1
|
Peterson EA, Keur MC, Yeboah M, van de Grootevheen T, Moth L, Kamermans P, Murk T, Peck MA, Foekema E. Determining physiological responses of mussels ( Mytilus edulis) to hypoxia by combining multiple sensor techniques. CONSERVATION PHYSIOLOGY 2025; 13:coaf023. [PMID: 40225349 PMCID: PMC11991691 DOI: 10.1093/conphys/coaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/15/2025]
Abstract
Intertidal bivalves survive longer without oxygen when aerially exposed during low tide than when submerged in hypoxic water. To understand this, we combined three biosensors to continuously monitor responses of individual blue mussels (Mytilus edulis) to aerial exposure in simulated low-tide conditions and during aqueous hypoxia. A valve sensor, heart rate monitor, and an in-shell oxygen microsensor simultaneously recorded behavioural and physiological responses. During aerial exposure, which often occurs in the intertidal, all individuals immediately closed their valves, rapidly depleted in-shell oxygen, and decreased their heart rate. This suggested a shift to anaerobic metabolism and reduced activity as mechanisms to save energy and survive in-shell anoxia during 'low-tide' conditions. At the onset of exposure to hypoxic (<1 mg O2/L) water, however, all mussels fully opened their valves, with 75% of the individuals increasing valve activity for at least 1 hour (the duration of our measurements), possibly in an attempt to collect more oxygen by increasing filtration activity. Only 25% of the mussels closed their valves after about 40 minutes of aqueous hypoxia, shifting to the energy efficient strategy used during aerial exposure. As the valves of most individuals remained open during hypoxia, a mussel does not appear to need to close its valve to begin the transition to anaerobic metabolism. Interindividual variation in responses was much lower after exposure to air compared to aqueous hypoxia when the heart rate of most mussels either steadily declined or became highly erratic. Differences in energy expenditure during these different types of exposures likely explains why most mussels, at least from the population we studied, can survive longer during exposure to air compared to aqueous hypoxia, a situation that could occur under situations of elevated temperature in waters with high nutrient loads.
Collapse
Affiliation(s)
- Emily Adria Peterson
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Landsdiep 4, 1797 SZ, 't Horntje (Texel), The Netherlands
- Marine Animal Ecology, Wageningen University & Research, Droevendaalsesteeg 1, Building 107, 6708 PB Wageningen, The Netherlands
| | | | - Michael Yeboah
- Marine Animal Ecology, Wageningen University & Research, Droevendaalsesteeg 1, Building 107, 6708 PB Wageningen, The Netherlands
| | - Thomas van de Grootevheen
- Marine Animal Ecology, Wageningen University & Research, Droevendaalsesteeg 1, Building 107, 6708 PB Wageningen, The Netherlands
| | - Luke Moth
- Marine Animal Ecology, Wageningen University & Research, Droevendaalsesteeg 1, Building 107, 6708 PB Wageningen, The Netherlands
| | - Pauline Kamermans
- Wageningen Marine Research, Ankerpark 27, 1781 AG, Den Helder, The Netherlands
| | - Tinka Murk
- Marine Animal Ecology, Wageningen University & Research, Droevendaalsesteeg 1, Building 107, 6708 PB Wageningen, The Netherlands
| | - Myron A Peck
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Landsdiep 4, 1797 SZ, 't Horntje (Texel), The Netherlands
- Marine Animal Ecology, Wageningen University & Research, Droevendaalsesteeg 1, Building 107, 6708 PB Wageningen, The Netherlands
| | - Edwin Foekema
- Marine Animal Ecology, Wageningen University & Research, Droevendaalsesteeg 1, Building 107, 6708 PB Wageningen, The Netherlands
- Wageningen Marine Research, Ankerpark 27, 1781 AG, Den Helder, The Netherlands
| |
Collapse
|
2
|
Laukaityte S, Bishop MJ, Govers LL, Eriksson BDHK. Warming alters non-trophic interactions in soft bottom habitats. Oecologia 2025; 207:30. [PMID: 39909914 PMCID: PMC11799095 DOI: 10.1007/s00442-025-05662-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/28/2024] [Indexed: 02/07/2025]
Abstract
Though there is mounting evidence that climate warming is altering trophic interactions between organisms, its effects on non-trophic interactions remain relatively undocumented. In seagrass systems, the bioturbating activity of infauna influences annual seagrass patch development by influencing seed burial depth and germination success as well as sediment properties. If bioturbation is altered by warming, consequences on seagrass may result. Here, we assessed how heatwaves alter seagrass seed burial depth and germination rates when no bioturbators (control), single bioturbators and mixtures of bioturbators of contrasting feeding activities are present. The three bioturbators manipulated were surface (top 1-2 cm of sediment) biodiffusor, the brown shrimp (Crangon crangon), the shallow (top 3-8 cm) diffusor, the common cockle, (Cerastoderma edule) and the upward (5-15 cm) conveyor, the polychaete, Cappitellidae spp. We applied two temperature treatments: (1) a present-day scenario set at the average summer temperature of seagrass habitat (17ºC); and (2) a heatwave scenario modelled on the maximum recorded temperature (26.6ºC). Under present-day conditions, seed burial was greater in the presence of bioturbators than the control where no infauna was added (42-74% vs. 33 ± 7%, respectively). Cockles had the greatest impact on seed burial amongst all the bioturbators. Under the heatwave scenario, seed burial in the mixed bioturbator treatment increased to match that of the cockle treatment. Cockles and polychaetes elevated the germination rates of buried seeds under present-day temperature, but not under the heatwave scenario. Overall, these results indicate that heatwaves have the potential both to amplify and disrupt non-trophic interactions, with implications for seagrass seed germination.
Collapse
Affiliation(s)
- Simona Laukaityte
- Groningen Institute for Evolutionary Life-Sciences, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
- Department of Biological Sciences, Macquarie University, North Ryde, 2109 NSW, Australia.
| | - Melanie J Bishop
- Department of Biological Sciences, Macquarie University, North Ryde, 2109 NSW, Australia
| | - Laura L Govers
- Groningen Institute for Evolutionary Life-Sciences, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
- Royal Netherlands Institute for Sea Research, NIOZ, 1790 AB, Den Burg, The Netherlands
| | - Britas D H Klemens Eriksson
- Groningen Institute for Evolutionary Life-Sciences, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
3
|
Toumi C, Gauthier O, Grall J, Thiébaut É, Boyé A. Disentangling the effect of space, time, and environmental and anthropogenic drivers on coastal macrobenthic β diversity in contrasting habitats over 15 years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173919. [PMID: 38889817 DOI: 10.1016/j.scitotenv.2024.173919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/22/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Coastal zones are biodiversity hotspots and deliver essential ecosystem functions and services, yet they are exposed to multiple and interacting anthropogenic and environmental constraints. The individual and cumulative effects of these constraints on benthic communities, a key component of coastal ecosystems, and their variability across space and time, remains to be thoroughly quantified to guide conservation actions. Here, we explored how the presence of biogenic habitats influences the response of benthic communities to natural and anthropogenic constraints. We investigated this effect in both intertidal and subtidal habitats exposed to different pressures. We used data collected in the North-East Atlantic over 15 years (2005-2019) as part of the REBENT monitoring program, covering 38 sites of bare sediments, intertidal seagrass beds and maerl beds. We collected a range of environmental variables and proxies of anthropogenic pressures and used variation and hierarchical partitioning with redundancy analyses to estimate their relative effect on macrobenthic communities. We used descriptors modeling spatial and temporal structures (dbMEMs) to explore the scale of their effects and potential missing predictors. The selected variables explained between 53 % and 64 % of macrobenthic β diversity depending on habitat and depth. Fishing pressures, sedimentary and hydrodynamics variables stood out as the most important predictors across all habitats while proxies of anthropogenic pressures were overall more important in intertidal habitats. In the intertidal, presence of biogenic habitat strongly modulated the amount of explained variance and the identity of the selected variable. Across both tidal levels, analysis of models' residuals further indicated that biogenic habitats might mitigate the effect of extreme environmental events. Our study provides a hierarchy of the most important drivers of benthic communities across different habitats and tidal levels, emphasizing the prominence of anthropogenic pressures on intertidal communities and the role of biogenic habitats in mitigating environmental changes.
Collapse
Affiliation(s)
- Chirine Toumi
- LEMAR, Univ Brest, CNRS, IRD, Ifremer, 29280 Plouzané, France.
| | - Olivier Gauthier
- LEMAR, Univ Brest, CNRS, IRD, Ifremer, 29280 Plouzané, France; OSU IUEM, Univ Brest, CNRS, IRD, 29280 Plouzané, France
| | - Jacques Grall
- LEMAR, Univ Brest, CNRS, IRD, Ifremer, 29280 Plouzané, France; OSU IUEM, Univ Brest, CNRS, IRD, 29280 Plouzané, France
| | - Éric Thiébaut
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, Adaptation et Diversité en Milieu Marin, Place Georges Teissier, CS90074, 29688 Roscoff Cedex, France; Sorbonne Université, CNRS, OSU STAMAR, UAR2017, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Aurélien Boyé
- Ifremer, Centre de Bretagne, DYNECO, Laboratory of Coastal Benthic Ecology, 29280 Plouzané, France
| |
Collapse
|
4
|
Cabal C, Maciel GA, Martinez-Garcia R. Plant antagonistic facilitation across environmental gradients: a soil-resource ecosystem engineering model. THE NEW PHYTOLOGIST 2024; 244:670-682. [PMID: 39165156 DOI: 10.1111/nph.20053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024]
Abstract
Theory questions the persistence of nonreciprocal interactions in which one plant has a positive net effect on a neighbor that, in return, has a negative net impact on its benefactor - a phenomenon known as antagonistic facilitation. We develop a spatially explicit consumer-resource model for belowground plant competition between ecosystem engineers, plants able to mine resources and make them available for any other plant in the community, and exploiters. We use the model to determine in what environmental conditions antagonistic facilitation via soil-resource engineering emerges as an optimal strategy. Antagonistic facilitation emerges in stressful environments where ecosystem engineers' self-benefits from mining resources outweigh the competition with opportunistic neighbors. Among all potential causes of stress considered in the model, the key environmental parameter driving changes in the interaction between plants is the proportion of the resource that becomes readily available for plant consumption in the absence of any mining activity. Our results align with theories of primary succession and the stress gradient hypothesis. However, we find that the total root biomass and its spatial allocation through the root system, often used to measure the sign of the interaction between plants, do not predict facilitation reliably.
Collapse
Affiliation(s)
- Ciro Cabal
- Global Change Research Institute, Rey Juan Carlos University (IICG-URJC), 28933, Móstoles, Spain
- High Meadows Environmental Institute, Princeton University (HMEI), 08544, Princeton, NJ, USA
- Department of Biology and Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, 28933, Móstoles, Spain
| | - Gabriel A Maciel
- ICTP-South American Institute for Fundamental Research - Instituto de Física Teórica da UNESP, 01140-070, São Paulo, Brazil
| | - Ricardo Martinez-Garcia
- Center for Advanced Systems Understanding, Helmholtz-Zentrum Dresden Rossendorf (CASUS-HZDR), 02826, Görlitz, Germany
- ICTP-South American Institute for Fundamental Research - Instituto de Física Teórica da UNESP, 01140-070, São Paulo, Brazil
| |
Collapse
|
5
|
Carroll G, Abrahms B, Brodie S, Cimino MA. Spatial match-mismatch between predators and prey under climate change. Nat Ecol Evol 2024; 8:1593-1601. [PMID: 38914712 DOI: 10.1038/s41559-024-02454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/30/2024] [Indexed: 06/26/2024]
Abstract
Climate change is driving a rapid redistribution of life on Earth. Variability in the rates, magnitudes and directions of species' shifts can alter spatial overlap between predators and prey, with the potential to decouple trophic interactions. Although phenological mismatches between predator requirements and prey availability under climate change are well-established, 'spatial match-mismatch' dynamics remain poorly understood. We synthesize global evidence for climate-driven changes in spatial predator-prey overlap resulting from species redistribution across marine and terrestrial domains. We show that spatial mismatches can have vastly different outcomes for predator populations depending on their diet specialization and role within the wider ecosystem. We illustrate ecosystem-level consequences of climate-driven changes in spatial predator-prey overlap, from restructuring food webs to altering socio-ecological interactions. It remains unclear how predator-prey overlap at the landscape scale relates to prey encounter and consumption rates at local scales, or how the spatial reorganization of food webs affects ecosystem function. We identify key research directions necessary to resolve the scale of ecological impacts caused by species redistribution under climate change.
Collapse
Affiliation(s)
| | - Briana Abrahms
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA, USA
| | - Stephanie Brodie
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment, Brisbane, Queensland, Australia
| | - Megan A Cimino
- Institute of Marine Science, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
6
|
Chabrerie A, Arenas F. What if the upwelling weakens? Effects of rising temperature and nutrient depletion on coastal assemblages. Oecologia 2024; 205:365-381. [PMID: 38836933 PMCID: PMC11281971 DOI: 10.1007/s00442-024-05571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Surface temperature of the oceans has increased globally over the past decades. In coastal areas influenced by eastern boundary upwelling systems (EBUS), winds push seawater offshore and deep, cold and nutrient-rich seawater rise towards the surface, partially buffering global warming. On the North coast of Portugal, the NW Iberian upwelling system allows extensive kelp forests to thrive in these "boreal-like" conditions, fostering highly diverse and productive communities. However, the warming of the upper layer of the ocean may weaken this upwelling, leading to higher sea surface temperature and lower nutrient input in the coastal areas. The effects of these changes on the structure and function of coastal ecosystems remain unexplored. The present study aimed to examine the combined effects of elevated temperature and nutrient depletion on semi-naturally structured assemblages. The eco-physiological responses investigated included growth, chlorophyll fluorescence and metabolic rates at the levels of individual species and whole assemblages. Our findings showed interactive effects of the combination of elevated temperature with nutrient depletion on the large canopy-forming species (i.e., kelp). As main contributor to community response, those effects drove the whole assemblage responses to significant losses in productivity levels. We also found an additive effect of elevated temperature and reduced nutrients on sub-canopy species (i.e., Chondrus crispus), while turfs were only affected by temperature. Our results suggest that under weakening upwelling scenarios, the ability of the macroalgal assemblages to maintain high productivity rates could be seriously affected and predict a shift in community composition with the loss of marine forests.
