1
|
Chaqroun A, El Soufi G, Gerber Z, Loutreul J, Cluzel N, Challant J, Delafoy D, Sandron F, Di Jorio L, Raffestin S, Maréchal V, Gantzer C, Olaso R, Deleuze JF, Rohr O, Boudaud N, Wallet C, Bertrand I. Optimized protocol for direct extraction of SARS-CoV-2 RNA from raw wastewater samples (ANRS 0160). MethodsX 2025; 14:103323. [PMID: 40331030 PMCID: PMC12051151 DOI: 10.1016/j.mex.2025.103323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
This study aimed to evaluate whether a nucleic acid extraction protocol specifically designed for raw wastewater (WW) provides a measurable advantage over protocols not originally intended for WW matrices. Three laboratories have independently compared two RNA extraction protocols, using paired WW samples. A common WW-designed protocol (Z), based on silica columns was tested across all labs. As comparators, three non-WW designed protocols were used: NS1 and NS2 both silica beads-based, with NS2 including an additional phenol-chloroform step; and SB a homemade protocol using also silica beads but differing in its formulation. As different samples were used across labs, direct statistical comparison was difficult; instead, paired comparisons within each lab were used to rank SARS-CoV-2 RNA detection and RT-qPCR inhibitor removal. NS1 yielded significantly higher SARS-CoV-2 RNA concentrations than Z (Logrank test, p ≤ 0.001), though with RT-qPCR inhibition in one sample. NS2 also showed higher SARS-CoV-2 RNA detection than Z (Wilcoxon test, p < 0.0001), with both protocols showing complete inhibitor removal. SB performed worse than Z for SARS-CoV-2 RNA detection (Logrank test, p ≤ 0.05), and showed inhibition in one sample. NS2 was the most effective option for both RNA detection and inhibitor removal.
Collapse
Affiliation(s)
- Ahlam Chaqroun
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
- OBEPINE consortium, Paris, France
| | - Ghina El Soufi
- Université de Strasbourg, UPR CNRS 9002 ARN, F-67300 Schiltigheim, France
- Université de Strasbourg, IUT Louis Pasteur, F-67300 Schiltigheim, France
- OBEPINE consortium, Paris, France
| | - Zuzana Gerber
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, F-91057 Evry, France
| | - Julie Loutreul
- ACTALIA, F-50000 Saint Lô, France
- OBEPINE consortium, Paris, France
| | - Nicolas Cluzel
- Maison des Modélisations Ingénieries et Technologies (SUMMIT), Sorbonne Université, F-75005 Paris, France
- OBEPINE consortium, Paris, France
| | - Julie Challant
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
- OBEPINE consortium, Paris, France
| | - Damien Delafoy
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, F-91057 Evry, France
| | - Florian Sandron
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, F-91057 Evry, France
| | - Léo Di Jorio
- Université de Strasbourg, UPR CNRS 9002 ARN, F-67300 Schiltigheim, France
- Université de Strasbourg, IUT Louis Pasteur, F-67300 Schiltigheim, France
- OBEPINE consortium, Paris, France
| | - Stéphanie Raffestin
- Institut Pasteur de la Guyane, French Guiana, F-97300 Cayenne, France
- OBEPINE consortium, Paris, France
| | - Vincent Maréchal
- INSERM, Centre de Recherche Saint-Antoine, Sorbonne Université, F-75012 Paris, France
- OBEPINE consortium, Paris, France
| | - Christophe Gantzer
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
- OBEPINE consortium, Paris, France
| | - Robert Olaso
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, F-91057 Evry, France
| | - Jean-François Deleuze
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, F-91057 Evry, France
| | - Olivier Rohr
- Université de Strasbourg, UPR CNRS 9002 ARN, F-67300 Schiltigheim, France
- Université de Strasbourg, IUT Louis Pasteur, F-67300 Schiltigheim, France
- OBEPINE consortium, Paris, France
| | - Nicolas Boudaud
- ACTALIA, F-50000 Saint Lô, France
- OBEPINE consortium, Paris, France
| | - Clémentine Wallet
- Université de Strasbourg, UPR CNRS 9002 ARN, F-67300 Schiltigheim, France
- Université de Strasbourg, IUT Louis Pasteur, F-67300 Schiltigheim, France
- OBEPINE consortium, Paris, France
| | - Isabelle Bertrand
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
- OBEPINE consortium, Paris, France
| |
Collapse
|
2
|
Sharma R, Tamrakar VK, Carpenter RE, Sharma A, Suri K, Karki S, Kyser K, Sronce R, Almas S. Evaluation of direct-to-PCR (D2P) method for molecular diagnosis of infectious diseases. Exp Mol Pathol 2025; 143:104972. [PMID: 40424696 DOI: 10.1016/j.yexmp.2025.104972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025]
Abstract
