1
|
Brodovskaya A, Shiono S, Sun C, Perez‐Reyes E, Kapur J. Preferential superficial cortical layer activation during seizure propagation. Epilepsia 2025; 66:929-941. [PMID: 39718688 PMCID: PMC11908662 DOI: 10.1111/epi.18239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
OBJECTIVE Focal cortical seizures travel long distances from the onset zone, but the long-distance propagation pathways are uncertain. In vitro and in vivo imaging techniques have investigated the local spread of seizures but did not elucidate long-distance spread. Furthermore, classical studies in slices suggested seizure spread locally along deep cortical layers, whereas more recent in vivo imaging studies posit a role for superficial cortical layers in local spread. METHODS We imaged seizure-activated neurons using activity reporter mice and measured local field potentials (LFPs) using microelectrode arrays to map cortical seizure propagation in awake mice. RESULTS Frontal lobe onset seizures activate more neurons in superficial layers 2-3 than deep layers 5-6 throughout the cortex. LFP recordings demonstrate that seizures spread faster through the superficial than deep layers over long cortical distances of 3.5 mm. We also show that monosynaptically connected long-distance neurons are in the seizure circuit. SIGNIFICANCE We propose that long-distance cortical seizure spread occurs preferentially via synaptically connected superficial cortical neurons.
Collapse
Affiliation(s)
| | - Shinnosuke Shiono
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Chengsan Sun
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Edward Perez‐Reyes
- Department of PharmacologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Jaideep Kapur
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Brain InstituteUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
2
|
Ohm DT, Xie SX, Capp N, Arezoumandan S, Cousins KAQ, Rascovsky K, Wolk DA, Van Deerlin VM, Lee EB, McMillan CT, Irwin DJ. Cytoarchitectonic gradients of laminar degeneration in behavioural variant frontotemporal dementia. Brain 2025; 148:102-118. [PMID: 39119853 PMCID: PMC11706280 DOI: 10.1093/brain/awae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/30/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Behavioural variant frontotemporal dementia (bvFTD) is a clinical syndrome caused primarily by either tau (bvFTD-tau) or transactive response DNA-binding protein of 43 kDa (TDP-43) (bvFTD-TDP) proteinopathies. We previously found that lower cortical layers and dorsolateral regions accumulate greater tau than TDP-43 pathology; however, the patterns of laminar neurodegeneration across diverse cytoarchitecture in bvFTD are understudied. We hypothesized that bvFTD-tau and bvFTD-TDP have distinct laminar distributions of pyramidal neurodegeneration along cortical gradients, a topological order of cytoarchitectonic subregions based on increasing pyramidal density and laminar differentiation. Here, we tested this hypothesis in a frontal cortical gradient consisting of five cytoarchitectonic types (i.e. periallocortex, agranular mesocortex, dysgranular mesocortex, eulaminate-I isocortex and eulaminate-II isocortex) spanning the anterior cingulate, paracingulate, orbitofrontal and mid-frontal gyri in bvFTD-tau (n = 27), bvFTD-TDP (n = 47) and healthy controls (n = 32). We immunostained all tissue for total neurons (NeuN; neuronal-nuclear protein) and pyramidal neurons (SMI32; non-phosphorylated neurofilament) and digitally quantified NeuN-immunoreactivity (ir) and SMI32-ir in supragranular II-III, infragranular V-VI and all I-VI layers in each cytoarchitectonic type. We used linear mixed-effects models adjusted for demographic and biological variables to compare SMI32-ir between groups and examine relationships with the cortical gradient, long-range pathways and clinical symptoms. We found regional and laminar distributions of SMI32-ir expected for healthy controls, validating our measures within the cortical gradient framework. The SMI32-ir loss was relatively uniform along the cortical gradient in bvFTD-TDP, whereas SMI32-ir decreased progressively along the cortical gradient of bvFTD-tau and included greater SMI32-ir loss in supragranular eulaminate-II isocortex in bvFTD-tau versus bvFTD-TDP (P = 0.039). Using a ratio of SMI32-ir to model known long-range connectivity between infragranular mesocortex and supragranular isocortex, we found a larger laminar ratio in bvFTD-tau versus bvFTD-TDP (P = 0.019), suggesting that select long-projecting pathways might contribute to isocortical-predominant degeneration in bvFTD-tau. In cytoarchitectonic types with the highest NeuN-ir, we found lower SMI32-ir in bvFTD-tau versus bvFTD-TDP (P = 0.047), suggesting that pyramidal neurodegeneration might occur earlier in bvFTD-tau. Lastly, we found that reduced SMI32-ir was related to behavioural severity and frontal-mediated letter fluency, not temporal-mediated confrontation naming, demonstrating the clinical relevance and specificity of frontal pyramidal neurodegeneration to bvFTD-related symptoms. Our data suggest that loss of neurofilament-rich pyramidal neurons is a clinically relevant feature of bvFTD that worsens selectively along a frontal cortical gradient in bvFTD-tau, not bvFTD-TDP. Therefore, tau-mediated degeneration might preferentially involve pyramidal-rich layers that connect more distant cytoarchitectonic types. Moreover, the hierarchical arrangement of cytoarchitecture along cortical gradients might be an important neuroanatomical framework for identifying which types of cells and pathways are involved differentially between proteinopathies.
Collapse
Affiliation(s)
- Daniel T Ohm
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sharon X Xie
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Noah Capp
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sanaz Arezoumandan
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katheryn A Q Cousins
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katya Rascovsky
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Wolk
- Alzheimer’s Disease Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Memory Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward B Lee
- Alzheimer’s Disease Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Corey T McMillan
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David J Irwin
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
He Y, Liu J, Xiao H, Xiao L. Early postnatal whisker deprivation cross-modally modulates prefrontal cortex myelination and leads to social novelty deficit. Brain Res 2024; 1843:149136. [PMID: 39098577 DOI: 10.1016/j.brainres.2024.149136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Sensory experience affects not only the corresponding primary sensory cortex, but also synaptic and neural circuit functions in other brain regions in a cross-modal manner. However, it remains unclear whether oligodendrocyte (OL) generation and myelination can also undergo cross-modal modulation. Here, we report that while early life short-term whisker deprivation from birth significantly reduces in the number of mature of OLs and the degree of myelination in the primary somatosensory cortex(S1) at postnatal day 14 (P14), it also simultaneously affects the primary visual cortex (V1), but not the medial prefrontal cortex (mPFC) with a similar reduction. Interestingly, when mice were subjected to long-term early whisker deprivation from birth (P0) to P35, they exhibited dramatically impaired myelination and a deduced number of differentiated OLs in regions including the S1, V1, and mPFC, as detected at P60. Meanwhile, the process complexity of OL precursor cells (OPCs) was also rduced, as detected in the mPFC. However, when whisker deprivation occurred during the mid-late postnatal period (P35 to P50), myelination was unaffected in both V1 and mPFC brain regions at P60. In addition to impaired OL and myelin development in the mPFC, long-term early whisker-deprived mice also showed deficits in social novelty, accompanied by abnormal activation of c-Fos in the mPFC. Thus, our results reveal a novel form of cross-modal modulation of myelination by sensory experience that can lead to abnormalities in social behavioral, suggesting a possible similar mechanism underlying brain pathological conditions that suffer from both sensory and social behavioral deficits, such as autism spectrum disorders.
Collapse
Affiliation(s)
- Yongxiang He
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, PR China
| | - Junhong Liu
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, PR China
| | - Hanyu Xiao
- Shanghai Pinghe School, Shanghai 200120, PR China
| | - Lin Xiao
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
4
|
Zhang F, Chen Y, Ning L, Rushmore J, Liu Q, Du M, Hassanzadeh‐Behbahani S, Legarreta J, Yeterian E, Makris N, Rathi Y, O'Donnell L. Assessment of the Depiction of Superficial White Matter Using Ultra-High-Resolution Diffusion MRI. Hum Brain Mapp 2024; 45:e70041. [PMID: 39392220 PMCID: PMC11467805 DOI: 10.1002/hbm.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024] Open
Abstract
The superficial white matter (SWM) consists of numerous short-range association fibers connecting adjacent and nearby gyri and plays an important role in brain function, development, aging, and various neurological disorders. Diffusion MRI (dMRI) tractography is an advanced imaging technique that enables in vivo mapping of the SWM. However, detailed imaging of the small, highly-curved fibers of the SWM is a challenge for current clinical and research dMRI acquisitions. This work investigates the efficacy of mapping the SWM using in vivo ultra-high-resolution dMRI data. We compare the SWM mapping performance from two dMRI acquisitions: a high-resolution 0.76-mm isotropic acquisition using the generalized slice-dithered enhanced resolution (gSlider) protocol and a lower resolution 1.25-mm isotropic acquisition obtained from the Human Connectome Project Young Adult (HCP-YA) database. Our results demonstrate significant differences in the cortico-cortical anatomical connectivity that is depicted by these two acquisitions. We perform a detailed assessment of the anatomical plausibility of these results with respect to the nonhuman primate (macaque) tract-tracing literature. We find that the high-resolution gSlider dataset is more successful at depicting a large number of true positive anatomical connections in the SWM. An additional cortical coverage analysis demonstrates significantly higher cortical coverage in the gSlider dataset for SWM streamlines under 40 mm in length. Overall, we conclude that the spatial resolution of the dMRI data is one important factor that can significantly affect the mapping of SWM. Considering the relatively long acquisition time, the application of dMRI tractography for SWM mapping in future work should consider the balance of data acquisition efforts and the efficacy of SWM depiction.
Collapse
Affiliation(s)
- Fan Zhang
- School of Information and Communication Engineering, University of Electronic Science and Technology of ChinaChengduChina
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Yuqian Chen
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Lipeng Ning
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jarrett Rushmore
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Qiang Liu
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Mubai Du
- School of Information and Communication Engineering, University of Electronic Science and Technology of ChinaChengduChina
| | | | - Jon Haitz Legarreta
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Edward Yeterian
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
- Department of PsychologyColby CollegeWatervilleMaineUSA
| | - Nikos Makris
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Yogesh Rathi
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Lauren J. O'Donnell
- School of Information and Communication Engineering, University of Electronic Science and Technology of ChinaChengduChina
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
5
|
Puelles L, Alonso A, García-Calero E. Genoarchitectural Definition of the Adult Mouse Mesocortical Ring: A Contribution to Cortical Ring Theory. J Comp Neurol 2024; 532:e25647. [PMID: 38961708 DOI: 10.1002/cne.25647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Data mining was performed at the databases of the Allen Institute for Brain Science (RRID:SCR_017001) searching for genes expressed selectively throughout the adult mouse mesocortex (transitional cortex ring predicted within the concentric ring theory of mammalian cortical structure, in contrast with central isocortex [ICx] and peripheral allocortex). We aimed to explore a shared molecular profile selective of all or most mesocortex areas. This approach checks and corroborates the precision of other previous definitory criteria, such as poor myelination and high kainate receptor level. Another aim was to examine which cortical areas properly belong to mesocortex. A total of 34 positive adult selective marker genes of mesocortex were identified, jointly with 12 negative selective markers, making a total of 46 markers. All of them identify the same set of cortical areas surrounding the molecularly different ICx as well as excluding adjacent allocortex. Four representative mesocortex markers-Crym, Lypd1, Cdh13, and Smoc2-are amply illustrated, jointly with complementary material including myelin basic protein, to check myelination, and Rorb, to check layer 4 presence. The retrosplenial (ReSp) area, long held to be mesocortical, does not share any of the 46 markers of mesocortex and instead expresses Nr4a2 and Tshz2, selective parahippocampal allocortex markers. Moreover, it is not hypomyelinic and lacks a Rorb-positive layer 4, aspects generally present in mesocortex. Exclusion of the ReSp area from the mesocortex ring reveals the latter to be closed at this locus instead by two adjacent areas previously thought to be associative visual ICx (reidentified here molecularly as postsplenial and parasplenial mesocortex areas). The concepts of ICx, mesocortex, and parahippocampal allocortex are thus subtly modified by substantial molecular evidence.
