicole J. Darling
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, United Kingdom
- Reprocell Europe Ltd, West of Scotland Science Park, Glasgow, United Kingdom
| |
Collapse
|
4
|
Lee H, Jeon JH, Kim ES. Mitochondrial dysfunctions in T cells: focus on inflammatory bowel disease. Front Immunol 2023; 14:1219422. [PMID: 37809060 PMCID: PMC10556505 DOI: 10.3389/fimmu.2023.1219422] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Mitochondria has emerged as a critical ruler of metabolic reprogramming in immune responses and inflammation. In the context of colitogenic T cells and IBD, there has been increasing research interest in the metabolic pathways of glycolysis, pyruvate oxidation, and glutaminolysis. These pathways have been shown to play a crucial role in the metabolic reprogramming of colitogenic T cells, leading to increased inflammatory cytokine production and tissue damage. In addition to metabolic reprogramming, mitochondrial dysfunction has also been implicated in the pathogenesis of IBD. Studies have shown that colitogenic T cells exhibit impaired mitochondrial respiration, elevated levels of mROS, alterations in calcium homeostasis, impaired mitochondrial biogenesis, and aberrant mitochondria-associated membrane formation. Here, we discuss our current knowledge of the metabolic reprogramming and mitochondrial dysfunctions in colitogenic T cells, as well as the potential therapeutic applications for treating IBD with evidence from animal experiments.
Collapse
Affiliation(s)
- Hoyul Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Han Jeon
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Eun Soo Kim
- Division of Gastroenterology, Department of Internal Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
5
|
Manes A, Di Renzo T, Dodani L, Reale A, Gautiero C, Di Lauro M, Nasti G, Manco F, Muscariello E, Guida B, Tarantino G, Cataldi M. Pharmacomicrobiomics of Classical Immunosuppressant Drugs: A Systematic Review. Biomedicines 2023; 11:2562. [PMID: 37761003 PMCID: PMC10526314 DOI: 10.3390/biomedicines11092562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The clinical response to classical immunosuppressant drugs (cIMDs) is highly variable among individuals. We performed a systematic review of published evidence supporting the hypothesis that gut microorganisms may contribute to this variability by affecting cIMD pharmacokinetics, efficacy or tolerability. The evidence that these drugs affect the composition of intestinal microbiota was also reviewed. The PubMed and Scopus databases were searched using specific keywords without limits of species (human or animal) or time from publication. One thousand and fifty five published papers were retrieved in the initial database search. After screening, 50 papers were selected to be reviewed. Potential effects on cIMD pharmacokinetics, efficacy or tolerability were observed in 17/20 papers evaluating this issue, in particular with tacrolimus, cyclosporine, mycophenolic acid and corticosteroids, whereas evidence was missing for everolimus and sirolimus. Only one of the papers investigating the effect of cIMDs on the gut microbiota reported negative results while all the others showed significant changes in the relative abundance of specific intestinal bacteria. However, no unique pattern of microbiota modification was observed across the different studies. In conclusion, the available evidence supports the hypothesis that intestinal microbiota could contribute to the variability in the response to some cIMDs, whereas data are still missing for others.
Collapse
Affiliation(s)
- Annalaura Manes
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| | - Tiziana Di Renzo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy; (T.D.R.); (A.R.)
| | - Loreta Dodani
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| | - Anna Reale
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy; (T.D.R.); (A.R.)
| | - Claudia Gautiero
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Mariastella Di Lauro
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Gilda Nasti
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Federica Manco
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| | - Espedita Muscariello
- Nutrition Unit, Department of Prevention, Local Health Authority Napoli 3 Sud, 80059 Naples, Italy;
| | - Bruna Guida
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy;
| | - Mauro Cataldi
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| |
Collapse
|
6
|
Xia J, He S, Dai Q, Jia H, Ge Y, Zhou M, Wang X. Atorvastatin calcium alleviates 5-fluorouracil-induced intestinal damage by inhibiting cellular senescence and significantly enhances its antitumor efficacy. Int Immunopharmacol 2023; 121:110465. [PMID: 37336074 DOI: 10.1016/j.intimp.2023.110465] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/27/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
5-Fluorouracil (5-Fu) is the preferred drug in colorectal cancer treatment. Although 5-Fu treatment contributes to the increase in survival rates, long-term use of 5-Fu causes severe intestinal damage, eventually decreasing long-term survival. There is no standardtreatmentfor intestinal damage induced by 5-Fu. Our previous study found that 5-Fu-induced intestinal damage was connected to an increase in senescent cells, and antiaging drugs could relieve some adverse side effects caused by 5-Fu. Hence, it is essential to discover novel, potential antiaging therapeutic drugs for 5-Fu side effect treatment. According to the current study, Atorvastatincalcium (Ator) alleviated cellular senescence in human intestinal epithelial cells (HUVECs) and human umbilical vein endothelial cells (HIECs) caused by oxidative stress and 5-Fu. 5-Fu resulted in an increase in SA-β-Gal-positive cells, synchronously increased expression of aging-related proteins (p16), aging-related genes (p53, p21), and the senescence-associated secretory phenotype (SASP: IL-1β, IL-6, TNF-α), while Atorvastatincalcium (Ator) reversed the increase in these indicators. In the BALB/c mouse model, we confirmed that intestinal damage caused by 5-Fu is related to the increase in senescent cells and drug-induced inflammation, with the therapeutic effects of Ator. In addition, Ator increased the sensitivity of 5-Fu to chemotherapy in vitro and in vivo. Combination therapy significantly reduced HCT116 cell viability. Furthermore, Ator and 5-Fu present a cooperative effect on preventing the growth of tumors in CRC xenograft nude mice. In conclusion, our study demonstrates the value of Ator for treating intestinal damage. Moreover, Ator combined with 5-Fu increased the antitumor ability in CRC cells. Additionally, we provide a novel therapeutic protocol for CRC.
Collapse
Affiliation(s)
- Jing Xia
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China
| | - Siyue He
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China
| | - Qianlong Dai
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China
| | - Huijie Jia
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China
| | - Yuchen Ge
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China
| | - Min Zhou
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China.
| | - Xiaobo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China.
| |
Collapse
|
7
|
Wei P, He Q, Liu T, Zhang J, Shi K, Zhang J, Liu S. Baitouweng decoction alleviates dextran sulfate sodium-induced ulcerative colitis by suppressing leucine-related mTORC1 signaling and reducing oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116095. [PMID: 36581160 DOI: 10.1016/j.jep.2022.116095] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baitouweng decoction (BTW) has been used for hundreds of years to treat ulcerative colitis (UC) in China and has produced remarkable clinical results. However, the knowledge in protective mechanism of BTW against UC is still unclear. AIM OF THE STUDY The present study was designed to investigate the anti-UC effects of BTW and the underlying mechanisms involved. METHODS 3.5% dextran sulfate sodium (DSS)-induced experimental colitis was used to simulate human UC and the mice were treated with BTW (6.83 g/kg), leucine (200 mg/kg, Leu) or rapamycin (2 mg/kg, RAPA) as a positive control for 7 days. The clinical symptoms, serum myeloperoxidase (MPO) and malondialdehyde (MDA) levels were evaluated. Biological samples were collected to detect the effects of BTW on mechanistic target of rapamycin complex 1 (mTORC1) pathway and Leu metabolism. RESULTS In our study, BTW notably improved the clinical symptoms and histopathological tissue damage and reduced the release of proinflammatory cytokines, including IL-6, IL-1β and TNF-α in UC mice. BTW also alleviated oxidative stress by decreasing serum MPO and MDA levels. Additionally, BTW significantly suppressed mTORC1 activity in the colon tissues of UC mice. Serum metabolomics analysis revealed that the mice receiving BTW had lower Leu levels, which was in line with the decreased expression of branched-chain α-keto acid dehydrogenase kinase (BCKDK) in the colon tissues. Furthermore, oral administration of Leu aggravated DSS-induced acute colitis and enhanced mTORC1 activity in the colon. CONCLUSION These data strongly demonstrated that BTW could ameliorate DSS-induced UC by regulating the Leu-related mTORC1 pathway and reducing oxidative stress.