This study evaluates the performance of the Direct-to-PCR (D2P) method as a streamlined, extraction-independent alternative to conventional nucleic acid extraction techniques for diagnosing urinary tract infections, sexually transmitted infections, and respiratory tract infections. The D2P approach employs proprietary antimicrobial peptide-based lysis buffers tailored for bacterial, fungal, and viral targets, enabling direct amplification from clinical and contrived specimens without column- or bead-based purification. Comparative analyses were conducted against silica column-based (QIAGEN) and magnetic bead-based (KingFisher) extraction methods using both microbial reference isolates and 116 residual clinical samples. Results demonstrate that the D2P method yields comparable sensitivity and specificity to conventional extraction workflows across a diverse panel of pathogens-including Gram-negative and Gram-positive bacteria, Candida species, ssRNA viruses (e.g., CoV-229E, Parainfluenza Virus 1 and 2), and dsDNA viruses (e.g., HSV, HAdV). Notably, D2P outperformed both QIAGEN and KingFisher in extracting nucleic acids from Candida auris, a multidrug-resistant fungal pathogen. Limit of detection and amplification efficiency remained within acceptable ranges across all platforms, with R2 values between 0.92 and 0.99, and slopes consistent with MIQE standards. The D2P protocol reduced total sample processing time from ∼120 min to ∼45 min, minimized hands-on steps, and demonstrated effective performance in turbid or hemolyzed samples-making it suitable for high-throughput and resource-limited settings. However, limitations were observed in samples with high PCR-inhibitor content or low target yield, and broader validation across additional matrices is recommended. These findings support D2P as a reliable, efficient, and scalable molecular diagnostic alternative with broad clinical utility. Integration of D2P into diagnostic workflows could enhance access to rapid, cost-effective pathogen detection in both centralized laboratories and decentralized or point-of-care environments.
Collapse
Affiliation(s)
- Rahul Sharma
- Department of Research, Scienetix, Tyler, TX 75703, USA; Department of Research, RetroBiotech and Research Pvt. Ltd, Jaipur, RJ, 302017, India.
| | - Vaibhav K Tamrakar
- Divison of Communicable Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, MP 482003, India; Department of Research, RetroBiotech and Research Pvt. Ltd, Jaipur, RJ, 302017, India
| | - Rob E Carpenter
- Department of Research, Scienetix, Tyler, TX 75703, USA; Soules College of Business, University of Texas at Tyler, Tyler, TX 75799, USA; Department of Research, Advanta Genetics, Tyler, TX 75703, USA
| | - Aditya Sharma
- Department of Research, RetroBiotech and Research Pvt. Ltd, Jaipur, RJ, 302017, India
| | - Kamalpreet Suri
- Department of Research, RetroBiotech and Research Pvt. Ltd, Jaipur, RJ, 302017, India
| | - Salima Karki
- Department of Research, Scienetix, Tyler, TX 75703, USA
| | - Katelyn Kyser
- Department of Research, Scienetix, Tyler, TX 75703, USA
| | - Randy Sronce
- Department of Research, Scienetix, Tyler, TX 75703, USA
| | - Sadia Almas
- Department of Research, Scienetix, Tyler, TX 75703, USA
| |
Collapse
|
3
|
Kerns EV, Weber JN. Variable performance of widely used bisulfite sequencing methods and read mapping software for DNA methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643302. [PMID: 40166276 PMCID: PMC11957057 DOI: 10.1101/2025.03.14.643302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
DNA methylation (DNAm) is the most commonly studied marker in ecological epigenetics, yet the performance of popular library preparation strategies and bioinformatic tools is seldom assessed in genetically variable natural populations. We profiled DNAm using reduced representation bisulfite sequencing (RRBS) and whole genome bisulfite sequencing (WGBS) of technical and biological replicates from threespine stickleback ( Gasterosteus aculeatus ) liver tissue. We then compared how the most commonly used methylation caller (Bismark) performed relative to two alternative pipelines (BWA mem or BWA meth read mappers analyzed with MethylDackel). BWA meth provided 50% and 45% higher mapping efficiency than BWA mem and Bismark, respectively. Despite differences in mapping efficiency, BWA meth and Bismark produced similar methylation profiles, while BWA mem systematically discarded unmethylated cytosines. Depth filters had large impacts on CpG sites recovered across multiple individuals, particularly with WGBS data. Notably, the prevalence of CpG sites with intermediate methylation levels is greatly reduced in RRBS, which may have important consequences for functional interpretations. We conclude by discussing how library construction and bisulfite sequence alignment software can influence the abundance and reliability of data available for downstream analysis. Our analyses suggest that researchers studying genetically variable populations will benefit from deeply sequencing a few initial individuals to identify the amount of genomic coverage necessary for mean methylation estimates to plateau, a value that may differ by species and population. We additionally advocate for paired end sequencing on RRBS libraries to filter SNPs that may bias methylation metrics, which is counter to conventional wisdom.
