1
|
Stark KA, Clegg T, Bernhardt JR, Grainger TN, Kempes CP, Savage V, O'Connor MI, Pawar S. Toward a More Dynamic Metabolic Theory of Ecology to Predict Climate Change Effects on Biological Systems. Am Nat 2025; 205:285-305. [PMID: 39965227 DOI: 10.1086/733197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
AbstractThe metabolic theory of ecology (MTE) aims to link biophysical constraints on individual metabolic rates to the emergence of patterns at the population and ecosystem scales. Because MTE links temperature's kinetic effects on individual metabolism to ecological processes at higher levels of organization, it holds great potential to mechanistically predict how complex ecological systems respond to warming and increased temperature fluctuations under climate change. To scale up from individuals to ecosystems, applications of classical MTE implicitly assume that focusing on steady-state dynamics and averaging temperature responses across individuals and populations adequately capture the dominant attributes of biological systems. However, in the context of climate change, frequent perturbations from steady state and rapid changes in thermal performance curves via plasticity and evolution are almost guaranteed. Here, we explain how some of the assumptions made when applying MTE's simplest canonical expression can lead to blind spots in understanding how temperature change affects biological systems and how this presents an opportunity for formal expansion of the theory. We review existing advances in this direction and provide a decision tree for identifying when dynamic modifications to classical MTE are needed for certain research questions. We conclude with empirical and theoretical challenges to be addressed in a more dynamic MTE for understanding biological change in an increasingly uncertain world.
Collapse
|
2
|
Zhou L, Luo M, Hong P, Leroux S, Chen F, Wang S. Energy transfer efficiency rather than productivity determines the strength of aquatic trophic cascades. Ecology 2025; 106:e4482. [PMID: 39604056 DOI: 10.1002/ecy.4482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/22/2024] [Accepted: 09/17/2024] [Indexed: 11/29/2024]
Abstract
Trophic cascades are important determinants of food web dynamics and functioning, yet mechanisms accounting for variation in trophic cascade strength remain elusive. Here, we used food chain models and a mesocosm experiment (phytoplankton-zooplankton-shrimp) to disentangle the relative importance of two energetic processes driving trophic cascades: primary productivity and energy transfer efficiency. Food chain models predicted that the strength of trophic cascades was increased as the energy transfer efficiency between herbivore and predator (predator efficiency) increased, while its relationship with primary productivity was relatively weak. These model predictions were confirmed by a mesocosm experiment, which showed that the strength of trophic cascade increased with predator efficiency but remained unaffected by nutrient supply rate or primary productivity. Combined, our results indicate that the efficiency of energy transfer along the food chain, rather than the total amount of energy fixed by primary producers, determines the strength of trophic cascades. Our study provides an integrative perspective to reconcile energetic and population dynamics in food webs, which has implications for both ecological research and ecosystem management.
Collapse
Affiliation(s)
- Libin Zhou
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Mingyu Luo
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Pubin Hong
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Shawn Leroux
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Feizhou Chen
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Shaopeng Wang
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
3
|
DeLong JP, Coblentz KE, Uiterwaal SF, Akwani C, Salsbery ME. Temperature and predators as interactive drivers of community properties. Ecol Evol 2023; 13:e10665. [PMID: 37920766 PMCID: PMC10618570 DOI: 10.1002/ece3.10665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/30/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023] Open
Abstract
The effects of warming on ecological communities emerge from a range of potentially asymmetric impacts on individual physiology and development. Understanding these responses, however, is limited by our ability to connect mechanisms or emergent patterns across the many processes that drive variation in demography. Further complicating this understanding is the gain or loss of predators to many communities, which may interact with changes in temperature to drive community change. Here we conducted a factorial warming and predation experiment to test generalized predictions about responses to warming. We used microcosms with a range of protists, rotifers, and a gastrotrich, with and without the predator Actinosphaerium, to assess changes in diversity, body size, function, and composition in response to warming. We find that community respiration and predator:prey biovolume ratios peak at intermediate temperatures, while species richness declined with temperature. We also found that overall biomass increased with species richness, driven by the effect of temperature on richness. There was little evidence of an interaction between predation and temperature change, likely because the predator was mostly limited to the intermediate temperatures. Overall, our results suggest that general predictions about community change are still challenging to make but may benefit by considering multiple dimensions of community patterns in an integrated way.
