1
|
Wu Z, Wu X, Wang Z, Ye X, Pang L, Wang Y, Zhou Y, Chen T, Zhou S, Wang Z, Sheng Y, Zhang Q, Chen J, Tang P, Shen X, Huang J, Drezen JM, Strand MR, Chen X. A symbiotic gene stimulates aggressive behavior favoring the survival of parasitized caterpillars. Proc Natl Acad Sci U S A 2025; 122:e2422935122. [PMID: 40294273 PMCID: PMC12067249 DOI: 10.1073/pnas.2422935122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Animals often exhibit increased aggression in response to starvation, while parasites often manipulate host behavior. In contrast, underlying molecular mechanisms for these behavioral changes are mostly unknown. The diamondback moth, Plutella xylostella, is an agricultural pest that feeds on cruciferous plants as larvae, while Cotesia vestalis is a parasitoid wasp that parasitizes diamondback moth larvae. In this study, we determined that unparasitized diamondback moth larvae exhibit increased aggression and cannibalism when starved, while starved larvae parasitized by C. vestalis were more aggressive than unparasitized larvae. C. vestalis harbors a domesticated endogenized virus named Cotesia vestalis bracovirus (CvBV) that wasps inject into parasitized hosts. Starvation increased octopamine (OA) levels in the central nervous system (CNS) of diamondback moth larvae while a series of experiments identified a CvBV-encoded gene product named Assailant that further increased aggression in starved diamondback moth larvae. We determined that Assailant increases OA levels by activating tyramine beta-hydroxylase (PxTβh), which is a key enzyme in the OA biosynthesis pathway. Ectopic expression of assailant in Drosophila melanogaster likewise upregulated expression of DmTβh and OA, which increased aggressive behavior in male flies as measured by a well-established assay. While parasitized hosts are often thought to be at a competitive disadvantage to nonparasitized individuals, our results uncover how a parasitoid uses an endogenized virus to increase host aggression and enhance survival of offspring when competing against unparasitized hosts.
Collapse
Affiliation(s)
- Zhiwei Wu
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Xiaotong Wu
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Zhizhi Wang
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Xiqian Ye
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Lan Pang
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Yanping Wang
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Yuenan Zhou
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Ting Chen
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Sicong Zhou
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Zehua Wang
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Yifeng Sheng
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Qichao Zhang
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Jiani Chen
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Pu Tang
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Xingxing Shen
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Jianhua Huang
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS - Université de Tours, Tours37200, France
| | | | - Xuexin Chen
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS - Université de Tours, Tours37200, France
| |
Collapse
|
2
|
Fowler EK, Friend LA, Churchill ER, Yu DW, Archetti M, Bourke AFG, Bretman A, Chapman T. Female oviposition decisions are influenced by the microbial environment. J Evol Biol 2025; 38:379-390. [PMID: 39820424 DOI: 10.1093/jeb/voaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/28/2024] [Accepted: 01/14/2025] [Indexed: 01/19/2025]
Abstract
In ovipositing animals, egg placement decisions can be key determinants of offspring survival. One oviposition strategy reported across taxa is laying eggs in clusters. In some species, mothers provision eggs with diffusible defence compounds, such as antimicrobials, raising the possibility of public good benefits arising from egg clustering. Here we report that Drosophila melanogaster females frequently lay eggs in mixed-maternity clusters. We tested two hypotheses for potential drivers of this oviposition behaviour: (i) the microbial environment affects fecundity and egg placement in groups of females; (ii) eggs exhibit antimicrobial activity. The results partially supported the first hypothesis. Females reduced egg laying but did not alter egg clustering, on non-sterile substrates that had been naturally colonized with microbes from the environment. However, oviposition remained unaffected when the substrate community consisted of commensal (fly-associated) microbes. The second hypothesis was not supported. There was no evidence of antimicrobial activity, either in whole eggs or in soluble egg-surface material. In conclusion, while we found no behavioural or physiological evidence that egg clustering decisions are shaped by the opportunity to share antimicrobials, females are sensitive to their microbial environment and can adjust egg-laying rates accordingly.
Collapse
Affiliation(s)
- Emily K Fowler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Lucy A Friend
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Emily R Churchill
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Douglas W Yu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Marco Archetti
- Department of Biology, Pennsylvania State University, University Park, PA 16802, United States
| | - Andrew F G Bourke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Amanda Bretman
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
3
|
Moreira-Soto RD, Hansson BS, Knaden M. Oviposition Dynamics and Niche Utilization in Two Sympatric Drosophila Species. J Chem Ecol 2025; 51:21. [PMID: 39904815 PMCID: PMC11794365 DOI: 10.1007/s10886-025-01576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Many Drosophila species coexist by sharing their feeding and breeding sites, which may influence their oviposition choices in an interspecies social context. Whether and where to lay eggs is a crucial decision for female flies as it influences the success of their offspring, by minimizing the risk of predation, competition, or cannibalism. Significant gaps exist in our understanding of Drosophila oviposition dynamics in co-occurring species. Here we tested oviposition strategies of Drosophila melanogaster and its close relative Drosophila simulans under different conditions, to assess whether a single female would prefer to oviposit separately or together with another female, be it a conspecific or not. We find that ovipositing females, regardless whether they are conspecifics or not, prefer to oviposit at the same site. This might suggest that the flies regard the benefits of sharing oviposition sites as higher than the potential risks of competition or cannibalism. The willingness to share oviposition sites was lower when the nutritional value of the medium was increased by adding yeast, and was lost when flies were allowed to lay the eggs consecutively, instead of being tested together. The latter might be explained by our additional finding that females become attracted by the presence of other females on oviposition substrates and that this attraction is partly driven by visual cues. Ovipositing in groups might facilitate intra- and interspecific social feeding of same age offspring, as well as enrichment of microbes. However, this cooperation dynamic might change if another female's offspring is already present, as it might be perceived as danger of competition or cannibalism.