Collapse
|
4
|
Tajammal A, Haddox S, Zahra S, Cornelison R, Fierti AO, Li H. BLADE-R: streamlined RNA extraction for molecular diagnostics and high-throughput applications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645479. [PMID: 40196560 PMCID: PMC11974778 DOI: 10.1101/2025.03.27.645479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Efficient nucleic acid extraction and purification are crucial for cellular and molecular biology research, yet they pose challenges for large-scale clinical RNA sequencing and PCR assays. Here, we present BLADE-R, a magnetic bead-based protocol that simplifies the process by combining cellular lysis and nucleic acid binding into a single step, followed by a unique on-bead rinse for nuclease-free separation of genomic DNA and RNA. The Agilent TapeStation and RT-qPCR analyses show that RNA extracted from HEK293T cell line using BLADE-R outperforms the TRIzol protocol in terms of time and cost. RNA sequencing reveals no differences in sequence quality or gene count variance between samples processed with BLADE-R and those processed with TRIzol followed by RNA kit clean-up. Additionally, BLADE-R outperformed TRIzol in RNA extraction from frozen tissue and whole blood samples, as confirmed by RT-qPCR. Our protocol can be adapted to a 96-well plate format, enabling RNA purification of up to 96 human blood samples in less time than a single-sample traditional extraction. Using BLADE-R in this format, we confirmed minimal well-to-well contamination in RNA purification, cDNA synthesis, and PCR. Therefore, our novel BLADE-R protocol, suitable for both low and high-throughput formats, is effective even in limited-resource settings for preparing clinical samples for PCR and sequencing assays. Thus, our new BLADE-R technique works well even in low-resource environments to prepare clinical samples for PCR and sequencing experiments. It can be adapted for both low- and high-throughput formats.
Collapse
|
5
|
Duyvestyn JM, Bredenbeek PJ, Gruters MJ, Tas A, Nelemans T, Kikkert M, van Hemert MJ. Attenuating Mutations in Usutu Virus: Towards Understanding Orthoflavivirus Virulence Determinants and Live Attenuated Vaccine Design. Vaccines (Basel) 2025; 13:495. [PMID: 40432107 PMCID: PMC12115599 DOI: 10.3390/vaccines13050495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/24/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Understanding virulence determinants can inform safer and more efficacious live attenuated vaccine design. However, applying this knowledge across related viruses does not always result in conserved phenotypes from similar mutants. METHODS Using Usutu virus (USUV), an emerging orthoflavivirus spreading through Europe, we assessed whether the attenuating effect of the mutations described for related orthoflaviviruses is conserved. Candidate attenuating mutations were selected based on previous studies in other orthoflaviviruses and incorporated into USUV. RESULTS Nine variants, with mutations in the USUV envelope, non-structural (NS) proteins NS1, NS2A, or NS4B were stable and selected for further characterisation. The variants with an attenuating phenotype in cell culture were then compared to the wild-type virus in an Ifnar-/- mouse model. Mutations of the envelope glycosylation sites and glycosaminoglycan binding sites, which were recognised as more-conserved mechanisms of orthoflavivirus attenuation, were attenuating in USUV as well. However, not all the mutations explored in the USUV non-structural proteins exhibited an attenuated phenotype. Instead, the attenuation was either less pronounced, or there was no change in phenotype relative to the wild-type virus at all. CONCLUSIONS In addition to improving our understanding of USUV virulence determinants, these results add to a growing body of literature highlighting the most promising mechanisms to target for the design of safe live attenuated vaccines against emerging orthoflaviviruses.
Collapse
|
6
|
Zhang Y, Wang J, Fang H, Hu S, Yang B, Zhou J, Grifone R, Li P, Lu T, Wang Z, Zhang C, Huang Y, Wu D, Gong Q, Shi DL, Li A, Shao M. Rbm24a dictates mRNA recruitment for germ granule assembly in zebrafish. EMBO J 2025:10.1038/s44318-025-00442-z. [PMID: 40281355 DOI: 10.1038/s44318-025-00442-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 03/15/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
The germ granules are ribonucleoprotein (RNP) biomolecular condensates that determine the fate of primordial germ cells (PGCs) and serve as a model for studying RNP granule assembly. Here, we show that the maternal RNA-binding protein Rbm24a is a key factor governing the specific sorting of mRNAs into germ granules. Mechanistically, Rbm24a interacts with the germ plasm component Buc to dictate the specific recruitment of germ plasm mRNAs into phase-separated condensates. Germ plasm particles lacking Rbm24a and mRNAs fail to undergo kinesin-dependent transport toward cleavage furrows where small granules fuse into large aggregates. Therefore, the loss of maternal Rbm24a causes a complete degradation of the germ plasm and the disappearance of PGCs. These findings demonstrate that the Rbm24a/Buc complex functions as a nucleating organizer of germ granules, highlighting an emerging mechanism for RNA-binding proteins in reading and recruiting RNA components into a phase-separated protein scaffold.