Collapse
Affiliation(s)
- Luis Puelles
- Department of Human Anatomy and Psychobiology, University of Murcia, Murcia, Spain
- Pascual Parrilla Murcia Institute for Biomedical Research (IMIB), Murcia, Spain
| | - Antonia Alonso
- Department of Human Anatomy and Psychobiology, University of Murcia, Murcia, Spain
- Pascual Parrilla Murcia Institute for Biomedical Research (IMIB), Murcia, Spain
| | - Elena García-Calero
- Department of Human Anatomy and Psychobiology, University of Murcia, Murcia, Spain
- Pascual Parrilla Murcia Institute for Biomedical Research (IMIB), Murcia, Spain
| |
Collapse
|
6
|
Dalton GD, Siecinski SK, Nikolova VD, Cofer GP, Hornburg KJ, Qi Y, Johnson GA, Jiang YH, Moy SS, Gregory SG. Transcriptome analysis identifies an ASD-Like phenotype in oligodendrocytes and microglia from C58/J amygdala that is dependent on sex and sociability. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:14. [PMID: 38898502 PMCID: PMC11188533 DOI: 10.1186/s12993-024-00240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders with higher incidence in males and is characterized by atypical verbal/nonverbal communication, restricted interests that can be accompanied by repetitive behavior, and disturbances in social behavior. This study investigated brain mechanisms that contribute to sociability deficits and sex differences in an ASD animal model. METHODS Sociability was measured in C58/J and C57BL/6J mice using the 3-chamber social choice test. Bulk RNA-Seq and snRNA-Seq identified transcriptional changes in C58/J and C57BL/6J amygdala within which DMRseq was used to measure differentially methylated regions in amygdala. RESULTS C58/J mice displayed divergent social strata in the 3-chamber test. Transcriptional and pathway signatures revealed immune-related biological processes differ between C58/J and C57BL/6J amygdala. Hypermethylated and hypomethylated genes were identified in C58/J versus C57BL/6J amygdala. snRNA-Seq data in C58/J amygdala identified differential transcriptional signatures within oligodendrocytes and microglia characterized by increased ASD risk gene expression and predicted impaired myelination that was dependent on sex and sociability. RNA velocity, gene regulatory network, and cell communication analysis showed diminished oligodendrocyte/microglia differentiation. Findings were verified using Bulk RNA-Seq and demonstrated oxytocin's beneficial effects on myelin gene expression. LIMITATIONS Our findings are significant. However, limitations can be noted. The cellular mechanisms linking reduced oligodendrocyte differentiation and reduced myelination to an ASD phenotype in C58/J mice need further investigation. Additional snRNA-Seq and spatial studies would determine if effects in oligodendrocytes/microglia are unique to amygdala or if this occurs in other brain regions. Oxytocin's effects need further examination to understand its' potential as an ASD therapeutic. CONCLUSIONS Our work demonstrates the C58/J mouse model's utility in evaluating the influence of sex and sociability on the transcriptome in concomitant brain regions involved in ASD. Our single-nucleus transcriptome analysis elucidates potential pathological roles of oligodendrocytes and microglia in ASD. This investigation provides details regarding regulatory features disrupted in these cell types, including transcriptional gene dysregulation, aberrant cell differentiation, altered gene regulatory networks, and changes to key pathways that promote microglia/oligodendrocyte differentiation. Our studies provide insight into interactions between genetic risk and epigenetic processes associated with divergent affiliative behavior and lack of positive sociability.
Collapse
Affiliation(s)
- George D Dalton
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Stephen K Siecinski
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Viktoriya D Nikolova
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Gary P Cofer
- Center for In Vivo Microscopy, Duke University, Durham, NC, 27710, USA
| | | | - Yi Qi
- Center for In Vivo Microscopy, Duke University, Durham, NC, 27710, USA
| | - G Allan Johnson
- Center for In Vivo Microscopy, Duke University, Durham, NC, 27710, USA
| | - Yong-Hui Jiang
- Department of Genetics, Neuroscience, and Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sheryl S Moy
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA.
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurology, Molecular Genetics and Microbiology Duke Molecular Physiology Institute, 300 N. Duke Street, DUMC 104775, Durham, NC, 27701, USA.
| |
Collapse
|
7
|
Barbas H, Garcia-Cabezas MA, John Y, Bautista J, McKee A, Zikopoulos B. Cortical circuit principles predict patterns of trauma induced tauopathy in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592271. [PMID: 38746103 PMCID: PMC11092596 DOI: 10.1101/2024.05.02.592271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Connections in the cortex of diverse mammalian species are predicted reliably by the Structural Model for direction of pathways and signal processing (reviewed in 1,2). The model is rooted in the universal principle of cortical systematic variation in laminar structure and has been supported widely for connection patterns in animals but has not yet been tested for humans. Here, in postmortem brains of individuals neuropathologically diagnosed with chronic traumatic encephalopathy (CTE) we studied whether the hyperphosphorylated tau (p-tau) pathology parallels connection sequence in time by circuit mechanisms. CTE is a progressive p-tau pathology that begins focally in perivascular sites in sulcal depths of the neocortex (stages I-II) and later involves the medial temporal lobe (MTL) in stages III-IV. We provide novel quantitative evidence that the p-tau pathology in MTL A28 and nearby sites in CTE stage III closely follows the graded laminar patterns seen in homologous cortico-cortical connections in non-human primates. The Structural Model successfully predicted the laminar distribution of the p-tau neurofibrillary tangles and neurites and their density, based on the relative laminar (dis)similarity between the cortical origin (seed) and each connection site. The findings were validated for generalizability by a computational progression model. By contrast, the early focal perivascular pathology in the sulcal depths followed local columnar connectivity rules. These findings support the general applicability of a theoretical model to unravel the direction and progression of p-tau pathology in human neurodegeneration via a cortico-cortical mechanism. Cortical pathways converging on medial MTL help explain the progressive spread of p-tau pathology from focal cortical sites in early CTE to widespread lateral MTL areas and beyond in later disease stages.
Collapse
Affiliation(s)
- Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA 022152
- Graduate Program in Neuroscience, Boston Univ. and School of Medicine
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA
- Center for Systems Neuroscience, Boston University, Boston, MA
| | - Miguel Angel Garcia-Cabezas
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Yohan John
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA 022152
| | - Julied Bautista
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA 022152
| | - Ann McKee
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Basilis Zikopoulos
- Graduate Program in Neuroscience, Boston Univ. and School of Medicine
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA
- Center for Systems Neuroscience, Boston University, Boston, MA
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University
| |
Collapse
|
8
|
King L, Weiner KS. Transcriptomic contributions to a modern cytoarchitectonic parcellation of the human cerebral cortex. Brain Struct Funct 2024; 229:919-936. [PMID: 38492042 DOI: 10.1007/s00429-023-02754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/19/2023] [Indexed: 03/18/2024]
Abstract
Transcriptomic contributions to the anatomical, functional, and network layout of the human cerebral cortex (HCC) have become a major interest in cognitive and systems neuroscience. Here, we tested if transcriptomic differences support a modern, algorithmic cytoarchitectonic parcellation of HCC. Using a data-driven approach, we identified a sparse subset of genes that differentially contributed to the cytoarchitectonic parcellation of HCC. A combined metric of cortical thickness and myelination (CT/M ratio), as well as cell density, correlated with gene expression. Enrichment analyses showed that genes specific to the cytoarchitectonic parcellation of the HCC were related to molecular functions such as transmembrane transport and ion channel activity. Together, the relationship between transcriptomics and cytoarchitecture bridges the gap among (i) gradients at the macro-scale (including thickness and myelination), (ii) areas at the meso-scale, and (iii) cell density at the microscale, as well as supports the recently proposed cortical spectrum theory and structural model.
Collapse
Affiliation(s)
- Leana King
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA.
- Department of Neuroscience, University of California Berkeley, Berkeley, CA, 94720, USA.
| | - Kevin S Weiner
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Neuroscience, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
9
|
Ohm DT, Xie SX, Capp N, Arezoumandan S, Cousins KAQ, Rascovsky K, Wolk DA, Van Deerlin VM, Lee EB, McMillan CT, Irwin DJ. Cytoarchitectonic gradients of laminar degeneration in behavioral variant frontotemporal dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588259. [PMID: 38644997 PMCID: PMC11030243 DOI: 10.1101/2024.04.05.588259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Behavioral variant frontotemporal dementia (bvFTD) is a clinical syndrome primarily caused by either tau (bvFTD-tau) or TDP-43 (bvFTD-TDP) proteinopathies. We previously found lower cortical layers and dorsolateral regions accumulate greater tau than TDP-43 pathology; however, patterns of laminar neurodegeneration across diverse cytoarchitecture in bvFTD is understudied. We hypothesized that bvFTD-tau and bvFTD-TDP have distinct laminar distributions of pyramidal neurodegeneration along cortical gradients, a topologic order of cytoarchitectonic subregions based on increasing pyramidal density and laminar differentiation. Here, we tested this hypothesis in a frontal cortical gradient consisting of five cytoarchitectonic types (i.e., periallocortex, agranular mesocortex, dysgranular mesocortex, eulaminate-I isocortex, eulaminate-II isocortex) spanning anterior cingulate, paracingulate, orbitofrontal, and mid-frontal gyri in bvFTD-tau (n=27), bvFTD-TDP (n=47), and healthy controls (HC; n=32). We immunostained all tissue for total neurons (NeuN; neuronal-nuclear protein) and pyramidal neurons (SMI32; non-phosphorylated neurofilament) and digitally quantified NeuN-immunoreactivity (ir) and SMI32-ir in supragranular II-III, infragranular V-VI, and all I-VI layers in each cytoarchitectonic type. We used linear mixed-effects models adjusted for demographic and biologic variables to compare SMI32-ir between groups and examine relationships with the cortical gradient, long-range pathways, and clinical symptoms. We found regional and laminar distributions of SMI32-ir expected for HC, validating our measures within the cortical gradient framework. While SMI32-ir loss was not related to the cortical gradient in bvFTD-TDP, SMI32-ir progressively decreased along the cortical gradient of bvFTD-tau and included greater SMI32-ir loss in supragranular eulaminate-II isocortex in bvFTD-tau vs bvFTD-TDP ( p =0.039). In a structural model for long-range laminar connectivity between infragranular mesocortex and supragranular isocortex, we found a larger laminar ratio of mesocortex-to-isocortex SMI32-ir in bvFTD-tau vs bvFTD-TDP ( p =0.019), suggesting select long-projecting pathways may contribute to isocortical-predominant degeneration in bvFTD-tau. In cytoarchitectonic types with the highest NeuN-ir, we found lower SMI32-ir in bvFTD-tau vs bvFTD-TDP ( p =0.047), suggesting pyramidal neurodegeneration may occur earlier in bvFTD-tau. Lastly, we found that reduced SMI32-ir related to behavioral severity and frontal-mediated letter fluency, not temporal-mediated confrontation naming, demonstrating the clinical relevance and specificity of frontal pyramidal neurodegeneration to bvFTD-related symptoms. Our data suggest loss of neurofilament-rich pyramidal neurons is a clinically relevant feature of bvFTD that selectively worsens along a frontal cortical gradient in bvFTD-tau, not bvFTD-TDP. Therefore, tau-mediated degeneration may preferentially involve pyramidal-rich layers that connect more distant cytoarchitectonic types. Moreover, the hierarchical arrangement of cytoarchitecture along cortical gradients may be an important neuroanatomical framework for identifying which types of cells and pathways are differentially involved between proteinopathies.