Collapse
Affiliation(s)
- Peng Wei
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Qiongzi He
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Tongtong Liu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Junzhi Zhang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Kunqun Shi
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Jingwei Zhang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Shijia Liu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
8
|
Mazzei A, Pagliara P, Del Vecchio G, Giampetruzzi L, Croce F, Schiavone R, Verri T, Barca A. Cytoskeletal Responses and Aif-1 Expression in Caco-2 Monolayers Exposed to Phorbol-12-Myristate-13-Acetate and Carnosine. BIOLOGY 2022; 12:biology12010036. [PMID: 36671729 PMCID: PMC9855102 DOI: 10.3390/biology12010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
The dis(re)organization of the cytoskeletal actin in enterocytes mediates epithelial barrier dys(re)function, playing a key role in modulating epithelial monolayer's integrity and remodeling under transition from physiological to pathological states. Here, by fluorescence-based morphological and morphometric analyses, we detected differential responses of cytoskeletal actin in intestinal epithelial Caco-2 cell monolayers at two different stages of their spontaneous differentiation, i.e., undifferentiated cells at 7 days post-seeding (dps) and differentiated enterocyte-like cells at 21 dps, upon challenge in vitro with the inflammation-mimicking stimulus of phorbol-12-myristate-13-acetate (PMA). In addition, specific responses were found in the presence of the natural dipeptide carnosine detecting its potential counteraction against PMA-induced cytoskeletal alterations and remodeling in differentiated Caco-2 monolayers. In such an experimental context, by both immunocytochemistry and Western blot assays in Caco-2 monolayers, we identified the expression of the allograft inflammatory factor 1 (AIF-1) as protein functionally related to both inflammatory and cytoskeletal pathways. In 21 dps monolayers, particularly, we detected variations of its intracellular localization associated with the inflammatory stimulus and its mRNA/protein increase associated with the differentiated 21 dps enterocyte-like monolayer compared to the undifferentiated cells.
Collapse
Affiliation(s)
- Aurora Mazzei
- Department of Biological and Environmental Sciences and Technologies (DeBEST), University of Salento, 73100 Lecce, Italy
| | - Patrizia Pagliara
- Department of Biological and Environmental Sciences and Technologies (DeBEST), University of Salento, 73100 Lecce, Italy
- Correspondence: (P.P.); (A.B.); Tel.: +39-0832-298662 (A.B.)
| | - Gianmarco Del Vecchio
- Department of Biological and Environmental Sciences and Technologies (DeBEST), University of Salento, 73100 Lecce, Italy
| | - Lucia Giampetruzzi
- Institute for Microelectronics and Microsystems IMM-CNR, Via per Monteroni “Campus Ecotekne”, 73100 Lecce, Italy
| | - Francesca Croce
- Department of Biological and Environmental Sciences and Technologies (DeBEST), University of Salento, 73100 Lecce, Italy
| | - Roberta Schiavone
- Department of Biological and Environmental Sciences and Technologies (DeBEST), University of Salento, 73100 Lecce, Italy
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies (DeBEST), University of Salento, 73100 Lecce, Italy
| | - Amilcare Barca
- Department of Biological and Environmental Sciences and Technologies (DeBEST), University of Salento, 73100 Lecce, Italy
- Correspondence: (P.P.); (A.B.); Tel.: +39-0832-298662 (A.B.)
| |
Collapse
|
9
|
He QZ, Wei P, Zhang JZ, Liu TT, Shi KQ, Liu HH, Zhang JW, Liu SJ. 3,6-dichlorobenzo[b]thiophene-2-carboxylic acid alleviates ulcerative colitis by suppressing mammalian target of rapamycin complex 1 activation and regulating intestinal microbiota. World J Gastroenterol 2022; 28:6522-6536. [PMID: 36569276 PMCID: PMC9782837 DOI: 10.3748/wjg.v28.i46.6522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 12/08/2022] Open
Abstract
BACKGROUND 3,6-dichlorobenzo[b]thiophene-2-carboxylic acid (BT2) is a benzothiophene carboxylate derivative that can suppress the catabolism of branched-chain amino acid (BCAA)-associated mammalian target of rapamycin complex 1 (mTORC1) activation. Previous studies have demonstrated the therapeutic effects of BT2 on arthritis, liver cancer, and kidney injury. However, the effects of BT2 on ulcerative colitis (UC) are unknown.
AIM To investigate the anti-UC effects of BT2 and the underlying mechanism.
METHODS Mouse UC models were created through the administration of 3.5% dextran sodium sulfate (DSS) for 7 d. The mice in the treated groups were administered salazosulfapyridine (300 mg/kg) or BT2 (20 mg/kg) orally from day 1 to day 7. At the end of the study, all of the mice were sacrificed, and colon tissues were removed for hematoxylin and eosin staining, immunoblot analyses, and immunohistochemical assays. Cytokine levels were measured by flow cytometry. The contents of BCAAs including valine, leucine, and isoleucine, in mouse serum were detected by liquid chromatography-tandem mass spectrometry, and the abundance of intestinal flora was analyzed by 16S ribosomal DNA sequencing.
RESULTS Our results revealed that BT2 significantly ameliorated the inflammatory symptoms and pathological damage induced by DSS in mice. BT2 also reduced the production of the proinflammatory cytokines interleukin 6 (IL-6), IL-9, and IL-2 and increased the anti-inflammatory cytokine IL-10 level. In addition, BT2 notably improved BCAA catabolism and suppressed mTORC1 activation and cyclooxygenase-2 expression in the colon tissues of UC mice. Furthermore, high-throughput sequencing revealed that BT2 restored the gut microbial abundance and diversity in mice with colitis. Compared with the DSS group, BT2 treatment increased the ratio of Firmicutes to Bacteroidetes and decreased the abundance of Enterobacteriaceae and Escherichia-Shigella.
CONCLUSION Our results indicated that BT2 significantly ameliorated DSS-induced UC and that the latent mechanism involved the suppression of BCAA-associated mTORC1 activation and modulation of the intestinal flora.
Collapse
Affiliation(s)
- Qiong-Zi He
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- College of The First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Peng Wei
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- College of The First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Jun-Zhi Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- College of The First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Tong-Tong Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- College of The First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Kun-Qun Shi
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- College of The First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Huan-Huan Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- College of The First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Jing-Wei Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Shi-Jia Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
10
|
Lucafò M, Muzzo A, Marcuzzi M, Giorio L, Decorti G, Stocco G. Patient-derived organoids for therapy personalization in inflammatory bowel diseases. World J Gastroenterol 2022; 28:2636-2653. [PMID: 35979165 PMCID: PMC9260862 DOI: 10.3748/wjg.v28.i24.2636] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders of the intestinal tract that have emerged as a growing problem in industrialized countries. Knowledge of IBD pathogenesis is still incomplete, and the most widely-accepted interpretation considers genetic factors, environmental stimuli, uncontrolled immune responses and altered intestinal microbiota composition as determinants of IBD, leading to dysfunction of the intestinal epithelial functions. In vitro models commonly used to study the intestinal barrier do not fully reflect the proper intestinal architecture. An important innovation is represented by organoids, 3D in vitro cell structures derived from stem cells that can self-organize into functional organ-specific structures. Organoids may be generated from induced pluripotent stem cells or adult intestinal stem cells of IBD patients and therefore retain their genetic and transcriptomic profile. These models are powerful pharmacological tools to better understand IBD pathogenesis, to study the mechanisms of action on the epithelial barrier of drugs already used in the treatment of IBD, and to evaluate novel target-directed molecules which could improve therapeutic strategies. The aim of this review is to illustrate the potential use of organoids for therapy personalization by focusing on the most significant advances in IBD research achieved through the use of adult stem cells-derived intestinal organoids.