Collapse
Affiliation(s)
- Yizhuang Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - Jiasheng Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - Hailing Fang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - Shuqi Hu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
| | - Boya Yang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - Jiayi Zhou
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - Raphaëlle Grifone
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8263, INSERM U1345, Development, Adaptation and Ageing, Paris, France
| | - Panfeng Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
| | - Tong Lu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - Zhengyang Wang
- Shandong University Taishan College, 266237, Qingdao, China
| | - Chong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, 524045, Zhanjiang, China
| | - Yubin Huang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, 266237, Qingdao, China
| | - Dalei Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, 266237, Qingdao, China
| | - Qianqian Gong
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - De-Li Shi
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8263, INSERM U1345, Development, Adaptation and Ageing, Paris, France.
- Fang Zongxi Center, Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| | - Ang Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China.
| | - Ming Shao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China.
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China.
- Shandong University-Yuanchen Joint Biomedical Technology Laboratory, 266237, Qingdao, China.
| |
Collapse
|
7
|
Shi B, Yang P, Qiao H, He J, Song B, Bai H, Jiang F, Zhang Y, Li Q, Yan T, Tu W, Yu D, Zhang S. EccDNA-Driven VPS41 Amplification Alleviates Genotoxic Stress via Lysosomal KAI1 Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501934. [PMID: 40271553 DOI: 10.1002/advs.202501934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/10/2025] [Indexed: 04/25/2025]
Abstract
Genotoxic therapies such as ionizing radiation eliminate cancer cells by inducing extensive DNA damage but often cause normal tissue toxicity, including cutaneous injury. Extrachromosomal circular DNA (eccDNA) refers to circular DNA fragments outside the chromosomal context, with their formation and persistence linked to DNA damage repair and genomic instability. Despite growing recognition of eccDNA in oncogenesis, its role under genotoxic stress in normal tissues remains poorly understood. Here, eccDNA is profiled in irradiated rat skin using Circle-seq, identifying alterations in eccDNA number and composition. Specifically, radiation induced circle17:44148731-48208624, in which vacuolar protein sorting 41 homolog (VPS41) is the sole radiation-induced amplification gene by semiquantitative PCR and gel electrophoresis. The findings show that eccDNA or VPS41 overexpression reduces radiation-induced skin injury (RISI) in vitro and in vivo. Proteomic and interaction analyses identified metastasis suppressor kangai-1 (KAI1) as a VPS41-interacting partner. Notably, VPS41 overexpression promotes KAI1 lysosomal degradation, protecting against radiation-induced apoptotic cell death. Peptide array analysis pinpoints the VPS41-KAI1 interaction through the K263 residue, consistent with AlphaFold prediction. The findings uncover a novel mechanism in which radiation-induced eccDNA, specifically VPS41, mitigates skin injury by modulating KAI1 degradation. This study highlights the role of eccDNA in cellular defense, providing strategies to enhance tissue resilience to genotoxic stress.