Collapse
|
10
|
Dalton GD, Siecinski SK, Nikolova VD, Cofer GP, Hornburg K, Qi Y, Johnson GA, Jiang YH, Moy SS, Gregory SG. Transcriptome Analysis Identifies An ASD-Like Phenotype In Oligodendrocytes And Microglia From C58/J Amygdala That Is Dependent On Sex and Sociability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575733. [PMID: 38293238 PMCID: PMC10827122 DOI: 10.1101/2024.01.15.575733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Background Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders with higher incidence in males and is characterized by atypical verbal/nonverbal communication, restricted interests that can be accompanied by repetitive behavior, and disturbances in social behavior. This study investigated brain mechanisms that contribute to sociability deficits and sex differences in an ASD animal model. Methods Sociability was measured in C58/J and C57BL/6J mice using the 3-chamber social choice test. Bulk RNA-Seq and snRNA-Seq identified transcriptional changes in C58/J and C57BL/6J amygdala within which DMRseq was used to measure differentially methylated regions in amygdala. Results C58/J mice displayed divergent social strata in the 3-chamber test. Transcriptional and pathway signatures revealed immune-related biological processes differ between C58/J and C57BL/6J amygdala. Hypermethylated and hypomethylated genes were identified in C58/J versus C57BL/6J amygdala. snRNA-Seq data in C58/J amygdala identified differential transcriptional signatures within oligodendrocytes and microglia characterized by increased ASD risk gene expression and predicted impaired myelination that was dependent on sex and sociability. RNA velocity, gene regulatory network, and cell communication analysis showed diminished oligodendrocyte/microglia differentiation. Findings were verified using bulk RNA-Seq and demonstrated oxytocin's beneficial effects on myelin gene expression. Limitations Our findings are significant. However, limitations can be noted. The cellular mechanisms linking reduced oligodendrocyte differentiation and reduced myelination to an ASD phenotype in C58/J mice need further investigation. Additional snRNA-Seq and spatial studies would determine if effects in oligodendrocytes/microglia are unique to amygdala or if this occurs in other brain regions. Oxytocin's effects need further examination to understand its potential as an ASD therapeutic. Conclusions Our work demonstrates the C58/J mouse model's utility in evaluating the influence of sex and sociability on the transcriptome in concomitant brain regions involved in ASD. Our single-nucleus transcriptome analysis elucidates potential pathological roles of oligodendrocytes and microglia in ASD. This investigation provides details regarding regulatory features disrupted in these cell types, including transcriptional gene dysregulation, aberrant cell differentiation, altered gene regulatory networks, and changes to key pathways that promote microglia/oligodendrocyte differentiation. Our studies provide insight into interactions between genetic risk and epigenetic processes associated with divergent affiliative behavior and lack of positive sociability.
Collapse
|
11
|
Hansen JY, Shafiei G, Voigt K, Liang EX, Cox SML, Leyton M, Jamadar SD, Misic B. Integrating multimodal and multiscale connectivity blueprints of the human cerebral cortex in health and disease. PLoS Biol 2023; 21:e3002314. [PMID: 37747886 PMCID: PMC10553842 DOI: 10.1371/journal.pbio.3002314] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/05/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023] Open
Abstract
The brain is composed of disparate neural populations that communicate and interact with one another. Although fiber bundles, similarities in molecular architecture, and synchronized neural activity all reflect how brain regions potentially interact with one another, a comprehensive study of how all these interregional relationships jointly reflect brain structure and function remains missing. Here, we systematically integrate 7 multimodal, multiscale types of interregional similarity ("connectivity modes") derived from gene expression, neurotransmitter receptor density, cellular morphology, glucose metabolism, haemodynamic activity, and electrophysiology in humans. We first show that for all connectivity modes, feature similarity decreases with distance and increases when regions are structurally connected. Next, we show that connectivity modes exhibit unique and diverse connection patterns, hub profiles, spatial gradients, and modular organization. Throughout, we observe a consistent primacy of molecular connectivity modes-namely correlated gene expression and receptor similarity-that map onto multiple phenomena, including the rich club and patterns of abnormal cortical thickness across 13 neurological, psychiatric, and neurodevelopmental disorders. Finally, to construct a single multimodal wiring map of the human cortex, we fuse all 7 connectivity modes and show that the fused network maps onto major organizational features of the cortex including structural connectivity, intrinsic functional networks, and cytoarchitectonic classes. Altogether, this work contributes to the integrative study of interregional relationships in the human cerebral cortex.
Collapse
Affiliation(s)
- Justine Y. Hansen
- Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katharina Voigt
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Emma X. Liang
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | | | - Marco Leyton
- Montréal Neurological Institute, McGill University, Montréal, Canada
- Department of Psychiatry, McGill University, Montréal, Canada
| | - Sharna D. Jamadar
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, Canada
| |
Collapse
|
12
|
Sancha-Velasco A, Uceda-Heras A, García-Cabezas MÁ. Cortical type: a conceptual tool for meaningful biological interpretation of high-throughput gene expression data in the human cerebral cortex. Front Neuroanat 2023; 17:1187280. [PMID: 37426901 PMCID: PMC10323436 DOI: 10.3389/fnana.2023.1187280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
The interpretation of massive high-throughput gene expression data requires computational and biological analyses to identify statistically and biologically significant differences, respectively. There are abundant sources that describe computational tools for statistical analysis of massive gene expression data but few address data analysis for biological significance. In the present article we exemplify the importance of selecting the proper biological context in the human brain for gene expression data analysis and interpretation. For this purpose, we use cortical type as conceptual tool to make predictions about gene expression in areas of the human temporal cortex. We predict that the expression of genes related to glutamatergic transmission would be higher in areas of simpler cortical type, the expression of genes related to GABAergic transmission would be higher in areas of more complex cortical type, and the expression of genes related to epigenetic regulation would be higher in areas of simpler cortical type. Then, we test these predictions with gene expression data from several regions of the human temporal cortex obtained from the Allen Human Brain Atlas. We find that the expression of several genes shows statistically significant differences in agreement with the predicted gradual expression along the laminar complexity gradient of the human cortex, suggesting that simpler cortical types may have greater glutamatergic excitability and epigenetic turnover compared to more complex types; on the other hand, complex cortical types seem to have greater GABAergic inhibitory control compared to simpler types. Our results show that cortical type is a good predictor of synaptic plasticity, epigenetic turnover, and selective vulnerability in human cortical areas. Thus, cortical type can provide a meaningful context for interpreting high-throughput gene expression data in the human cerebral cortex.
Collapse
Affiliation(s)
- Ariadna Sancha-Velasco
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Autonomous University of Madrid, Madrid, Spain
- Master Program in Neuroscience, Autonomous University of Madrid, Madrid, Spain
| | - Alicia Uceda-Heras
- Master Program in Neuroscience, Autonomous University of Madrid, Madrid, Spain
- Ph.D. Program in Neuroscience UAM-Cajal, Autonomous University of Madrid, Madrid, Spain
| | - Miguel Ángel García-Cabezas
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Autonomous University of Madrid, Madrid, Spain
- Master Program in Neuroscience, Autonomous University of Madrid, Madrid, Spain
- Ph.D. Program in Neuroscience UAM-Cajal, Autonomous University of Madrid, Madrid, Spain
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
13
|
Barbas H, Hilgetag CC. From Circuit Principles to Human Psychiatric Disorders. Biol Psychiatry 2023; 93:388-390. [PMID: 36114040 DOI: 10.1016/j.biopsych.2022.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/23/2022] [Accepted: 08/09/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts; Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts.
| | - Claus C Hilgetag
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts; Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Hamburg, Germany
| |
Collapse
|
14
|
Paquola C, Hong SJ. The Potential of Myelin-Sensitive Imaging: Redefining Spatiotemporal Patterns of Myeloarchitecture. Biol Psychiatry 2023; 93:442-454. [PMID: 36481065 DOI: 10.1016/j.biopsych.2022.08.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 02/07/2023]
Abstract
Recent advances in magnetic resonance imaging (MRI) have paved the way for approximation of myelin content in vivo. In this review, our main goal was to determine how to best capitalize on myelin-sensitive imaging. First, we briefly overview the theoretical and empirical basis for the myelin sensitivity of different MRI markers and, in doing so, highlight how multimodal imaging approaches are important for enhancing specificity to myelin. Then, we discuss recent studies that have probed the nonuniform distribution of myelin across cortical layers and along white matter tracts. These approaches, collectively known as myelin profiling, have provided detailed depictions of myeloarchitecture in both the postmortem and living human brain. Notably, MRI-based profiling studies have recently focused on investigating whether it can capture interindividual variability in myelin characteristics as well as trajectories across the lifespan. Finally, another line of recent evidence emphasizes the contribution of region-specific myelination to large-scale organization, demonstrating the impact of myelination on global brain networks. In conclusion, we suggest that combining well-validated MRI markers with profiling techniques holds strong potential to elucidate individual differences in myeloarchitecture, which has important implications for understanding brain function and disease.
Collapse
Affiliation(s)
- Casey Paquola
- Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Jülich, Germany.
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Suwon, South Korea; Center for the Developing Brain, Child Mind Institute, New York, New York; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
15
|
Multiscale neural gradients reflect transdiagnostic effects of major psychiatric conditions on cortical morphology. Commun Biol 2022; 5:1024. [PMID: 36168040 PMCID: PMC9515219 DOI: 10.1038/s42003-022-03963-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/07/2022] [Indexed: 02/06/2023] Open
Abstract
It is increasingly recognized that multiple psychiatric conditions are underpinned by shared neural pathways, affecting similar brain systems. Here, we carried out a multiscale neural contextualization of shared alterations of cortical morphology across six major psychiatric conditions (autism spectrum disorder, attention deficit/hyperactivity disorder, major depression disorder, obsessive-compulsive disorder, bipolar disorder, and schizophrenia). Our framework cross-referenced shared morphological anomalies with respect to cortical myeloarchitecture and cytoarchitecture, as well as connectome and neurotransmitter organization. Pooling disease-related effects on MRI-based cortical thickness measures across six ENIGMA working groups, including a total of 28,546 participants (12,876 patients and 15,670 controls), we identified a cortex-wide dimension of morphological changes that described a sensory-fugal pattern, with paralimbic regions showing the most consistent alterations across conditions. The shared disease dimension was closely related to cortical gradients of microstructure as well as neurotransmitter axes, specifically cortex-wide variations in serotonin and dopamine. Multiple sensitivity analyses confirmed robustness with respect to slight variations in analytical choices. Our findings embed shared effects of common psychiatric conditions on brain structure in multiple scales of brain organization, and may provide insights into neural mechanisms of transdiagnostic vulnerability.