Collapse
Affiliation(s)
- Marianna Lucafò
- Advanced Translational Diagnostics Laboratory, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste 34137, Italy
| | - Antonella Muzzo
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste 34127, Italy
| | - Martina Marcuzzi
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Lorenzo Giorio
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Giuliana Decorti
- Advanced Translational Diagnostics Laboratory, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste 34137, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste 34127, Italy
| | - Gabriele Stocco
- Advanced Translational Diagnostics Laboratory, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste 34137, Italy
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| |
Collapse
|
11
|
Voß H, Moritz M, Pelczar P, Gagliani N, Huber S, Nippert V, Schlüter H, Hahn J. Tissue Sampling and Homogenization with NIRL Enables Spatially Resolved Cell Layer Specific Proteomic Analysis of the Murine Intestine. Int J Mol Sci 2022; 23:ijms23116132. [PMID: 35682811 PMCID: PMC9181169 DOI: 10.3390/ijms23116132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
For investigating the molecular physiology and pathophysiology in organs, the most exact data should be obtained; if not, organ-specific cell lines are analyzed, or the whole organ is homogenized, followed by the analysis of its biomolecules. However, if the morphological organization of the organ can be addressed, then, in the best case, the composition of molecules in single cells of the target organ can be analyzed. Laser capture microdissection (LCM) is a technique which enables the selection of specific cells of a tissue for further analysis of their molecules. However, LCM is a time-consuming two-dimensional technique, and optimal results are only obtained if the tissue is fixed, e.g., by formalin. Especially for proteome analysis, formalin fixation reduced the number of identifiable proteins, and this is an additional drawback. Recently, it was demonstrated that sampling of fresh-frozen (non-fixed) tissue with an infrared-laser is giving higher yields with respect to the absolute protein amount and number of identifiable proteins than conventional mechanical homogenization of tissues. In this study, the applicability of the infrared laser tissue sampling for the proteome analysis of different cell layers of murine intestine was investigated, using LC–MS/MS-based differential quantitative bottom-up proteomics. By laser ablation, eight consecutive layers of colon tissue were obtained and analyzed. However, a clear distinguishability of protein profiles between ascending, descending, and transversal colon was made, and we identified the different intestinal-cell-layer proteins, which are cell-specific, as confirmed by data from the Human Protein Atlas. Thus, for the first time, sampling directly from intact fresh-frozen tissue with three-dimensional resolution is giving access to the different proteomes of different cell layers of colon tissue.
Collapse
Affiliation(s)
- Hannah Voß
- Section/Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (H.V.); (M.M.); (V.N.)
| | - Manuela Moritz
- Section/Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (H.V.); (M.M.); (V.N.)
| | - Penelope Pelczar
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (P.P.); (N.G.); (S.H.)
| | - Nicola Gagliani
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (P.P.); (N.G.); (S.H.)
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (P.P.); (N.G.); (S.H.)
| | - Vivien Nippert
- Section/Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (H.V.); (M.M.); (V.N.)
| | - Hartmut Schlüter
- Section/Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (H.V.); (M.M.); (V.N.)
- Correspondence: (H.S.); (J.H.); Tel.: +49-1575-6085997 (H.S.); +49-1522-2827168 (J.H.)
| | - Jan Hahn
- Section/Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (H.V.); (M.M.); (V.N.)
- Correspondence: (H.S.); (J.H.); Tel.: +49-1575-6085997 (H.S.); +49-1522-2827168 (J.H.)
| |
Collapse
|
12
|
Širvinskas D, Omrani O, Lu J, Rasa M, Krepelova A, Adam L, Kaeppel S, Sommer F, Neri F. Single-cell atlas of the aging mouse colon. iScience 2022; 25:104202. [PMID: 35479413 PMCID: PMC9035718 DOI: 10.1016/j.isci.2022.104202] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 12/20/2022] Open
Abstract
We performed massive single-cell sequencing in the aging mouse colonic epithelium and immune cells. We identified novel compartment-specific markers as well as dramatic aging-associated changes in cell composition and signaling pathways, including a shift from absorptive to secretory epithelial cells, depletion of naive lymphocytes, and induction of eIF2 signaling. Colon cancer is one of the leading causes of death within the western world, incidence of which increases with age. The colonic epithelium is a rapidly renewing tissue, tasked with water and nutrient absorption, as well as hosting intestinal microbes. The colonic submucosa is populated with immune cells interacting with and regulating the epithelial cells. However, it is unknown whether compartment-specific changes occur during aging and what impact this would cause. We show that both epithelial and immune cells differ significantly between colonic compartments and experience significant age-related changes in mice. We found a shift in the absorptive-secretory cell balance, possibly linked to age-associated intestinal disturbances, such as malabsorption. We demonstrate marked changes in aging immune cells: population shifts and interactions with epithelial cells, linking cytokines (Ifn-γ, Il1B) with the aging of colonic epithelium. Our results provide new insights into the normal and age-associated states of the colon. Mouse colon shows compartment-specific transcriptional and population differences Old animal colon switches to a pro-inflammatory state Changes in epithelium linked to changes in tissue-resident immune cells
Collapse
Affiliation(s)
| | - Omid Omrani
- Institute on Aging Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Jing Lu
- Institute on Aging Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Mahdi Rasa
- Institute on Aging Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Anna Krepelova
- Institute on Aging Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Lisa Adam
- Institute on Aging Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Sandra Kaeppel
- Institute on Aging Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Felix Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, 24105 Kiel, Germany
| | - Francesco Neri
- Institute on Aging Fritz Lipmann Institute (FLI), 07745 Jena, Germany
- Corresponding author
| |
Collapse
|
13
|
Suarez-Lopez L, Shui B, Brubaker DK, Hill M, Bergendorf A, Changelian PS, Laguna A, Starchenko A, Lauffenburger DA, Haigis KM. Cross-species transcriptomic signatures predict response to MK2 inhibition in mouse models of chronic inflammation. iScience 2021; 24:103406. [PMID: 34849469 PMCID: PMC8609096 DOI: 10.1016/j.isci.2021.103406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/28/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are genetically complex and exhibit significant inter-patient heterogeneity in disease presentation and therapeutic response. Here, we show that mouse models of IBD exhibit variable responses to inhibition of MK2, a pro-inflammatory serine/threonine kinase, and that MK2 inhibition suppresses inflammation by targeting inflammatory monocytes and neutrophils in murine models. Using a computational approach (TransComp-R) that allows for cross-species comparison of transcriptomic features, we identified an IBD patient subgroup that is predicted to respond to MK2 inhibition, and an independent preclinical model of chronic intestinal inflammation predicted to be non-responsive, which we validated experimentally. Thus, cross-species mouse-human translation approaches can help to identify patient subpopulations in which to deploy new therapies. MK2 kinase inhibition shows variable efficacy in different IBD mouse models TCT and TNFΔARE mice express distinct inflammatory and MK2-responsive genes “Response to MK2i” signature is enriched in monocytes and neutrophils Cross-species modeling identifies patient groups potentially responsive to MK2i
Collapse
Affiliation(s)
- Lucia Suarez-Lopez
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Bing Shui
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Douglas K. Brubaker
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, USA
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Marza Hill
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Alexander Bergendorf
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Paul S. Changelian
- Aclaris Therapeutics, Inc., 4320 Forest Park Avenue, St. Louis, MO 63108, USA
| | - Aisha Laguna
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Alina Starchenko
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Douglas A. Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kevin M. Haigis
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
- Corresponding author
| |
Collapse
|
14
|
Sato DT, Campos FG, Kotze PG, Mendonça RLS, Kanno DT, Pereira JA, Martinez CAR. Sucralfate enemas reduce the oxidative tissue damage and preserves the contents of E-cadherin and ?-catenin in colonic mucosa without fecal stream. Acta Cir Bras 2021; 36:e361007. [PMID: 34852133 PMCID: PMC8650803 DOI: 10.1590/acb361007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/15/2021] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To evaluate the effects of sucralfate enemas in tissue contents of E-cadherin and ?-catenin in an experimental diversion colitis. METHODS Thirty-six male Wistar rats were submitted to a proximal colostomy and a distal mucous fistula. They were allocated into three groups: first group received daily saline enemas (2 mL/day) and the two other groups daily enemas with sucralfate at dosage of 1 or 2 g/kg/day, respectively. Six animals of each group were euthanized after two weeks and six animals after four weeks. The inflammation of the excluded mucosa was evaluated by histological analysis. The oxidative damage was quantified by measurement of malondialdehyde tissue levels. The expression of E-cadherin and ?-catenin was identified by immunohistochemistry, and its contents were quantified by computer-assisted image analysis. RESULTS Sucralfate enemas reduced inflammation in animals subjected to treatment with 2 g/kg/day by four weeks, and the levels of oxidative damage in mucosa without fecal stream irrespective of concentration and time of intervention. E-cadherin and ?-catenin content increased in segments without fecal stream in those animals subjected to treatment with sucralfate. CONCLUSIONS Sucralfate reduces the inflammation and oxidative stress and increases the tissue content of E-cadherin and ?-catenin in colonic mucosa devoid to the fecal stream.