Collapse
Affiliation(s)
- Axel Chabrerie
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| | - Francisco Arenas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal.
| |
Collapse
|
7
|
Ravaglioli C, De Marchi L, Anselmi S, Dattolo E, Fontanini D, Pretti C, Procaccini G, Rilov G, Renzi M, Silverman J, Bulleri F. Ocean acidification impairs seagrass performance under thermal stress in shallow and deep water. ENVIRONMENTAL RESEARCH 2024; 241:117629. [PMID: 37967703 DOI: 10.1016/j.envres.2023.117629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/21/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
Despite the effects of ocean acidification (OA) on seagrasses have been widely investigated, predictions of seagrass performance under future climates need to consider multiple environmental factors. Here, we performed a mesocosm study to assess the effects of OA on shallow and deep Posidonia oceanica plants. The experiment was run in 2021 and repeated in 2022, a year characterized by a prolonged warm water event, to test how the effects of OA on plants are modulated by thermal stress. The response of P. oceanica to experimental conditions was investigated at different levels of biological organization. Under average seawater temperature, there were no effects of OA in both shallow and deep plants, indicating that P. oceanica is not limited by current inorganic carbon concentration, regardless of light availability. In contrast, under thermal stress, exposure of plants to OA increased lipid peroxidation and decreased photosynthetic performance, with deep plants displaying higher levels of heat stress, as indicated by the over-expression of stress-related genes and the activation of antioxidant systems. In addition, warming reduced plant growth, regardless of seawater CO2 and light levels, suggesting that thermal stress may play a fundamental role in the future development of seagrass meadows. Our results suggest that OA may exacerbate the negative effects of future warming on seagrasses.
Collapse
Affiliation(s)
- Chiara Ravaglioli
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy.
| | - Lucia De Marchi
- Dipartimento di Scienze Veterinarie, Università of Pisa, Via Livornese (lato monte), 56122, San Piero a Grado, Pisa, Italy.
| | - Serena Anselmi
- Bioscience Research Center, Via Aurelia Vecchia, 32, 58015, Orbetello, GR, Italy.
| | - Emanuela Dattolo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; National Biodiversity Future Centre (NBFC), Palermo, Italy.
| | - Debora Fontanini
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy.
| | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università of Pisa, Via Livornese (lato monte), 56122, San Piero a Grado, Pisa, Italy; Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N.Sauro 4, 57128, Livorno, Italy.
| | - Gabriele Procaccini
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; National Biodiversity Future Centre (NBFC), Palermo, Italy.
| | - Gil Rilov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel.
| | - Monia Renzi
- Dipartimento di Scienze Della Vita, Università di Trieste, Via Giorgieri, 10, 34127, Trieste, Italy.
| | - Jacob Silverman
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel.
| | - Fabio Bulleri
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy; Centro Interdipartimentale di Ricerca per Lo Studio Degli Effetti Del Cambiamento Climatico (CIRSEC), Università di Pisa, Italy.
| |
Collapse
|
8
|
Ravaglioli C, De Marchi L, Giannessi J, Pretti C, Bulleri F. Seagrass meadows as ocean acidification refugia for sea urchin larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167465. [PMID: 37778543 DOI: 10.1016/j.scitotenv.2023.167465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Foundation species have been widely documented to provide suitable habitats for other species by ameliorating stressful environmental conditions. Nonetheless, their role in rescuing stress-sensitive species from adverse conditions due to climate change remains often unexplored. Here, we performed a mesocosm experiment to assess whether the seagrass, Posidonia oceanica, through its photosynthetic activity, could mitigate the negative effects of ocean acidification on larval development and growth of the calcifying sea urchin, Paracentrotus lividus. Sea urchin larvae at early and late developmental stages that are generally associated to benthic habitats, were grown in aquaria with or without P. oceanica plants, under ambient or low pH conditions predicted by the end of the century under the worst climate scenario (RCP8.5). The percentage of abnormal larvae and their total body length under different experimental conditions were assessed on early- (i.e., pluteus; 72 h post-fertilization) and final-developmental stages (i.e., echinopluteus; 30 days post-fertilization), respectively. The presence of P. oceanica increased mean daily pH values of ∼0.1 and ∼0.15 units at ambient and low pH conditions, respectively, compared with tanks without plants. When grown at low pH in association with P. oceanica, plutei showed a ∼23 % reduction of malformations and echinoplutei a ∼34 % increase in total body length, respectively, compared with larvae developing in tanks without plants. Our results suggest that P. oceanica, by increasing pH and altering seawater carbonate chemistry through its metabolic activity, could buffer the negative effects of ocean acidification on calcifying organisms and could, thus, represent a tool against climate-driven loss of biodiversity.
Collapse
Affiliation(s)
- C Ravaglioli
- Dipartimento di Biologia, Università di Pisa, CoNISMa, via Derna 1, 56126 Pisa, Italy.
| | - L De Marchi
- Dipartimento di Scienze Veterinarie, Università of Pisa, Via Livornese (lato monte) - 56122 San Piero a Grado, Pisa, Italy.
| | - J Giannessi
- Dipartimento di Scienze Veterinarie, Università of Pisa, Via Livornese (lato monte) - 56122 San Piero a Grado, Pisa, Italy.
| | - C Pretti
- Dipartimento di Scienze Veterinarie, Università of Pisa, Via Livornese (lato monte) - 56122 San Piero a Grado, Pisa, Italy; Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N.Sauro 4, 57128 Livorno, Italy.
| | - F Bulleri
- Dipartimento di Biologia, Università di Pisa, CoNISMa, via Derna 1, 56126 Pisa, Italy; Centro interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Italy.
| |
Collapse
|
9
|
Reis A, Rovai AS, Lana PDC, Barros F. Mangrove interaction with saltmarsh varies at different life stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167410. [PMID: 37769724 DOI: 10.1016/j.scitotenv.2023.167410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Mangroves and saltmarshes are two of the most relevant coastal habitats for humans. These ecosystems offer several services like coastal protection, climate mitigation, and nursery habitats for many artisanal and commercially exploited fish, crabs, and shellfish. They mostly dominate different latitudinal ranges but in several places around the world they co-occur and interact. Here, we summarize the current scientific knowledge on mangrove-saltmarsh ecological interactions and propose a conceptual model. We screened 1410 articles from 1945 to 2022 and selected 29 experiments that assessed mangrove-saltmarsh ecological interactions. Both positive and negative interactions are observed but there is variation along different mangrove life stages. Higher retention and establishment of mangrove propagules are found inside saltmarshes than on bare flats, i.e. facilitation, and these effects are higher at grass than at succulent saltmarsh species. Mangrove seedlings, saplings, or trees mostly compete with saltmarshes, negatively affecting mangrove growth. We propose a model with different outcomes considering the interaction between different mangrove's life stages and saltmarsh forms and discussed these interactions in the light of anthropogenic threats and climate change.
Collapse
Affiliation(s)
- Alice Reis
- Laboratório de Ecologia Bentônica, IBIO & CIEnAM & INCT IN-TREE, Universidade Federal da Bahia, Rua Barão de Geremoabo, s/n, Campus de Ondina, Salvador, Bahia 40170-000, Brazil.
| | - André Scarlate Rovai
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; U.S. Army Engineer Research and Development Center, Vicksburg, MS 39180, USA
| | - Paulo da Cunha Lana
- Laboratório de Bentos, Centro de Estudos do Mar, Universidade Federal do Paraná, Av. Beira-mar, s/n, Pontal do Paraná, PR 83255-976, Brazil
| | - Francisco Barros
- Laboratório de Ecologia Bentônica, IBIO & CIEnAM & INCT IN-TREE, Universidade Federal da Bahia, Rua Barão de Geremoabo, s/n, Campus de Ondina, Salvador, Bahia 40170-000, Brazil
| |
Collapse
|
10
|
Nguyen HM, Ruocco M, Dattolo E, Cassetti FP, Calvo S, Tomasello A, Marín-Guirao L, Pernice M, Procaccini G. Signs of local adaptation by genetic selection and isolation promoted by extreme temperature and salinity in the Mediterranean seagrass Posidonia oceanica. Mol Ecol 2023; 32:4313-4328. [PMID: 37271924 DOI: 10.1111/mec.17032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
Adaptation to local conditions is known to occur in seagrasses; however, knowledge of the genetic basis underlying this phenomenon remains scarce. Here, we analysed Posidonia oceanica from six sites within and around the Stagnone di Marsala, a semi-enclosed coastal lagoon where salinity and temperature exceed the generally described tolerance thresholds of the species. Sea surface temperatures (SSTs) were measured and plant samples were collected for the assessment of morphology, flowering rate and for screening genome-wide polymorphisms using double digest restriction-site-associated DNA sequencing. Results demonstrated more extreme SSTs and salinity levels inside the lagoon than the outer lagoon regions. Morphological results showed significantly fewer and shorter leaves and reduced rhizome growth of P. oceanica from the inner lagoon and past flowering events were recorded only for a meadow farthest away from the lagoon. Using an array of 51,329 single nucleotide polymorphisms, we revealed a clear genetic structure among the study sites and confirmed the genetic isolation and high clonality of the innermost site. In all, 14 outlier loci were identified and annotated with several proteins including those relate to plant stress response, protein transport and regulators of plant-specific developmental events. Especially, five outlier loci showed maximum allele frequency at the innermost site, likely reflecting adaptation to the extreme temperature and salinity regimes, possibly due to the selection of more resistant genotypes and the progressive restriction of gene flow. Overall, this study helps us to disentangle the genetic basis of seagrass adaptation to local environmental conditions and may support future works on assisted evolution in seagrasses.
Collapse
Affiliation(s)
| | | | | | | | - Sebastiano Calvo
- Dipartimento di Scienze della Terra e del Mare, Università di Palermo, Palermo, Italy
| | - Agostino Tomasello
- Dipartimento di Scienze della Terra e del Mare, Università di Palermo, Palermo, Italy
| | - Lázaro Marín-Guirao
- Stazione Zoologica Anton Dohrn, Napoli, Italy
- Oceanographic Center of Murcia, Seagrass Ecology Group, Spanish Institute of Oceanography (IEO-CSIC), Murcia, Spain
| | - Mathieu Pernice
- Faculty of Science, Climate Change Cluster (C3), University of Technology Sydney, Ultimo, New South Wales, Australia
| | | |
Collapse
|
11
|
Losapio G, Genes L, Knight CJ, McFadden TN, Pavan L. Monitoring and modelling the effects of ecosystem engineers on ecosystem functioning. Funct Ecol 2023. [DOI: 10.1111/1365-2435.14315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Gianalberto Losapio
- Department of Biology Stanford University Stanford California USA
- Institute of Earth Surface Dynamics, University of Lausanne Lausanne Switzerland
- Department of Biosciences University of Milan Milan Italy
| | - Luísa Genes
- Department of Biology Stanford University Stanford California USA
| | | | - Tyler N. McFadden
- Department of Biology Stanford University Stanford California USA
- College of Earth, Ocean, and Atmospheric Sciences Oregon State University Corvallis Oregon USA
| | - Lucas Pavan
- Department of Biology Stanford University Stanford California USA
| |
Collapse
|
12
|
Curd A, Chevalier M, Vasquez M, Boyé A, Firth LB, Marzloff MP, Bricheno LM, Burrows MT, Bush LE, Cordier C, Davies AJ, Green JAM, Hawkins SJ, Lima FP, Meneghesso C, Mieszkowska N, Seabra R, Dubois SF. Applying landscape metrics to species distribution model predictions to characterize internal range structure and associated changes. GLOBAL CHANGE BIOLOGY 2023; 29:631-647. [PMID: 36394183 DOI: 10.1111/gcb.16496] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Distributional shifts in species ranges provide critical evidence of ecological responses to climate change. Assessments of climate-driven changes typically focus on broad-scale range shifts (e.g. poleward or upward), with ecological consequences at regional and local scales commonly overlooked. While these changes are informative for species presenting continuous geographic ranges, many species have discontinuous distributions-both natural (e.g. mountain or coastal species) or human-induced (e.g. species inhabiting fragmented landscapes)-where within-range changes can be significant. Here, we use an ecosystem engineer species (Sabellaria alveolata) with a naturally fragmented distribution as a case study to assess climate-driven changes in within-range occupancy across its entire global distribution. To this end, we applied landscape ecology metrics to outputs from species distribution modelling (SDM) in a novel unified framework. SDM predicted a 27.5% overall increase in the area of potentially suitable habitat under RCP 4.5 by 2050, which taken in isolation would have led to the classification of the species as a climate change winner. SDM further revealed that the latitudinal range is predicted to shrink because of decreased habitat suitability in the equatorward part of the range, not compensated by a poleward expansion. The use of landscape ecology metrics provided additional insights by identifying regions that are predicted to become increasingly fragmented in the future, potentially increasing extirpation risk by jeopardising metapopulation dynamics. This increased range fragmentation could have dramatic consequences for ecosystem structure and functioning. Importantly, the proposed framework-which brings together SDM and landscape metrics-can be widely used to study currently overlooked climate-driven changes in species internal range structure, without requiring detailed empirical knowledge of the modelled species. This approach represents an important advancement beyond predictive envelope approaches and could reveal itself as paramount for managers whose spatial scale of action usually ranges from local to regional.