Collapse
Affiliation(s)
- Rolando D Moreira-Soto
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Universidad de Costa Rica, Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, San José, Costa Rica
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
4
|
Jean-François F, Pratibha S, Baptiste R, Jean-Pierre F, Jérôme C, Deepa A, Claude E. Is Drosophila Larval Competition Involved in Incipient Speciation? J Chem Ecol 2025; 51:2. [PMID: 39841299 DOI: 10.1007/s10886-025-01560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 01/23/2025]
Abstract
Geographical, ethological, temporal and ecological barriers can affect interbreeding between populations deriving from an ancestral population, this progressively leading to speciation. A rare case of incipient speciation currently occurs between Drosophila melanogaster populations sampled in Zimbabwe (Z) and all other populations (M). This phenomenon was initially characterized by Z females refusing to mate with M males. Despite the fact that Z and M flies produce different amounts of cuticular pheromones, their manipulation and that of other sensory signals exchanged during courtship behavior only marginally rescued the behavioral isolation. To further explore the putative mechanisms involved in this phenomenon, we first assessed the fecundity in matings between Z and M flies. Then, we measured the reproduction and survival in adults resulting of co-cultured Z and M larvae. In these two experiments, Z flies rarely emerged. Z and M larvae produced different amounts of food-derived metabolites which were altered in co-culture condition. This maybe related to the different bacteria composition in the gut and body of Z and M flies. However, the mating behavior of co-cultured flies did not change and their cuticular pheromone profile was slightly altered. Thus, the Z/M larval competition could reinforce the barriers induced by gametic and behavioral isolation processes on this incipient speciation phenomenon.
Collapse
Affiliation(s)
- Ferveur Jean-François
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France.
| | | | - Regnier Baptiste
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France
| | - Farine Jean-Pierre
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France
| | - Cortot Jérôme
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France
| | - Agashe Deepa
- National Centre for Biological Sciences (NCBS-TIFR), Bengaluru, India
| | - Everaerts Claude
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France
| |
Collapse
|
5
|
Kwadha CA, Rehermann G, Tasso D, Fellous S, Bengtsson M, Wallin EA, Flöhr A, Witzgall P, Becher PG. Sex Pheromone Mediates Resource Partitioning Between Drosophila melanogaster and D. suzukii. Evol Appl 2024; 17:e70042. [PMID: 39534538 PMCID: PMC11555161 DOI: 10.1111/eva.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/19/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The spotted-wing drosophila, Drosophila suzukii and the cosmopolitan vinegar fly D. melanogaster feed on soft fruit and berries and widely overlap in geographic range. The presence of D. melanogaster reduces egg-laying in D. suzukii, possibly because D. melanogaster outcompetes D. suzukii larvae feeding in the same fruit substrate. Flies use pheromones to communicate for mating, but pheromones also serve a role in reproductive isolation between related species. We asked whether a D. melanogaster pheromone also modulates oviposition behaviour in D. suzukii. A dual-choice oviposition assay confirms that D. suzukii lays fewer eggs on blueberries exposed to D. melanogaster flies and further shows that female flies have a stronger effect than male flies. This was corroborated by treating berries with synthetic pheromones. Avoidance of D. suzukii oviposition is mediated by the female D. melanogaster pheromone (Z)-4-undecenal (Z4-11Al). Significantly fewer eggs were laid on berries treated with synthetic Z4-11Al. In comparison, the male pheromone (Z)-11-octadecenyl acetate (cVA) had no effect on D. suzukii oviposition. Z4-11Al is a highly volatile compound that is perceived via olfaction and it is accordingly behaviourally active at a distance from the source. D. suzukii is known to engage in mutual niche construction with the yeast Hanseniaspora uvarum, which strongly attracts flies. Adding Z4-11Al to fermenting H. uvarum significantly decreased D. suzukii flight attraction in a laboratory wind tunnel and a field trapping assay. That a D. melanogaster pheromone regulates oviposition in D. suzukii demonstrates that heterospecific pheromone communication contributes to reproductive isolation and resource partitioning in cognate species. Stimulo-deterrent diversion or push-pull methods, building on combined use of attractant and deterrent compounds, have shown promise for control of D. suzukii. A pheromone that specifically reduces D. suzukii attraction and oviposition adds to the toolbox for D. suzukii integrated management.