Collapse
Affiliation(s)
- John P. DeLong
- School of Biological SciencesUniversity of Nebraska – LincolnLincolnNebraskaUSA
| | - Kyle E. Coblentz
- School of Biological SciencesUniversity of Nebraska – LincolnLincolnNebraskaUSA
| | - Stella F. Uiterwaal
- School of Biological SciencesUniversity of Nebraska – LincolnLincolnNebraskaUSA
- Present address:
Living Earth CollaborativeWashington University in St. LouisSt. LouisMissouriUSA
| | - Chika Akwani
- School of Biological SciencesUniversity of Nebraska – LincolnLincolnNebraskaUSA
| | - Miranda E. Salsbery
- School of Biological SciencesUniversity of Nebraska – LincolnLincolnNebraskaUSA
- Present address:
Rochester Institute of Technology K‐12 University CenterRochesterNew YorkUSA
| |
Collapse
|
4
|
Zeng C, Xing R, Huang B, Cheng X, Shi W, Liu S. Phytoplankton in headwater streams: spatiotemporal patterns and underlying mechanisms. FRONTIERS IN PLANT SCIENCE 2023; 14:1276289. [PMID: 37941677 PMCID: PMC10628446 DOI: 10.3389/fpls.2023.1276289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Phytoplankton are key members of river ecosystems wherein they influence and regulate the health of the local environment. Headwater streams are subject to minimal human activity and serve as the sources of rivers, generally exhibiting minimal pollution and strong hydrodynamic forces. To date, the characteristics of phytoplankton communities in headwater streams have remained poorly understood. This study aims to address this knowledge gap by comparing phytoplankton communities in headwater streams with those in plain rivers. The results demonstrated that within similar watershed sizes, lower levels of spatiotemporal variability were observed with respect to phytoplankton community as compared to plain rivers. Lower nutrient levels and strong hydrodynamics contribute to phytoplankton growth limitation in these streams, thereby reducing the levels of spatiotemporal variation. However, these conditions additionally contribute to greater phytoplankton diversity and consequent succession towards Cyanophyta. Overall, these results provide new insights into the dynamics of headwater stream ecosystems and support efforts for their ecological conservation.
Collapse
Affiliation(s)
- Chenjun Zeng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, China
- Guangdong Research Institute of Water Resources and Hydropower, Guangzhou, China
| | - Ran Xing
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Bensheng Huang
- Guangdong Research Institute of Water Resources and Hydropower, Guangzhou, China
| | - Xiangju Cheng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, China
| | - Wenqing Shi
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Shufeng Liu
- Guangdong Research Institute of Water Resources and Hydropower, Guangzhou, China
| |
Collapse
|
5
|
García FC, Clegg T, O'Neill DB, Warfield R, Pawar S, Yvon-Durocher G. The temperature dependence of microbial community respiration is amplified by changes in species interactions. Nat Microbiol 2023; 8:272-283. [PMID: 36732470 DOI: 10.1038/s41564-022-01283-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/02/2022] [Indexed: 02/04/2023]
Abstract
Respiratory release of CO2 by microorganisms is one of the main components of the global carbon cycle. However, there are large uncertainties regarding the effects of climate warming on the respiration of microbial communities, owing to a lack of mechanistic, empirically tested theory that incorporates dynamic species interactions. We present a general mathematical model which predicts that thermal sensitivity of microbial community respiration increases as species interactions change from competition to facilitation (for example, commensalism, cooperation and mutualism). This is because facilitation disproportionately increases positive feedback between the thermal sensitivities of species-level metabolic and biomass accumulation rates at warmer temperatures. We experimentally validate our theoretical predictions in a community of eight bacterial taxa and show that a shift from competition to facilitation, after a month of co-adaptation, caused a 60% increase in the thermal sensitivity of respiration relative to de novo assembled communities that had not co-adapted. We propose that rapid changes in species interactions can substantially change the temperature dependence of microbial community respiration, which should be accounted for in future climate-carbon cycle models.