Collapse
|
16
|
John YJ, Zikopoulos B, García-Cabezas MÁ, Barbas H. The cortical spectrum: A robust structural continuum in primate cerebral cortex revealed by histological staining and magnetic resonance imaging. Front Neuroanat 2022; 16:897237. [PMID: 36157324 PMCID: PMC9501703 DOI: 10.3389/fnana.2022.897237] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
High-level characterizations of the primate cerebral cortex sit between two extremes: on one end the cortical mantle is seen as a mosaic of structurally and functionally unique areas, and on the other it is seen as a uniform six-layered structure in which functional differences are defined solely by extrinsic connections. Neither of these extremes captures the crucial neuroanatomical finding: that the cortex exhibits systematic gradations in architectonic structure. These gradations have been shown to predict cortico-cortical connectivity, which in turn suggests powerful ways to ground connectomics in anatomical structure, and by extension cortical function. A challenge to widespread use of this concept is the labor-intensive and invasive nature of histological staining, which is the primary means of recognizing anatomical gradations. Here we show that a novel computational analysis technique can provide a coarse-grained picture of cortical variation. For each of 78 cortical areas spanning the entire cortical mantle of the rhesus macaque, we created a high dimensional set of anatomical features derived from captured images of cortical tissue stained for myelin and SMI-32. The method involved semi-automated de-noising of images, and enabled comparison of brain areas without hand-labeling of features such as layer boundaries. We applied multidimensional scaling (MDS) to the dataset to visualize similarity among cortical areas. This analysis shows a systematic variation between weakly laminated (limbic) cortices and sharply laminated (eulaminate) cortices. We call this smooth continuum the “cortical spectrum”. We also show that this spectrum is visible within subsystems of the cortex: the occipital, parietal, temporal, motor, prefrontal, and insular cortices. We compared the MDS-derived spectrum with a spectrum produced using T1- and T2-weighted magnetic resonance imaging (MRI) data derived from macaque, and found close agreement of the two coarse-graining methods. This suggests that T1w/T2w data, routinely obtained in human MRI studies, can serve as an effective proxy for data derived from high-resolution histological methods. More generally, this approach shows that the cortical spectrum is robust to the specific method used to compare cortical areas, and is therefore a powerful tool to understand the principles of organization of the primate cortex.
Collapse
Affiliation(s)
- Yohan J. John
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
- Graduate Program in Neuroscience, Boston University School of Medicine, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | | | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
- Graduate Program in Neuroscience, Boston University School of Medicine, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: Helen Barbas,
| |
Collapse
|
17
|
García-Cabezas MÁ, Hacker JL, Zikopoulos B. Homology of neocortical areas in rats and primates based on cortical type analysis: an update of the Hypothesis on the Dual Origin of the Neocortex. Brain Struct Funct 2022:10.1007/s00429-022-02548-0. [PMID: 35962240 PMCID: PMC9922339 DOI: 10.1007/s00429-022-02548-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
Abstract
Sixty years ago, Friedrich Sanides traced the origin of the tangential expansion of the primate neocortex to two ancestral anlagen in the allocortex of reptiles and mammals, and proposed the Hypothesis on the Dual Origin of the Neocortex. According to Sanides, paraolfactory and parahippocampal gradients of laminar elaboration expanded in evolution by addition of successive concentric rings of gradually different cortical types inside the allocortical ring. Rodents had fewer rings and primates had more rings in the inner part of the cortex. In the present article, we perform cortical type analysis of the neocortex of adult rats, Rhesus macaques, and humans to propose hypotheses on homology of cortical areas applying the principles of the Hypothesis on the Dual Origin of the Neocortex. We show that areas in the outer rings of the neocortex have comparable laminar elaboration in rats and primates, while most 6-layer eulaminate areas in the innermost rings of primate neocortex lack homologous counterparts in rats. We also represent the topological distribution of cortical types in simplified flat maps of the cerebral cortex of monotremes, rats, and primates. Finally, we propose an elaboration of the Hypothesis on the Dual Origin of the Neocortex in the context of modern studies of pallial patterning that integrates the specification of pallial sectors in development of vertebrate embryos. The updated version of the hypothesis of Sanides provides explanation for the emergence of cortical hierarchies in mammals and will guide future research in the phylogenetic origin of neocortical areas.
Collapse
Affiliation(s)
- Miguel Ángel García-Cabezas
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain,Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA
| | - Julia Liao Hacker
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., Room 401D, Boston, MA 02215, USA,Present Address: Department of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., Room 401D, Boston, MA, 02215, USA. .,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA. .,Graduate Program in Neuroscience, Boston University, Boston, MA, USA.
| |
Collapse
|
18
|
Park BY, Paquola C, Bethlehem RAI, Benkarim O, Mišić B, Smallwood J, Bullmore ET, Bernhardt BC. Adolescent development of multiscale structural wiring and functional interactions in the human connectome. Proc Natl Acad Sci U S A 2022; 119:e2116673119. [PMID: 35776541 PMCID: PMC9271154 DOI: 10.1073/pnas.2116673119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/30/2022] [Indexed: 01/03/2023] Open
Abstract
Adolescence is a time of profound changes in the physical wiring and function of the brain. Here, we analyzed structural and functional brain network development in an accelerated longitudinal cohort spanning 14 to 25 y (n = 199). Core to our work was an advanced in vivo model of cortical wiring incorporating MRI features of corticocortical proximity, microstructural similarity, and white matter tractography. Longitudinal analyses assessing age-related changes in cortical wiring identified a continued differentiation of multiple corticocortical structural networks in youth. We then assessed structure-function coupling using resting-state functional MRI measures in the same participants both via cross-sectional analysis at baseline and by studying longitudinal change between baseline and follow-up scans. At baseline, regions with more similar structural wiring were more likely to be functionally coupled. Moreover, correlating longitudinal structural wiring changes with longitudinal functional connectivity reconfigurations, we found that increased structural differentiation, particularly between sensory/unimodal and default mode networks, was reflected by reduced functional interactions. These findings provide insights into adolescent development of human brain structure and function, illustrating how structural wiring interacts with the maturation of macroscale functional hierarchies.
Collapse
Affiliation(s)
- Bo-yong Park
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Data Science, Inha University, Incheon, 22212, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, 16419, Republic of Korea
| | - Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
- Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Jülich, 52428, Germany
| | - Richard A. I. Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, United Kingdom
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, United Kingdom
| | - Oualid Benkarim
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | | | - Bratislav Mišić
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Jonathan Smallwood
- Department of Psychology, Queen’s University, Kingston, ON, K7L 3N6, Canada
| | - Edward T. Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, United Kingdom
| | - Boris C. Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| |
Collapse
|
19
|
Park S, Zikopoulos B, Yazdanbakhsh A. Visual illusion susceptibility in autism: A neural model. Eur J Neurosci 2022; 56:4246-4265. [PMID: 35701859 PMCID: PMC9541695 DOI: 10.1111/ejn.15739] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/04/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
Abstract
While atypical sensory perception is reported among individuals with autism spectrum disorder (ASD), the underlying neural mechanisms of autism that give rise to disruptions in sensory perception remain unclear. We developed a neural model with key physiological, functional and neuroanatomical parameters to investigate mechanisms underlying the range of representations of visual illusions related to orientation perception in typically developed subjects compared to individuals with ASD. Our results showed that two theorized autistic traits, excitation/inhibition imbalance and weakening of top‐down modulation, could be potential candidates for reduced susceptibility to some visual illusions. Parametric correlation between cortical suppression, balance of excitation/inhibition, feedback from higher visual areas on one hand and susceptibility to a class of visual illusions related to orientation perception on the other hand provide the opportunity to investigate the contribution and complex interactions of distinct sensory processing mechanisms in ASD. The novel approach used in this study can be used to link behavioural, functional and neuropathological studies; estimate and predict perceptual and cognitive heterogeneity in ASD; and form a basis for the development of novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Sangwook Park
- Computational Neuroscience and Vision Laboratory, Boston University, Boston, Massachusetts, USA
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, USA.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA.,Graduate Program for Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Arash Yazdanbakhsh
- Computational Neuroscience and Vision Laboratory, Boston University, Boston, Massachusetts, USA.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA.,Graduate Program for Neuroscience, Boston University, Boston, Massachusetts, USA.,Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Rosen BQ, Halgren E. An estimation of the absolute number of axons indicates that human cortical areas are sparsely connected. PLoS Biol 2022; 20:e3001575. [PMID: 35286306 PMCID: PMC8947121 DOI: 10.1371/journal.pbio.3001575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/24/2022] [Accepted: 02/17/2022] [Indexed: 12/17/2022] Open
Abstract
The tracts between cortical areas are conceived as playing a central role in cortical information processing, but their actual numbers have never been determined in humans. Here, we estimate the absolute number of axons linking cortical areas from a whole-cortex diffusion MRI (dMRI) connectome, calibrated using the histologically measured callosal fiber density. Median connectivity is estimated as approximately 6,200 axons between cortical areas within hemisphere and approximately 1,300 axons interhemispherically, with axons connecting functionally related areas surprisingly sparse. For example, we estimate that <5% of the axons in the trunk of the arcuate and superior longitudinal fasciculi connect Wernicke's and Broca's areas. These results suggest that detailed information is transmitted between cortical areas either via linkage of the dense local connections or via rare, extraordinarily privileged long-range connections.
Collapse
Affiliation(s)
- Burke Q Rosen
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Eric Halgren
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Departments of Neurosciences & Radiology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
21
|
Abstract
Activity patterns and complex functions of the brain rely on the characteristic communication network formed by axonal fiber networks, but how many axons actually connect different brain regions? This Primer explores a study in PLOS Biology which finds that most areas of the human cerebral cortex are linked by an astoundingly small number of fibers.
Collapse
Affiliation(s)
- Claus C. Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Hamburg, Germany
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| | - Basilis Zikopoulos
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
22
|
Kenwood MM, Kalin NH, Barbas H. The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacology 2022; 47:260-275. [PMID: 34400783 PMCID: PMC8617307 DOI: 10.1038/s41386-021-01109-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Anxiety is experienced in response to threats that are distal or uncertain, involving changes in one's subjective state, autonomic responses, and behavior. Defensive and physiologic responses to threats that involve the amygdala and brainstem are conserved across species. While anxiety responses typically serve an adaptive purpose, when excessive, unregulated, and generalized, they can become maladaptive, leading to distress and avoidance of potentially threatening situations. In primates, anxiety can be regulated by the prefrontal cortex (PFC), which has expanded in evolution. This prefrontal expansion is thought to underlie primates' increased capacity to engage high-level regulatory strategies aimed at coping with and modifying the experience of anxiety. The specialized primate lateral, medial, and orbital PFC sectors are connected with association and limbic cortices, the latter of which are connected with the amygdala and brainstem autonomic structures that underlie emotional and physiological arousal. PFC pathways that interface with distinct inhibitory systems within the cortex, the amygdala, or the thalamus can regulate responses by modulating neuronal output. Within the PFC, pathways connecting cortical regions are poised to reduce noise and enhance signals for cognitive operations that regulate anxiety processing and autonomic drive. Specialized PFC pathways to the inhibitory thalamic reticular nucleus suggest a mechanism to allow passage of relevant signals from thalamus to cortex, and in the amygdala to modulate the output to autonomic structures. Disruption of specific nodes within the PFC that interface with inhibitory systems can affect the negative bias, failure to regulate autonomic arousal, and avoidance that characterize anxiety disorders.
Collapse
Affiliation(s)
- Margaux M Kenwood
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Neuroscience Training Program at University of Wisconsin-Madison, Madison, USA
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Neuroscience Training Program at University of Wisconsin-Madison, Madison, USA
- Wisconsin National Primate Center, Madison, WI, USA
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA.