Collapse
Affiliation(s)
- Charles A. Kwadha
- Department Plant Protection Biology, Chemical Ecology GroupSwedish University of Agricultural SciencesAlnarpSweden
| | - Guillermo Rehermann
- Department Plant Protection Biology, Chemical Ecology GroupSwedish University of Agricultural SciencesAlnarpSweden
| | - Deni Tasso
- Department Plant Protection Biology, Chemical Ecology GroupSwedish University of Agricultural SciencesAlnarpSweden
| | - Simon Fellous
- CBGP, INRAE, CIRADInstitute Agro, IRD, University MontpellierMontpellierFrance
| | - Marie Bengtsson
- Department Plant Protection Biology, Chemical Ecology GroupSwedish University of Agricultural SciencesAlnarpSweden
| | - Erika A. Wallin
- Department Natural Science, Design and Sustainable DevelopmentMid Sweden UniversitySundsvallSweden
| | - Adam Flöhr
- Department Biosystems and TechnologySwedish University of Agricultural SciencesLommaSweden
| | - Peter Witzgall
- Department Plant Protection Biology, Chemical Ecology GroupSwedish University of Agricultural SciencesAlnarpSweden
| | - Paul G. Becher
- Department Plant Protection Biology, Chemical Ecology GroupSwedish University of Agricultural SciencesAlnarpSweden
| |
Collapse
|
6
|
Sheahan TD, Grewal A, Korthauer LE, Blumenthal EM. The Drosophila drop-dead gene is required for eggshell integrity. PLoS One 2023; 18:e0295412. [PMID: 38051756 PMCID: PMC10697589 DOI: 10.1371/journal.pone.0295412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
The eggshell of the fruit fly Drosophila melanogaster is a useful model for understanding the synthesis of a complex extracellular matrix. The eggshell is synthesized during mid-to-late oogenesis by the somatic follicle cells that surround the developing oocyte. We previously reported that female flies mutant for the gene drop-dead (drd) are sterile, but the underlying cause of the sterility remained unknown. In this study, we examined the role of drd in eggshell synthesis. We show that eggs laid by drd mutant females are fertilized but arrest early in embryogenesis, and that the innermost layer of the eggshell, the vitelline membrane, is abnormally permeable to dye in these eggs. In addition, the major vitelline membrane proteins fail to become crosslinked by nonreducible bonds, a process that normally occurs during egg activation following ovulation, as evidenced by their solubility and detection by Western blot in laid eggs. In contrast, the Cp36 protein, which is found in the outer chorion layers of the eggshell, becomes crosslinked normally. To link the drd expression pattern with these phenotypes, we show that drd is expressed in the ovarian follicle cells beginning in mid-oogenesis, and, importantly, that all drd mutant eggshell phenotypes could be recapitulated by selective knockdown of drd expression in the follicle cells. To determine whether drd expression was required for the crosslinking itself, we performed in vitro activation and crosslinking experiments. The vitelline membranes of control egg chambers could become crosslinked either by incubation in hyperosmotic medium, which activates the egg chambers, or by exogenous peroxidase and hydrogen peroxide. In contrast, neither treatment resulted in the crosslinking of the vitelline membrane in drd mutant egg chambers. These results indicate that drd expression in the follicle cells is necessary for vitelline membrane proteins to serve as substrates for peroxidase-mediated cross-linking at the end of oogenesis.
Collapse
Affiliation(s)
- Tayler D. Sheahan
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Amanpreet Grewal
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Laura E. Korthauer
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Edward M. Blumenthal
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
7
|
Xiao C, Duarri‐Redondo S, Thorhölludottir DAV, Chen Y, Schlötterer C. Non-additive effects between genotypes: Implications for competitive fitness assays. Ecol Evol 2023; 13:e10713. [PMID: 37941737 PMCID: PMC10630047 DOI: 10.1002/ece3.10713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/27/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
Competitive fitness assays are widely used in evolutionary biology and typically rely on a reference strain to compare different focal genotypes. This approach implicitly relies on the absence of interaction between the competing genotypes. In other words, the performance of the reference strain must not depend on the competitor. This report scrutinized this assumption by competing diverged Drosophila simulans populations against a common reference strain. We detected strong evidence for interaction between the competing genotypes: (1) Frequency-dependent selection was common with opposite effects in genetically diverged populations. (2) Temporal heterogeneity of fitness estimates, which can be partially attributed to a competitor-specific delay in the eclosion of the reference strain. We propose that this inconsistent behavior of the reference strain can be considered a specific case of a genotype × environment interaction. Focal populations could modify the environment of the reference strain, either indirectly by altering the microbiome composition and food availability or directly by genotype-specific cannibalism. Our results provide new insights into the interaction of diverged genotypes and have important implications for the interpretation of competitive fitness assays.