Collapse
Affiliation(s)
- Francisca C García
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
- Red Sea Research Centre, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Tom Clegg
- Georgina Mace Centre, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK
| | | | - Ruth Warfield
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | - Samraat Pawar
- Georgina Mace Centre, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK.
| | | |
Collapse
|
6
|
Atkins RL, Clancy KM, Ellis WT, Osenberg CW. Thermal Traits Vary with Mass and across Populations of the Marsh Periwinkle, Littoraria irrorata. THE BIOLOGICAL BULLETIN 2022; 242:173-196. [PMID: 35767414 DOI: 10.1086/719850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
AbstractPhysiological processes influence how individuals perform in various environmental contexts. The basis of such processes, metabolism, scales allometrically with body mass and nonlinearly with temperature, as described by a thermal performance curve. Past studies of thermal performance curves tend to focus on effects of temperature on a single body size or population, rather than variation in the thermal performance curve across sizes and populations. Here, we estimate intraspecific variation in parameters of the thermal performance curve in the salt marsh gastropod Littoraria irrorata. First, we quantify the thermal performance curve for respiration rate as a function of both temperature and body size in Littoraria and evaluate whether the thermal parameters and body size scaling are interdependent. Next, we quantify how parameters in the thermal performance curve for feeding rate vary between three Littoraria populations that occur along a latitudinal gradient. Our work suggests that the thermal traits describing Littoraria respiration are dependent on body mass and that both the thermal traits and the mass scaling of feeding vary across sites. We found limited evidence to suggest that mass scaling of Littoraria feeding or respiration rates depends on temperature. Variation in the thermal performance curves interacts with the size structure of the Littoraria population to generate divergent population-level responses to temperature. These results highlight the importance of considering variation in population size structure and physiological allometry when attempting to predict how temperature change will affect physiological responses and consumer-resource interactions.
Collapse
|
7
|
Affiliation(s)
| | - John M. Grady
- National Great Rivers Research and Education Center, East Alton IL USA
| | - Anthony I. Dell
- National Great Rivers Research and Education Center, East Alton IL USA
- Department of Biology Washington University in St Louis St Louis MO USA
| |
Collapse
|
8
|
Rocca JD, Yammine A, Simonin M, Gibert JP. Protist Predation Influences the Temperature Response of Bacterial Communities. Front Microbiol 2022; 13:847964. [PMID: 35464948 PMCID: PMC9022080 DOI: 10.3389/fmicb.2022.847964] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/08/2022] [Indexed: 01/04/2023] Open
Abstract
Temperature strongly influences microbial community structure and function, in turn contributing to global carbon cycling that can fuel further warming. Recent studies suggest that biotic interactions among microbes may play an important role in determining the temperature responses of these communities. However, how predation regulates these microbiomes under future climates is still poorly understood. Here, we assess whether predation by a key global bacterial consumer-protists-influences the temperature response of the community structure and function of a freshwater microbiome. To do so, we exposed microbial communities to two cosmopolitan protist species-Tetrahymena thermophila and Colpidium sp.-at two different temperatures, in a month-long microcosm experiment. While microbial biomass and respiration increased with temperature due to community shifts, these responses changed over time and in the presence of protists. Protists influenced microbial biomass and respiration rate through direct and indirect effects on bacterial community structure, and predator presence actually reduced microbial respiration at elevated temperature. Indicator species analyses showed that these predator effects were mostly determined by phylum-specific bacterial responses to protist density and cell size. Our study supports previous findings that temperature is an important driver of microbial communities but also demonstrates that the presence of a large predator can mediate these responses to warming.