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
23
|
McKenna F, Babb J, Miles L, Goff D, Lazar M. Reduced Microstructural Lateralization in Males with Chronic Schizophrenia: A Diffusional Kurtosis Imaging Study. Cereb Cortex 2021; 30:2281-2294. [PMID: 31819950 DOI: 10.1093/cercor/bhz239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Decreased brain lateralization is considered a trait marker of schizophrenia. Whereas reductions in both functional and macrostructural gray matter laterality in schizophrenia are well established, the investigation of gray matter microstructural lateralization has so far been limited to a small number of ex vivo studies, which limits the understanding of neurobiological substrates involved and development of adequate treatments. The aim of the current study was to assess in vivo gray matter microstructure lateralization patterns in schizophrenia by employing the diffusion kurtosis imaging (DKI)-derived mean kurtosis (MK) metric. MK was calculated for 18 right-handed males with chronic schizophrenia and 19 age-matched healthy control participants in 46 bilateral gray matter regions of interest (ROI). Microstructural laterality indexes (μLIs) were calculated for each subject and ROI, and group comparisons were conducted across regions. The relationship between μLI values and performance on the Wisconsin Card Sorting Test (WCST) was also evaluated. We found that compared with healthy controls, males with chronic schizophrenia had significantly decreased μLI across cortical and subcortical gray matter regions, which was correlated with poorer performance on the WCST. Our results suggest the ability of DKI-derived MK to capture gray matter microstructural lateralization pathology in vivo.
Collapse
Affiliation(s)
- Faye McKenna
- Department of Radiology, Center for Biomedical Imaging, New York, NY 10016, USA.,Sackler Institute of Graduate Biomedical Sciences New York University School of Medicine, New York, NY 10016, USA
| | - James Babb
- Department of Radiology, Center for Biomedical Imaging, New York, NY 10016, USA
| | - Laura Miles
- Department of Radiology, Center for Biomedical Imaging, New York, NY 10016, USA
| | - Donald Goff
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Mariana Lazar
- Department of Radiology, Center for Biomedical Imaging, New York, NY 10016, USA.,Sackler Institute of Graduate Biomedical Sciences New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
24
|
Chien YL, Chen YC, Gau SSF. Altered cingulate structures and the associations with social awareness deficits and CNTNAP2 gene in autism spectrum disorder. NEUROIMAGE-CLINICAL 2021; 31:102729. [PMID: 34271514 PMCID: PMC8280509 DOI: 10.1016/j.nicl.2021.102729] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 01/23/2023]
Abstract
ASD individuals showed thinner cortical thickness in bilateral cingulate subregions. The right anterior cingulate WM volume was correlated with social awareness deficit. The CNTNAP2 variant might be associated with the right middle cingulate WM volume. The CNTNAP2 might interact with ASD diagnosis and age on the cortical thickness.
Backgrounds Although evidence suggests that the activity of the anterior cingulate cortex involves social cognition, there are inconsistent findings regarding the aberrant cingulate gray matter (GM) and scanty evidence about altered cortical thickness and white matter (WM) of cingulate in individuals with autism spectrum disorder (ASD). Evidence supports the association between the genetic variants of CNTNAP2 and altered brain connectivity. This study investigated the cingulate substructure and its association with social awareness deficits and the CNTNAP2 variants in individuals with ASD and typically-developing controls (TDC). Methods We assessed 118 individuals with ASD and 122 TDC with MRI and clinical evaluation. The GM, WM volumes and cortical thickness of the cingulate gyrus were compared between ASD and TDC based on fine parcellation. Five SNPs of the CNTNAP2 linked to ASD and brain structural abnormality were genotyped, and rs2710102, rs2538991, rs2710126 passed quality control filters. Results ASD individuals showed thinner cortical thickness in bilateral cingulate subregions than TDC without significant group differences in GM and WM volumes. The WM volume of the right anterior cingulate gyrus was correlated with social awareness deficits in ASD. The CNTNAP2 variant demonstrated a main effect on the WM volumes of the right middle cingulate gyrus. Besides, the CNTNAP2 variants interacted with ASD diagnosis and age on the cortical thickness of the left anterior middle cingulate cortex. Conclusions Our findings suggest that aberrant cingulate structure in ASD might be associated with the social awareness deficits and genetic variants of the CNTNAP2. These novel findings need validation.
Collapse
Affiliation(s)
- Yi-Ling Chien
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Yu-Chieh Chen
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Susan Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
25
|
Tucker DM, Luu P. Motive control of unconscious inference: The limbic base of adaptive Bayes. Neurosci Biobehav Rev 2021; 128:328-345. [PMID: 34129851 DOI: 10.1016/j.neubiorev.2021.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/01/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022]
Abstract
Current computational models of neocortical processing, described as predictive coding theory, are providing new ways of understanding Helmholtz's classical insight that perception cannot proceed in a data-driven fashion, but instead requires unconscious inference based on prior experience. Predictive coding is a Bayesian process, in which the operations at each lower level of the cortical hierarchy are predicted by prior projections of expectancies from a higher level, and are then updated by error-correction with lower level evidence. To generalize the predictive coding model to the human neocortex as a whole requires aligning the Bayesian negotiation of prior expectancies with sensory and motor evidence not only within the connectional architecture of the neocortex (primary sensory/motor, unimodal association areas, and heteromodal association areas) but also with the limbic cortex that forms the base for the adaptive control of the heteromodal areas and thereby the cerebral hemisphere as a whole. By reviewing the current evidence on the anatomy of the human corticolimbic connectivity (now formalized as the Structural Model) we address the problem of how limbic cortex resonates to the homeostatic, personal significance of events to provide Bayesian priors to organize the operations of predictive coding across the multiple levels of the neocortex. By reviewing both classical evidence and current models of control exerted between limbic and neocortical networks, we suggest a neuropsychological theory of human cognition, the adaptive Bayes process model, in which prior expectancies are not simply rationalized propositions, but rather affectively-charged expectancies that bias the interpretation of sensory data and action affordances to support allostasis, the motive control of expectancies for future events.
Collapse
Affiliation(s)
- Don M Tucker
- Brain Electrophysiology Laboratory Company, University of Oregon, United States.
| | - Phan Luu
- Brain Electrophysiology Laboratory Company, University of Oregon, United States
| |
Collapse
|
26
|
Goulas A, Changeux JP, Wagstyl K, Amunts K, Palomero-Gallagher N, Hilgetag CC. The natural axis of transmitter receptor distribution in the human cerebral cortex. Proc Natl Acad Sci U S A 2021; 118:e2020574118. [PMID: 33452137 PMCID: PMC7826352 DOI: 10.1073/pnas.2020574118] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Transmitter receptors constitute a key component of the molecular machinery for intercellular communication in the brain. Recent efforts have mapped the density of diverse transmitter receptors across the human cerebral cortex with an unprecedented level of detail. Here, we distill these observations into key organizational principles. We demonstrate that receptor densities form a natural axis in the human cerebral cortex, reflecting decreases in differentiation at the level of laminar organization and a sensory-to-association axis at the functional level. Along this natural axis, key organizational principles are discerned: progressive molecular diversity (increase of the diversity of receptor density); excitation/inhibition (increase of the ratio of excitatory-to-inhibitory receptor density); and mirrored, orderly changes of the density of ionotropic and metabotropic receptors. The uncovered natural axis formed by the distribution of receptors aligns with the axis that is formed by other dimensions of cortical organization, such as the myelo- and cytoarchitectonic levels. Therefore, the uncovered natural axis constitutes a unifying organizational feature linking multiple dimensions of the cerebral cortex, thus bringing order to the heterogeneity of cortical organization.
Collapse
MESH Headings
- Autoradiography
- Brain/diagnostic imaging
- Brain/metabolism
- Brain/ultrastructure
- Brain Mapping
- Cell Communication/genetics
- Cerebral Cortex/diagnostic imaging
- Cerebral Cortex/metabolism
- Cerebral Cortex/ultrastructure
- Humans
- Receptors, AMPA/genetics
- Receptors, AMPA/isolation & purification
- Receptors, GABA-A/genetics
- Receptors, GABA-A/isolation & purification
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/isolation & purification
- Receptors, Neurotransmitter/chemistry
- Receptors, Neurotransmitter/classification
- Receptors, Neurotransmitter/genetics
- Receptors, Neurotransmitter/ultrastructure
Collapse
Affiliation(s)
- Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Jean-Pierre Changeux
- Communications Cellulaires, Collège de France, 75005 Paris, France;
- CNRS UMR 3571, Institut Pasteur, 75724 Paris, France
| | - Konrad Wagstyl
- McGill Centre for Integrative Neuroscience, Montréal Neurological Institute, Montréal, Canada QC H3A 2B4
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, United Kingdom
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany
- C. and O. Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany
- C. and O. Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany
- Jülich Aachen Research Alliance (JARA)-Translational Brain Medicine, Aachen, Germany
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of Health Sciences, Boston University, Boston, MA 02215
| |
Collapse
|
27
|
Zhang J, Xia K, Ahn M, Jha SC, Blanchett R, Crowley JJ, Szatkiewicz JP, Zou F, Zhu H, Styner M, Gilmore JH, Knickmeyer RC. Genome-Wide Association Analysis of Neonatal White Matter Microstructure. Cereb Cortex 2021; 31:933-948. [PMID: 33009551 PMCID: PMC7786356 DOI: 10.1093/cercor/bhaa266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 07/15/2020] [Accepted: 08/16/2020] [Indexed: 11/14/2022] Open
Abstract
A better understanding of genetic influences on early white matter development could significantly advance our understanding of neurological and psychiatric conditions characterized by altered integrity of axonal pathways. We conducted a genome-wide association study (GWAS) of diffusion tensor imaging (DTI) phenotypes in 471 neonates. We used a hierarchical functional principal regression model (HFPRM) to perform joint analysis of 44 fiber bundles. HFPRM revealed a latent measure of white matter microstructure that explained approximately 50% of variation in our tractography-based measures and accounted for a large proportion of heritable variation in each individual bundle. An intronic SNP in PSMF1 on chromosome 20 exceeded the conventional GWAS threshold of 5 x 10-8 (p = 4.61 x 10-8). Additional loci nearing genome-wide significance were located near genes with known roles in axon growth and guidance, fasciculation, and myelination.
Collapse
Affiliation(s)
- J Zhang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - K Xia
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - M Ahn
- Department of Mathematics and Statistics, University of Nevada, Reno, NV, USA
| | - S C Jha
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - R Blanchett
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, USA
| | - J J Crowley
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - J P Szatkiewicz
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - F Zou
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - H Zhu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - M Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - J H Gilmore
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - R C Knickmeyer
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
28
|
Role of Oligodendrocytes and Myelin in the Pathophysiology of Autism Spectrum Disorder. Brain Sci 2020; 10:brainsci10120951. [PMID: 33302549 PMCID: PMC7764453 DOI: 10.3390/brainsci10120951] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is an early neurodevelopmental disorder that involves deficits in interpersonal communication, social interaction, and repetitive behaviors. Although ASD pathophysiology is still uncertain, alterations in the abnormal development of the frontal lobe, limbic areas, and putamen generate an imbalance between inhibition and excitation of neuronal activity. Interestingly, recent findings suggest that a disruption in neuronal connectivity is associated with neural alterations in white matter production and myelination in diverse brain regions of patients with ASD. This review is aimed to summarize the most recent evidence that supports the notion that abnormalities in the oligodendrocyte generation and axonal myelination in specific brain regions are involved in the pathophysiology of ASD. Fundamental molecular mediators of these pathological processes are also examined. Determining the role of alterations in oligodendrogenesis and myelination is a fundamental step to understand the pathophysiology of ASD and identify possible therapeutic targets.