Collapse
Affiliation(s)
- Bin Shi
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563006, China
| | - Ping Yang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Huaijin Qiao
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jinchen He
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Bin Song
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Hao Bai
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Fengdi Jiang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yining Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Qian Li
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Tao Yan
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Wenlin Tu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Daojiang Yu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
- Medical College of Tibet University, Tibet University Lhasa China, No. 1 South Lubulinka Road, Lhasa, 850001, China
| |
Collapse
|
8
|
Ernst E, Abramson B, Acosta K, Hoang PTN, Mateo-Elizalde C, Schubert V, Pasaribu B, Albert PS, Hartwick N, Colt K, Aylward A, Ramu U, Birchler JA, Schubert I, Lam E, Michael TP, Martienssen RA. Duckweed genomes and epigenomes underlie triploid hybridization and clonal reproduction. Curr Biol 2025; 35:1828-1847.e9. [PMID: 40174586 PMCID: PMC12015598 DOI: 10.1016/j.cub.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 04/04/2025]
Abstract
The Lemnaceae (duckweeds) are the world's smallest but fastest-growing flowering plants. Prolific clonal propagation facilitates continuous micro-cropping for plant-based protein and starch production and holds tremendous promise for sequestration of atmospheric CO2. Here, we present chromosomal assemblies, annotations, and phylogenomic analysis of Lemna genomes that uncover candidate genes responsible for the unique metabolic and developmental traits of the family, such as anatomical reduction, adaxial stomata, lack of stomatal closure, and carbon sequestration via crystalline calcium oxalate. Lemnaceae have selectively lost genes required for RNA interference, including Argonaute genes required for reproductive isolation (the triploid block) and haploid gamete formation. Triploid hybrids arise commonly among Lemna, and we have found mutations in highly conserved meiotic crossover genes that could support polyploid meiosis. Further, mapping centromeres by chromatin immunoprecipitation suggests their epigenetic origin despite divergence of underlying tandem repeats and centromeric retrotransposons. Syntenic comparisons with Wolffia and Spirodela reveal that diversification of these genera coincided with the "Azolla event" in the mid-Eocene, during which aquatic macrophytes reduced high atmospheric CO2 levels to those of the current ice age. Facile regeneration of transgenic fronds from tissue culture, aided by reduced epigenetic silencing, makes Lemna a powerful biotechnological platform, as exemplified by recent engineering of high-oil Lemna that outperforms oil-seed crops.
Collapse
Affiliation(s)
- Evan Ernst
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Bradley Abramson
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Kenneth Acosta
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Phuong T N Hoang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany; Biology Faculty, Dalat University, 1 Phu Dong Thien Vuong, Dalat City 670000, Vietnam
| | - Cristian Mateo-Elizalde
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany
| | - Buntora Pasaribu
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA; Department of Marine Sciences, Faculty of Fisheries and Marine Sciences, Universitas Padjadjaran, Bandung Sumedang Highway KM 21, Jatinangor 40600, Indonesia
| | - Patrice S Albert
- Biological Sciences, University of Missouri, Columbia, 105 Tucker Hall, Columbia, MO 65211, USA
| | - Nolan Hartwick
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Kelly Colt
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Anthony Aylward
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Umamaheswari Ramu
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - James A Birchler
- Biological Sciences, University of Missouri, Columbia, 105 Tucker Hall, Columbia, MO 65211, USA
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany
| | - Eric Lam
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
9
|
Kim H, Lee J, Qian A, Ji YR, Zhang R, Hu Q, Williams CK, Chuang HY, Smalley MD, Xu Y, Gao L, Mayo MC, Zhang T, Posadas EM, Tan ZS, Vinters HV, Vossel K, Magaki S, Zhu Y, Tseng HR. Noninvasive Assessment of β-Secretase Activity Through Click Chemistry-Mediated Enrichment of Neuronal Extracellular Vesicles to Detect Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2415289. [PMID: 40245252 DOI: 10.1002/advs.202415289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/27/2025] [Indexed: 04/19/2025]
Abstract
Alzheimer's disease (AD), the most prevalent type of dementia, is characterized by a biological process that begins with the development of AD neuropathologic change (ADNPC) while individuals remain asymptomatic. A key molecular hallmark of ADNPC is the accumulation of amyloid-β plaques. β-secretase plays a critical role in the upstream pathological cleavage of amyloid precursor protein (APP), producing amyloid-β peptides that are prone to misfolding, ultimately contributing to plaque formation. Neuronal extracellular vesicles (NEVs) in the blood transport β-secretase and preserve its activity, allowing for noninvasive profiling of β-secretase activity for detecting early onset of ADNPC. In this study, a novel approach is approached for noninvasive assessment of β-secretase activity in AD patients using an NEV β-secretase activity assay. This assay identifies NEVs exhibiting colocalization of NEV markers with AD-associated β-secretase, generating a β-secretase activity profile for each patient. The NEV β-secretase activity assay represents a significant advancement in leveraging the diagnostic potential of NEVs, offering a noninvasive, quantitative method for reliably assessing β-secretase activity to detect the early onset of ADNPC.