Collapse
Affiliation(s)
- Jennifer D. Rocca
- Department of Biology, Duke University, Durham, NC, United States
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Andrea Yammine
- Department of Biology, Duke University, Durham, NC, United States
| | - Marie Simonin
- Department of Biology, Duke University, Durham, NC, United States
- University of Angers, Institut Agro, Institut National de la Recherche Agronomique, L’Institut de Recherche en Horticulture et Semences, Structure Fédérative de Recherche Qualité et Santé du Végétal, Angers, France
| | - Jean P. Gibert
- Department of Biology, Duke University, Durham, NC, United States
| |
Collapse
|
9
|
Aguirre WE, Alvarez‐Mieles G, Anaguano‐Yancha F, Burgos Morán R, Cucalón RV, Escobar‐Camacho D, Jácome‐Negrete I, Jiménez Prado P, Laaz E, Miranda‐Troya K, Navarrete‐Amaya R, Nugra Salazar F, Revelo W, Rivadeneira JF, Valdiviezo Rivera J, Zárate Hugo E. Conservation threats and future prospects for the freshwater fishes of Ecuador: A hotspot of Neotropical fish diversity. JOURNAL OF FISH BIOLOGY 2021; 99:1158-1189. [PMID: 34235726 PMCID: PMC8518725 DOI: 10.1111/jfb.14844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/04/2021] [Accepted: 07/04/2021] [Indexed: 06/01/2023]
Abstract
Freshwater fish communities in Ecuador exhibit some of the highest levels of diversity and endemism in the Neotropics. Unfortunately, aquatic ecosystems in the country are under serious threat and conditions are deteriorating. In 2018-19, the government of Ecuador sponsored a series of workshops to examine the conservation status of Ecuador's freshwater fishes. Concerns were identified for 35 species, most of which are native to the Amazon region, and overfishing of Amazonian pimelodid catfishes emerged as a major issue. However, much of the information needed to make decisions across fish groups and regions was not available, hindering the process and highlighting the need for a review of the conservation threats to Ecuador's freshwater fishes. Here, we review how the physical alteration of rivers, deforestation, wetland and floodplain degradation, agricultural and urban water pollution, mining, oil extraction, dams, overfishing, introduced species and climate change are affecting freshwater fishes in Ecuador. Although many of these factors affect fishes throughout the Neotropics, the lack of data on Ecuadorian fish communities is staggering and highlights the urgent need for more research. We also make recommendations, including the need for proper enforcement of existing environmental laws, restoration of degraded aquatic ecosystems, establishment of a national monitoring system for freshwater ecosystems, investment in research to fill gaps in knowledge, and encouragement of public engagement in citizen science and conservation efforts. Freshwater fishes are an important component of the cultural and biological legacy of the Ecuadorian people. Conserving them for future generations is critical.
Collapse
Affiliation(s)
- Windsor E. Aguirre
- Department of Biological SciencesDePaul UniversityChicagoIllinoisUSA
- Instituto Nacional de BiodiversidadQuitoEcuador
- Field Museum of Natural HistoryChicagoIllinoisUSA
| | | | | | | | - Roberto V. Cucalón
- Department of Biological SciencesDePaul UniversityChicagoIllinoisUSA
- Present address:
Program in Ecology, Evolution, and Conservation BiologyUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
| | | | - Iván Jácome‐Negrete
- Facultad de Ciencias Biológicas, Instituto de Estudios Amazónicos e InsularesUniversidad Central del EcuadorQuitoEcuador
| | - Pedro Jiménez Prado
- Pontificia Universidad Católica del Ecuador Sede EsmeraldasEsmeraldasEcuador
- Área de Ecología, Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de HuescaUniversidad de ZaragozaHuescaSpain
| | - Enrique Laaz
- Instituto Público de Investigación de Acuicultura y PescaGuayaquilEcuador
| | | | | | - Fredy Nugra Salazar
- ONG Bosque Medicinal, ONG Forest.inkGualaquizaEcuador
- Laboratorio de Limnología de la Universidad del AzuayCuencaEcuador
| | - Willan Revelo
- Unidad de Recursos Demersales Bentónicos de Agua Dulce y EmbalsesInstituto Público de Investigación de Acuicultura y PescaGuayaquilEcuador
| | | | | | | |
Collapse
|
10
|