Collapse
Affiliation(s)
- Amelia Curd
- IFREMER, Centre de Bretagne, DYNECO LEBCO, Plouzané, France
| | | | | | - Aurélien Boyé
- IFREMER, Centre de Bretagne, DYNECO LEBCO, Plouzané, France
| | - Louise B Firth
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, UK
| | | | | | - Michael T Burrows
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, UK
| | - Laura E Bush
- FUGRO GB Marine Limited, Gait 8, Research Park South, Heriot-Watt University, Edinburgh, UK
| | - Céline Cordier
- IFREMER, Centre de Bretagne, DYNECO LEBCO, Plouzané, France
| | - Andrew J Davies
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | | | - Stephen J Hawkins
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, UK
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
- The Marine Biological Association of the UK, Citadel Hill, Plymouth, UK
| | - Fernando P Lima
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Vairão, Portugal
| | - Claudia Meneghesso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Nova Mieszkowska
- The Marine Biological Association of the UK, Citadel Hill, Plymouth, UK
- Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Rui Seabra
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Vairão, Portugal
| | | |
Collapse
|
13
|
Sánchez‐Martín R, Verdú M, Montesinos‐Navarro A. Phylogenetic and functional constraints of plant facilitation rewiring. Ecology 2023; 104:e3961. [PMID: 36545892 PMCID: PMC10078402 DOI: 10.1002/ecy.3961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 08/30/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
Facilitative interactions bind community species in intricate ecological networks, preserving species that would otherwise be lost. The traditional understanding of ecological networks as static components of biological communities overlooks the fact that species interactions in a network can fluctuate. Analyzing the patterns that cause those shifts can reveal the principles that govern the identity of pairwise interactions and whether they are predictable based on the traits of the interacting species and the local environmental contexts in which they occur. Here we explore how abiotic stress and phylogenetic and functional affinities constrain those shifts. Specifically, we hypothesize that rewiring the facilitative interactions is more limited in stressful than in mild environments. We present evidence of a distinct pattern in the rewiring of facilitation-driven communities at different stress levels. In highly stressful environments with a firm reliance on facilitation, rewiring is limited to growing beneath nurse species with traits to overcome harsh stressful conditions. However, when environments are milder, rewiring is more flexible, although it is still constrained to nurses that are close relatives. Understanding the ability of species to rewire their interactions is crucial for predicting how communities may respond to the unprecedented rate of perturbations on Earth.
Collapse
Affiliation(s)
| | - Miguel Verdú
- Centro de Investigaciones Sobre Desertificación (CIDE, CSIC‐UV‐GV)MoncadaSpain
| | | |
Collapse
|
14
|
Fabbrizzi E, Giakoumi S, De Leo F, Tamburello L, Chiarore A, Colletti A, Coppola M, Munari M, Musco L, Rindi F, Rizzo L, Savinelli B, Franzitta G, Grech D, Cebrian E, Verdura J, Bianchelli S, Mangialajo L, Nasto I, Sota D, Orfanidis S, Papadopoulou NK, Danovaro R, Fraschetti S. The challenge of setting restoration targets for macroalgal forests under climate changes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116834. [PMID: 36436438 DOI: 10.1016/j.jenvman.2022.116834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The process of site selection and spatial planning has received scarce attention in the scientific literature dealing with marine restoration, suggesting the need to better address how spatial planning tools could guide restoration interventions. In this study, for the first time, the consequences of adopting different restoration targets and criteria on spatial restoration prioritization have been assessed at a regional scale, including the consideration of climate changes. We applied the decision-support tool Marxan, widely used in systematic conservation planning on Mediterranean macroalgal forests. The loss of this habitat has been largely documented, with limited evidences of natural recovery. Spatial priorities were identified under six planning scenarios, considering three main restoration targets to reflect the objectives of the EU Biodiversity Strategy for 2030. Results show that the number of suitable sites for restoration is very limited at basin scale, and targets are only achieved when the recovery of 10% of regressing and extinct macroalgal forests is planned. Increasing targets translates into including unsuitable areas for restoration in Marxan solutions, amplifying the risk of ineffective interventions. Our analysis supports macroalgal forests restoration and provides guiding principles and criteria to strengthen the effectiveness of restoration actions across habitats. The constraints in finding suitable areas for restoration are discussed, and recommendations to guide planning to support future restoration interventions are also included.
Collapse
Affiliation(s)
- Erika Fabbrizzi
- University of Naples Federico II, Naples, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy.
| | | | | | | | | | | | | | | | - Luigi Musco
- Stazione Zoologica Anton Dohrn, Naples, Italy; University of Salento, Lecce, Italy
| | - Fabio Rindi
- Università Politecnica delle Marche, Ancona, Italy
| | - Lucia Rizzo
- Stazione Zoologica Anton Dohrn, Naples, Italy; Institute of Sciences of Food Production, National Research Council, Lecce, Italy
| | | | | | | | - Emma Cebrian
- Centre d'Estudios Avançats de Blanes, Consejo Superior de Investigaciones Cientìficas (CEAB-CSIC), Blanes, Spain; University of Girona, Girona, Spain
| | - Jana Verdura
- Université Côte d'Azur, CNRS, UMR 7035 ECOSEAS, Nice, France
| | | | | | - Ina Nasto
- University of Vlora "Ismail Qemali", Sheshi Pavaresia, Vlore, Albania
| | - Denada Sota
- University of Vlora "Ismail Qemali", Sheshi Pavaresia, Vlore, Albania
| | - Sotiris Orfanidis
- Fisheries Research Institute, Hellenic Agricultural Organization-Demeter, Kavala, Greece
| | | | - Roberto Danovaro
- Stazione Zoologica Anton Dohrn, Naples, Italy; Università Politecnica delle Marche, Ancona, Italy
| | - Simonetta Fraschetti
- University of Naples Federico II, Naples, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
15
|
Shantz AA, Ladd MC, Ezzat L, Schmitt RJ, Holbrook SJ, Schmeltzer E, Vega Thurber R, Burkepile DE. Positive interactions between corals and damselfish increase coral resistance to temperature stress. GLOBAL CHANGE BIOLOGY 2023; 29:417-431. [PMID: 36315059 DOI: 10.1111/gcb.16480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/12/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
By the century's end, many tropical seas will reach temperatures exceeding most coral species' thermal tolerance on an annual basis. The persistence of corals in these regions will, therefore, depend on their abilities to tolerate recurrent thermal stress. Although ecologists have long recognized that positive interspecific interactions can ameliorate environmental stress to expand the realized niche of plants and animals, coral bleaching studies have largely overlooked how interactions with community members outside of the coral holobiont shape the bleaching response. Here, we subjected a common coral, Pocillopora grandis, to 10 days of thermal stress in aquaria with and without the damselfish Dascyllus flavicaudus (yellowtail dascyllus), which commonly shelter within these corals, to examine how interactions with damselfish impacted coral thermal tolerance. Corals often benefit from nutrients excreted by animals they interact with and prior to thermal stress, corals grown with damselfish showed improved photophysiology (Fv /Fm ) and developed larger endosymbiont populations. When exposed to thermal stress, corals with fish performed as well as control corals maintained at ambient temperatures without fish. In contrast, corals exposed to thermal stress without fish experienced photophysiological impairment, a more than 50% decline in endosymbiont density, and a 36% decrease in tissue protein content. At the end of the experiment, thermal stress caused average calcification rates to decrease by over 80% when damselfish were absent but increase nearly 25% when damselfish were present. Our study indicates that damselfish-derived nutrients can increase coral thermal tolerance and are consistent with the Stress Gradient Hypothesis, which predicts that positive interactions become increasingly important for structuring communities as environmental stress increases. Because warming of just a few degrees can exceed corals' temperature tolerance to trigger bleaching and mortality, positive interactions could play a critical role in maintaining some coral species in warming regions until climate change is aggressively addressed.
Collapse
Affiliation(s)
- Andrew A Shantz
- Florida State University Coastal and Marine Laboratory, St. Teresa, Florida, USA
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Mark C Ladd
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
- NOAA-National Marine Fisheries Service, Southeast Fisheries Science Center, Key Biscayne, Florida, USA
| | - Leila Ezzat
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
- School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Russell J Schmitt
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
| | - Sally J Holbrook
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
| | - Emily Schmeltzer
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | | | - Deron E Burkepile
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
16
|
Li H, Li JJ, Gao TH, Bi YX, Liu ZY. The Influence of Host Specificity and Temperature on Bacterial Communities Associated with Sargassum (Phaeophyceae) Species. JOURNAL OF PHYCOLOGY 2022; 58:815-828. [PMID: 36308470 DOI: 10.1111/jpy.13293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Host-related microbiota are critically important for the adaptation/acclimation of hosts to changing environments, but how environmental factors and host characteristics shape the microbial communities remains largely unknown. We investigated the effects of temperature on habitat-forming macroalgae and their associated bacterial communities. Three Sargassum species (S. horneri, S. fusiforme, and S. thunbergii) and seawater samples were sampled in Gouqi Island, China, and these macroalgal samples were incubated at different temperatures (10, 20, and 27°C) for 7 d. Bacterial communities were identified from the 16S rRNA gene V3-V4 regions. The algae-associated bacterial communities of the field samples were significantly different from seawater, implying host specificity. During laboratory incubation, decreased physiological status (photosynthetic rate and oxidative stress response) was detected for all the species at 10°C, especially with regard to S. horneri and S. fusiforme. For each host, associated bacterial communities at 20 and 27°C clustered closely, and these were separated from samples at 10°C based on constrained PCoA analyses. Permutational multivariate analysis of variance revealed that algae-associated bacterial communities were more affected by host species (23.3%) than by temperature (2.48%) during laboratory incubation. The changes in bacterial community composition may be influenced by algae metabolites, which should be tested in a future study. These results further contribute to our understanding of algal microbiome changes in response to environmental changes.
Collapse
Affiliation(s)
- Huan Li
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China
- College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Jing-Jing Li
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China
- College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Tian-Heng Gao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China
- College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Yuan-Xin Bi
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, 316021, China
| | - Zheng-Yi Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai, 264003, China
| |
Collapse
|
17
|
Mahanes SA, Bracken MES, Sorte CJB. Climate Change Amelioration by Marine Producers: Does Dominance Predict Impact? THE BIOLOGICAL BULLETIN 2022; 243:299-314. [PMID: 36716485 DOI: 10.1086/721229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
AbstractClimate change threatens biodiversity worldwide, and assessing how those changes will impact communities will be critical for conservation. Dominant primary producers can alter local-scale environmental conditions, reducing temperature via shading and mitigating ocean acidification via photosynthesis, which could buffer communities from the impacts of climate change. We conducted two experiments on the coast of southeastern Alaska to assess the effects of a common seaweed species, Neorhodomela oregona, on temperature and pH in field tide pools and tide pool mesocosms. We found that N. oregona was numerically dominant in this system, covering >60% of habitable space in the pools and accounting for >40% of live cover. However, while N. oregona had a density-dependent effect on pH in isolated mesocosms, we did not find a consistent effect of N. oregona on either pH or water temperature in tide pools in the field. These results suggest that the amelioration of climate change impacts in immersed marine ecosystems by primary producers is not universal and likely depends on species' functional attributes, including photosynthetic rate and physical structure, in addition to abundance or dominance.
Collapse
|
18
|
Orlando-Bonaca M, Trkov D, Klun K, Pitacco V. Diversity of Molluscan Assemblage in Relation to Biotic and Abiotic Variables in Brown Algal Forests. PLANTS 2022; 11:plants11162131. [PMID: 36015433 PMCID: PMC9415959 DOI: 10.3390/plants11162131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022]
Abstract
Canopy-forming macroalgae, mainly those belonging to the order Fucales, form the so-called brown algal forests, which are among the most productive assemblages in shallow coastal zones. Their vertical, branching canopies increase nearshore primary production, provide nursery areas for juvenile fish, and sustain understory assemblages of smaller algae and both sessile and vagile fauna. The majority of benthic invertebrates inhabiting these forests have larval stages that spend some time floating freely or swimming in the plankton. Therefore, canopy-forming macroalgae play an important role as species collectors related to larval supply and hydrodynamic processes. During the past several decades, brown algal forests have significantly reduced their extension and coverage in the Mediterranean basin, due to multiple interacting natural and anthropogenic pressures, with negative consequences also for the related fauna. The aim of this research was to examine how differences in macrophyte abundance and structure, as well as environmental variables, affect the associated molluscan communities in the shallow northern Adriatic Sea. Sampling sites with well-developed vegetation cover dominated by different canopy-forming species were selected in the shallow infralittoral belt of the northern Adriatic Sea in the spring–summer period of the years 2019 and 2020. Our results confirm the importance of algal forests for molluscan assemblage, with a total of 68 taxa of molluscs found associated with macrophytes. Gastropods showed the highest richness and abundance, followed by bivalves. Mollusc richness and diversity (in terms of biotic indices) were not related with the degree of development of canopy-forming species (in terms of total cover and total volume), nor with the ecological status of benthic macroalgae at different depths. On the contrary, the variability in molluscan taxa abundances was explained by some environmental variables, such as temperature, pH, light, and nitrates concentration.
Collapse
|
19
|
Cardini U, Marín-Guirao L, Montilla LM, Marzocchi U, Chiavarini S, Rimauro J, Quero GM, Petersen JM, Procaccini G. Nested interactions between chemosynthetic lucinid bivalves and seagrass promote ecosystem functioning in contaminated sediments. FRONTIERS IN PLANT SCIENCE 2022; 13:918675. [PMID: 35937361 PMCID: PMC9355091 DOI: 10.3389/fpls.2022.918675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
In seagrass sediments, lucinid bivalves and their chemoautotrophic bacterial symbionts consume H2S, relying indirectly on the plant productivity for the presence of the reduced chemical. Additionally, the role of lucinid bivalves in N provisioning to the plant (through N2 fixation by the symbionts) was hypothesized. Thus, lucinids may contribute to sediment detoxification and plant fitness. Seagrasses are subject to ever-increasing human pressure in coastal environments. Here, disentangling nested interactions between chemosynthetic lucinid bivalves and seagrass exposed to pollution may help to understand seagrass ecosystem dynamics and to develop successful seagrass restoration programs that consider the roles of animal-microbe symbioses. We evaluated the capacity of lucinid bivalves (Loripes orbiculatus) to promote nutrient cycling and seagrass (Cymodocea nodosa) growth during a 6-week mesocosm experiment. A fully crossed design was used to test for the effect of sediment contamination (metals, nutrients, and hydrocarbons) on plant and bivalve (alone or interacting) fitness, assessed by mortality, growth, and photosynthetic efficiency, and for the effect of their nested interaction on sediment biogeochemistry. Plants performed better in the contaminated sediment, where a larger pool of dissolved nitrogen combined with the presence of other trace elements allowed for an improved photosynthetic efficiency. In fact, pore water nitrogen accumulated during the experiment in the controls, while it was consumed in the contaminated sediment. This trend was accentuated when lucinids were present. Concurrently, the interaction between clams and plants benefitted both organisms and promoted plant growth irrespective of the sediment type. In particular, the interaction with lucinid clams resulted in higher aboveground biomass of C. nodosa in terms of leaf growth, leaf surface, and leaf biomass. Our results consolidate the notion that nested interactions involving animal-microbe associations promote ecosystem functioning, and potentially help designing unconventional seagrass restoration strategies that exploit chemosynthetic symbioses.