Collapse
|
29
|
García-Cabezas MÁ, Hacker JL, Zikopoulos B. A Protocol for Cortical Type Analysis of the Human Neocortex Applied on Histological Samples, the Atlas of Von Economo and Koskinas, and Magnetic Resonance Imaging. Front Neuroanat 2020; 14:576015. [PMID: 33364924 PMCID: PMC7750391 DOI: 10.3389/fnana.2020.576015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
The human cerebral cortex is parcellated in hundreds of areas using neuroanatomy and imaging methods. Alternatively, cortical areas can be classified into few cortical types according to their degree of laminar differentiation. Cortical type analysis is based on the gradual and systematic variation of laminar features observed across the entire cerebral cortex in Nissl stained sections and has profound implications for understanding fundamental aspects of evolution, development, connections, function, and pathology of the cerebral cortex. In this protocol paper, we explain the general principles of cortical type analysis and provide tables with the fundamental features of laminar structure that are studied for this analysis. We apply cortical type analysis to the micrographs of the Atlas of the human cerebral cortex of von Economo and Koskinas and provide tables and maps with the areas of this Atlas and their corresponding cortical type. Finally, we correlate the cortical type maps with the T1w/T2w ratio from widely used reference magnetic resonance imaging scans. The analysis, tables and maps of the human cerebral cortex shown in this protocol paper can be used to predict patterns of connections between areas according to the principles of the Structural Model and determine their level in cortical hierarchies. Cortical types can also predict the spreading of abnormal proteins in neurodegenerative diseases to the level of cortical layers. In summary, cortical type analysis provides a theoretical and practical framework for directed studies of connectivity, synaptic plasticity, and selective vulnerability to neurologic and psychiatric diseases in the human neocortex.
Collapse
Affiliation(s)
- Miguel Ángel García-Cabezas
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| | - Julia Liao Hacker
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Graduate Program in Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
30
|
Bletsch A, Schäfer T, Mann C, Andrews DS, Daly E, Gudbrandsen M, Ruigrok ANV, Dallyn R, Romero-Garcia R, Lai MC, Lombardo MV, Craig MC, Suckling J, Bullmore ET, Baron-Cohen S, Murphy DGM, Dell'Acqua F, Ecker C. Atypical measures of diffusion at the gray-white matter boundary in autism spectrum disorder in adulthood. Hum Brain Mapp 2020; 42:467-484. [PMID: 33094897 PMCID: PMC7775996 DOI: 10.1002/hbm.25237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/08/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is a highly complex neurodevelopmental condition that is accompanied by neuroanatomical differences on the macroscopic and microscopic level. Findings from histological, genetic, and more recently in vivo neuroimaging studies converge in suggesting that neuroanatomical abnormalities, specifically around the gray‐white matter (GWM) boundary, represent a crucial feature of ASD. However, no research has yet characterized the GWM boundary in ASD based on measures of diffusion. Here, we registered diffusion tensor imaging data to the structural T1‐weighted images of 92 adults with ASD and 92 matched neurotypical controls in order to examine between‐group differences and group‐by‐sex interactions in fractional anisotropy and mean diffusivity sampled at the GWM boundary, and at different sampling depths within the superficial white and into the gray matter. As hypothesized, we observed atypical diffusion at and around the GWM boundary in ASD, with between‐group differences and group‐by‐sex interactions depending on tissue class and sampling depth. Furthermore, we identified that altered diffusion at the GWM boundary partially (i.e., ~50%) overlapped with atypical gray‐white matter tissue contrast in ASD. Our study thus replicates and extends previous work highlighting the GWM boundary as a crucial target of neuropathology in ASD, and guides future work elucidating etiological mechanisms.
Collapse
Affiliation(s)
- Anke Bletsch
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Tim Schäfer
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Caroline Mann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Derek S Andrews
- Department of Psychiatry and Behavioral Sciences at the M.I.N.D. Institute, University of California, Davis, California, USA
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Maria Gudbrandsen
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Amber N V Ruigrok
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Robert Dallyn
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Rafael Romero-Garcia
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Meng-Chuan Lai
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.,Centre for Addiction and Mental Health and The Hospital for Sick Children, Department of Psychiatry, University of Toronto, Toronto, Canada.,Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Michael V Lombardo
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.,Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Michael C Craig
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK.,National Autism Unit, Bethlem Royal Hospital, London, UK
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Edward T Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Flavio Dell'Acqua
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany.,Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| |
Collapse
|
31
|
Joyce MKP, García-Cabezas MÁ, John YJ, Barbas H. Serial Prefrontal Pathways Are Positioned to Balance Cognition and Emotion in Primates. J Neurosci 2020; 40:8306-8328. [PMID: 32989097 PMCID: PMC7577604 DOI: 10.1523/jneurosci.0860-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/18/2020] [Accepted: 08/15/2020] [Indexed: 12/11/2022] Open
Abstract
The delicate balance among primate prefrontal networks is necessary for homeostasis and behavioral flexibility. Dorsolateral prefrontal cortex (dlPFC) is associated with cognition, while the most ventromedial subgenual cingulate area 25 (A25) is associated with emotion and emotional expression. Yet A25 is weakly connected with dlPFC, and it is unknown how the two regions communicate. In rhesus monkeys of both sexes, we investigated how these functionally distinct areas may interact through pregenual anterior cingulate area 32 (A32), which is strongly connected with both. We found that dlPFC innervated the deep layers of A32, while A32 innervated all layers of A25, mostly targeting spines of excitatory neurons. Approximately 20% of A32 terminations formed synapses on inhibitory neurons in A25, notably the powerful parvalbumin inhibitory neurons in the deep layers, and the disinhibitory calretinin neurons in the superficial layers. By innervating distinct inhibitory microenvironments in laminar compartments, A32 is positioned to tune activity in columns of A25. The circuitry of the sequential pathway indicates that when dlPFC is engaged, A32 can dampen A25 output through the parvalbumin inhibitory microsystem in the deep layers of A25. A32 thus may flexibly recruit or reduce activity in A25 to maintain emotional equilibrium, a process that is disrupted in depression. Moreover, pyramidal neurons in A25 had a heightened density of NMDARs, which are the targets of novel rapid-acting antidepressants. Pharmacologic antagonism of NMDARs in patients with depression may reduce excitability in A25, mimicking the effects of the neurotypical serial pathway identified here.SIGNIFICANCE STATEMENT The anterior cingulate is a critical hub in prefrontal networks through connections with functionally distinct areas. Dorsolateral and polar prefrontal areas that are associated with complex cognition are connected with the anterior cingulate in a pattern that allows them to indirectly control downstream activity from the anterior cingulate to the subgenual cingulate, which is associated with heightened activity and negative affect in depression. This set of pathways provides a circuit mechanism for emotional regulation, with the anterior cingulate playing a balancing role for integration of cognitive and emotional processes. Disruption of these pathways may perturb network function and the ability to regulate cognitive and affective processes based on context.
Collapse
Affiliation(s)
- Mary Kate P Joyce
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts 02215
- Graduate Program in Neuroscience, Boston University School of Medicine, Boston, Massachusetts 02215
| | - Miguel Ángel García-Cabezas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts 02215
- Department of Anatomy, Histology, and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain 28029
| | - Yohan J John
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts 02215
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
32
|
Liu X, Bautista J, Liu E, Zikopoulos B. Imbalance of laminar-specific excitatory and inhibitory circuits of the orbitofrontal cortex in autism. Mol Autism 2020; 11:83. [PMID: 33081829 PMCID: PMC7574354 DOI: 10.1186/s13229-020-00390-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The human orbitofrontal cortex (OFC) is involved in assessing the emotional significance of events and stimuli, emotion-based learning, allocation of attentional resources, and social cognition. Little is known about the structure, connectivity and excitatory/inhibitory circuit interactions underlying these diverse functions in human OFC, as well as how the circuit is disrupted in individuals with autism spectrum disorder (ASD). METHODS We used post-mortem brain tissue from neurotypical adults and individuals with ASD. We examined the morphology and distribution of myelinated axons across cortical layers in OFC, at the single axon level, as a proxy of excitatory pathways. In the same regions, we also examined the laminar distribution of all neurons and neurochemically- and functionally-distinct inhibitory neurons that express the calcium-binding proteins parvalbumin (PV), calbindin (CB), and calretinin (CR). RESULTS We found that the density of myelinated axons increased consistently towards layer 6, while the average axon diameter did not change significantly across layers in both groups. However, both the density and diameter of myelinated axons were significantly lower in the ASD group compared with the Control group. The distribution pattern and density of the three major types of inhibitory neurons was comparable between groups, but there was a significant reduction in the density of excitatory neurons across OFC layers in ASD. LIMITATIONS This study is limited by the availability of human post-mortem tissue optimally processed for high-resolution microscopy and immunolabeling, especially from individuals with ASD. CONCLUSIONS The balance between excitation and inhibition in OFC is at the core of its function, assessing and integrating emotional and social cues with internal states and external inputs. Our preliminary results provide evidence for laminar-specific changes in the ratio of excitation/inhibition in OFC of adults with ASD, with an overall weakening and likely disorganization of excitatory signals and a relative strengthening of local inhibition. These changes likely underlie pathology of major OFC communications with limbic or other cortices and the amygdala in individuals with ASD, and may provide the anatomic basis for disrupted transmission of signals for social interactions and emotions in autism.
Collapse
Affiliation(s)
- Xuefeng Liu
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., Room 401D, Boston, MA, 02215, USA
| | - Julied Bautista
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., Room 401D, Boston, MA, 02215, USA
| | - Edward Liu
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., Room 401D, Boston, MA, 02215, USA
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., Room 401D, Boston, MA, 02215, USA. .,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA. .,Graduate Program in Neuroscience, Boston University, Boston, MA, USA.
| |
Collapse
|
33
|
Pfaff D, Barbas H. Mechanisms for the Approach/Avoidance Decision Applied to Autism. Trends Neurosci 2020; 42:448-457. [PMID: 31253250 DOI: 10.1016/j.tins.2019.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023]
Abstract
As a neurodevelopmental disorder with serious lifelong consequences, autism has received considerable attention from neuroscientists and geneticists. We present a hypothesis of mechanisms plausibly affected during brain development in autism, based on neural pathways that are associated with social behavior and connect the prefrontal cortex (PFC) to the basal ganglia (BG). We consider failure of social approach in autism as a special case of imbalance in the fundamental dichotomy between behavioral approach and avoidance. Differential combinations of genes mutated, differences in the timing of their impact during development, and graded degrees of hormonal influences may help explain the heterogeneity in symptomatology in autism and predominance in boys.
Collapse
Affiliation(s)
- Donald Pfaff
- Laboratory of Neurobiology and Behavior, Rockefeller University, New York, NY USA.
| | - Helen Barbas
- Neural Systems Laboratory, Boston University, Boston, MA, USA.
| |
Collapse
|
34
|
Charvet CJ. Closing the gap from transcription to the structural connectome enhances the study of connections in the human brain. Dev Dyn 2020; 249:1047-1061. [PMID: 32562584 DOI: 10.1002/dvdy.218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
The brain is composed of a complex web of networks but we have yet to map the structural connections of the human brain in detail. Diffusion MR imaging is a high-throughput method that relies on the principle of diffusion to reconstruct tracts (ie, pathways) across the brain. Although diffusion MR tractography is an exciting method to explore the structural connectivity of the brain in development and across species, the tractography has at times led to questionable interpretations. There are at present few if any alternative methods to trace structural pathways in the human brain. Given these limitations and the potential of diffusion MR imaging to map the human connectome, it is imperative that we develop new approaches to validate neuroimaging techniques. I discuss our recent studies integrating neuroimaging with transcriptional and anatomical variation across humans and other species over the course of development and in adulthood. Developing a novel framework to harness the potential of diffusion MR tractography provides new and exciting opportunities to study the evolution of developmental mechanisms generating variation in connections and bridge the gap between model systems to humans.