Collapse
Affiliation(s)
- Changyi Xiao
- Institut für PopulationsgenetikVetmeduni ViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| | - Sara Duarri‐Redondo
- Institut für PopulationsgenetikVetmeduni ViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| | - Dagny A. V. Thorhölludottir
- Institut für PopulationsgenetikVetmeduni ViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| | - Yiwen Chen
- Institut für PopulationsgenetikVetmeduni ViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| | | |
Collapse
|
8
|
Bailly TPM, Kohlmeier P, Etienne RS, Wertheim B, Billeter JC. Social modulation of oogenesis and egg laying in Drosophila melanogaster. Curr Biol 2023:S0960-9822(23)00750-9. [PMID: 37369209 DOI: 10.1016/j.cub.2023.05.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/02/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Being part of a group facilitates cooperation between group members but also creates competition for resources. This is a conundrum for gravid females, whose future offspring benefit from being in a group only if there are enough resources relative to group size. Females may therefore be expected to modulate reproductive output depending on social context. In the fruit fly Drosophila melanogaster, females actively attract conspecifics to lay eggs on the same resources, generating groups in which individuals may cooperate or compete. The genetic tractability of this species allows dissecting the mechanisms underlying physiological adaptation to social context. Here, we show that females produce eggs increasingly faster as group size increases. By laying eggs faster when grouped than when isolated, females reduce competition between offspring and increase offspring survival. In addition, grouped females lay eggs during the day, while isolated females lay them at night. We show that responses to the presence of others requires visual input and that flies from any sex, mating status, or species can trigger these responses. The mechanisms of this modulation of egg laying by group is connected to a lifting of the inhibition of light on oogenesis and egg laying, possibly mediated in part by an increase in juvenile hormone activity. Because modulation of reproduction by social context is a hallmark of animals with higher levels of sociality, our findings in a species considered solitary question the validity of this nomenclature and suggest a widespread and profound influence of social context on reproduction.
Collapse
Affiliation(s)
- Tiphaine P M Bailly
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9474AG Groningen, the Netherlands
| | - Philip Kohlmeier
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9474AG Groningen, the Netherlands; University of Memphis, Department of Biological Sciences, Memphis, TN 38152-3530, USA
| | - Rampal S Etienne
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9474AG Groningen, the Netherlands
| | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9474AG Groningen, the Netherlands
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9474AG Groningen, the Netherlands.
| |
Collapse
|
9
|
Taisz I, Donà E, Münch D, Bailey SN, Morris BJ, Meechan KI, Stevens KM, Varela-Martínez I, Gkantia M, Schlegel P, Ribeiro C, Jefferis GSXE, Galili DS. Generating parallel representations of position and identity in the olfactory system. Cell 2023; 186:2556-2573.e22. [PMID: 37236194 PMCID: PMC10403364 DOI: 10.1016/j.cell.2023.04.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/07/2022] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
In Drosophila, a dedicated olfactory channel senses a male pheromone, cis-vaccenyl acetate (cVA), promoting female courtship while repelling males. Here, we show that separate cVA-processing streams extract qualitative and positional information. cVA sensory neurons respond to concentration differences in a 5-mm range around a male. Second-order projection neurons encode the angular position of a male by detecting inter-antennal differences in cVA concentration, which are amplified through contralateral inhibition. At the third circuit layer, we identify 47 cell types with diverse input-output connectivity. One population responds tonically to male flies, a second is tuned to olfactory looming, while a third integrates cVA and taste to coincidentally promote female mating. The separation of olfactory features resembles the mammalian what and where visual streams; together with multisensory integration, this enables behavioral responses appropriate to specific ethological contexts.
Collapse
Affiliation(s)
- István Taisz
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Erika Donà
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Billy J Morris
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Katie M Stevens
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Marina Gkantia
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Dana S Galili
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
10
|
Sheahan TD, Grewal A, Korthauer LE, Blumenthal EM. The Drosophila drop-dead gene is required for eggshell integrity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538335. [PMID: 37163052 PMCID: PMC10168300 DOI: 10.1101/2023.04.25.538335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The eggshell of the fruit fly Drosophila melanogaster is a useful model for understanding the synthesis of a complex extracellular matrix. The eggshell is synthesized during mid-to-late oogenesis by the somatic follicle cells that surround the developing oocyte. We previously reported that female flies mutant for the gene drop-dead ( drd ) are sterile, but the underlying cause of the sterility remained unknown. In this study, we examined the role of drd in eggshell synthesis. We show that eggs laid by drd mutant females are fertilized but arrest early in embryogenesis, and that the innermost layer of the eggshell, the vitelline membrane, is abnormally permeable to dye in these eggs. In addition, the major vitelline membrane proteins fail to become crosslinked by nonreducible bonds, a process that normally occurs during egg activation following ovulation, as evidenced by their solubility and detection by Western blot in laid eggs. In contrast, the Cp36 protein, which is found in the outer chorion layers of the eggshell, becomes crosslinked normally. To link the drd expression pattern with these phenotypes, we show that drd is expressed in the ovarian follicle cells beginning in mid-oogenesis, and, importantly, that all drd mutant eggshell phenotypes could be recapitulated by selective knockdown of drd expression in the follicle cells. To determine whether drd expression was required for the crosslinking itself, we performed in vitro activation and crosslinking experiments. The vitelline membranes of control egg chambers could become crosslinked either by incubation in hyperosmotic medium, which activates the egg chambers, or by exogenous peroxidase and hydrogen peroxide. In contrast, neither treatment resulted in the crosslinking of the vitelline membrane in drd mutant egg chambers. These results indicate that drd expression in the follicle cells is necessary for vitelline membrane proteins to serve as substrates for peroxidase-mediated cross-linking at the end of oogenesis.