Collapse
Affiliation(s)
- Ulisse Cardini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
| | - Lazaro Marín-Guirao
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografia (IEO-CSIC), Murcia, Spain
| | - Luis M. Montilla
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
| | - Ugo Marzocchi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
- Department of Biology, Center for Water Technology (WATEC), Aarhus University, Aarhus, Denmark
| | - Salvatore Chiavarini
- Division Protection and Enhancement of the Natural Capital - Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Juri Rimauro
- Division Protection and Enhancement of the Natural Capital - Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Grazia Marina Quero
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
- Institute for Biological Resources and Marine Biotechnology, National Research Council (IRBIM-CNR), Ancona, Italy
| | - Jillian M. Petersen
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Gabriele Procaccini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
| |
Collapse
|
20
|
Lorusso NS, Faillace CA. Indirect facilitation between prey promotes asymmetric apparent competition. J Anim Ecol 2022; 91:1869-1879. [PMID: 35765925 PMCID: PMC9544837 DOI: 10.1111/1365-2656.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
Apparent competition is one mechanism that can contribute to the complex dynamics observed in natural systems, yet it remains understudied in empirical systems. Understanding the dynamics that shape the outcome of processes like apparent competition is vital for appreciating how they influence natural systems. We empirically evaluated the role of indirect trophic interactions in driving apparent competition in a model laboratory system. Our experimental system was designed to let us evaluate combined direct and indirect interactions among species. Here we describe the results of a factorial experiment using two noncompeting prey (Colpidium kleini, a heterotroph, and Chlamydomonas reinhardtii, an autotroph) consumed by a generalist predator Euplotes eurystomus to explore the dynamics of apparent competition. To gain intuition into the potential mechanism driving the asymmetry in the observed results, we further explored the system using structural equation modelling. Our results show an important role of positive interactions and indirect effects contributing to apparent competition in this system with a marked asymmetrical outcome favouring one prey, Chlamydomonas. The selected structural equation supports a role of indirect facilitation; although Chlamydomonas (a photoautotroph) and Colpidium (a bacterivore) use different resources and therefor do not directly compete, Colpidium reduces bacteria that may compete with Chlamydomonas. In addition, formation of colonies by Chlamydomonas in response to predation by Euplotes provides an antipredator defence not available to Colpidium. Asymmetric apparent competition may be more common in natural systems than the symmetric interaction originally proposed in classic theory, suggesting that exploration of the mechanisms driving the asymmetry of the interaction can be a fruitful area of further research to better our understanding of interspecific interactions and community dynamics.
Collapse
Affiliation(s)
- Nicholas S Lorusso
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, Jersey.,Current Institution: Department of Life Sciences, University of North Texas at Dallas, 7500 University Hills Blvd, Dallas, Texas, USA
| | - Cara A Faillace
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, Jersey.,Current Institution: University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
21
|
Noisette F, Pansch C, Wall M, Wahl M, Hurd CL. Role of hydrodynamics in shaping chemical habitats and modulating the responses of coastal benthic systems to ocean global change. GLOBAL CHANGE BIOLOGY 2022; 28:3812-3829. [PMID: 35298052 DOI: 10.1111/gcb.16165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Marine coastal zones are highly productive, and dominated by engineer species (e.g. macrophytes, molluscs, corals) that modify the chemistry of their surrounding seawater via their metabolism, causing substantial fluctuations in oxygen, dissolved inorganic carbon, pH, and nutrients. The magnitude of these biologically driven chemical fluctuations is regulated by hydrodynamics, can exceed values predicted for the future open ocean, and creates chemical patchiness in subtidal areas at various spatial (µm to meters) and temporal (minutes to months) scales. Although the role of hydrodynamics is well explored for planktonic communities, its influence as a crucial driver of benthic organism and community functioning is poorly addressed, particularly in the context of ocean global change. Hydrodynamics can directly modulate organismal physiological activity or indirectly influence an organism's performance by modifying its habitat. This review addresses recent developments in (i) the influence of hydrodynamics on the biological activity of engineer species, (ii) the description of chemical habitats resulting from the interaction between hydrodynamics and biological activity, (iii) the role of these chemical habitat as refugia against ocean acidification and deoxygenation, and (iv) how species living in such chemical habitats may respond to ocean global change. Recommendations are provided to integrate the effect of hydrodynamics and environmental fluctuations in future research, to better predict the responses of coastal benthic ecosystems to ongoing ocean global change.
Collapse
Affiliation(s)
- Fanny Noisette
- Institut des Sciences de la Mer, Université du Québec à Rimouski, Rimouski, Quebec, Canada
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Christian Pansch
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- Department of Environmental and Marine Biology, Åbo Akademi University, Åbo, Finland
| | - Marlene Wall
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- Bentho-Pelagic Processes, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Martin Wahl
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Catriona L Hurd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
22
|
Lucero JE, Faist AM, Lortie CJ, Callaway RM. Risk of Facilitated Invasion Depends Upon Invader Identity, Not Environmental Severity, Along an Aridity Gradient. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.886690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Positive interactions can drive the assembly of desert plant communities, but we know little about the species-specificity of positive associations between native shrubs and invasive annual species along aridity gradients. These measures are essential for explaining, predicting, and managing community-level responses to plant invasions and environmental change. Here, we measured the intensity of spatial associations among native shrubs and the annual plant community—including multiple invasive species and their native neighbors—along an aridity gradient across the Mojave and San Joaquin Deserts, United States. Along the gradient, we sampled the abundance and species richness of invasive and native annual species using 180 pairs of shrub and open microsites. Across the gradient, the invasive annuals Bromus madritensis ssp. rubens (B. rubens), B. tectorum, B. diandrus, Hordeum murinum, and Brassica tournefortii were consistently more abundant under shrubs than away from shrubs, suggesting positive effects of shrubs on these species. In contrast, abundance of the invasive annual Schismus spp. was greater away from shrubs than under shrubs, suggesting negative effects of shrubs on this species. Similarly, native annual abundance (pooled) and native species richness were greater away from shrubs than under shrubs. Shrub-annual associations were not influenced by shrub size or aridity. Interestingly, we found correlative evidence that B. rubens reduced native abundance (pooled), native species richness, and exotic abundance (pooled) under, but not away from shrubs. We conclude that native shrubs have considerable potential to directly (by increasing invader abundance) and indirectly (by increasing negative impacts of invaders on neighbors) facilitate plant invasions along broad environmental gradients, but these effects may depend more upon invader identity than environmental severity.
Collapse
|
23
|
Garner N, Ross PM, Falkenberg LJ, Seymour JR, Siboni N, Scanes E. Can seagrass modify the effects of ocean acidification on oysters? MARINE POLLUTION BULLETIN 2022; 177:113438. [PMID: 35276613 DOI: 10.1016/j.marpolbul.2022.113438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Solutions are being sought to ameliorate the impacts of anthropogenic climate change. Seagrass may be a solution to provide refugia from climate change for marine organisms. This study aimed to determine if the seagrass Zostera muelleri sub spp. capricorni benefits the Sydney rock oyster Saccostrea glomerata, and if these benefits can modify any anticipated negative impacts of ocean acidification. Future and ambient ocean acidification conditions were simulated in 52 L mesocosms at control (381 μatm) and elevated (848 μatm) CO2 with and without Z. muelleri. Oyster growth, physiology and microbiomes of oysters and seagrass were measured. Seagrass was beneficial to oyster growth at ambient pCO2, but did not positively modify the impacts of ocean acidification on oysters at elevated pCO2. Oyster microbiomes were altered by the presence of seagrass but not by elevated pCO2. Our results indicate seagrasses may not be a panacea for the impacts of climate change.
Collapse
Affiliation(s)
- Natasha Garner
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales 2006, Australia; The Sydney Institute of Marine Science (SIMS), Mosman, New South Wales 2088, Australia
| | - Pauline M Ross
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales 2006, Australia; The Sydney Institute of Marine Science (SIMS), Mosman, New South Wales 2088, Australia.
| | - Laura J Falkenberg
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Elliot Scanes
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales 2006, Australia; The Sydney Institute of Marine Science (SIMS), Mosman, New South Wales 2088, Australia; Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
24
|
Leong RC, Bugnot AB, Marzinelli EM, Figueira WF, Erickson KR, Poore AGB, Gribben PE. Variation in the density and body size of a threatened foundation species across multi‐spatial scales. Restor Ecol 2022. [DOI: 10.1111/rec.13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rick C. Leong
- Centre for Marine Science and Innovation University of New South Wales Sydney Kensington New South Wales 2052 Australia
- Evolution & Ecology Research Centre University of New South Wales Sydney Kensington New South Wales 2052 Australia
| | - Ana B. Bugnot
- Centre for Marine Science and Innovation University of New South Wales Sydney Kensington New South Wales 2052 Australia
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales 2006 Australia
- Sydney Institute of Marine Science 19 Chowder Bay Road Mosman New South Wales 2088 Australia
| | - Ezequiel M. Marzinelli
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales 2006 Australia
- Sydney Institute of Marine Science 19 Chowder Bay Road Mosman New South Wales 2088 Australia
- Singapore Centre for Environmental Life Sciences Engineering Nanyang Technological University, 637551 Singapore
| | - Will F. Figueira
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales 2006 Australia
- Sydney Institute of Marine Science 19 Chowder Bay Road Mosman New South Wales 2088 Australia
| | - Katherine R. Erickson
- Centre for Marine Science and Innovation University of New South Wales Sydney Kensington New South Wales 2052 Australia
- Evolution & Ecology Research Centre University of New South Wales Sydney Kensington New South Wales 2052 Australia
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales 2006 Australia
| | - Alistair G. B. Poore
- Centre for Marine Science and Innovation University of New South Wales Sydney Kensington New South Wales 2052 Australia
- Evolution & Ecology Research Centre University of New South Wales Sydney Kensington New South Wales 2052 Australia
| | - Paul E. Gribben
- Centre for Marine Science and Innovation University of New South Wales Sydney Kensington New South Wales 2052 Australia
- Evolution & Ecology Research Centre University of New South Wales Sydney Kensington New South Wales 2052 Australia
- Sydney Institute of Marine Science 19 Chowder Bay Road Mosman New South Wales 2088 Australia
| |
Collapse
|
25
|
Thomsen MS, Altieri AH, Angelini C, Bishop MJ, Bulleri F, Farhan R, Frühling VMM, Gribben PE, Harrison SB, He Q, Klinghardt M, Langeneck J, Lanham BS, Mondardini L, Mulders Y, Oleksyn S, Ramus AP, Schiel DR, Schneider T, Siciliano A, Silliman BR, Smale DA, South PM, Wernberg T, Zhang S, Zotz G. Heterogeneity within and among co-occurring foundation species increases biodiversity. Nat Commun 2022; 13:581. [PMID: 35102155 PMCID: PMC8803935 DOI: 10.1038/s41467-022-28194-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
Habitat heterogeneity is considered a primary causal driver underpinning patterns of diversity, yet the universal role of heterogeneity in structuring biodiversity is unclear due to a lack of coordinated experiments testing its effects across geographic scales and habitat types. Furthermore, key species interactions that can enhance heterogeneity, such as facilitation cascades of foundation species, have been largely overlooked in general biodiversity models. Here, we performed 22 geographically distributed experiments in different ecosystems and biogeographical regions to assess the extent to which variation in biodiversity is explained by three axes of habitat heterogeneity: the amount of habitat, its morphological complexity, and capacity to provide ecological resources (e.g. food) within and between co-occurring foundation species. We show that positive and additive effects across the three axes of heterogeneity are common, providing a compelling mechanistic insight into the universal importance of habitat heterogeneity in promoting biodiversity via cascades of facilitative interactions. Because many aspects of habitat heterogeneity can be controlled through restoration and management interventions, our findings are directly relevant to biodiversity conservation. Species interactions that can enhance habitat heterogeneity such as facilitation cascades of foundation species have been overlooked in biodiversity models. This study conducted 22 geographically distributed experiments in different ecosystems and biogeographical regions to assess the extent to which biodiversity is explained by three axes of habitat heterogeneity in facilitation cascades.
Collapse
|
26
|
Halfwerk W, Jerem P. A Systematic Review of Research Investigating the Combined Ecological Impact of Anthropogenic Noise and Artificial Light at Night. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.765950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Levels of anthropogenic noise and artificial light at night (ALAN) are rapidly rising on a global scale. Both sensory pollutants are well known to affect animal behavior and physiology, which can lead to substantial ecological impacts. Most studies on noise or light pollution to date have focused on single stressor impacts, studying both pollutants in isolation despite their high spatial and temporal co-occurrence. However, few studies have addressed their combined impact, known as multisensory pollution, with the specific aim to assess whether the interaction between noise and light pollution leads to predictable, additive effects, or less predictable, synergistic or antagonistic effects. We carried out a systematic review of research investigating multisensory pollution and found 28 studies that simultaneously assessed the impact of anthropogenic noise and ALAN on animal function (e.g., behavior, morphology or life-history), physiology (e.g., stress, oxidative, or immune status), or population demography (e.g., abundance or species richness). Only fifteen of these studies specifically tested for possible interactive effects when both sensory pollutants were combined. Four out of eight experimental studies revealed a significant interaction effect, in contrast to only three out seven observational studies. We discuss the benefits and limitations of experimental vs. observational studies addressing multisensory pollution and call for more specific testing of the diverse ways in which noise and light pollution can interact to affect wildlife.