Collapse
|
35
|
Wu J, Hameed NF. Functional remodeling of brain language networks. GLIOMA 2020. [DOI: 10.4103/glioma.glioma_12_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
36
|
García-Cabezas MÁ, Zikopoulos B. Evolution, development, and organization of the cortical connectome. PLoS Biol 2019; 17:e3000259. [PMID: 31075099 PMCID: PMC6530863 DOI: 10.1371/journal.pbio.3000259] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/22/2019] [Indexed: 01/21/2023] Open
Abstract
Hypotheses and theoretical frameworks are needed to organize and interpret the wealth of data on the organization of cortical networks in humans and animals in the light of development, evolution, and selective vulnerability to pathology. Goulas and colleagues compared several hypotheses of cortical network organization in 4 mammalian species and conclude that (1) the laminar pattern of cortico-cortical connections is better predicted by the Structural Model, which relates cytoarchitectonic differences of cortical areas to their interconnectedness, and (2) the existence of cortico-cortical connections is related to cytoarchitectonic differences and the physical distance between cortical areas. The predictions of the Structural Model can be applied to the human cortex, in which invasive studies are precluded. Goulas and colleagues advance interesting questions regarding the emergence of cortical structure and networks in development and evolution. Validated theories of cortical structure, development, and function can guide studies of cortical networks likely affected in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Miguel Ángel García-Cabezas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Neuroscience, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
37
|
Hau J, Aljawad S, Baggett N, Fishman I, Carper RA, Müller RA. The cingulum and cingulate U-fibers in children and adolescents with autism spectrum disorders. Hum Brain Mapp 2019; 40:3153-3164. [PMID: 30941791 DOI: 10.1002/hbm.24586] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
The cingulum is the major fiber system connecting the cingulate and surrounding medial cortex and medial temporal lobe internally and with other brain areas. It is important for social and emotional functions related to core symptomatology in autism spectrum disorders (ASDs). While the cingulum has been examined in autism, the extensive system of cingulate U-fibers has not been studied. Using probabilistic tractography, we investigated white matter fibers of the cingulate cortex by distinguishing its deep intra-cingulate bundle (cingulum proper) and short rostral anterior, caudal anterior, posterior, and isthmus cingulate U-fibers in 61 ASD and 54 typically developing children and adolescents. Increased mean and radial diffusivity of the left cingulum proper was observed in the ASD group, replicating previous findings on the cingulum. For cingulate U-fibers, an atypical age-related decline in right posterior cingulate U-fiber volume was found in the ASD group, which appeared to be driven by an abnormally large volume in younger children. History of repetitive and restrictive behavior was negatively associated with right caudal anterior cingulate U-fiber volume, linking cingulate motor areas with neighboring gyri. Aberrant development in U-fiber volume of the right posterior cingulate gyrus may underlie functional abnormalities found in this region, such as in the default mode network.
Collapse
Affiliation(s)
- Janice Hau
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Saba Aljawad
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Nicole Baggett
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Inna Fishman
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Ruth A Carper
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| |
Collapse
|
38
|
The Structural Model: a theory linking connections, plasticity, pathology, development and evolution of the cerebral cortex. Brain Struct Funct 2019; 224:985-1008. [PMID: 30739157 PMCID: PMC6500485 DOI: 10.1007/s00429-019-01841-9] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/29/2019] [Indexed: 12/21/2022]
Abstract
The classical theory of cortical systematic variation has been independently described in reptiles, monotremes, marsupials and placental mammals, including primates, suggesting a common bauplan in the evolution of the cortex. The Structural Model is based on the systematic variation of the cortex and is a platform for advancing testable hypotheses about cortical organization and function across species, including humans. The Structural Model captures the overall laminar structure of areas by dividing the cortical architectonic continuum into discrete categories (cortical types), which can be used to test hypotheses about cortical organization. By type, the phylogenetically ancient limbic cortices-which form a ring at the base of the cerebral hemisphere-are agranular if they lack layer IV, or dysgranular if they have an incipient granular layer IV. Beyond the dysgranular areas, eulaminate type cortices have six layers. The number and laminar elaboration of eulaminate areas differ depending on species or cortical system within a species. The construct of cortical type retains the topology of the systematic variation of the cortex and forms the basis for a predictive Structural Model, which has successfully linked cortical variation to the laminar pattern and strength of cortical connections, the continuum of plasticity and stability of areas, the regularities in the distribution of classical and novel markers, and the preferential vulnerability of limbic areas to neurodegenerative and psychiatric diseases. The origin of cortical types has been recently traced to cortical development, and helps explain the variability of diseases with an onset in ontogeny.
Collapse
|
39
|
Goulas A, Majka P, Rosa MGP, Hilgetag CC. A blueprint of mammalian cortical connectomes. PLoS Biol 2019; 17:e2005346. [PMID: 30901324 PMCID: PMC6456226 DOI: 10.1371/journal.pbio.2005346] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/09/2019] [Accepted: 03/07/2019] [Indexed: 01/01/2023] Open
Abstract
The cerebral cortex of mammals exhibits intricate interareal wiring. Moreover, mammalian cortices differ vastly in size, cytological composition, and phylogenetic distance. Given such complexity and pronounced species differences, it is a considerable challenge to decipher organizational principles of mammalian connectomes. Here, we demonstrate species-specific and species-general unifying principles linking the physical, cytological, and connectional dimensions of architecture in the mouse, cat, marmoset, and macaque monkey. The existence of connections is related to the cytology of cortical areas, in addition to the role of physical distance, but this relation is attenuated in mice and marmoset monkeys. The cytoarchitectonic cortical gradients, and not the rostrocaudal axis of the cortex, are closely linked to the laminar origin of connections, a principle that allows the extrapolation of this connectional feature to humans. Lastly, a network core, with a central role under different modes of network communication, characterizes all cortical connectomes. We observe a displacement of the network core in mammals, with a shift of the core of cats and macaque monkeys toward the less neuronally dense areas of the cerebral cortex. This displacement has functional ramifications but also entails a potential increased degree of vulnerability to pathology. In sum, our results sketch out a blueprint of mammalian connectomes consisting of species-specific and species-general links between the connectional, physical, and cytological dimensions of the cerebral cortex, possibly reflecting variations and persistence of evolutionarily conserved mechanisms and cellular phenomena. Our framework elucidates organizational principles that encompass but also extend beyond the wiring economy principle imposed by the physical embedding of the cerebral cortex.
Collapse
Affiliation(s)
- Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
- * E-mail:
| | - Piotr Majka
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- ARC Centre of Excellence for Integrative Brain Function, Monash University Node, Monash University, Clayton, Australia
| | - Marcello G. P. Rosa
- ARC Centre of Excellence for Integrative Brain Function, Monash University Node, Monash University, Clayton, Australia
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Claus C. Hilgetag
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
40
|
Petanjek Z, Sedmak D, Džaja D, Hladnik A, Rašin MR, Jovanov-Milosevic N. The Protracted Maturation of Associative Layer IIIC Pyramidal Neurons in the Human Prefrontal Cortex During Childhood: A Major Role in Cognitive Development and Selective Alteration in Autism. Front Psychiatry 2019; 10:122. [PMID: 30923504 PMCID: PMC6426783 DOI: 10.3389/fpsyt.2019.00122] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
The human specific cognitive shift starts around the age of 2 years with the onset of self-awareness, and continues with extraordinary increase in cognitive capacities during early childhood. Diffuse changes in functional connectivity in children aged 2-6 years indicate an increase in the capacity of cortical network. Interestingly, structural network complexity does not increase during this time and, thus, it is likely to be induced by selective maturation of a specific neuronal subclass. Here, we provide an overview of a subclass of cortico-cortical neurons, the associative layer IIIC pyramids of the human prefrontal cortex. Their local axonal collaterals are in control of the prefrontal cortico-cortical output, while their long projections modulate inter-areal processing. In this way, layer IIIC pyramids are the major integrative element of cortical processing, and changes in their connectivity patterns will affect global cortical functioning. Layer IIIC neurons have a unique pattern of dendritic maturation. In contrast to other classes of principal neurons, they undergo an additional phase of extensive dendritic growth during early childhood, and show characteristic molecular changes. Taken together, circuits associated with layer IIIC neurons have the most protracted period of developmental plasticity. This unique feature is advanced but also provides a window of opportunity for pathological events to disrupt normal formation of cognitive circuits involving layer IIIC neurons. In this manuscript, we discuss how disrupted dendritic and axonal maturation of layer IIIC neurons may lead into global cortical disconnectivity, affecting development of complex communication and social abilities. We also propose a model that developmentally dictated incorporation of layer IIIC neurons into maturing cortico-cortical circuits between 2 to 6 years will reveal a previous (perinatal) lesion affecting other classes of principal neurons. This "disclosure" of pre-existing functionally silent lesions of other neuronal classes induced by development of layer IIIC associative neurons, or their direct alteration, could be found in different forms of autism spectrum disorders. Understanding the gene-environment interaction in shaping cognitive microcircuitries may be fundamental for developing rehabilitation and prevention strategies in autism spectrum and other cognitive disorders.
Collapse
Affiliation(s)
- Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dora Sedmak
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Domagoj Džaja
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Hladnik
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mladen Roko Rašin
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Nataša Jovanov-Milosevic
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
41
|
Postnatal development and maturation of layer 1 in the lateral prefrontal cortex and its disruption in autism. Acta Neuropathol Commun 2019; 7:40. [PMID: 30867066 PMCID: PMC6417186 DOI: 10.1186/s40478-019-0684-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/23/2019] [Indexed: 12/11/2022] Open
Abstract
Autism is a neurodevelopmental connectivity disorder characterized by cortical network disorganization and imbalance in excitation/inhibition. However, little is known about the development of autism pathology and the disruption of laminar-specific excitatory and inhibitory cortical circuits. To begin to address these issues, we examined layer 1 of the lateral prefrontal cortex (LPFC), an area with prolonged development and maturation that is affected in autism. We focused on layer 1 because it contains a distinctive, diverse population of interneurons and glia, receives input from feedback and neuromodulatory pathways, and plays a critical role in the development, maturation, and function of the cortex. We used unbiased quantitative methods at high resolution to study the morphology, neurochemistry, distribution, and density of neurons and myelinated axons in post-mortem brain tissue from children and adults with and without autism. We cross-validated our findings through comparisons with neighboring anterior cingulate cortices and optimally-fixed non-human primate tissue. In neurotypical controls we found an increase in the density of myelinated axons from childhood to adulthood. Neuron density overall declined with age, paralleled by decreased density of inhibitory interneurons labeled by calretinin (CR), calbindin (CB), and parvalbumin (PV). Importantly, we found PV neurons in layer 1 of typically developing children, previously detected only perinatally. In autism there was disorganization of cortical networks within layer 1: children with autism had increased variability in the trajectories and thickness of myelinated axons in layer 1, while adults with autism had a reduction in the relative proportion of thin axons. Neurotypical postnatal changes in layer 1 of LPFC likely underlie refinement of cortical activity during maturation of cortical networks involved in cognition. Our findings suggest that disruption of the maturation of feedback pathways, rather than interneurons in layer 1, has a key role in the development of imbalance between excitation and inhibition in autism.