Collapse
|
15
|
Čužić S, Antolić M, Ognjenović A, Stupin-Polančec D, Petrinić Grba A, Hrvačić B, Dominis Kramarić M, Musladin S, Požgaj L, Zlatar I, Polančec D, Aralica G, Banić M, Urek M, Mijandrušić Sinčić B, Čubranić A, Glojnarić I, Bosnar M, Eraković Haber V. Claudins: Beyond Tight Junctions in Human IBD and Murine Models. Front Pharmacol 2021; 12:682614. [PMID: 34867313 PMCID: PMC8635807 DOI: 10.3389/fphar.2021.682614] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Claudins are transmembrane proteins constituting one of three tight junction protein families. In patients with inflammatory bowel disease (IBD), disease activity–dependent changes in expression of certain claudins have been noted, thus making certain claudin family members potential therapy targets. A study was undertaken with the aim of exploring expression of claudins in human disease and two different animal models of IBD: dextrane sulfate sodium–induced colitis and adoptive transfer model of colitis. The expression of sealing claudin-1, claudin-3, claudin-4, and claudin-8, and pore-forming claudin-2 in humans and rodents has been evaluated by immunohistochemistry and quantitative polymerase chain reaction. Claudins were expressed by epithelial and cells of mesodermal origin and were found to be situated at the membrane, within the cytoplasm, or within the nuclei. Claudin expression by human mononuclear cells isolated from lamina propria has been confirmed by Western blot and flow cytometry. The claudin expression pattern in uninflamed and inflamed colon varied between species and murine strains. In IBD and both animal models, diverse alterations in claudin expression by epithelial and inflammatory cells were recorded. Tissue mRNA levels for each studied claudin reflected changes within cell lineage and, at the same time, mirrored the ratio between various cell types. Based on the results of the study, it can be concluded that 1) claudins are not expressed exclusively by epithelial cells, but by certain types of cells of mesodermal origin as well; 2) changes in the claudin mRNA level should be interpreted in the context of overall tissue alterations; and 3) both IBD animal models that were analyzed can be used for investigating claudins as a therapy target, respecting their similarities and differences highlighted in this study.
Collapse
Affiliation(s)
- Snježana Čužić
- Fidelta, Zagreb, Croatia
- *Correspondence: Snježana Čužić, ; Vesna Eraković Haber,
| | | | | | | | | | | | | | | | | | | | | | - Gorana Aralica
- School of Medicine, University Zagreb, Zagreb, Croatia
- Department of Pathology Clinical Hospital Dubrava, Zagreb, Croatia
| | - Marko Banić
- School of Medicine, University Zagreb, Zagreb, Croatia
- Department of Internal Medicine Clinical Hospital Dubrava, Zagreb, Croatia
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marija Urek
- School of Medicine, University Zagreb, Zagreb, Croatia
- Department of Pathology Clinical Hospital Dubrava, Zagreb, Croatia
| | - Brankica Mijandrušić Sinčić
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Internal Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Aleksandar Čubranić
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Internal Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | | | | | - Vesna Eraković Haber
- Fidelta, Zagreb, Croatia
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- *Correspondence: Snježana Čužić, ; Vesna Eraković Haber,
| |
Collapse
|
16
|
Kaur H, Erickson A, Moreau R. Divergent regulation of inflammatory cytokines by mTORC1 in THP-1-derived macrophages and intestinal epithelial Caco-2 cells. Life Sci 2021; 284:119920. [PMID: 34478760 DOI: 10.1016/j.lfs.2021.119920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/13/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022]
Abstract
AIMS The sustained activation of intestinal mechanistic target of rapamycin complex 1 (mTORC1) brought about by repeated mucosal insult or injury has been linked to escalation of gut inflammatory response, which may progress to damage the epithelium if not controlled. This study investigated the role of mTORC1 in the response of macrophage and enterocyte to inflammatory stimuli. MATERIALS AND METHODS We genetically manipulated human THP-1 monocytes and epithelial intestinal Caco-2 cells to generate stable cell lines with baseline, low or high mTORC1 kinase activity. The effects of THP-1 macrophage secretions onto Caco-2 cells were investigated by means of conditioned media transfer experiments. KEY FINDINGS The priming of mTORC1 for activation promoted lipopolysaccharide (LPS)-mediated THP-1 macrophage immune response as evidenced by the stimulation of inflammatory mediators (TNFα, IL-6, IL-8, IL-1β and IL-10). The treatment of THP-1 macrophages with LPS more than the manipulated level of mTORC1 activity of macrophages determined whether cytokine gene expression was induced in Caco-2 cells. LPS carry over was not responsible for the stimulation of Caco-2 cells' cytokine response. Knocking down Raptor in Caco-2 cells or treating Caco-2 cells with rapamycin enhanced Caco-2 TNFα gene expression revealing the anti-inflammatory role of a functional mTORC1 in intestinal epithelial cells exposed to macrophage-derived pro-inflammatory stimuli. SIGNIFICANCE Taken together, mTORC1 differentially impacts the immune responses of THP-1-derived macrophages and Caco-2 epithelial cells when placed in a pro-inflammatory microenvironment.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Anjeza Erickson
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
17
|
Zaiatz Bittencourt V, Jones F, Doherty G, Ryan EJ. Targeting Immune Cell Metabolism in the Treatment of Inflammatory Bowel Disease. Inflamm Bowel Dis 2021; 27:1684-1693. [PMID: 33693743 PMCID: PMC8522790 DOI: 10.1093/ibd/izab024] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 12/17/2022]
Abstract
The cells of the immune system are highly dynamic, constantly sensing and adapting to changes in their surroundings. Complex metabolic pathways govern leukocytes' ability to fine-tune their responses to external threats. Mammalian target of rapamycin complex 1 and hypoxia inducible factor are important hubs of these pathways and play a critical role coordinating cell activation and proliferation and cytokine production. For this reason, these molecules are attractive therapeutic targets in inflammatory disease. Insight into perturbations in immune cell metabolic pathways and their impact on inflammatory bowel disease (IBD) progression are starting to emerge. However, it remains to be determined whether the aberrations in immune metabolism that occur in gut resident immune cells contribute to disease pathogenesis or are reflected in the peripheral blood of patients with IBD. In this review, we explore what is known about the metabolic profile of T cells, monocytes, macrophages, dendritic cells, and natural killer cells in IBD and discuss the potential of manipulating immune cell metabolism as a novel approach to treating IBD.
Collapse
Affiliation(s)
- Vanessa Zaiatz Bittencourt
- Centre for Colorectal Disease, St. Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
| | - Fiona Jones
- Centre for Colorectal Disease, St. Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
| | - Glen Doherty
- Centre for Colorectal Disease, St. Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
| | - Elizabeth J Ryan
- Centre for Colorectal Disease, St. Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
- Department of Biological Sciences, Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
18
|
Chawla M, Mukherjee T, Deka A, Chatterjee B, Sarkar UA, Singh AK, Kedia S, Lum J, Dhillon MK, Banoth B, Biswas SK, Ahuja V, Basak S. An epithelial Nfkb2 pathway exacerbates intestinal inflammation by supplementing latent RelA dimers to the canonical NF-κB module. Proc Natl Acad Sci U S A 2021; 118:e2024828118. [PMID: 34155144 PMCID: PMC8237674 DOI: 10.1073/pnas.2024828118] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aberrant inflammation, such as that associated with inflammatory bowel disease (IBD), is fueled by the inordinate activity of RelA/NF-κB factors. As such, the canonical NF-κB module mediates controlled nuclear activation of RelA dimers from the latent cytoplasmic complexes. What provokes pathological RelA activity in the colitogenic gut remains unclear. The noncanonical NF-κB pathway typically promotes immune organogenesis involving Nfkb2 gene products. Because NF-κB pathways are intertwined, we asked whether noncanonical signaling aggravated inflammatory RelA activity. Our investigation revealed frequent engagement of the noncanonical pathway in human IBD. In a mouse model of experimental colitis, we established that Nfkb2-mediated regulations escalated the RelA-driven proinflammatory gene response in intestinal epithelial cells, exacerbating the infiltration of inflammatory cells and colon pathologies. Our mechanistic studies clarified that cell-autonomous Nfkb2 signaling supplemented latent NF-κB dimers, leading to a hyperactive canonical RelA response in the inflamed colon. In sum, the regulation of latent NF-κB dimers appears to link noncanonical Nfkb2 signaling to RelA-driven inflammatory pathologies and may provide for therapeutic targets.