Collapse
|
27
|
Jurgens LJ, Ashlock LW, Gaylord B. Facilitation alters climate change risk on rocky shores. Ecology 2021; 103:e03596. [PMID: 34813668 DOI: 10.1002/ecy.3596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/20/2021] [Accepted: 09/23/2021] [Indexed: 01/04/2023]
Abstract
A huge fraction of global biodiversity resides within biogenic habitats that ameliorate physical stresses. In most cases, details of how physical conditions within facilitative habitats respond to external climate forcing remain unknown, hampering climate change predictions for many of the world's species. Using intertidal mussel beds as a model system, we characterize relationships among external climate conditions and within-microhabitat heat and desiccation conditions. We use these data, along with physiological tolerances of two common inhabitant taxa (the isopod Cirolana harfordi and the porcelain crab Petrolisthes cinctipes), to examine the magnitude of climate risk inside and outside biogenic habitat, applying an empirically derived model of evaporation to simulate mortality risk under a high-emissions climate-warming scenario. We found that biogenic microhabitat conditions responded so weakly to external climate parameters that mortality risk was largely unaffected by climate warming. In contrast, outside the biogenic habitat, desiccation drove substantial mortality in both species, even at temperatures 4.4-8.6°C below their hydrated thermal tolerances. These findings emphasize the importance of warming-exacerbated desiccation to climate-change risk and the role of biogenic habitats in buffering this less-appreciated stressor. Our results suggest that, when biogenic habitats remain intact, climate warming may have weak direct effects on organisms within them. Instead, risk to such taxa is likely to be indirect and tightly coupled with the fate of habitat-forming populations. Conserving and restoring biogenic habitats that offer climate refugia could therefore be crucial to supporting biodiversity in the face of climate warming.
Collapse
Affiliation(s)
- Laura J Jurgens
- Department of Evolution and Ecology, Bodega Marine Laboratory, University of California Davis, 2099 Westshore Road, Bodega Bay, California, 94923, USA
| | - Lauren W Ashlock
- Department of Biology, University of Vermont, 109 Carrigan Drive, Burlington, Vermont, 05405, USA
| | - Brian Gaylord
- Department of Evolution and Ecology, Bodega Marine Laboratory, University of California Davis, 2099 Westshore Road, Bodega Bay, California, 94923, USA
| |
Collapse
|
28
|
Bevilacqua S, Airoldi L, Ballesteros E, Benedetti-Cecchi L, Boero F, Bulleri F, Cebrian E, Cerrano C, Claudet J, Colloca F, Coppari M, Di Franco A, Fraschetti S, Garrabou J, Guarnieri G, Guerranti C, Guidetti P, Halpern BS, Katsanevakis S, Mangano MC, Micheli F, Milazzo M, Pusceddu A, Renzi M, Rilov G, Sarà G, Terlizzi A. Mediterranean rocky reefs in the Anthropocene: Present status and future concerns. ADVANCES IN MARINE BIOLOGY 2021; 89:1-51. [PMID: 34583814 DOI: 10.1016/bs.amb.2021.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Global change is striking harder and faster in the Mediterranean Sea than elsewhere, where high levels of human pressure and proneness to climate change interact in modifying the structure and disrupting regulative mechanisms of marine ecosystems. Rocky reefs are particularly exposed to such environmental changes with ongoing trends of degradation being impressive. Due to the variety of habitat types and associated marine biodiversity, rocky reefs are critical for the functioning of marine ecosystems, and their decline could profoundly affect the provision of essential goods and services which human populations in coastal areas rely upon. Here, we provide an up-to-date overview of the status of rocky reefs, trends in human-driven changes undermining their integrity, and current and upcoming management and conservation strategies, attempting a projection on what could be the future of this essential component of Mediterranean marine ecosystems.
Collapse
Affiliation(s)
- Stanislao Bevilacqua
- Dipartimento di Scienze della Vita, University of Trieste, Trieste, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy.
| | - Laura Airoldi
- Stazione Idrobiologica di Chioggia "Umberto D'Ancona", Dipartimento di Biologia, University of Padova, Padova, Italy; Dipartimento di Beni Culturali, University of Bologna, Ravenna, Italy
| | | | - Lisandro Benedetti-Cecchi
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy; Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Ferdinando Boero
- Dipartimento di Biologia, University of Napoli Federico II, Napoli, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy; National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), Genoa, Italy
| | - Fabio Bulleri
- Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Emma Cebrian
- Centre d'Estudis Avançats de Blanes-CSIC, Girona, Spain
| | - Carlo Cerrano
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy; Dipartimento di Scienze della Vita e dell'Ambiente, Polytechnic University of Marche, Ancona, Italy
| | - Joachim Claudet
- National Center for Scientific Research, PSL Université Paris, CRIOBE, USR 3278 CNRS-EPHE-UPVD, Maison des Océans, Paris, France
| | - Francesco Colloca
- Department of Integrative Ecology, Stazione Zoologica A. Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, Rome, Italy
| | - Martina Coppari
- Dipartimento di Scienze della Vita e dell'Ambiente, Polytechnic University of Marche, Ancona, Italy
| | - Antonio Di Franco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily, Palermo, Italy
| | - Simonetta Fraschetti
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy; Dipartimento di Biologia, University of Napoli Federico II, Napoli, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Joaquim Garrabou
- Institut de Ciències del Mar, CSIC, Barcelona, Spain; Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Giuseppe Guarnieri
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy; Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Lecce, Italy
| | | | - Paolo Guidetti
- National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), Genoa, Italy; Department of Integrative Marine Ecology, Stazione Zoologica A. Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
| | - Benjamin S Halpern
- National Center for Ecological Analysis & Synthesis, University of California, Santa Barbara, CA, United States; Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, United States
| | | | - Maria Cristina Mangano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily, Palermo, Italy
| | - Fiorenza Micheli
- Hopkins Marine Station and Center for Ocean Solutions, Stanford University, Pacific Grove, CA, United States
| | - Marco Milazzo
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
| | - Antonio Pusceddu
- Dipartimento di Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| | - Monia Renzi
- Dipartimento di Scienze della Vita, University of Trieste, Trieste, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
| | - Gil Rilov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Gianluca Sarà
- Dipartimento di Scienze della Terra e del Mare, University of Palermo, Palermo, Italy
| | - Antonio Terlizzi
- Dipartimento di Scienze della Vita, University of Trieste, Trieste, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
29
|
Falkenberg LJ, Scanes E, Ducker J, Ross PM. Biotic habitats as refugia under ocean acidification. CONSERVATION PHYSIOLOGY 2021; 9:coab077. [PMID: 34540232 PMCID: PMC8445512 DOI: 10.1093/conphys/coab077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/25/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Habitat-forming organisms have an important role in ameliorating stressful conditions and may be of particular relevance under a changing climate. Increasing CO2 emissions are driving a range of environmental changes, and one of the key concerns is the rapid acceleration of ocean acidification and associated reduction in pH. Such changes in seawater chemistry are anticipated to have direct negative effects on calcifying organisms, which could, in turn, have negative ecological, economic and human health impacts. However, these calcifying organisms do not exist in isolation, but rather are part of complex ecosystems. Here, we use a qualitative narrative synthesis framework to explore (i) how habitat-forming organisms can act to restrict environmental stress, both now and in the future; (ii) the ways their capacity to do so is modified by local context; and (iii) their potential to buffer the effects of future change through physiological processes and how this can be influenced by management adopted. Specifically, we highlight examples that consider the ability of macroalgae and seagrasses to alter water carbonate chemistry, influence resident organisms under current conditions and their capacity to do so under future conditions, while also recognizing the potential role of other habitats such as adjacent mangroves and saltmarshes. Importantly, we note that the outcome of interactions between these functional groups will be context dependent, influenced by the local abiotic and biotic characteristics. This dependence provides local managers with opportunities to create conditions that enhance the likelihood of successful amelioration. Where individuals and populations are managed effectively, habitat formers could provide local refugia for resident organisms of ecological and economic importance under an acidifying ocean.
Collapse
Affiliation(s)
- Laura J Falkenberg
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Elliot Scanes
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, 2006, Australia
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - James Ducker
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Pauline M Ross
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| |
Collapse
|
30
|
Ferreira CM, Connell SD, Goldenberg SU, Nagelkerken I. Positive species interactions strengthen in a high-CO 2 ocean. Proc Biol Sci 2021; 288:20210475. [PMID: 34229493 PMCID: PMC8261209 DOI: 10.1098/rspb.2021.0475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/15/2021] [Indexed: 11/12/2022] Open
Abstract
Negative interactions among species are a major force shaping natural communities and are predicted to strengthen as climate change intensifies. Similarly, positive interactions are anticipated to intensify and could buffer the consequences of climate-driven disturbances. We used in situ experiments at volcanic CO2 vents within a temperate rocky reef to show that ocean acidification can drive community reorganization through indirect and direct positive pathways. A keystone species, the algal-farming damselfish Parma alboscapularis, enhanced primary productivity through its weeding of algae whose productivity was also boosted by elevated CO2. The accelerated primary productivity was associated with increased densities of primary consumers (herbivorous invertebrates), which indirectly supported increased secondary consumers densities (predatory fish) (i.e. strengthening of bottom-up fuelling). However, this keystone species also reduced predatory fish densities through behavioural interference, releasing invertebrate prey from predation pressure and enabling a further boost in prey densities (i.e. weakening of top-down control). We uncover a novel mechanism where a keystone herbivore mediates bottom-up and top-down processes simultaneously to boost populations of a coexisting herbivore, resulting in altered food web interactions and predator populations under future ocean acidification.
Collapse
Affiliation(s)
- Camilo M. Ferreira
- Southern Seas Ecology Laboratories, School of Biological Sciences and the Environment Institute, University of Adelaide, DX 650 418, Adelaide, South Australia 5005, Australia
| | - Sean D. Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences and the Environment Institute, University of Adelaide, DX 650 418, Adelaide, South Australia 5005, Australia
| | - Silvan U. Goldenberg
- Southern Seas Ecology Laboratories, School of Biological Sciences and the Environment Institute, University of Adelaide, DX 650 418, Adelaide, South Australia 5005, Australia
| | - Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological Sciences and the Environment Institute, University of Adelaide, DX 650 418, Adelaide, South Australia 5005, Australia
| |
Collapse
|
31
|
Nguyen HM, Ralph PJ, Marín-Guirao L, Pernice M, Procaccini G. Seagrasses in an era of ocean warming: a review. Biol Rev Camb Philos Soc 2021; 96:2009-2030. [PMID: 34014018 DOI: 10.1111/brv.12736] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022]
Abstract
Seagrasses are valuable sources of food and habitat for marine life and are one of Earth's most efficient carbon sinks. However, they are facing a global decline due to ocean warming and eutrophication. In the last decade, with the advent of new technology and molecular advances, there has been a dramatic increase in the number of studies focusing on the effects of ocean warming on seagrasses. Here, we provide a comprehensive review of the future of seagrasses in an era of ocean warming. We have gathered information from published studies to identify potential commonalities in the effects of warming and the responses of seagrasses across four distinct levels: molecular, biochemical/physiological, morphological/population, and ecosystem/planetary. To date, we know that although warming strongly affects seagrasses at all four levels, seagrass responses diverge amongst species, populations, and over depths. Furthermore, warming alters seagrass distribution causing massive die-offs in some seagrass populations, whilst also causing tropicalization and migration of temperate species. In this review, we evaluate the combined effects of ocean warming with other environmental stressors and emphasize the need for multiple-stressor studies to provide a deeper understanding of seagrass resilience. We conclude by discussing the most significant knowledge gaps and future directions for seagrass research.
Collapse
Affiliation(s)
- Hung Manh Nguyen
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, 80121, Italy
| | - Peter J Ralph
- Faculty of Science, Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Lázaro Marín-Guirao
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, 80121, Italy.,Seagrass Ecology Group, Oceanographic Centre of Murcia, Spanish Institute of Oceanography, C/Varadero, San Pedro del Pinatar, Murcia, 30740, Spain
| | - Mathieu Pernice
- Faculty of Science, Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, 2007, Australia
| | | |
Collapse
|
32
|
Tuya F, Fernández-Torquemada Y, Del Pilar-Ruso Y, Espino F, Manent P, Curbelo L, Otero-Ferrer F, de la Ossa JA, Royo L, Antich L, Castejón I, Máñez-Crespo J, Mateo-Ramírez Á, Procaccini G, Marco-Méndez C, Terrados J, Tomas F. Partitioning resilience of a marine foundation species into resistance and recovery trajectories. Oecologia 2021; 196:515-527. [PMID: 34009470 DOI: 10.1007/s00442-021-04945-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/11/2021] [Indexed: 12/01/2022]
Abstract
The resilience of an ecological unit encompasses resistance during adverse conditions and the capacity to recover. We adopted a 'resistance-recovery' framework to experimentally partition the resilience of a foundation species (the seagrass Cymodocea nodosa). The shoot abundances of nine seagrass meadows were followed before, during and after simulated light reduction conditions. We determined the significance of ecological, environmental and genetic drivers on seagrass resistance (% of shoots retained during the light deprivation treatments) and recovery (duration from the end of the perturbed state back to initial conditions). To identify whether seagrass recovery was linearly related to prior resistance, we then established the connection between trajectories of resistance and recovery. Finally, we assessed whether recovery patterns were affected by biological drivers (production of sexual products-seeds-and asexual propagation) at the meadow-scale. Resistance to shading significantly increased with the genetic diversity of the meadow and seagrass recovery was conditioned by initial resistance during shading. A threshold in resistance (here, at a ca. 70% of shoot abundances retained during the light deprivation treatments) denoted a critical point that considerably delays seagrass recovery if overpassed. Seed densities, but not rhizome elongation rates, were higher in meadows that exhibited large resistance and quick recovery, which correlated positively with meadow genetic diversity. Our results highlight the critical role of resistance to a disturbance for persistence of a marine foundation species. Estimation of critical trade-offs between seagrass resistance and recovery is a promising field of research to better manage impacts on seagrass meadows.