Collapse
|
42
|
Glausier JR, Konanur A, Lewis DA. Factors Affecting Ultrastructural Quality in the Prefrontal Cortex of the Postmortem Human Brain. J Histochem Cytochem 2019; 67:185-202. [PMID: 30562121 PMCID: PMC6393839 DOI: 10.1369/0022155418819481] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Electron microscopy (EM) studies of the postmortem human brain provide a level of resolution essential for understanding brain function in both normal and disease states. However, processes associated with death can impair the cellular and organelle ultrastructural preservation required for quantitative EM studies. Although postmortem interval (PMI), the time between death and preservation of tissue, is thought to be the most influential factor of ultrastructural quality, numerous other factors may also influence tissue preservation. The goal of the present study was to assess the effects of pre- and postmortem factors on multiple components of ultrastructure in the postmortem human prefrontal cortex. Tissue samples from 30 subjects were processed using standard EM histochemistry. The primary dependent measure was number of identifiable neuronal profiles, and secondary measures included presence and/or integrity of synapses, mitochondria, and myelinated axonal fibers. Number of identifiable neuronal profiles was most strongly affected by the interaction of PMI and pH, such that short PMIs and neutral pH values predicted the best preservation. Secondary measures were largely unaffected by pre- and postmortem factors. Together, these data indicate that distinct components of the neuropil are differentially affected by PMI and pH in postmortem human brain.
Collapse
Affiliation(s)
| | - Anisha Konanur
- The Dietrich School of Arts & Sciences, University of Pittsburgh
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh
- Department of Neuroscience, University of Pittsburgh
| |
Collapse
|
43
|
Sedmak D, Hrvoj-Mihić B, Džaja D, Habek N, Uylings HB, Petanjek Z. Biphasic dendritic growth of dorsolateral prefrontal cortex associative neurons and early cognitive development. Croat Med J 2018. [PMID: 30394011 PMCID: PMC6240825 DOI: 10.3325/cmj.2018.59.189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim To analyze postnatal development and life-span changes of apical dendrite side branches (oblique dendrites) from associative layer IIIC magnopyramidal neurons in the human dorsolateral prefrontal cortex and to compare the findings with the previously established pattern of basal dendrite development. Methods We analyzed dendritic morphology from 352 rapid-Golgi impregnated neurons (10-18 neurons per subject) in Brodmann area 9 from the post-mortem tissue of 25 subjects ranging in age from 1 week to 91 years. Data were collected in the period between 1994 and 1996, and the analysis was performed between September 2017 and February 2018. Quantitative dendritic parameters were statistically analyzed using one-way analysis of variance and two-tailed t tests. Results Oblique dendrites grew rapidly during the first postnatal months, and the increase in the dendrite length was accompanied by the outgrowth of new dendritic segments. After a more than one-year-long “dormant” period of only fine dendritic rearrangements (2.5-16 months), oblique dendrites displayed a second period of marked growth, continuing through the third postnatal year. Basal and oblique dendrites displayed roughly the same growth pattern, but had considerably different topological organization in adulthood. Conclusion Our analysis confirmed that a biphasic pattern of postnatal dendritic development, together with a second growth spurt at the age of 2-3 years, represents a unique feature of the associative layer IIIC magnopyramidal neurons in the human dorsolateral prefrontal cortex. We propose that these structural changes relate to rapid cognitive development during early childhood.
Collapse
Affiliation(s)
| | | | | | | | | | - Zdravko Petanjek
- Zdravko Petanjek, Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, Zagreb, Croatia,
| |
Collapse
|
44
|
Opposite development of short- and long-range anterior cingulate pathways in autism. Acta Neuropathol 2018; 136:759-778. [PMID: 30191402 PMCID: PMC6208731 DOI: 10.1007/s00401-018-1904-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022]
Abstract
Autism has been linked with the changes in brain connectivity that disrupt neural communication, especially involving frontal networks. Pathological changes in white matter are evident in adults with autism, particularly affecting axons below the anterior cingulate cortices (ACC). It is still unknown whether axon pathology appears early or late in development and whether it changes or not from childhood through adulthood. To address these questions, we examined typical and pathological development of about 1 million axons in post-mortem brains of children, adolescents, and adults with and without autism (ages 3-67 years). We used high-resolution microscopy to systematically sample and study quantitatively the fine structure of myelinated axons in the white matter below ACC. We provide novel evidence of changes in the density, size and trajectories of ACC axons in typical postnatal development from childhood through adulthood. Against the normal profile of axon development, our data revealed lower density of myelinated axons that connect ACC with neighboring cortices in children with autism. In the course of development the proportion of thin axons, which form short-range pathways, increased significantly in individuals with autism, but remained flat in controls. In contrast, the relative proportion of thick axons, which form long-range pathways, increased from childhood to adulthood in the control group, but decreased in autism. Our findings provide a timeline for profound changes in axon density and thickness below ACC that affect axon physiology in a direction suggesting bias in short over distant neural communication in autism. Importantly, measures of axon density, myelination, and orientation provide white matter anisotropy/diffusivity estimates at the level of single axons. The structural template established can be used to compare with measures obtained from imaging in living subjects, and guide analysis of functional and structural imaging data from humans for comparison with pathological states.
Collapse
|
45
|
Sedmak D, Hrvoj-Mihić B, Džaja D, Habek N, Uylings HB, Petanjek Z. Biphasic dendritic growth of dorsolateral prefrontal cortex associative neurons and early cognitive development. Croat Med J 2018; 59:189-202. [PMID: 30394011 PMCID: PMC6240825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/31/2018] [Indexed: 10/05/2023] Open
Abstract
AIM To analyze postnatal development and life-span changes of apical dendrite side branches (oblique dendrites) from associative layer IIIC magnopyramidal neurons in the human dorsolateral prefrontal cortex and to compare the findings with the previously established pattern of basal dendrite development. METHODS We analyzed dendritic morphology from 352 rapid-Golgi impregnated neurons (10-18 neurons per subject) in Brodmann area 9 from the post-mortem tissue of 25 subjects ranging in age from 1 week to 91 years. Data were collected in the period between 1994 and 1996, and the analysis was performed between September 2017 and February 2018. Quantitative dendritic parameters were statistically analyzed using one-way analysis of variance and two-tailed t tests. RESULTS Oblique dendrites grew rapidly during the first postnatal months, and the increase in the dendrite length was accompanied by the outgrowth of new dendritic segments. After a more than one-year-long "dormant" period of only fine dendritic rearrangements (2.5-16 months), oblique dendrites displayed a second period of marked growth, continuing through the third postnatal year. Basal and oblique dendrites displayed roughly the same growth pattern, but had considerably different topological organization in adulthood. CONCLUSION Our analysis confirmed that a biphasic pattern of postnatal dendritic development, together with a second growth spurt at the age of 2-3 years, represents a unique feature of the associative layer IIIC magnopyramidal neurons in the human dorsolateral prefrontal cortex. We propose that these structural changes relate to rapid cognitive development during early childhood.
Collapse
Affiliation(s)
| | | | | | | | | | - Zdravko Petanjek
- Zdravko Petanjek, Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, Zagreb, Croatia,
| |
Collapse
|
46
|
Barbas H, Wang J, Joyce MKP, García-Cabezas MÁ. Pathway mechanism for excitatory and inhibitory control in working memory. J Neurophysiol 2018; 120:2659-2678. [PMID: 30256740 DOI: 10.1152/jn.00936.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Humans engage in many daily activities that rely on working memory, the ability to hold and sequence information temporarily to accomplish a task. We focus on the process of working memory, based on circuit mechanisms for attending to relevant signals and suppressing irrelevant stimuli. We discuss that connections critically depend on the systematic variation in laminar structure across all cortical systems. Laminar structure is used to group areas into types regardless of their placement in the cortex, ranging from low-type agranular areas that lack layer IV to high-type areas that have six well-delineated layers. Connections vary in laminar distribution and strength based on the difference in type between linked areas, according to the "structural model" (Barbas H, Rempel-Clower N. Cereb Cortex 7: 635-646, 1997). The many possible pathways thus vary systematically by laminar distribution and strength, and they interface with excitatory neurons to select relevant stimuli and with functionally distinct inhibitory neurons that suppress activity at the site of termination. Using prefrontal pathways, we discuss how systematic architectonic variation gives rise to diverse pathways that can be recruited, along with amygdalar and hippocampal pathways that provide sensory, affective, and contextual information. The prefrontal cortex is also connected with thalamic nuclei that receive the output of the basal ganglia and cerebellum, which may facilitate fast sequencing of information. The complement of connections and their interface with distinct inhibitory neurons allows dynamic recruitment of areas and shifts in cortical rhythms to meet rapidly changing demands of sequential components of working memory tasks.
Collapse
Affiliation(s)
- Helen Barbas
- Neural Systems Laboratory, Boston University , Boston, Massachusetts.,Department of Health Sciences, Boston University , Boston, Massachusetts.,Graduate Program in Neuroscience, Boston University , Boston, Massachusetts
| | - Jingyi Wang
- Neural Systems Laboratory, Boston University , Boston, Massachusetts.,Department of Health Sciences, Boston University , Boston, Massachusetts
| | - Mary Kate P Joyce
- Neural Systems Laboratory, Boston University , Boston, Massachusetts.,Graduate Program in Neuroscience, Boston University , Boston, Massachusetts
| | - Miguel Ángel García-Cabezas
- Neural Systems Laboratory, Boston University , Boston, Massachusetts.,Department of Health Sciences, Boston University , Boston, Massachusetts
| |
Collapse
|
47
|
García-Cabezas MÁ, Barbas H, Zikopoulos B. Parallel Development of Chromatin Patterns, Neuron Morphology, and Connections: Potential for Disruption in Autism. Front Neuroanat 2018; 12:70. [PMID: 30174592 PMCID: PMC6107687 DOI: 10.3389/fnana.2018.00070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022] Open
Abstract
The phenotype of neurons and their connections depend on complex genetic and epigenetic processes that regulate the expression of genes in the nucleus during development and throughout life. Here we examined the distribution of nuclear chromatin patters in relation to the epigenetic landscape, phenotype and connections of neurons with a focus on the primate cerebral cortex. We show that nuclear patterns of chromatin in cortical neurons are related to neuron size and cortical connections. Moreover, we point to evidence that reveals an orderly sequence of events during development, linking chromatin and gene expression patterns, neuron morphology, function, and connections across cortical areas and layers. Based on this synthesis, we posit that systematic studies of changes in chromatin patterns and epigenetic marks across cortical areas will provide novel insights on the development and evolution of cortical networks, and their disruption in connectivity disorders of developmental origin, like autism. Achieving this requires embedding and interpreting genetic, transcriptional, and epigenetic studies within a framework that takes into consideration distinct types of neurons, local circuit interactions, and interareal pathways. These features vary systematically across cortical areas in parallel with laminar structure and are differentially affected in disorders. Finally, based on evidence that autism-associated genetic polymorphisms are especially prominent in excitatory neurons and connectivity disruption affects mostly limbic cortices, we employ this systematic approach to propose novel, targeted studies of projection neurons in limbic areas to elucidate the emergence and time-course of developmental disruptions in autism.
Collapse
Affiliation(s)
- Miguel Á García-Cabezas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States.,Graduate Program in Neuroscience, Boston University, Boston, MA, United States
| | - Basilis Zikopoulos
- Graduate Program in Neuroscience, Boston University, Boston, MA, United States.,Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| |
Collapse
|