Collapse
Affiliation(s)
- Meenakshi Chawla
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Tapas Mukherjee
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Alvina Deka
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Budhaditya Chatterjee
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Uday Aditya Sarkar
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Amit K Singh
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi 110029, India
| | - Saurabh Kedia
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi 110029, India
| | - Josephine Lum
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138632
| | - Manprit Kaur Dhillon
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138632
| | - Balaji Banoth
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Subhra K Biswas
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138632
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi 110029, India
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India;
| |
Collapse
|
19
|
Lashgari NA, Roudsari NM, Momtaz S, Ghanaatian N, Kohansal P, Farzaei MH, Afshari K, Sahebkar A, Abdolghaffari AH. Targeting Mammalian Target of Rapamycin: Prospects for the Treatment of Inflammatory Bowel Diseases. Curr Med Chem 2021; 28:1605-1624. [PMID: 32364064 DOI: 10.2174/0929867327666200504081503] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/24/2020] [Accepted: 03/29/2020] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is a general term for a group of chronic and progressive disorders. Several cellular and biomolecular pathways are implicated in the pathogenesis of IBD, yet the etiology is unclear. Activation of the mammalian target of rapamycin (mTOR) pathway in the intestinal epithelial cells was also shown to induce inflammation. This review focuses on the inhibition of the mTOR signaling pathway and its potential application in treating IBD. We also provide an overview of plant-derived compounds that are beneficial for the IBD management through modulation of the mTOR pathway. Data were extracted from clinical, in vitro and in vivo studies published in English between 1995 and May 2019, which were collected from PubMed, Google Scholar, Scopus and Cochrane library databases. Results of various studies implied that inhibition of the mTOR signaling pathway downregulates the inflammatory processes and cytokines involved in IBD. In this context, a number of natural products might reverse the pathological features of the disease. Furthermore, mTOR provides a novel drug target for IBD. Comprehensive clinical studies are required to confirm the efficacy of mTOR inhibitors in treating IBD.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Negar Ghanaatian
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parichehr Kohansal
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Khashayar Afshari
- Experimental Medicine Research Center, Department of pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
20
|
Nichols RG, Davenport ER. The relationship between the gut microbiome and host gene expression: a review. Hum Genet 2021; 140:747-760. [PMID: 33221945 PMCID: PMC7680557 DOI: 10.1007/s00439-020-02237-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
Despite the growing knowledge surrounding host-microbiome interactions, we are just beginning to understand how the gut microbiome influences-and is influenced by-host gene expression. Here, we review recent literature that intersects these two fields, summarizing themes across studies. Work in model organisms, human biopsies, and cell culture demonstrate that the gut microbiome is an important regulator of several host pathways relevant for disease, including immune development and energy metabolism, and vice versa. The gut microbiome remodels host chromatin, causes differential splicing, alters the epigenetic landscape, and directly interrupts host signaling cascades. Emerging techniques like single-cell RNA sequencing and organoid generation have the potential to refine our understanding of the relationship between the gut microbiome and host gene expression in the future. By intersecting microbiome and host gene expression, we gain a window into the physiological processes important for fostering the extensive cross-kingdom interactions and ultimately our health.
Collapse
Affiliation(s)
- Robert G. Nichols
- Department of Biology, The Pennsylvania State University, University Park, PA 16802 USA
| | - Emily R. Davenport
- Department of Biology, The Pennsylvania State University, University Park, PA 16802 USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
21
|
Kaur H, Moreau R. mTORC1 silencing during intestinal epithelial Caco-2 cell differentiation is mediated by the activation of the AMPK/TSC2 pathway. Biochem Biophys Res Commun 2021; 545:183-188. [PMID: 33561653 DOI: 10.1016/j.bbrc.2021.01.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/20/2021] [Indexed: 12/22/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) signaling is the prototypical pathway regulating protein synthesis and cell proliferation. The level of mTORC1 activity is high in intestinal stem cells located at the base of the crypts and thought to gradually decrease as transit-amplifying cells migrate out of the crypts and differentiate into enterocytes, goblet cells or enteroendocrine cells along the epithelium. The unknown mechanism responsible for the silencing of intestinal epithelium mTORC1 during cell differentiation was investigated in Caco-2 cells, which spontaneously differentiate into enterocytes in standard growth medium. The results show that TSC2, an upstream negative regulator of mTORC1 was central to mTORC1 silencing in differentiated Caco-2 cells. AMPK-mediated activation of TSC2 (Ser1387) and repression of Raptor (Ser792), an essential component of mTORC1, were stimulated in differentiated Caco-2 cells. ERK1/2-mediated repression of TSC2 (Ser664) seen in undifferentiated Caco-2 cells was lifted in differentiated cells. IRS-1-mediated activation of AKT (Thr308) phosphorylation was stimulated in differentiated Caco-2 cells and may be involved in cross-pathway repression of ERK1/2. Additionally, PRAS40 (Thr246) phosphorylation was decreased in differentiated Caco-2 cells compared to undifferentiated cells allowing dephosphorylated PRAS40 to displace Raptor thereby repressing mTORC1 kinase activity.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
22
|
Grajo JR, Huang C, Dillman JR, Gee MS, Jaffe TA, Soto JA, Baker ME. MR Enterography of Complicated Crohn Disease: Stricturing and Penetrating Disease. Top Magn Reson Imaging 2021; 30:23-30. [PMID: 33528209 DOI: 10.1097/rmr.0000000000000266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Stricturing and penetrating disease are complications of Crohn disease (CD) that significantly affect patient outcomes. Careful evaluation for such complications is critical to the interpretation of magnetic resonance enterography. This manuscript outlines the key findings related to stricturing and penetrating CD and discusses current understanding of the pathophysiology and prognosis of complicated CD based on the literature.
Collapse
Affiliation(s)
- Joseph R Grajo
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL
| | - Chenchan Huang
- Department of Radiology, NYU Grossman School of Medicine, New York, NY
| | - Jonathan R Dillman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Michael S Gee
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Tracy A Jaffe
- Department of Radiology, Duke University School of Medicine, Durham, NC
| | - Jorge A Soto
- Department of Radiology, Boston University School of Medicine, Boston, MA
| | - Mark E Baker
- Department of Radiology, Cleveland Clinic Lerner College of Medicine, Cleveland, OH
| |
Collapse
|
23
|
Aslam MN, McClintock SD, Attili D, Pandya S, Rehman H, Nadeem DM, Jawad-Makki MAH, Rizvi AH, Berner MM, Dame MK, Turgeon DK, Varani J. Ulcerative Colitis-Derived Colonoid Culture: A Multi-Mineral-Approach to Improve Barrier Protein Expression. Front Cell Dev Biol 2020; 8:577221. [PMID: 33330453 PMCID: PMC7719760 DOI: 10.3389/fcell.2020.577221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Recent studies demonstrated that Aquamin®, a calcium-, magnesium-rich, multi-mineral natural product, improves barrier structure and function in colonoids obtained from the tissue of healthy subjects. The goal of the present study was to determine if the colonic barrier could be improved in tissue from subjects with ulcerative colitis (UC). METHODS Colonoid cultures were established with colon biopsies from 9 individuals with UC. The colonoids were then incubated for a 2-week period under control conditions (in culture medium with a final calcium concentration of 0.25 mM) or in the same medium supplemented with Aquamin® to provide 1.5 - 4.5 mM calcium. Effects on differentiation and barrier protein expression were determined using several approaches: phase-contrast and scanning electron microscopy, quantitative histology and immunohistology, mass spectrometry-based proteome assessment and transmission electron microscopy. RESULTS Although there were no gross changes in colonoid appearance, there was an increase in lumen diameter and wall thickness on histology and greater expression of cytokeratin 20 (CK20) along with reduced expression of Ki67 by quantitative immunohistology observed with intervention. In parallel, upregulation of several differentiation-related proteins was seen in a proteomic screen with the intervention. Aquamin®-treated colonoids demonstrated a modest up-regulation of tight junctional proteins but stronger induction of adherens junction and desmosomal proteins. Increased desmosomes were seen at the ultrastructural level. Proteomic analysis demonstrated increased expression of several basement membrane proteins and hemidesmosomal components. Proteins expressed at the apical surface (mucins and trefoils) were also increased as were several additional proteins with anti-microbial activity or that modulate inflammation. Finally, several transporter proteins that affect electrolyte balance (and, thereby affect water resorption) were increased. At the same time, growth and cell cycle regulatory proteins (Ki67, nucleophosmin, and stathmin) were significantly down-regulated. Laminin interactions, matrix formation and extracellular matrix organization were the top three up-regulated pathways with the intervention. CONCLUSION A majority of individuals including patients with UC do not reach the recommended daily intake for calcium and other minerals. To the extent that such deficiencies might contribute to the weakening of the colonic barrier, the findings employing UC tissue-derived colonoids here suggest that adequate mineral intake might improve the colonic barrier.