Collapse
Affiliation(s)
- Fernando Tuya
- Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas, Canary Islands, Spain.
| | | | - Yoana Del Pilar-Ruso
- Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante, Alicante, Spain
| | - Fernando Espino
- Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas, Canary Islands, Spain
| | - Pablo Manent
- Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas, Canary Islands, Spain
| | - Leticia Curbelo
- Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas, Canary Islands, Spain
| | - Francisco Otero-Ferrer
- Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas, Canary Islands, Spain
| | - Jose A de la Ossa
- Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante, Alicante, Spain
| | - Laura Royo
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), C/ Miquel Marquès, 21, 07190, Esporles, Islas Baleares, Spain
| | - Laura Antich
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), C/ Miquel Marquès, 21, 07190, Esporles, Islas Baleares, Spain
| | - Inés Castejón
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), C/ Miquel Marquès, 21, 07190, Esporles, Islas Baleares, Spain
| | - Julia Máñez-Crespo
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), C/ Miquel Marquès, 21, 07190, Esporles, Islas Baleares, Spain.,Universidad de Los Lagos, 5480000, Puerto Montt, Chile
| | - Ángel Mateo-Ramírez
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), C/ Miquel Marquès, 21, 07190, Esporles, Islas Baleares, Spain.,GEMAR Group, Centro Oceanográfico de Málaga, Instituto Español de Oceanografía (IEO), Puerto Pesquero s/n, Apdo. 285, 29640, Fuengirola, Málaga, Spain
| | | | | | - Jorge Terrados
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), C/ Miquel Marquès, 21, 07190, Esporles, Islas Baleares, Spain
| | - Fiona Tomas
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), C/ Miquel Marquès, 21, 07190, Esporles, Islas Baleares, Spain
| |
Collapse
|
33
|
Pazzaglia J, Reusch TBH, Terlizzi A, Marín‐Guirao L, Procaccini G. Phenotypic plasticity under rapid global changes: The intrinsic force for future seagrasses survival. Evol Appl 2021; 14:1181-1201. [PMID: 34025759 PMCID: PMC8127715 DOI: 10.1111/eva.13212] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/03/2021] [Accepted: 02/21/2021] [Indexed: 12/30/2022] Open
Abstract
Coastal oceans are particularly affected by rapid and extreme environmental changes with dramatic consequences for the entire ecosystem. Seagrasses are key ecosystem engineering or foundation species supporting diverse and productive ecosystems along the coastline that are particularly susceptible to fast environmental changes. In this context, the analysis of phenotypic plasticity could reveal important insights into seagrasses persistence, as it represents an individual property that allows species' phenotypes to accommodate and react to fast environmental changes and stress. Many studies have provided different definitions of plasticity and related processes (acclimation and adaptation) resulting in a variety of associated terminology. Here, we review different ways to define phenotypic plasticity with particular reference to seagrass responses to single and multiple stressors. We relate plasticity to the shape of reaction norms, resulting from genotype by environment interactions, and examine its role in the presence of environmental shifts. The potential role of genetic and epigenetic changes in underlying seagrasses plasticity in face of environmental changes is also discussed. Different approaches aimed to assess local acclimation and adaptation in seagrasses are explored, explaining strengths and weaknesses based on the main results obtained from the most recent literature. We conclude that the implemented experimental approaches, whether performed with controlled or field experiments, provide new insights to explore the basis of plasticity in seagrasses. However, an improvement of molecular analysis and the application of multi-factorial experiments are required to better explore genetic and epigenetic adjustments to rapid environmental shifts. These considerations revealed the potential for selecting the best phenotypes to promote assisted evolution with fundamental implications on restoration and preservation efforts.
Collapse
Affiliation(s)
- Jessica Pazzaglia
- Department of Integrative Marine EcologyStazione Zoologica Anton DohrnNaplesItaly
- Department of Life SciencesUniversity of TriesteTriesteItaly
| | - Thorsten B. H. Reusch
- Marine Evolutionary EcologyGEOMAR Helmholtz Centre for Ocean Research KielKielGermany
| | - Antonio Terlizzi
- Department of Life SciencesUniversity of TriesteTriesteItaly
- Department of Biology and Evolution of Marine OrganismsStazione Zoologica Anton DohrnNaplesItaly
| | - Lázaro Marín‐Guirao
- Department of Integrative Marine EcologyStazione Zoologica Anton DohrnNaplesItaly
- Seagrass Ecology GroupOceanographic Center of MurciaSpanish Institute of OceanographyMurciaSpain
| | - Gabriele Procaccini
- Department of Integrative Marine EcologyStazione Zoologica Anton DohrnNaplesItaly
| |
Collapse
|
34
|
Catalán AM, Büchner-Miranda J, Riedemann B, Chaparro OR, Valdivia N, Scrosati RA. Community-wide consequences of nonconsumptive predator effects on a foundation species. J Anim Ecol 2021; 90:1307-1316. [PMID: 33630333 DOI: 10.1111/1365-2656.13455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 02/05/2021] [Indexed: 11/29/2022]
Abstract
Predators can exert nonconsumptive effects (NCEs) on prey, which often take place through prey behavioural adjustments to minimise predation risk. As NCEs are widespread in nature, interest is growing to determine whether NCEs on a prey species can indirectly influence several other species simultaneously, thus leading to changes in community structure. In this study, we investigate whether a predator can exert NCEs on a foundation species and indirectly affect community structure. Through laboratory experiments, we first tested whether the predatory marine snail Acanthina monodon exerts negative NCEs on larviphagy (consumption of pelagic larvae) and phytoplankton filtration rates of the mussel Perumytilus purpuratus, an intertidal foundation species. These hypotheses stem from the notion that mussels may decrease feeding activities in the presence of predator cues to limit detection by predators. Afterwards, a field experiment tested whether the presence of A. monodon near mussel beds leads to higher colonisation rates of invertebrates that reproduce through pelagic larvae (expected under a lower larviphagy in P. purpuratus) and to a lower algal biomass on P. purpuratus shells (expected under a lower metabolite excretion in the mussels), thereby changing the community structure of the species typically found in P. purpuratus beds. The laboratory experiments revealed that waterborne cues from A. monodon limit the larviphagy and filtration rates of P. purpuratus. In turn, the field experiment showed that A. monodon cues led to greater abundances of barnacles and bivalves and a lower algal biomass in P. purpuratus beds, thus altering community structure. Overall, this study shows that a predator can indirectly affect community structure through NCEs on an invertebrate foundation species. As invertebrate foundation species are ubiquitous worldwide, understanding predator NCEs on these organisms could help to better understand community regulation in systems structured by such species.
Collapse
Affiliation(s)
- Alexis M Catalán
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.,Programa de Doctorado en Biología Marina, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | - Bárbara Riedemann
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Oscar R Chaparro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Nelson Valdivia
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.,Centro FONDAP de Investigación de Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Ricardo A Scrosati
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| |
Collapse
|
35
|
Orlando-Bonaca M, Pitacco V, Slavinec P, Šiško M, Makovec T, Falace A. First Restoration Experiment for Gongolaria barbata in Slovenian Coastal Waters. What Can Go Wrong? PLANTS (BASEL, SWITZERLAND) 2021; 10:239. [PMID: 33530631 PMCID: PMC7911296 DOI: 10.3390/plants10020239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022]
Abstract
The global decline of brown algal forests along rocky coasts is causing an exceptional biodiversity loss. Regardless of conservation efforts, different techniques have been developed for large-scale restoration strategies in the Mediterranean Sea. In this study we tested ex situ pilot restoration of Gongolaria barbata (=Treptacantha barbata) for the first time in Slovenian coastal waters. Healthy apical fronds of the species were collected and the development of recruits on clay tiles was followed under laboratory conditions for 20 days. Despite the experimental difficulties experienced, especially due to the lack of antibiotics to prevent the growth of the biofilm, G. barbata recruits were outplanted in the sea on two concrete plates with 48 tiles each, protected by purpose-built cages to avoid grazing by herbivorous fish. The high survival rate of juveniles after four months in the field (89% of the tiles on the plate that was constantly protected) suggests that outplanting G. barbata is an operable approach for restoration efforts in the northern Adriatic Sea. Our first experiment in Slovenian coastal waters provides new information for the optimization of the best practices during the laboratory cultivation and addresses the early steps of restoration and introduction of young thalli in the natural environment.
Collapse
Affiliation(s)
- Martina Orlando-Bonaca
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, SI-6330 Piran, Slovenia; (V.P.); (P.S.); (M.Š.); (T.M.)
| | - Valentina Pitacco
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, SI-6330 Piran, Slovenia; (V.P.); (P.S.); (M.Š.); (T.M.)
| | - Petra Slavinec
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, SI-6330 Piran, Slovenia; (V.P.); (P.S.); (M.Š.); (T.M.)
| | - Milijan Šiško
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, SI-6330 Piran, Slovenia; (V.P.); (P.S.); (M.Š.); (T.M.)
| | - Tihomir Makovec
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, SI-6330 Piran, Slovenia; (V.P.); (P.S.); (M.Š.); (T.M.)
| | - Annalisa Falace
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy;
| |
Collapse
|
36
|
van der Heide T, Angelini C, de Fouw J, Eklöf JS. Facultative mutualisms: A double-edged sword for foundation species in the face of anthropogenic global change. Ecol Evol 2021; 11:29-44. [PMID: 33437413 PMCID: PMC7790659 DOI: 10.1002/ece3.7044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/18/2020] [Accepted: 10/28/2020] [Indexed: 11/09/2022] Open
Abstract
Ecosystems worldwide depend on habitat-forming foundation species that often facilitate themselves with increasing density and patch size, while also engaging in facultative mutualisms. Anthropogenic global change (e.g., climate change, eutrophication, overharvest, land-use change), however, is causing rapid declines of foundation species-structured ecosystems, often typified by sudden collapse. Although disruption of obligate mutualisms involving foundation species is known to precipitate collapse (e.g., coral bleaching), how facultative mutualisms (i.e., context-dependent, nonbinding reciprocal interactions) affect ecosystem resilience is uncertain. Here, we synthesize recent advancements and combine these with model analyses supported by real-world examples, to propose that facultative mutualisms may pose a double-edged sword for foundation species. We suggest that by amplifying self-facilitative feedbacks by foundation species, facultative mutualisms can increase foundation species' resistance to stress from anthropogenic impact. Simultaneously, however, mutualism dependency can generate or exacerbate bistability, implying a potential for sudden collapse when the mutualism's buffering capacity is exceeded, while recovery requires conditions to improve beyond the initial collapse point (hysteresis). Thus, our work emphasizes the importance of acknowledging facultative mutualisms for conservation and restoration of foundation species-structured ecosystems, but highlights the potential risk of relying on mutualisms in the face of global change. We argue that significant caveats remain regarding the determination of these feedbacks, and suggest empirical manipulation across stress gradients as a way forward to identify related nonlinear responses.
Collapse
Affiliation(s)
- Tjisse van der Heide
- Department of Coastal SystemsRoyal Netherlands Institute of Sea Research and Utrecht UniversityDen BurgThe Netherlands
- Conservation Ecology GroupGroningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Christine Angelini
- Department of Environmental Engineering SciencesEngineering School for Sustainable Infrastructure and the EnvironmentUniversity of FloridaGainesvilleFLUSA
| | - Jimmy de Fouw
- Department of Aquatic Ecology & Environmental BiologyInstitute for Water and Wetland ResearchRadboud UniversityNijmegenThe Netherlands
| | - Johan S. Eklöf
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| |
Collapse
|
37
|
Airoldi L, Beck MW, Firth LB, Bugnot AB, Steinberg PD, Dafforn KA. Emerging Solutions to Return Nature to the Urban Ocean. ANNUAL REVIEW OF MARINE SCIENCE 2021; 13:445-477. [PMID: 32867567 DOI: 10.1146/annurev-marine-032020-020015] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Urban and periurban ocean developments impact 1.5% of the global exclusive economic zones, and the demand for ocean space and resources is increasing. As we strive for a more sustainable future, it is imperative that we better design, manage, and conserve urban ocean spaces for both humans and nature. We identify three key objectives for more sustainable urban oceans: reduction of urban pressures, protection and restoration of ocean ecosystems, and support of critical ecosystem services. We describe an array of emerging evidence-based approaches, including greening grayinfrastructure, restoring habitats, and developing biotechnologies. We then explore new economic instruments and incentives for supporting these new approaches and evaluate their feasibility in delivering these objectives. Several of these tools have the potential to help bring nature back to the urban ocean while also addressing some of the critical needs of urban societies, such as climate adaptation, seafood production, clean water, and recreation, providing both human and environmental benefits in some of our most impacted ocean spaces.