Collapse
|
11
|
Chang H, Cassau S, Krieger J, Guo X, Knaden M, Kang L, Hansson BS. A chemical defense deters cannibalism in migratory locusts. Science 2023; 380:537-543. [PMID: 37141362 DOI: 10.1126/science.ade6155] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Many animals engage in cannibalism to supplement their diets. Among dense populations of migratory locusts, cannibalism is prevalent. We show that under crowded conditions, locusts produce an anticannibalistic pheromone called phenylacetonitrile. Both the degree of cannibalism and the production of phenylacetonitrile are density dependent and covary. We identified the olfactory receptor that detects phenylacetonitrile and used genome editing to make this receptor nonfunctional, thereby abolishing the negative behavioral response. We also inactivated the gene underlying phenylacetonitrile production and show that locusts that lack this compound lose its protection and are more frequently exposed to intraspecific predation. Thus, we reveal an anticannibalistic feature built on a specifically produced odor. The system is very likely to be of major importance in locust population ecology, and our results might therefore provide opportunities in locust management.
Collapse
Affiliation(s)
- Hetan Chang
- Department of Evolutionary Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sina Cassau
- Department of Animal Physiology, Martin-Luther-Universitat Halle-Wittenberg, Halle (Saale), Germany
| | - Jürgen Krieger
- Department of Animal Physiology, Martin-Luther-Universitat Halle-Wittenberg, Halle (Saale), Germany
| | - Xiaojiao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Markus Knaden
- Department of Evolutionary Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Bill S Hansson
- Department of Evolutionary Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
12
|
Kohlmeier P, Billeter JC. Genetic mechanisms modulating behaviour through plastic chemosensory responses in insects. Mol Ecol 2023; 32:45-60. [PMID: 36239485 PMCID: PMC10092625 DOI: 10.1111/mec.16739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 12/29/2022]
Abstract
The ability to transition between different behavioural stages is a widespread phenomenon across the animal kingdom. Such behavioural adaptations are often linked to changes in the sensitivity of those neurons that sense chemical cues associated with the respective behaviours. To identify the genetic mechanisms that regulate neuronal sensitivity, and by that behaviour, typically *omics approaches, such as RNA- and protein-sequencing, are applied to sensory organs of individuals displaying differences in behaviour. In this review, we discuss these genetic mechanisms and how they impact neuronal sensitivity, summarize the correlative and functional evidence for their role in regulating behaviour and discuss future directions. As such, this review can help interpret *omics data by providing a comprehensive list of already identified genes and mechanisms that impact behaviour through changes in neuronal sensitivity.
Collapse
Affiliation(s)
- Philip Kohlmeier
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Vijendravarma RK. Diverse strategies that animals use to deter intraspecific predation. J Evol Biol 2022. [DOI: 10.1111/jeb.14129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022]
|
14
|
Fowler EK, Leigh S, Rostant WG, Thomas A, Bretman A, Chapman T. Memory of social experience affects female fecundity via perception of fly deposits. BMC Biol 2022; 20:244. [PMID: 36310170 PMCID: PMC9620669 DOI: 10.1186/s12915-022-01438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/14/2022] [Indexed: 08/30/2023] Open
Abstract
Background Animals can exhibit remarkable reproductive plasticity in response to their social surroundings, with profound fitness consequences. The presence of same-sex conspecifics can signal current or future expected competition for resources or mates. Plastic responses to elevated sexual competition caused by exposure to same-sex individuals have been well-studied in males. However, much less is known about such plastic responses in females, whether this represents sexual or resource competition, or if it leads to changes in investment in mating behaviour and/or reproduction. Here, we used Drosophila melanogaster to measure the impact of experimentally varying female exposure to other females prior to mating on fecundity before and after mating. We then deployed physical and genetic methods to manipulate the perception of different social cues and sensory pathways and reveal the potential mechanisms involved. Results The results showed that females maintained in social isolation prior to mating were significantly more likely to retain unfertilised eggs before mating, but to show the opposite and lay significantly more fertilised eggs in the 24h after mating. More than 48h of exposure to other females was necessary for this social memory response to be expressed. Neither olfactory nor visual cues were involved in mediating fecundity plasticity—instead, the relevant cues were perceived through direct contact with the non-egg deposits left behind by other females. Conclusions The results demonstrate that females show reproductive plasticity in response to their social surroundings and can carry this memory of their social experience forward through mating. Comparisons of our results with previous work show that the nature of female plastic reproductive responses and the cues they use differ markedly from those of males. The results emphasise the deep divergence in how each sex realises its reproductive success. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01438-5.