Collapse
Affiliation(s)
- Hyoyong Kim
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Junseok Lee
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Audrey Qian
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - You-Ren Ji
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Ryan Zhang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Qixin Hu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Christopher Kazu Williams
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Han-Yu Chuang
- Eximius Diagnostics Corp, Magnify Incubator, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Matthew D Smalley
- Eximius Diagnostics Corp, Magnify Incubator, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Yaya Xu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Liang Gao
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Mary C Mayo
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Ting Zhang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Edwin M Posadas
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Zaldy S Tan
- Departments of Neurology and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Harry V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Keith Vossel
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Shino Magaki
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| |
Collapse
|
10
|
Moser TV, Bond DM, Hore TA. Variant ribosomal DNA is essential for female differentiation in zebrafish. Philos Trans R Soc Lond B Biol Sci 2025; 380:20240107. [PMID: 40045777 PMCID: PMC11883429 DOI: 10.1098/rstb.2024.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/03/2024] [Accepted: 07/02/2024] [Indexed: 03/09/2025] Open
Abstract
The ribosome consists of protein and RNA components. Deletion of genes encoding specific ribosomal proteins has revealed that heterogeneity in the ribosome must exist in vertebrates; however, this has not been tested for ribosomal RNA (rRNA). In zebrafish (Danio rerio), the '45S-M' ribosomal RNA-encoding locus undergoes massive extrachromosomal amplification during oocyte growth and ovary differentiation and is distinct from the regular ribosomal DNA (rDNA) locus encoding somatic rRNA (45S-S). Although the 45S-M rDNA locus falls within the only described sex-linked region in multiple wild zebrafish strains, its role in sexual differentiation is unclear. We used CRISPR-Cas9 gene editing to alter 45S-M rDNA sequences in zygotes and found that although there was no effect on growth or male development, there was dramatic suppression of female differentiation. Males with edited 45S-M rDNA produced phenotypically normal sperm and were able to fertilize eggs from wild-type females, with resulting embryos once more displaying normal development. Our work supports the hypothesis that specialized 45S-M rDNA is the elusive apical sex-determining locus in zebrafish and that this region represents the most tractable genetic system to date for studying ribosomal RNA heterogeneity and function in a vertebrate.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
|
11
|
Webster G, Dighe SN, Perry WB, Stenhouse EH, Jones DL, Kille P, Weightman AJ. Wastewater sample storage for physicochemical and microbiological analysis. J Virol Methods 2025; 332:115063. [PMID: 39547272 DOI: 10.1016/j.jviromet.2024.115063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Wastewater-based epidemiology (WBE) is a crucial tool for health and environmental monitoring, providing real-time data on public health indicators by analysis of sewage samples. Ensuring the integrity of these samples from collection to analysis is paramount. This study investigates the effects of different cold-storage conditions on the integrity of wastewater samples, focusing on both microbiological markers (such as extractable nucleic acids, SARS-CoV-2, and crAssphage) and physicochemical parameters (including ammonium, orthophosphate, pH, conductivity, and turbidity). Composite samples from the combined raw wastewater influent from five wastewater treatment works in South Wales, UK, were stored at 4°C, -20°C, and -80°C, and subjected to up to six freeze-thaw cycles over one year. The study found significant effects of storage temperature on the preservation of certain WBE markers, with the best yield most frequently seen in samples stored at -80°C. However, the majority of WBE markers showed no significant difference between storage at -80°C or at 4°C, demonstrating that it may not always be necessary to archive wastewater samples at ultra-low temperatures, thus reducing CO2 emissions and laboratory energy costs. These findings underscore the importance of optimized storage conditions to maintain sample integrity, while ensuring accurate and reliable WBE data for public health and environmental monitoring.
Collapse
Affiliation(s)
- Gordon Webster
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, Wales CF10 3AX, UK.
| | - Shrinivas Nivrutti Dighe
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, Wales CF10 3AX, UK; School of Medicine, Cardiff University, Main Hospital Building, University Hospital of Wales, Heath Park, Cardiff, Wales CF14 4XN, UK
| | - William B Perry
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, Wales CF10 3AX, UK
| | - Ewan H Stenhouse
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, Wales CF10 3AX, UK
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Wales LL57 2UW, UK
| | - Peter Kille
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, Wales CF10 3AX, UK
| | - Andrew J Weightman
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, Wales CF10 3AX, UK
| |
Collapse
|
12
|
Duyvestyn JM, Marshall EM, Bredenbeek PJ, Rockx B, van Hemert MJ, Kikkert M. Dose and strain dependent lethality of Usutu virus in an Ifnar -/- mouse model. NPJ VIRUSES 2025; 3:6. [PMID: 40295862 PMCID: PMC11775335 DOI: 10.1038/s44298-025-00089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/07/2025] [Indexed: 04/30/2025]
Abstract
Usutu virus (USUV) is a mosquito-borne zoonotic flavivirus with a geographic range that has expanded over recent years. Maintained in a transmission cycle between mosquito vectors and avian reservoirs the virus can cause large seasonal outbreaks in bird populations, but spillover into mammalian hosts has also been reported. While usually mild or asymptomatic in humans, neurological disorders are increasingly observed, which has boosted interest and the need for better understanding of the pathogenesis of various USUV lineages. In this study we inoculated interferon α/β receptor knockout (Ifnar-/-) mice with decreasing doses of USUV, monitoring symptoms and survival to determine a less lethal dose, and we directly compared isolates from three different viral lineages. We found that a Dutch isolate of USUV Africa-3 lineage is lethal at a dose of 20 pfu per mouse, which is considerably lower than what was anticipated based upon the literature. A Europe-2 strain showed an even higher virulence in this mouse model, compared to strains from Africa-3 and Europe-3 lineages-though this was not reflected in in vitro studies. These results enhance our understanding of the pathogenicity of different USUV strains and provide guidance for the use of low doses for inoculation in an Ifnar-/- animal model.