Collapse
Affiliation(s)
- Laura Airoldi
- Department of Biology, Chioggia Hydrobiological Station Umberto D'Ancona, University of Padova, 30015 Chioggia, Italy;
- Department of Biological, Geological, and Environmental Sciences and Interdepartmental Research Center for Environmental Sciences, University of Bologna, UO CoNISMa, 48123 Ravenna, Italy
| | - Michael W Beck
- Institute of Marine Sciences, University of California, Santa Cruz, California 95060, USA;
| | - Louise B Firth
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom;
| | - Ana B Bugnot
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia;
- Sydney Institute of Marine Science, Mosman, New South Wales 2088, Australia
| | - Peter D Steinberg
- Sydney Institute of Marine Science, Mosman, New South Wales 2088, Australia
- Centre for Marine Science and Innovation and School of Biological, Earth, and Environmental Science, University of New South Wales, Sydney, New South Wales 2052, Australia;
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Katherine A Dafforn
- Department of Earth and Environmental Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia;
| |
Collapse
|
38
|
Losapio G, Schmid B, Bascompte J, Michalet R, Cerretti P, Germann C, Haenni JP, Neumeyer R, Ortiz-Sánchez FJ, Pont AC, Rousse P, Schmid J, Sommaggio D, Schöb C. An experimental approach to assessing the impact of ecosystem engineers on biodiversity and ecosystem functions. Ecology 2020; 102:e03243. [PMID: 33190225 DOI: 10.1002/ecy.3243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/21/2019] [Accepted: 09/18/2020] [Indexed: 11/12/2022]
Abstract
Plants acting as ecosystem engineers create habitats and facilitate biodiversity maintenance within plant communities. Furthermore, biodiversity research has demonstrated that plant diversity enhances the productivity and functioning of ecosystems. However, these two fields of research developed in parallel and independent from one another, with the consequence that little is known about the role of ecosystem engineers in the relationship between biodiversity and ecosystem functioning across trophic levels. Here, we present an experimental framework to study this relationship. We combine facilitation by plants acting as ecosystem engineers with plant-insect interaction analysis and variance partitioning of biodiversity effects. We present a case-study experiment in which facilitation by a cushion-plant species and a dwarf-shrub species as ecosystem engineers increases positive effects of plant functional diversity (ecosystem engineers and associated plants) on ecosystem functioning (flower visitation rate). The experiment, conducted in the field during a single alpine flowering season, included the following treatments: (1) removal of plant species associated with ecosystem engineers, (2) exclusion (covering) of ecosystem engineer flowers, and (3) control, i.e., natural patches of ecosystem engineers and associated plant species. We found both positive and negative associational effects between plants depending on ecosystem engineer identity, indicating both pollination facilitation and interference. In both cases, patches supported by ecosystem engineers increased phylogenetic and functional diversity of flower visitors. Furthermore, complementarity effects between engineers and associated plants were positive for flower visitation rates. Our study reveals that plant facilitation can enhance the strength of biodiversity-ecosystem functioning relationships, with complementarity between plants for attracting more and diverse flower visitors being the likely driver. A potential mechanism is that synergy and complementarity between engineers and associated plants increase attractiveness for shared visitors and widen pollination niches. In synthesis, facilitation among plants can scale up to a full network, supporting ecosystem functioning both directly via microhabitat amelioration and indirectly via diversity effects.
Collapse
Affiliation(s)
- Gianalberto Losapio
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, 8057, Switzerland.,Department of Environmental Systems Science, Swiss Federal Institute of Technology Zurich (ETH), Zurich, 8092, Switzerland.,Department of Biology, Stanford University, Stanford, California, 94305, USA
| | - Bernhard Schmid
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, 8057, Switzerland.,Department of Geography, University of Zurich, Zurich, 8057, Switzerland
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, 8057, Switzerland
| | - Richard Michalet
- University of Bordeaux, UMR 5805 EPOC, Talence cedex, 33405, France
| | - Pierfilippo Cerretti
- Dipartimento di Biologia e Biotecnologie, Università di Roma La Sapienza, Rome, 00185, Italy
| | | | - Jean-Paul Haenni
- Muséum d'histoire Naturelle, Entomologie, Neuchâtel, 2000, Switzerland
| | - Rainer Neumeyer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, 8057, Switzerland
| | | | - Adrian C Pont
- Oxford University Museum of Natural History, Oxford, OX1 3PW, United Kingdom
| | - Pascal Rousse
- Unité Expertise-Risques Biologiques, Laboratoire de la Santé des Végétaux, ANSES, Angers, 49000, France
| | - Jürg Schmid
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, 8057, Switzerland
| | - Daniele Sommaggio
- Department of Agricultural Sciences, University of Bologna, Bologna, 40127, Italy
| | - Christian Schöb
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, 8057, Switzerland.,Department of Environmental Systems Science, Swiss Federal Institute of Technology Zurich (ETH), Zurich, 8092, Switzerland
| |
Collapse
|
39
|
Mayer‐Pinto M, Ledet J, Crowe TP, Johnston EL. Sublethal effects of contaminants on marine habitat-forming species: a review and meta-analysis. Biol Rev Camb Philos Soc 2020; 95:1554-1573. [PMID: 32614143 PMCID: PMC7689725 DOI: 10.1111/brv.12630] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022]
Abstract
Contaminants may affect ecosystem functioning by reducing the fitness of organisms and these impacts may cascade through ecosystems, particularly if the sensitive organisms are also habitat-forming species. Understanding how sub-lethal effects of toxicants can affect the quality and functions of biogenic habitats is critical if we are to establish effective guidelines for protecting ecosystems. We carried out a global systematic review and meta-analysis critically evaluating contaminant effects on properties of habitat-formers linked to ecosystem functioning. We reviewed a total of 95 publications. However, 40% of publications initially captured by the literature search were identified as having flaws in experimental design and ~11% did not present results in an appropriate way and thus were excluded from the quantitative meta-analysis. We quantitatively reviewed 410 studies from 46 publications, of which 313 (~76%) were on plants and seaweeds, that is macro-algae, saltmarsh plants and seagrasses, 58 (~14%) studied corals and 39 (~10%) looked at toxicant impacts on bivalves, with 70% of those on mussels and the remaining studies on oysters. Response variables analysed were photosynthetic efficiency, amount of chlorophyll a (as a proxy for primary production) and growth of plants, seaweeds and corals as well as leaf area of plants. We also analysed filtration, growth and respiration rates of bivalves. Our meta-analysis found that chemical contaminants have a significant negative impact on most of the analysed functional variables, with the exception of the amount of chlorophyll a. Metals were the most widely harmful type of contaminant, significantly decreasing photosynthetic efficiency of kelps, leaf area of saltmarsh plants, growth of fucoids, corals and saltmarsh plants and the filtration rates of bivalves. Organic contaminants decreased the photosynthetic efficiency of seagrass, but had no significant effects on bivalve filtration. We did not find significant effects of polycyclic aromatic hydrocarbons on any of the analysed functional variables or habitat-forming taxa, but this could be due to the low number of studies available. A meta-regression revealed that relationships between concentrations of metal contaminants and the magnitude of functional responses varied with the type of metal and habitat-former. Increasing concentrations of contaminants significantly increased the negative effects on the photosynthetic efficiency of habitat-formers. There was, however, no apparent relationship between ecologically relevant concentrations of metals and effect sizes of photosynthetic efficiency of corals and seaweeds. A qualitative analysis of all relevant studies found slightly different patterns when compared to our quantitative analysis, emphasising the need for studies to meet critical inclusion criteria for meta-analyses. Our study highlights links between effects of contaminants at lower levels of organisation (i.e. at the biochemical and/or physiological level of individuals) and ecological, large-scale impacts, through effects on habitat-forming species. Contaminants can clearly reduce the functioning of many habitat-forming marine species. We therefore recommend the adoption of routine measures of functional endpoints in monitoring and conservation programs to complement structural measures.
Collapse
Affiliation(s)
- Mariana Mayer‐Pinto
- Centre for Marine Scince and Innovation, Evolution & Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South Wales2052Australia
- Sydney Institute of Marine SciencesMosmanNew South Wales2088Australia
| | - Janine Ledet
- Centre for Marine Scince and Innovation, Evolution & Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South Wales2052Australia
| | - Tasman P. Crowe
- Earth Institute and School of Biology & Environmental Science, Science Centre WestUniversity College DublinBelfieldDublin 4Ireland
| | - Emma L. Johnston
- Centre for Marine Scince and Innovation, Evolution & Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South Wales2052Australia
| |
Collapse
|
40
|
Chaieb G, Wang X, Abdelly C, Michalet R. Shift from short‐term competition to facilitation with drought stress is due to a decrease in long‐term facilitation. OIKOS 2020. [DOI: 10.1111/oik.07528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ghassen Chaieb
- Faculty of Sciences of Bizerte, Univ. of Carthage Zarzouna Tunisia
- Univ. of Bordeaux, UMR CNRS 5805 EPOC, Allée Geoffroy Saint‐Hilaire – CS 50023 FR‐33615 Pessac France
| | - Xiangtai Wang
- State Key Laboratory of Grassland and Agro‐ecosystems, School of Life Sciences, Lanzhou Univ., Lanzhou Gansu PR China
| | - Chedly Abdelly
- Laboratory of Extremophiles Plants, Center of Biotechnology of Borj Cedria, 2050 Tunisia
| | - Richard Michalet
- Univ. of Bordeaux, UMR CNRS 5805 EPOC, Allée Geoffroy Saint‐Hilaire – CS 50023 FR‐33615 Pessac France
| |
Collapse
|
41
|
Chaieb G, Abdelly C, Michalet R. A Regional Assessment of Changes in Plant–Plant Interactions Along Topography Gradients in Tunisian Sebkhas. Ecosystems 2020. [DOI: 10.1007/s10021-020-00567-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Anderson J, Song BH. Plant adaptation to climate change - Where are we? JOURNAL OF SYSTEMATICS AND EVOLUTION 2020; 58:533-545. [PMID: 33584833 PMCID: PMC7875155 DOI: 10.1111/jse.12649] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Climate change poses critical challenges for population persistence in natural communities, agriculture and environmental sustainability, and food security. In this review, we discuss recent progress in climatic adaptation in plants. We evaluate whether climate change exerts novel selection and disrupts local adaptation, whether gene flow can facilitate adaptive responses to climate change, and if adaptive phenotypic plasticity could sustain populations in the short term. Furthermore, we discuss how climate change influences species interactions. Through a more in-depth understanding of these eco-evolutionary dynamics, we will increase our capacity to predict the adaptive potential of plants under climate change. In addition, we review studies that dissect the genetic basis of plant adaptation to climate change. Finally, we highlight key research gaps, ranging from validating gene function, to elucidating molecular mechanisms, expanding research systems from model species to other natural species, testing the fitness consequences of alleles in natural environments, and designing multifactorial studies that more closely reflect the complex and interactive effects of multiple climate change factors. By leveraging interdisciplinary tools (e.g., cutting-edge omics toolkits, novel ecological strategies, newly-developed genome editing technology), researchers can more accurately predict the probability that species can persist through this rapid and intense period of environmental change, as well as cultivate crops to withstand climate change, and conserve biodiversity in natural systems.
Collapse
Affiliation(s)
- Jill Anderson
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Authors for correspondence. Bao-Hua Song. ; Jill Anderson.
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Authors for correspondence. Bao-Hua Song. ; Jill Anderson.
| |
Collapse
|
43
|
Orr JA, Vinebrooke RD, Jackson MC, Kroeker KJ, Kordas RL, Mantyka-Pringle C, Van den Brink PJ, De Laender F, Stoks R, Holmstrup M, Matthaei CD, Monk WA, Penk MR, Leuzinger S, Schäfer RB, Piggott JJ. Towards a unified study of multiple stressors: divisions and common goals across research disciplines. Proc Biol Sci 2020; 287:20200421. [PMID: 32370677 DOI: 10.1098/rspb.2020.0421] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Anthropogenic environmental changes, or 'stressors', increasingly threaten biodiversity and ecosystem functioning worldwide. Multiple-stressor research is a rapidly expanding field of science that seeks to understand and ultimately predict the interactions between stressors. Reviews and meta-analyses of the primary scientific literature have largely been specific to either freshwater, marine or terrestrial ecology, or ecotoxicology. In this cross-disciplinary study, we review the state of knowledge within and among these disciplines to highlight commonality and division in multiple-stressor research. Our review goes beyond a description of previous research by using quantitative bibliometric analysis to identify the division between disciplines and link previously disconnected research communities. Towards a unified research framework, we discuss the shared goal of increased realism through both ecological and temporal complexity, with the overarching aim of improving predictive power. In a rapidly changing world, advancing our understanding of the cumulative ecological impacts of multiple stressors is critical for biodiversity conservation and ecosystem management. Identifying and overcoming the barriers to interdisciplinary knowledge exchange is necessary in rising to this challenge. Division between ecosystem types and disciplines is largely a human creation. Species and stressors cross these borders and so should the scientists who study them.