Collapse
Affiliation(s)
- E. K. Fowler
- grid.8273.e0000 0001 1092 7967School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - S. Leigh
- grid.8273.e0000 0001 1092 7967School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - W. G. Rostant
- grid.8273.e0000 0001 1092 7967School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - A. Thomas
- grid.8273.e0000 0001 1092 7967School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - A. Bretman
- grid.9909.90000 0004 1936 8403School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT UK
| | - T. Chapman
- grid.8273.e0000 0001 1092 7967School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| |
Collapse
|
15
|
Wu S, Zeng W, Deng W, Li J, Li M, Tan L, Cai H, Li X, Li Y, Zhou Z. Parental Sex and Not Kinship Determines Egg Cannibalism in Arma custos Fallou (Hemiptera: Pentatomidae: Asopinae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.758587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BackgroundArma custos Fallou (Hemiptera: Asopinae) is an important predatory insect native to China, South Korea, and Mongolia. It is important to understand the evolution of egg cannibalism in A. custos to evaluate the biocontrol potential of this species. However, few reports have suggested egg cannibalism in A. custos, and whether hungry adult A. custos males and females prey on their eggs remains unknown. Here, we investigated the effects of the parental sex of A. custos adults on egg cannibalism of parental and non-parental eggs (kinship) under no-choice and free-choice conditions, along with the effects of predator and egg density on egg cannibalism under starvation conditions.ResultsFemales frequently visited and cannibalized a higher proportion of eggs, whereas males almost did not participate in egg cannibalism (less than 17% males showed egg cannibalism behavior). Moreover, regardless of their relationship with the egg, neither male nor female adults consumed all available eggs even in the absence of an alternative food source, and >70% of eggs remained unconsumed. In contrast, cannibalistic males and females did not discriminate between parental and non-parental egg types. Meanwhile, cannibalism rates were similar when adults were offered 30 eggs or more. However, when offered fewer than 30 eggs, cannibalism rates declined disproportionally, suggesting that limited egg availability reduced cannibalism. Additionally, the lifespan of A. custos adult females increased significantly with increasing number of consumed eggs (p < 0.05).ConclusionArma custos females exhibit a higher tendency for egg cannibalism than males. Neither male or female A. custos discriminated between parental and non-parental egg types. Cannibalism enhances survival in that a starved individual who predates on eggs survives similarly to a well-fed individual. These findings provide a model to study the evolution and biological significance of egg cannibalism in A. custos and also contribute to the efficient mass rearing and realization of A. custos for biological control.
Collapse
|
16
|
Du WG, Shine R. The behavioural and physiological ecology of embryos: responding to the challenges of life inside an egg. Biol Rev Camb Philos Soc 2022; 97:1272-1286. [PMID: 35166012 DOI: 10.1111/brv.12841] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/24/2022]
Abstract
Adaptations of post-hatching animals have attracted far more study than have embryonic responses to environmental challenges, but recent research suggests that we have underestimated the complexity and flexibility of embryos. We advocate a dynamic view of embryos as organisms capable of responding - on both ecological and evolutionary timescales - to their developmental environments. By viewing embryos in this way, rather than assuming an inability of pre-hatching stages to adapt and respond, we can broaden the ontogenetic breadth of evolutionary and ecological research. Both biotic and abiotic factors affect embryogenesis, and embryos exhibit a broad range of behavioural and physiological responses that enable them to deal with changes in their developmental environments in the course of interactions with their parents, with other embryos, with predators, and with the physical environment. Such plasticity may profoundly affect offspring phenotypes and fitness, and in turn influence the temporal and spatial dynamics of populations and communities. Future research in this field could benefit from an integrated framework that combines multiple approaches (field investigations, manipulative experiments, ecological modelling) to clarify the mechanisms and consequences of embryonic adaptations and plasticity.
Collapse
Affiliation(s)
- Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Richard Shine
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
17
|
Wu S, Zeng W, Deng W, Li M, Hu W, Cai H, Li Y, Xie P, Tan L, Zhou Z. Egg Cannibalism Varies With Sex, Reproductive Status, and Egg and Nymph Ages in Arma custos (Hemiptera: Asopinae). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.705318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Egg cannibalism is common in nature. In China, Arma custos (Hemiptera: Asopinae) has been widely used as a natural enemy to control agricultural and forestry pests. A previous study showed that adult A. custos devour their eggs. However, no research has investigated the interaction between A. custos cannibalism and egg development. Clarifying the mechanisms involved in egg cannibalism by A. custos improves our understanding of the evolutionary relationships to enable more efficient mass rearing and biological control systems.Results: Virgin females showed a lower egg cannibalism inclination than gravid females. Both virgin and mated females showed a higher egg cannibalism inclination than virgin and mated males. The first and second instar nymphs did not devour eggs. The third, fourth, and fifth instar nymphs devoured eggs. Younger eggs were more readily eaten than older eggs. Neither A. custos nymphs nor female adults consumed all the available eggs, allowing an emergence ratio of >70%.Conclusion:Arma custos females exhibit a higher tendency for egg cannibalism than males. Egg cannibalism varies not only with the developmental stage of the eggs and nymphs but also with sex and reproductive status of A. custos females. These findings help us to better understand the evolutionary relationships in egg cannibalism by A. custos and contribute to the efficient mass rearing and realization of A. custos in biological control systems.