Yang F, Liu B, Zhu Y, Wyckhuys KAG, van der Werf W, Lu Y. Species diversity and food web structure jointly shape natural biological control in agricultural landscapes. Commun Biol 2021; 4:979. [PMID: 34408250 PMCID: PMC8373963 DOI: 10.1038/s42003-021-02509-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/01/2021] [Indexed: 01/01/2023] Open
Abstract
Land-use change and agricultural intensification concurrently impact natural enemy (e.g., parasitoid) communities and their associated ecosystem services (ESs), i.e., biological pest control. However, the extent to which (on-farm) parasitoid diversity and food webs mediate landscape-level influences on biological control remains poorly understood. Here, drawing upon a 3-year study of quantitative parasitoid-hyperparasitoid trophic networks from 25 different agro-landscapes, we assess the cascading effects of landscape composition, species diversity and trophic network structure on ecosystem functionality (i.e., parasitism, hyperparasitism). Path analysis further reveals cascaded effects leading to biological control of a resident crop pest, i.e., Aphis gossypii. Functionality is dictated by (hyper)parasitoid diversity, with its effects modulated by food web generality and vulnerability. Non-crop habitat cover directly benefits biological control, whereas secondary crop cover indirectly lowers hyperparasitism. Our work underscores a need to simultaneously account for on-farm biodiversity and trophic interactions when investigating ESs within dynamic agro-landscapes.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bing Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulin Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kris A G Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- University of Queensland, Brisbane, Queensland, Australia
| | - Wopke van der Werf
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, The Netherlands
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
11
|
Cabrerizo MJ, Marañón E. Grazing Pressure Is Independent of Prey Size in a Generalist Herbivorous Protist: Insights from Experimental Temperature Gradients. MICROBIAL ECOLOGY 2021; 81:553-562. [PMID: 32829442 DOI: 10.1007/s00248-020-01578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Grazing by herbivorous protists contributes to structuring plankton communities through its effect on the growth, biomass, and competitiveness of prey organisms and also impacts the transfer of primary production towards higher trophic levels. Previous evidence shows that heterotrophic processes (grazing rates, g) are more sensitive to temperature than autotrophic ones (phytoplankton growth rates, μ) and also that small cells tend to be more heavily predated than larger ones; however, it remains unresolved how the interplay between changes in temperature and cell size modulates grazing pressure (i.e., g:μ ratio). We addressed this problem by conducting an experiment with four phytoplankton populations, from pico- to microphytoplankton, over a 12 °C gradient and in the presence/absence of a generalist herbivorous protist, Oxyrrhis marina. We found that highest g rates coincided with highest μ rates, which corresponded to intermediate cell sizes. There were no significant differences in either μ or g between the smallest and largest cell sizes considered. The g:μ ratio was largely independent of cell size and C:N ratios, and its thermal dependence was low although species-specific differences were large. We suggest that the similar g:μ found could be the consequence that the energetic demand imposed by rising temperatures would be a more important issue than the mechanical constriction to ingestion derived from prey cell size. Despite the difficulty of quantifying μ and g in natural planktonic communities, we suggest that the g:μ ratio is a key response variable to evaluate thermal sensitivity of food webs because it gives a more integrative view of trophic functioning than both rates separately.
Collapse
Affiliation(s)
- Marco J Cabrerizo
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Illa de Toralla s/n, 36331, Vigo, Spain.
- Departamento de Ecología y Biología Animal, Facultad de Ciencias del Mar, Universidade de Vigo, Campus Lagoas Marcosende s/n, 36310, Vigo, Spain.
| | - Emilio Marañón
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Illa de Toralla s/n, 36331, Vigo, Spain
- Departamento de Ecología y Biología Animal, Facultad de Ciencias del Mar, Universidade de Vigo, Campus Lagoas Marcosende s/n, 36310, Vigo, Spain
| |
Collapse
|