Collapse
Affiliation(s)
- Johanna M Duyvestyn
- Molecular Virology Laboratory, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
| | - Eleanor M Marshall
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter J Bredenbeek
- Molecular Virology Laboratory, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
| | - Barry Rockx
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martijn J van Hemert
- Molecular Virology Laboratory, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands.
| | - Marjolein Kikkert
- Molecular Virology Laboratory, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Shi L, Pang Z, Yu J, Zhu J, Xie X, Xie S, Gu L, Hu W, Xu H, Li L, Tao J, Wang M. Development of a portable multi-step microfluidic device for point-of-care nucleic acid diagnostics. Anal Chim Acta 2025; 1336:343518. [PMID: 39788671 DOI: 10.1016/j.aca.2024.343518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/21/2024] [Accepted: 12/01/2024] [Indexed: 01/05/2025]
Abstract
BACKGROUND The COVID-19 pandemic has significantly affected global health, economies, and societies, and highlighted the urgent need for rapid, sensitive, affordable, and portable diagnostic devices for respiratory diseases, especially in areas with limited resources. In recent years, there has been rapid development in integrated equipments using microfluidic chips and biochemical detection technologies. However, these devices are expensive and complex to operate, showing limited feasibility for in point of care tests (PoCTs). This study aims to develop a cost-effective, portable, and practical microfluidic nucleic acid PoCT device for rapid virus diagnosis. RESULTS Here, we developed a device based on freeze-dried reverse transcription loop-mediated isothermal amplification (RT-LAMP) reagents for rapid nucleic acid diagnostics. Homebrew RT-LAMP reagents were optimized to eliminate non-specific amplification. The multi-step device combines nucleic acid extraction, RT-LAMP and fluorescence detection in an integrated microfluidic chip, enabling sample-in, result-out diagnosis. This device showed satisfactory sensitivity in detecting SARS-CoV-2 and Trichomonas vaginalis RNA samples, with a limit of detection (LOD) of 400 copies/μL and 80 copies/μL respectively in 45 min. The LOD of cultured Trichomonas vaginalis samples were 0.32 cells/μL in 50 min. Additionally, the freeze-dried homebrew RT-LAMP can be stored at 4 °C for up to 30 days while still maintaining high sensitivity and detection capabilities. The cost of diagnosis was reduced to as low as 0.45 $ per reaction. SIGNIFICANCE AND NOVELTY Overall, by integrating freeze-dried homebrew RT-LAMP and microfluidic chip, the device achieves ready-to-use, laboratory-free, quick, resource-independent and cost-effective nucleic acid detection, and provides a feasible alternative to complex equipments. The device shows potentials for point-of-care testing of SARS-CoV-2 and other respiratory diseases in remote or resource-limited areas with proper implementation.
Collapse
Affiliation(s)
- Lulu Shi
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Zirui Pang
- Key Laboratory of Laser & Infrared System Ministry of Education, Shandong University, Qingdao, Shandong, 266237, China
| | - Jianghao Yu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Jiaming Zhu
- School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiaohong Xie
- Shandong Shtars Medical Technology Co., Ltd., Jinan, Shandong, China
| | - Shiling Xie
- Shandong Shtars Medical Technology Co., Ltd., Jinan, Shandong, China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Ling Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, 266237, China.
| | - Jifang Tao
- Key Laboratory of Laser & Infrared System Ministry of Education, Shandong University, Qingdao, Shandong, 266237, China; School of Information Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
14
|
Sugrue VJ, Prescott M, Glendining KA, Bond DM, Horvath S, Anderson GM, Garratt M, Campbell RE, Hore TA. The androgen clock is an epigenetic predictor of long-term male hormone exposure. Proc Natl Acad Sci U S A 2025; 122:e2420087121. [PMID: 39805019 PMCID: PMC11760496 DOI: 10.1073/pnas.2420087121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
Aging is a complex process characterized by biological decline and a wide range of molecular alterations to cells, including changes to DNA methylation. In this study, we used a male-specific epigenetic marker of aging to build an epigenetic predictor that measures long-term androgen exposure in sheep and mice (median absolute error of 4.3 and 1.4 mo, respectively). We term this predictor the androgen clock and show its "tick" is mediated by the androgen receptor and can be accelerated beyond that in normal male mice by supplementing females with dihydrotestosterone. Conversely, the removal of androgens by castration in sheep completely halted the androgen clock. In addition to potential applications in medicine and agriculture, we predict the androgen clock will prove a useful model to understand the mechanisms and processes of age-associated DNA methylation change because it can be precisely enhanced and halted using small molecule manipulation with few additional effects on the cell.