Collapse
Affiliation(s)
- Muhammad N. Aslam
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Shannon D. McClintock
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Durga Attili
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Shailja Pandya
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Humza Rehman
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Daniyal M. Nadeem
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Areeba H. Rizvi
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maliha M. Berner
- Department of Internal Medicine (The Division of Gastroenterology), The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Michael K. Dame
- Department of Internal Medicine (The Division of Gastroenterology), The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Danielle Kim Turgeon
- Department of Internal Medicine (The Division of Gastroenterology), The University of Michigan Medical School, Ann Arbor, MI, United States
| | - James Varani
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
24
|
Kaur H, Moreau R. Curcumin steers THP-1 cells under LPS and mTORC1 challenges toward phenotypically resting, low cytokine-producing macrophages. J Nutr Biochem 2020; 88:108553. [PMID: 33220404 DOI: 10.1016/j.jnutbio.2020.108553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/07/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
The persistent activation of intestinal mechanistic target of rapamycin complex 1 (mTORC1) triggered by mucosal stress has been linked to deregulation of the gut immune response resulting in intestinal inflammation and cell death. The present study investigated the regulatory properties of food-derived mTORC1 modulators, curcumin, and piperine, toward the polarization of stimulated macrophages and the differentiation of monocytes at two mTORC1 activity levels (baseline and elevated). To that end, we created stable human THP-1 monocytes exhibiting normal or constitutively active mTORC1. Curcumin or its combination with piperine, but not piperine alone, suppressed mTORC1 kinase activity, curtailed lipopolysaccharide-mediated inflammatory response of THP-1 macrophages, and repressed macrophage activation by inhibiting signaling pathways involved in M1 (mTORC1) and M2 (mTORC2 and cAMP response element binding protein) polarization. The effects of piperine in the curcumin/piperine combination were modest overall, indicating it was curcumin that modulated differentiating monocytes into acquiring a M0 macrophage phenotype characterized by low inflammatory cytokine output.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| |
Collapse
|
25
|
Kaur H, Moreau R. Curcumin represses mTORC1 signaling in Caco-2 cells by a two-sided mechanism involving the loss of IRS-1 and activation of AMPK. Cell Signal 2020; 78:109842. [PMID: 33234350 DOI: 10.1016/j.cellsig.2020.109842] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 01/09/2023]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a central modulator of inflammation and tumorigenesis in the gastrointestinal tract. Growth factors upregulate mTORC1 via the PI3K/AKT and/or Ras/MAPK signal pathways. Curcumin (CUR), a polyphenol found in turmeric roots (Curcuma longa) can repress mTORC1 kinase activity in colon cancer cell lines; however, key aspects of CUR mechanism of action remain to be elucidated including its primary cellular target. We investigated the molecular effects of physiologically attainable concentration of CUR (20 μM) in the intestinal lumen on mTORC1 signaling in Caco-2 cells. CUR markedly inhibited mTORC1 kinase activity as determined by the decreased phosphorylation of p70S6K (Thr389, -99%, P < 0.0001) and S6 (Ser235/236, -92%, P < 0.0001). Mechanistically, CUR decreased IRS-1 protein abundance (-80%, P < 0.0001) thereby downregulating AKT phosphorylation (Ser473, -94%, P < 0.0001) and in turn PRAS40 phosphorylation (Thr246, -99%, P < 0.0001) while total PRAS40 abundance was unchanged. The use of proteasome inhibitor MG132 showed that CUR-mediated loss of IRS-1 involved proteasomal degradation. CUR lowered Raptor protein abundance, which combined with PRAS40 hypophosphorylation, suggests CUR repressed mTORC1 activity by inducing compositional changes that hinder the complex assembly. In addition, CUR activated AMPK (Thr172 phosphorylation, P < 0.0001), a recognized repressor of mTORC1, and AMPK upstream regulator LKB1. Although cargo adapter protein p62 was decreased by CUR (-49%, P < 0.004), CUR did not significantly induce autophagy. Inhibition of AKT/mTORC1 signaling by CUR may have lifted the cross-inhibition onto MAPK signaling, which became induced; p-ERK1/2 (+670%, P < 0.0001), p-p38 (+1433%, P < 0.0001). By concomitantly targeting IRS-1 and AMPK, CUR's mechanism of mTORC1 inhibition is distinct from that of rapamycin.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
26
|
Fritsch SD, Weichhart T. Metabolic and immunologic control of intestinal cell function by mTOR. Int Immunol 2020; 32:455-465. [PMID: 32140726 PMCID: PMC7617511 DOI: 10.1093/intimm/dxaa015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelium is one of the most quickly dividing tissues in our body, combining the absorptive advantages of a single layer with the protection of a constantly renewing barrier. It is continuously exposed to nutrients and commensal bacteria as well as microbial and host-derived metabolites, but also to hazards such as pathogenic bacteria and toxins. These environmental cues are sensed by the mucosa and a vast repertory of immune cells, especially macrophages. A disruption of intestinal homeostasis in terms of barrier interruption can lead to inflammatory bowel diseases and colorectal cancer, and macrophages have an important role in restoring epithelial function following injury. The mammalian/mechanistic target of rapamycin (mTOR) signalling pathway senses environmental cues and integrates metabolic responses. It has emerged as an important regulator of intestinal functions in homeostasis and disease. In this review, we are going to discuss intestinal mTOR signalling and metabolic regulation in different intestinal cell populations with a special focus on immune cells and their actions on intestinal function.
Collapse
Affiliation(s)
- Stephanie D Fritsch
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Währinger Straße, Vienna, Austria
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Währinger Straße, Vienna, Austria
| |
Collapse
|
27
|
Cruz‐Romero C, Guo A, Bradley WF, Vicentini JR, Yajnik V, Gee MS. Novel Associations Between Genome‐Wide Single Nucleotide Polymorphisms and MR Enterography Features in Crohn's Disease Patients. J Magn Reson Imaging 2020; 53:132-138. [DOI: 10.1002/jmri.27250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Cinthia Cruz‐Romero
- Department of Radiology, Beth Israel Deaconess Medical Center Harvard Medical School Boston Massachusetts USA
| | - Abra Guo
- University of Virginia School of Medicine Charlottesville Virginia USA
| | | | - Joao R.T. Vicentini
- Department of Radiology, Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
| | - Vijay Yajnik
- Takeda Pharmaceuticals Cambridge Massachusetts USA
| | - Michael S. Gee
- Department of Radiology, Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
28
|
Burgueño JF, Reich A, Hazime H, Quintero MA, Fernandez I, Fritsch J, Santander AM, Brito N, Damas OM, Deshpande A, Kerman DH, Zhang L, Gao Z, Ban Y, Wang L, Pignac-Kobinger J, Abreu MT. Expression of SARS-CoV-2 Entry Molecules ACE2 and TMPRSS2 in the Gut of Patients With IBD. Inflamm Bowel Dis 2020; 26:797-808. [PMID: 32333601 PMCID: PMC7188157 DOI: 10.1093/ibd/izaa085] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD) have intestinal inflammation and are treated with immune-modulating medications. In the face of the coronavirus disease-19 pandemic, we do not know whether patients with IBD will be more susceptible to infection or disease. We hypothesized that the viral entry molecules angiotensin I converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) are expressed in the intestine. We further hypothesized that their expression could be affected by inflammation or medication usage. METHODS We examined the expression of Ace2 and Tmprss2 by quantitative polymerase chain reacion in animal models of IBD. Publicly available data from organoids and mucosal biopsies from patients with IBD were examined for expression of ACE2 and TMPRSS2. We conducted RNA sequencing for CD11b-enriched cells and peripheral and lamina propria T-cells from well-annotated patient samples. RESULTS ACE2 and TMPRSS2 were abundantly expressed in the ileum and colon and had high expression in intestinal epithelial cells. In animal models, inflammation led to downregulation of epithelial Ace2. Expression of ACE2 and TMPRSS2 was not increased in samples from patients with compared with those of control patients. In CD11b-enriched cells but not T-cells, the level of expression of ACE2 and TMPRSS2 in the mucosa was comparable to other functional mucosal genes and was not affected by inflammation. Anti-tumor necrosis factor drugs, vedolizumab, ustekinumab, and steroids were linked to significantly lower expression of ACE2 in CD11b-enriched cells. CONCLUSIONS The viral entry molecules ACE2 and TMPRSS2 are expressed in the ileum and colon. Patients with IBD do not have higher expression during inflammation; medical therapy is associated with lower levels of ACE2. These data provide reassurance for patients with IBD.