Collapse
|
18
|
Panel ADC, Pen I, Pannebakker BA, Helsen HHM, Wertheim B. Seasonal morphotypes of Drosophila suzukii differ in key life-history traits during and after a prolonged period of cold exposure. Ecol Evol 2020; 10:9085-9099. [PMID: 32953048 PMCID: PMC7487234 DOI: 10.1002/ece3.6517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 01/13/2023] Open
Abstract
Seasonal polyphenism in Drosophila suzukii manifests itself in two discrete adult morphotypes, the "winter morph" (WM) and the "summer morph" (SM). These morphotypes are known to differ in thermal stress tolerance, and they co-occur during parts of the year. In this study, we aimed to estimate morph-specific survival and fecundity in laboratory settings simulating field conditions. We specifically analyzed how WM and SM D. suzukii differed in mortality and reproduction during and after a period of cold exposure resembling winter and spring conditions in temperate climates. The median lifespan of D. suzukii varied around 5 months for the WM flies and around 7 months for the SM flies. WM flies showed higher survival during the cold-exposure period compared with SM flies, and especially SM males suffered high mortality under these conditions. In contrast, SM flies had lower mortality rates than WM flies under spring-like conditions. Intriguingly, reproductive status (virgin or mated) did not impact the fly survival, either during the cold exposure or during spring-like conditions. Even though the reproductive potential of WM flies was greatly reduced compared with SM flies, both WM and SM females that had mated before the cold exposure were able to continuously produce viable offspring for 5 months under spring-like conditions. Finally, the fertility of the overwintered WM males was almost zero, while the surviving SM males did not suffer reduced fertility. Combined with other studies on D. suzukii monitoring and overwintering behavior, these results suggest that overwintered flies of both morphotypes could live long enough to infest the first commercial crops of the season. The high mortality of SM males and the low fertility of WM males after prolonged cold exposure also highlight the necessity for females to store sperm over winter to be able to start reproducing early in the following spring.
Collapse
Affiliation(s)
- Aurore D. C. Panel
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Ido Pen
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Bart A. Pannebakker
- Laboratory of GeneticsWageningen University & ResearchWageningenThe Netherlands
| | | | - Bregje Wertheim
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
19
|
Wang F, Wang K, Forknall N, Parekh R, Dickson BJ. Circuit and Behavioral Mechanisms of Sexual Rejection by Drosophila Females. Curr Biol 2020; 30:3749-3760.e3. [PMID: 32795445 DOI: 10.1016/j.cub.2020.07.083] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/29/2022]
Abstract
The mating decisions of Drosophila melanogaster females are primarily revealed through either of two discrete actions: opening of the vaginal plates to allow copulation, or extrusion of the ovipositor to reject the male. Both actions are triggered by the male courtship song, and both are dependent upon the female's mating status. Virgin females are more likely to open their vaginal plates in response to song; mated females are more likely to extrude their ovipositor. Here, we examine the neural cause and behavioral consequence of ovipositor extrusion. We show that the DNp13 descending neurons act as command-type neurons for ovipositor extrusion, and that ovipositor extrusion is an effective deterrent only when performed by females that have previously mated. The DNp13 neurons respond to male song via direct synaptic input from the pC2l auditory neurons. Mating status does not modulate the song responses of DNp13 neurons, but rather how effectively they can engage the motor circuits for ovipositor extrusion. We present evidence that mating status information is mediated by ppk+ sensory neurons in the uterus, which are activated upon ovulation. Vaginal plate opening and ovipositor extrusion are thus controlled by anatomically and functionally distinct circuits, highlighting the diversity of neural decision-making circuits even in the context of closely related behaviors with shared exteroceptive and interoceptive inputs.
Collapse
Affiliation(s)
- Fei Wang
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Kaiyu Wang
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Nora Forknall
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
20
|
Brünner B, Saumweber J, Samur M, Weber D, Schumann I, Mahishi D, Rohwedder A, Thum AS. Food restriction reconfigures naïve and learned choice behavior in Drosophila larvae. J Neurogenet 2020; 34:123-132. [PMID: 31975653 DOI: 10.1080/01677063.2020.1714612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In many animals, the establishment and expression of food-related memory is limited by the presence of food and promoted by its absence, implying that this behavior is driven by motivation. In the past, this has already been demonstrated in various insects including honeybees and adult Drosophila. For Drosophila larvae, which are characterized by an immense growth and the resulting need for constant food intake, however, knowledge is rather limited. Accordingly, we have analyzed whether starvation modulates larval memory formation or expression after appetitive classical olfactory conditioning, in which an odor is associated with a sugar reward. We show that odor-sugar memory of starved larvae lasts longer than in fed larvae, although the initial performance is comparable. 80 minutes after odor fructose conditioning, only starved but not fed larvae show a reliable odor-fructose memory. This is likely due to a specific increase in the stability of anesthesia-resistant memory (ARM). Furthermore, we observe that starved larvae, in contrast to fed ones, prefer sugars that offer a nutritional benefit in addition to their sweetness. Taken together our work shows that Drosophila larvae adjust the expression of learned and naïve choice behaviors in the absence of food. These effects are only short-lasting probably due to their lifestyle and their higher internal motivation to feed. In the future, the extensive use of established genetic tools will allow us to identify development-specific differences arising at the neuronal and molecular level.