Collapse
Affiliation(s)
- James A Orr
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Rolf D Vinebrooke
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Kristy J Kroeker
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Rebecca L Kordas
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Berkshire, UK
| | - Chrystal Mantyka-Pringle
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Wildlife Conservation Society Canada, Whitehorse, Yukon Territory, Canada
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands.,Wageningen Environmental Research, PO Box 47, 6700 AA Wageningen, The Netherlands
| | - Frederik De Laender
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | | | | | - Wendy A Monk
- Environment and Climate Change Canada at Canadian Rivers Institute, Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Marcin R Penk
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Sebastian Leuzinger
- Institute for Applied Ecology, Auckland University of Technology, Auckland, New Zealand
| | - Ralf B Schäfer
- Quantitative Landscape Ecology, iES-Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Jeremy J Piggott
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
44
|
Gagnon K, Rinde E, Bengil EGT, Carugati L, Christianen MJA, Danovaro R, Gambi C, Govers LL, Kipson S, Meysick L, Pajusalu L, Tüney Kızılkaya İ, Koppel J, Heide T, Katwijk MM, Boström C. Facilitating foundation species: The potential for plant–bivalve interactions to improve habitat restoration success. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13605] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karine Gagnon
- Environmental and Marine Biology Åbo Akademi University Turku Finland
| | - Eli Rinde
- Norwegian Institute for Water Research Oslo Norway
| | - Elizabeth G. T. Bengil
- Mediterranean Conservation Society Izmir Turkey
- Girne American UniversityMarine School Girne TRNC via Turkey
| | - Laura Carugati
- Department of Life and Environmental Sciences Polytechnic University of Marche Ancona Italy
| | - Marjolijn J. A. Christianen
- Aquatic Ecology and Water Quality Management Group Wageningen University Wageningen The Netherlands
- Department of Environmental Science Institute for Wetland and Water Research Radboud University Nijmegen Nijmegen The Netherlands
| | - Roberto Danovaro
- Department of Life and Environmental Sciences Polytechnic University of Marche Ancona Italy
- Stazione Zoologica Anton Dohrn Naples Italy
| | - Cristina Gambi
- Department of Life and Environmental Sciences Polytechnic University of Marche Ancona Italy
| | - Laura L. Govers
- Department of Environmental Science Institute for Wetland and Water Research Radboud University Nijmegen Nijmegen The Netherlands
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Silvija Kipson
- Faculty of Science Department of Biology University of Zagreb Zagreb Croatia
| | - Lukas Meysick
- Environmental and Marine Biology Åbo Akademi University Turku Finland
| | - Liina Pajusalu
- Estonian Marine Institute University of Tartu Tallinn Estonia
| | - İnci Tüney Kızılkaya
- Mediterranean Conservation Society Izmir Turkey
- Faculty of Science Ege University Izmir Turkey
| | - Johan Koppel
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
- Royal Netherlands Institute for Sea Research and Utrecht University Yerseke The Netherlands
| | - Tjisse Heide
- Department of Environmental Science Institute for Wetland and Water Research Radboud University Nijmegen Nijmegen The Netherlands
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
- Department of Coastal Systems Royal Netherlands Institute of Sea Research and Utrecht University Den Burg The Netherlands
| | - Marieke M. Katwijk
- Department of Environmental Science Institute for Wetland and Water Research Radboud University Nijmegen Nijmegen The Netherlands
| | | |
Collapse
|
45
|
Tait LW, Lohrer AM, Townsend M, Atalah J, Floerl O, Inglis GJ. Invasive ecosystem engineers threaten benthic nitrogen cycling by altering native infaunal and biofouling communities. Sci Rep 2020; 10:1581. [PMID: 32005953 PMCID: PMC6994685 DOI: 10.1038/s41598-020-58557-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/15/2020] [Indexed: 11/13/2022] Open
Abstract
Predicting the effects of invasive ecosystem engineering species in new bioregions has proved elusive. In part this is because separating biological effects from purely physical mechanisms has been little studied and yet could help predict potentially damaging bioinvasions. Here we tested the effects of a large bio-engineering fanworm Sabella spallanzanii (Sabella) versus worm-like structures (mimics) on gas and nutrient fluxes in a marine soft bottom sediment. Experimental plots of sediment in Hauraki Gulf (New Zealand) were used to test the hypothesis that ecosystem engineers negatively influence benthic ecosystem function through autogenic mechanisms, facilitating activity by biofouling organisms and competitive exclusion of native infauna. Enhanced physical structure associated with Sabella and mimics increased nitrogen fluxes, community metabolism and reduced denitrification from 23 μmol m−2 h−1 to zero at densities greater than 25 m2. Sabella plots on average had greater respiration (29%), NH4 release (33%), and greater NO3 release (52%) compared to mimics, suggesting allogenic (biological) mechanisms occur, but play a secondary role to autogenic (physical) mechanisms. The dominance of autogenic mechanisms indicates that bio-engineers are likely to cause significant impacts when established, regardless of fundamental differences in recipient regions or identity of the introduced bio-engineer. In the case of Sabella spallanzanii, compromised denitrification has the potential to tip the balance of net solute and gas exchanges and cause further ecological degradation in an already eutrophic system.
Collapse
Affiliation(s)
- L W Tait
- National Institute of Water and Atmospheric Research, 10 Kyle St, Riccarton, Christchurch, 8011, New Zealand.
| | - A M Lohrer
- National Institute of Water and Atmospheric Research, 10 Silverdale Road Hillcrest, Hillcrest, Hamilton, 3216, New Zealand
| | - M Townsend
- National Institute of Water and Atmospheric Research, 10 Silverdale Road Hillcrest, Hillcrest, Hamilton, 3216, New Zealand.,Waikato Regional Council, 401 Grey St, Hamilton East, Hamilton, 3216, New Zealand
| | - J Atalah
- Cawthron Institute 98 Halifax St E, The Wood, Nelson, 7010, New Zealand
| | - O Floerl
- Cawthron Institute 98 Halifax St E, The Wood, Nelson, 7010, New Zealand
| | - G J Inglis
- National Institute of Water and Atmospheric Research, 10 Kyle St, Riccarton, Christchurch, 8011, New Zealand
| |
Collapse
|
46
|
Solan M, Bennett EM, Mumby PJ, Leyland J, Godbold JA. Benthic-based contributions to climate change mitigation and adaptation. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190107. [PMID: 31983332 DOI: 10.1098/rstb.2019.0107] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Innovative solutions to improve the condition and resilience of ecosystems are needed to address societal challenges and pave the way towards a climate-resilient future. Nature-based solutions offer the potential to protect, sustainably manage and restore natural or modified ecosystems while providing multiple other benefits for health, the economy, society and the environment. However, the implementation of nature-based solutions stems from a discourse that is almost exclusively derived from a terrestrial and urban context and assumes that risk reduction is resolved locally. We argue that this position ignores the importance of complex ecological interactions across a range of temporal and spatial scales and misses the substantive contribution from marine ecosystems, which are notably absent from most climate mitigation and adaptation strategies that extend beyond coastal disaster management. Here, we consider the potential of sediment-dwelling fauna and flora to inform and support nature-based solutions, and how the ecology of benthic environments can enhance adaptation plans. We illustrate our thesis with examples of practice that are generating, or have the potential to deliver, transformative change and discuss where further innovation might be applied. Finally, we take a reflective look at the realized and potential capacity of benthic-based solutions to contribute to adaptation plans and offer our perspectives on the suitability and shortcomings of past achievements and the prospective rewards from sensible prioritization of future research. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.
Collapse
Affiliation(s)
- Martin Solan
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - Elena M Bennett
- Department of Natural Resource Sciences and McGill School of Environment, McGill University-Macdonald Campus, 21,111 Lakeshore Road, St Anne-de-Bellevue, Quebec, Canada H9X 3 V9
| | - Peter J Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Julian Leyland
- School of Geography and Environmental Science, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Jasmin A Godbold
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK.,School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| |
Collapse
|
47
|
Cruz MV, Mori GM, Signori-Müller C, da Silva CC, Oh DH, Dassanayake M, Zucchi MI, Oliveira RS, de Souza AP. Local adaptation of a dominant coastal tree to freshwater availability and solar radiation suggested by genomic and ecophysiological approaches. Sci Rep 2019; 9:19936. [PMID: 31882752 PMCID: PMC6934818 DOI: 10.1038/s41598-019-56469-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/07/2019] [Indexed: 12/21/2022] Open
Abstract
Local adaptation is often a product of environmental variations in geographical space and has implications for biodiversity conservation. We investigated the role of latitudinal heterogeneity in climate on the organization of genetic and phenotypic variation in the dominant coastal tree Avicennia schaueriana. In a common garden experiment, samples from an equatorial region, with pronounced seasonality in precipitation, accumulated less biomass, and showed lower stomatal conductance and transpiration, narrower xylem vessels, smaller leaves and higher reflectance of long wavelengths by the stem epidermis than samples from a subtropical region, with seasonality in temperature and no dry season. Transcriptomic differences identified between trees sampled under field conditions at equatorial and subtropical sites, were enriched in functional categories such as responses to temperature, solar radiation, water deficit, photosynthesis and cell wall biosynthesis. Remarkably, the diversity based on genome-wide SNPs revealed a north-south genetic structure and signatures of selection were identified for loci associated with photosynthesis, anthocyanin accumulation and the responses to osmotic and hypoxia stresses. Our results suggest the existence of divergence in key resource-use characteristics, likely driven by seasonality in water deficit and solar radiation. These findings provide a basis for conservation plans and for predicting coastal plants responses to climate change.
Collapse
Affiliation(s)
- Mariana Vargas Cruz
- Department of Plant Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, 13083-863, Brazil
- Center for Molecular Biology and Genetic Engineering, University of Campinas (Unicamp), Campinas, SP, 13083-875, Brazil
| | - Gustavo Maruyama Mori
- Institute of Biosciences, São Paulo State University (Unesp), São Vicente, SP, 11330-900, Brazil
| | - Caroline Signori-Müller
- Department of Plant Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, 13083-863, Brazil
| | - Carla Cristina da Silva
- Center for Molecular Biology and Genetic Engineering, University of Campinas (Unicamp), Campinas, SP, 13083-875, Brazil
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University (LSU), Louisiana, LA, 70803, United States
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University (LSU), Louisiana, LA, 70803, United States
| | | | - Rafael Silva Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, 13083-863, Brazil
| | - Anete Pereira de Souza
- Department of Plant Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, 13083-863, Brazil.
- Center for Molecular Biology and Genetic Engineering, University of Campinas (Unicamp), Campinas, SP, 13083-875, Brazil.
| |
Collapse
|
48
|
Boyé A, Thiébaut É, Grall J, Legendre P, Broudin C, Houbin C, Le Garrec V, Maguer M, Droual G, Gauthier O. Trait‐based approach to monitoring marine benthic data along 500 km of coastline. DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.12987] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Aurélien Boyé
- CNRS IRD Ifremer LEMAR Univ Brest Plouzane France
- Département de Sciences Biologiques Université de Montréal Montréal QC Canada
| | - Éric Thiébaut
- Laboratoire Adaptation et Diversité en Milieu Marin UMR 7144 CNRS Station Biologique de Roscoff Sorbonne Université Roscoff Cedex France
| | - Jacques Grall
- CNRS IRD Ifremer LEMAR Univ Brest Plouzane France
- CNRS UMS 3113 Observatoire Marin Suivis Habitats Benthiques OSU‐IUEM Université de Brest Plouzané France
| | - Pierre Legendre
- Département de Sciences Biologiques Université de Montréal Montréal QC Canada
| | - Caroline Broudin
- CNRS Station Biologique de Roscoff FR 2424 Sorbonne Université Roscoff France
| | - Céline Houbin
- CNRS Station Biologique de Roscoff FR 2424 Sorbonne Université Roscoff France
| | - Vincent Le Garrec
- CNRS UMS 3113 Observatoire Marin Suivis Habitats Benthiques OSU‐IUEM Université de Brest Plouzané France
| | - Marion Maguer
- CNRS UMS 3113 Observatoire Marin Suivis Habitats Benthiques OSU‐IUEM Université de Brest Plouzané France
| | - Gabin Droual
- CNRS UMS 3113 Observatoire Marin Suivis Habitats Benthiques OSU‐IUEM Université de Brest Plouzané France
| | - Olivier Gauthier
- CNRS IRD Ifremer LEMAR Univ Brest Plouzane France
- CNRS UMS 3113 Observatoire Marin Suivis Habitats Benthiques OSU‐IUEM Université de Brest Plouzané France
| |
Collapse
|
49
|
Chaverra A, Wieters E, Foggo A, Knights AM. Removal of intertidal grazers by human harvesting leads to alteration of species interactions, community structure and resilience to climate change. MARINE ENVIRONMENTAL RESEARCH 2019; 146:57-65. [PMID: 30914147 DOI: 10.1016/j.marenvres.2019.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/26/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
Extreme fluctuations in abiotic conditions can induce a biological stress response (e.g. bleaching) detrimental to an organism's health. In some instances, organisms can recover if conditions are alleviated, such as through co-occurrence with other species that confer protection. Biodiverse, multitrophic communities are increasingly recognised as important promoters of species persistence and resilience under environmental change. On intertidal shores, the role of grazers as top-down determinants of algal community structure is well recognised. Similarly, the harvesting of grazers for human consumption is increasingly prevalent with potential to greatly alter the community dynamics. Here, we assess how differences in harvesting pressure of grazers under three management regimes (no-take; managed access; open-access) alters the trophic interactions between grazers, and algal communities. Grazer density and body size frequencies were different among regimes leading to changes in the photosynthetic performance and recovery of crustose coralline algae (CCA) post-bleaching, as well as their presence altering the strength of interactions between species. The exclusion of grazers from patches using cages led to different emergent communities and reduced negative correlations between taxa. The absence of larger grazers (>9 cm) at the managed access site led to macroalgal overgrowth of bleached CCA negatively affecting its recovery, whereas no-take or open-access led to a moderated algal growth and a shift from competitive to facilitative interactions between algal species. Given that CCA play an important role in the population growth and development of other species, the choice of management measure should be carefully considered before implementation, depending on objectives.
Collapse
Affiliation(s)
- Ana Chaverra
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK; Estación Costera de Investigaciones Marinas and Center for Marine Conservation, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla, 114-D, Santiago, Chile
| | - Evie Wieters
- Estación Costera de Investigaciones Marinas and Center for Marine Conservation, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla, 114-D, Santiago, Chile
| | - Andy Foggo
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
| | - Antony M Knights
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK.
| |
Collapse
|
50
|
Ellison AM. Foundation Species, Non-trophic Interactions, and the Value of Being Common. iScience 2019; 13:254-268. [PMID: 30870783 PMCID: PMC6416672 DOI: 10.1016/j.isci.2019.02.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/27/2019] [Accepted: 02/21/2019] [Indexed: 11/26/2022] Open
Abstract
Foundation species define ecosystems, control the biological diversity of associated species, modulate critical ecosystem processes, and often have important cultural values and resonance. This review summarizes current understanding of the characteristics and traits of foundation species and how to distinguish them from other “important” species in ecological systems (e.g., keystone, dominant, and core species); illustrates how analysis of the structure and function of ecological networks can be improved and enriched by explicit incorporation of foundation species and their non-trophic interactions; discusses the importance of pro-active identification and management of foundation species as a cost-effective and efficient method of sustaining valuable ecosystem processes and services and securing populations of associated rare, threatened, or endangered species; and suggests broader engagement of citizen-scientists and non-specialists in the identification and study of foundation species and their biological and cultural values.
Collapse
Affiliation(s)
- Aaron M Ellison
- Harvard Forest, Harvard University, Petersham, MA 01366, USA.
| |
Collapse
|