Collapse
Affiliation(s)
- Juan F Burgueño
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Adrian Reich
- Center for Computational Biology and Bioinformatics, The Scripps Research Institute-Florida, Jupiter, Florida, USA
| | - Hajar Hazime
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Maria A Quintero
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Irina Fernandez
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Julia Fritsch
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ana M Santander
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nivis Brito
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Oriana M Damas
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Amar Deshpande
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - David H Kerman
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lanyu Zhang
- Biostatistics and Bioinformatics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Zhen Gao
- Biostatistics and Bioinformatics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yuguang Ban
- Biostatistics and Bioinformatics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lily Wang
- Biostatistics and Bioinformatics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Judith Pignac-Kobinger
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Maria T Abreu
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
29
|
Strasser SD, Ghazi PC, Starchenko A, Boukhali M, Edwards A, Suarez-Lopez L, Lyons J, Changelian PS, Monahan JB, Jacobsen J, Brubaker DK, Joughin BA, Yaffe MB, Haas W, Lauffenburger DA, Haigis KM. Substrate-based kinase activity inference identifies MK2 as driver of colitis. Integr Biol (Camb) 2020; 11:301-314. [PMID: 31617572 DOI: 10.1093/intbio/zyz025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/19/2019] [Accepted: 07/28/2019] [Indexed: 12/30/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic and debilitating disorder that has few treatment options due to a lack of comprehensive understanding of its molecular pathogenesis. We used multiplexed mass spectrometry to collect high-content information on protein phosphorylation in two different mouse models of IBD. Because the biological function of the vast majority of phosphorylation sites remains unknown, we developed Substrate-based Kinase Activity Inference (SKAI), a methodology to infer kinase activity from phosphoproteomic data. This approach draws upon prior knowledge of kinase-substrate interactions to construct custom lists of kinases and their respective substrate sites, termed kinase-substrate sets that employ prior knowledge across organisms. This expansion as much as triples the amount of prior knowledge available. We then used these sets within the Gene Set Enrichment Analysis framework to infer kinase activity based on increased or decreased phosphorylation of its substrates in a dataset. When applied to the phosphoproteomic datasets from the two mouse models, SKAI predicted largely non-overlapping kinase activation profiles. These results suggest that chronic inflammation may arise through activation of largely divergent signaling networks. However, the one kinase inferred to be activated in both mouse models was mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2 or MK2), a serine/threonine kinase that functions downstream of p38 stress-activated mitogen-activated protein kinase. Treatment of mice with active colitis with ATI450, an orally bioavailable small molecule inhibitor of the MK2 pathway, reduced inflammatory signaling in the colon and alleviated the clinical and histological features of inflammation. These studies establish MK2 as a therapeutic target in IBD and identify ATI450 as a potential therapy for the disease.
Collapse
Affiliation(s)
- Samantha Dale Strasser
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Cancer Research Institute and Division of Genetics, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Phaedra C Ghazi
- Cancer Research Institute and Division of Genetics, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Alina Starchenko
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Cancer Research Institute and Division of Genetics, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Myriam Boukhali
- Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.,Center for Cancer Research, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Amanda Edwards
- Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.,Center for Cancer Research, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Lucia Suarez-Lopez
- Cancer Research Institute and Division of Genetics, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jesse Lyons
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Cancer Research Institute and Division of Genetics, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Paul S Changelian
- Aclaris Therapeutics, Inc., 4320 Forest Park Avenue, St. Louis, MO 63108, USA
| | - Joseph B Monahan
- Aclaris Therapeutics, Inc., 4320 Forest Park Avenue, St. Louis, MO 63108, USA
| | - Jon Jacobsen
- Aclaris Therapeutics, Inc., 4320 Forest Park Avenue, St. Louis, MO 63108, USA
| | - Douglas K Brubaker
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Cancer Research Institute and Division of Genetics, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Brian A Joughin
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Michael B Yaffe
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Wilhelm Haas
- Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.,Center for Cancer Research, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Kevin M Haigis
- Cancer Research Institute and Division of Genetics, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.,Harvard Digestive Disease Center, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
30
|
Li C, Zhou Y, Rychahou P, Weiss HL, Lee EY, Perry CL, Barrett TA, Wang Q, Evers BM. SIRT2 Contributes to the Regulation of Intestinal Cell Proliferation and Differentiation. Cell Mol Gastroenterol Hepatol 2020; 10:43-57. [PMID: 31954883 PMCID: PMC7210478 DOI: 10.1016/j.jcmgh.2020.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Intestinal mucosa undergoes a continual process of proliferation, differentiation, and apoptosis. Disruption of this homeostasis is associated with disorders such as inflammatory bowel disease (IBD). We investigated the role of Sirtuin 2 (SIRT2), a NAD-dependent protein deacetylase, in intestinal epithelial cell (IEC) proliferation and differentiation and the mechanism by which SIRT2 contributes to maintenance of intestinal cell homeostasis. METHODS IECs were collected from SIRT2-deficient mice and patients with IBD. Expression of SIRT2, differentiation markers (mucin2, intestinal alkaline phosphatase, villin, Na,K-ATPase, and lysozyme) and Wnt target genes (EPHB2, AXIN2, and cyclin D1) was determined by western blot, real-time RT-PCR, or immunohistochemical (IHC) staining. IECs were treated with TNF or transfected with siRNA targeting SIRT2. Proliferation was determined by villus height and crypt depth, and Ki67 and cyclin D1 IHC staining. For studies using organoids, intestinal crypts were isolated. RESULTS Increased SIRT2 expression was localized to the more differentiated region of the intestine. In contrast, SIRT2 deficiency impaired proliferation and differentiation and altered stemness in the small intestinal epithelium ex vivo and in vivo. SIRT2-deficient mice showed decreased intestinal enterocyte and goblet cell differentiation but increased the Paneth cell lineage and increased proliferation of IECs. Moreover, we found that SIRT2 inhibits Wnt/β-catenin signaling, which critically regulates IEC proliferation and differentiation. Consistent with a distinct role for SIRT2 in maintenance of gut homeostasis, intestinal mucosa from IBD patients exhibited decreased SIRT2 expression. CONCLUSION We demonstrate that SIRT2, which is decreased in intestinal tissues from IBD patients, regulates Wnt-β-catenin signaling and is important for maintenance of IEC proliferation and differentiation.
Collapse
Affiliation(s)
- Chang Li
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Yuning Zhou
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Piotr Rychahou
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky,Department of Surgery, University of Kentucky, Lexington, Kentucky
| | - Heidi L. Weiss
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Eun Y. Lee
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky,Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky
| | - Courtney L. Perry
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Terrence A. Barrett
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Qingding Wang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky,Department of Surgery, University of Kentucky, Lexington, Kentucky,Qingding Wang, PhD, Markey Cancer Center, University of Kentucky, 800 Rose Street, CC140, Lexington, KY 40536-0293. fax: (859) 323-2074.
| | - B. Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky,Department of Surgery, University of Kentucky, Lexington, Kentucky,Correspondence Address correspondence to: B. Mark Evers, MD, Markey Cancer Center, University of Kentucky, 800 Rose Street, CC140, Lexington, KY 40536-0293. fax: (859) 323-2074.
| |
Collapse
|
31
|
Rohr M, Narasimhulu CA, Keewan E, Hamid S, Parthasarathy S. The dietary peroxidized lipid, 13-HPODE, promotes intestinal inflammation by mediating granzyme B secretion from natural killer cells. Food Funct 2020; 11:9526-9534. [DOI: 10.1039/d0fo02328k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The dietary peroxidized lipid, 13-HPODE, stimulates natural killer cell granzyme B production and secretion, with potential implications for intestinal inflammation.