Collapse
Affiliation(s)
- Benita Brünner
- Department of Genetics, University of Leipzig, Leipzig, Germany
| | | | - Merve Samur
- Department of Genetics, University of Leipzig, Leipzig, Germany.,Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Turkey
| | - Denise Weber
- Department of Genetics, University of Leipzig, Leipzig, Germany
| | | | - Deepthi Mahishi
- Department of Genetics, University of Leipzig, Leipzig, Germany
| | | | - Andreas S Thum
- Department of Genetics, University of Leipzig, Leipzig, Germany
| |
Collapse
|
21
|
Ferreira CH, Moita MA. What can a non-eusocial insect tell us about the neural basis of group behaviour? CURRENT OPINION IN INSECT SCIENCE 2019; 36:118-124. [PMID: 31563022 DOI: 10.1016/j.cois.2019.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/25/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Group behaviour has been extensively studied in canonically social swarming, shoaling and flocking vertebrates and invertebrates, providing great insight into the behavioural and ecological aspects of group living. However, the search for its neuronal basis is lagging behind. In the natural environment, Drosophila melanogaster, increasingly used as a model to study neuronal circuits and behaviour, spend their lives surrounded by several conspecifics of different stages, as well as heterospecifics. Despite their dynamic multi-organism natural environment, the neuronal basis of social behaviours has been typically studied in dyadic interactions, such as mating or aggression. This review will focus on recent studies regarding how the behaviour of fruit flies can be shaped by the nature of the surrounding group. We argue that the rich social environment of Drosophila melanogaster, its arsenal of neurogenetic tools and the ability to use large sample sizes for detailed quantitative behavioural analysis makes this species ideal for mechanistic studies of group behaviour.
Collapse
Affiliation(s)
- Clara H Ferreira
- Champalimaud Research, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal.
| | - Marta A Moita
- Champalimaud Research, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal.
| |
Collapse
|
22
|
Khodaei L, Long TAF. Kin recognition and co-operative foraging in Drosophila melanogaster larvae. J Evol Biol 2019; 32:1352-1361. [PMID: 31454451 DOI: 10.1111/jeb.13531] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/05/2019] [Accepted: 08/22/2019] [Indexed: 02/05/2023]
Abstract
A long-standing goal for biologists and social scientists is to understand the factors that lead to the evolution and maintenance of co-operative behaviour between conspecifics. To that end, the fruit fly, Drosophila melanogaster, is becoming an increasingly popular model species to study sociality; however, most of the research to date has focused on adult behaviours. In this study, we set out to examine group-feeding behaviour by larvae and to determine whether the degree of relatedness between individuals mediates the expression co-operation. In a series of assays, we manipulated the average degree of relatedness in groups of third-instar larvae that were faced with resource scarcity, and measured the size, frequency and composition of feeding clusters, as well as the fitness benefits associated with co-operation. Our results suggest that larval D. melanogaster are capable of kin recognition (something that has not been previously described in this species), as clusters were more numerous, larger and involved more larvae, when more closely related kin were present in the social environment. These findings are discussed in the context of the correlated fitness-associated benefits of co-operation, the potential mechanisms by which individuals may recognize kin, and how that kinship may play an important role in facilitating the manifestation of this co-operative behaviour.
Collapse
Affiliation(s)
- Lucas Khodaei
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Tristan A F Long
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| |
Collapse
|
23
|
Intraspecific Competition Affects the Pupation Behavior of Spotted-Wing Drosophila (Drosophila suzukii). Sci Rep 2019; 9:7775. [PMID: 31123337 PMCID: PMC6533276 DOI: 10.1038/s41598-019-44248-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/10/2019] [Indexed: 01/24/2023] Open
Abstract
In Drosophila, intraspecific competition (IC) may cause stress, cannibalism, and affect survival and reproduction. By migrating to less crowded environments, individuals can escape IC. Larvae of spotted-wing drosophila (SWD, Drosophila suzukii) are often exposed to IC. They are known to pupate either attached to or detached from their hosts. Here, we hypothesized that SWD pupates detached from the larval host as a means to escape IC and increase their survival and fitness. Under laboratory conditions, IC resulted in increased pupation detached from the larval host in both cornmeal medium and blueberry fruit. Males were more prone to detached pupation than females. In blueberry, IC-exposed larvae pupated farther away from the fruit relative to singly-developed individuals. Detached pupation was associated to survival and fitness gains. For example, larvae that displayed detached pupation showed shorter egg-pupa development times, higher pupa-adult survival, and larger adult size relative to fruit-attached individuals. These findings demonstrate that SWD larvae select pupation sites based on IC, and that such a strategy is associated with improved survival and fitness. This information contributes to a better understanding of SWD basic biology and behavior, offering insights to the development of improved practices to manage this pest in the field.
Collapse
|