Collapse
Affiliation(s)
- Michael Rohr
- Burnett School of Biomedical Sciences
- University of Central Florida
- College of Medicine
- Orlando
- USA
| | | | - Esra'a Keewan
- Burnett School of Biomedical Sciences
- University of Central Florida
- College of Medicine
- Orlando
- USA
| | - Simran Hamid
- Burnett School of Biomedical Sciences
- University of Central Florida
- College of Medicine
- Orlando
- USA
| | - Sampath Parthasarathy
- Burnett School of Biomedical Sciences
- University of Central Florida
- College of Medicine
- Orlando
- USA
| |
Collapse
|
32
|
Ungaro F, Garlatti V, Massimino L, Spinelli A, Carvello M, Sacchi M, Spanò S, Colasante G, Valassina N, Vetrano S, Malesci A, Peyrin-Biroulet L, Danese S, D'Alessio S. mTOR-Dependent Stimulation of IL20RA Orchestrates Immune Cell Trafficking through Lymphatic Endothelium in Patients with Crohn's Disease. Cells 2019; 8:cells8080924. [PMID: 31426584 PMCID: PMC6721646 DOI: 10.3390/cells8080924] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 12/21/2022] Open
Abstract
Crohn’s disease (CD) is a chronic inflammatory condition that can affect different portions of the gastrointestinal tract. Lymphatic drainage was demonstrated to be dysfunctional in CD pathogenesis, ultimately causing the failure of the resolution of intestinal inflammation. To investigate the molecular mechanisms underlying these dysfunctions, we isolated human intestinal lymphatic endothelial cells (HILECs) from surgical specimens of patients undergoing resection for complicated CD (CD HILEC) and from a disease-free margin of surgical specimens of patients undergoing resection for cancer (healthy HILEC). Both cell types underwent transcriptomic profiling, and their barrier functionality was tested using a transwell-based co-culture system between HILEC and lamina propria mononuclear cells (LPMCs). Results showed CD HILEC displayed a peculiar transcriptomic signature that highlighted mTOR signaling as an orchestrator of leukocyte trafficking through the lymphatic barrier of CD patients. Moreover, we demonstrated that LPMC transmigration through the lymphatic endothelium of patients with CD depends on the capability of mTOR to trigger interleukin 20 receptor subunit α (IL20RA)-mediated intracellular signaling. Conclusively, our study suggests that leukocyte trafficking through the intestinal lymphatic microvasculature can be controlled by modulating IL20RA, thus leading to the resolution of chronic inflammation in patients with CD.
Collapse
Affiliation(s)
- Federica Ungaro
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Valentina Garlatti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Luca Massimino
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Antonino Spinelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- Colon and Rectal Surgery Unit, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy
| | - Michele Carvello
- Colon and Rectal Surgery Unit, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy
| | - Matteo Sacchi
- Colon and Rectal Surgery Unit, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy
| | - Salvatore Spanò
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Gaia Colasante
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Nicholas Valassina
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefania Vetrano
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Alberto Malesci
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 200129 Milan, Italy
- Department of Gastroenterology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy
| | - Laurent Peyrin-Biroulet
- Inserm Ngere and Nancy University Hospital, Lorraine University, 54500 Vandoeuvre-lès-Nancy, France
| | - Silvio Danese
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Silvia D'Alessio
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy.
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy.
| |
Collapse
|
33
|
Kaur H, Moreau R. Role of mTORC1 in intestinal epithelial repair and tumorigenesis. Cell Mol Life Sci 2019; 76:2525-2546. [PMID: 30944973 PMCID: PMC11105546 DOI: 10.1007/s00018-019-03085-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/08/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022]
Abstract
mTORC1 signaling is the prototypical pathway regulating protein synthesis and cell proliferation. mTORC1 is active in stem cells located at the base of intestinal crypts but silenced as transit-amplifying cells differentiate into enterocytes or secretory cells along the epithelium. After an insult or injury, self-limiting and controlled activation of mTORC1 is critical for the renewal and repair of intestinal epithelium. mTORC1 promotes epithelial cell renewal by driving cryptic stem cell division, and epithelial cell repair by supporting the dedifferentiation and proliferation of enterocytes or secretory cells. Under repeated insult or injury, mTORC1 becomes constitutively active, triggering an irreversible return to stemness, cell division, proliferation, and inflammation among dedifferentiated epithelial cells. Epithelium-derived cytokines promulgate inflammation within the lamina propria, which in turn releases inflammatory factors that act back on the epithelium where undamaged intestinal epithelial cells participate in the pervading state of inflammation and become susceptible to tumorigenesis.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
34
|
Poulin EJ, Bera AK, Lu J, Lin YJ, Strasser SD, Paulo JA, Huang TQ, Morales C, Yan W, Cook J, Nowak JA, Brubaker DK, Joughin BA, Johnson CW, DeStefanis RA, Ghazi PC, Gondi S, Wales TE, Iacob RE, Bogdanova L, Gierut JJ, Li Y, Engen JR, Perez-Mancera PA, Braun BS, Gygi SP, Lauffenburger DA, Westover KD, Haigis KM. Tissue-Specific Oncogenic Activity of KRAS A146T. Cancer Discov 2019; 9:738-755. [PMID: 30952657 PMCID: PMC6548671 DOI: 10.1158/2159-8290.cd-18-1220] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/06/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022]
Abstract
KRAS is the most frequently mutated oncogene. The incidence of specific KRAS alleles varies between cancers from different sites, but it is unclear whether allelic selection results from biological selection for specific mutant KRAS proteins. We used a cross-disciplinary approach to compare KRASG12D, a common mutant form, and KRASA146T, a mutant that occurs only in selected cancers. Biochemical and structural studies demonstrated that KRASA146T exhibits a marked extension of switch 1 away from the protein body and nucleotide binding site, which activates KRAS by promoting a high rate of intrinsic and guanine nucleotide exchange factor-induced nucleotide exchange. Using mice genetically engineered to express either allele, we found that KRASG12D and KRASA146T exhibit distinct tissue-specific effects on homeostasis that mirror mutational frequencies in human cancers. These tissue-specific phenotypes result from allele-specific signaling properties, demonstrating that context-dependent variations in signaling downstream of different KRAS mutants drive the KRAS mutational pattern seen in cancer. SIGNIFICANCE: Although epidemiologic and clinical studies have suggested allele-specific behaviors for KRAS, experimental evidence for allele-specific biological properties is limited. We combined structural biology, mass spectrometry, and mouse modeling to demonstrate that the selection for specific KRAS mutants in human cancers from different tissues is due to their distinct signaling properties.See related commentary by Hobbs and Der, p. 696.This article is highlighted in the In This Issue feature, p. 681.
Collapse
Affiliation(s)
- Emily J Poulin
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Asim K Bera
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Jia Lu
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Yi-Jang Lin
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Samantha Dale Strasser
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Tannie Q Huang
- Department of Pediatrics and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Carolina Morales
- Department of Pediatrics and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Wei Yan
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Joshua Cook
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jonathan A Nowak
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Douglas K Brubaker
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Brian A Joughin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christian W Johnson
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Rebecca A DeStefanis
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Phaedra C Ghazi
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Sudershan Gondi
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Roxana E Iacob
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Lana Bogdanova
- Department of Pediatrics and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Jessica J Gierut
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Yina Li
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Pedro A Perez-Mancera
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Benjamin S Braun
- Department of Pediatrics and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Kenneth D Westover
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas.
| | - Kevin M Haigis
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts.
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Harvard Digestive Disease Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
35
|
Andrographolide derivative ameliorates dextran sulfate sodium-induced experimental colitis in mice. Biochem Pharmacol 2019; 163:416-424. [DOI: 10.1016/j.bcp.2019.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/12/2019] [Indexed: 01/05/2023]
|