Collapse
Affiliation(s)
| | - Melanie Prescott
- Department of Physiology, University of Otago, Dunedin9016, New Zealand
| | | | - Donna M. Bond
- Department of Anatomy, University of Otago, Dunedin9016, New Zealand
| | - Steve Horvath
- Altos Laboratories, Cambridge Institute of Science, CambridgeCB21 6GQ, United Kingdom
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA90095
| | - Greg M. Anderson
- Department of Anatomy, University of Otago, Dunedin9016, New Zealand
| | - Michael Garratt
- Department of Anatomy, University of Otago, Dunedin9016, New Zealand
| | | | - Timothy A. Hore
- Department of Anatomy, University of Otago, Dunedin9016, New Zealand
| |
Collapse
|
15
|
Ramírez Rojas AA, Brinkmann CK, Schindler D. Validation of Golden Gate Assemblies Using Highly Multiplexed Nanopore Amplicon Sequencing. Methods Mol Biol 2025; 2850:171-196. [PMID: 39363072 DOI: 10.1007/978-1-0716-4220-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Golden Gate cloning has revolutionized synthetic biology. Its concept of modular, highly characterized libraries of parts that can be combined into higher order assemblies allows engineering principles to be applied to biological systems. The basic parts, typically stored in Level 0 plasmids, are sequence validated by the method of choice and can be combined into higher order assemblies on demand. Higher order assemblies are typically transcriptional units, and multiple transcriptional units can be assembled into multi-gene constructs. Higher order Golden Gate assembly based on defined and validated parts usually does not introduce sequence changes. Therefore, simple validation of the assemblies, e.g., by colony polymerase chain reaction (PCR) or restriction digest pattern analysis is sufficient. However, in many experimental setups, researchers do not use defined parts, but rather part libraries, resulting in assemblies of high combinatorial complexity where sequencing again becomes mandatory. Here, we present a detailed protocol for the use of a highly multiplexed dual barcode amplicon sequencing using the Nanopore sequencing platform for in-house sequence validation. The workflow, called DuBA.flow, is a start-to-finish procedure that provides all necessary steps from a single colony to the final easy-to-interpret sequencing report.
Collapse
Affiliation(s)
| | | | - Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
16
|
Köbel TS, Schindler D. Automation and Miniaturization of Golden Gate DNA Assembly Reactions Using Acoustic Dispensers. Methods Mol Biol 2025; 2850:149-169. [PMID: 39363071 DOI: 10.1007/978-1-0716-4220-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Golden Gate cloning has become one of the most popular DNA assembly techniques. Its modular and hierarchical structure allows the construction of complex DNA fragments. Over time, Golden Gate cloning allows for the creation of a repository of reusable parts, reducing the cost of frequent sequence validation. However, as the number of reactions and fragments increases, so does the cost of consumables and the potential for human error. Typically, Golden Gate reactions are performed in volumes of 10-25 μL. Recent technological advances have led to the development of liquid handling robots that use sound to transfer liquids in the nL range from a source plate to a target plate. These acoustic dispensers have become particularly popular in the field of synthetic biology. The use of this technology allows miniaturization and parallelization of molecular reactions in a tip-free manner, making it sustainable by reducing plastic waste and reagent usage. Here, we provide a step-by-step protocol for performing and parallelizing Golden Gate cloning reactions in 1 μL total volume.
Collapse
Affiliation(s)
- Tania S Köbel
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
17
|
de Vries ST, Kley L, Schindler D. Use of a Golden Gate Plasmid Set Enabling Scarless MoClo-Compatible Transcription Unit Assembly. Methods Mol Biol 2025; 2850:105-131. [PMID: 39363069 DOI: 10.1007/978-1-0716-4220-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Golden Gate cloning has become a powerful and widely used DNA assembly method. Its modular nature and the reusability of standardized parts allow rapid construction of transcription units and multi-gene constructs. Importantly, its modular structure makes it compatible with laboratory automation, allowing for systematic and highly complex DNA assembly. Golden Gate cloning relies on type IIS enzymes that cleave an adjacent undefined sequence motif at a defined distance from the directed enzyme recognition motif. This feature has been used to define hierarchical Golden Gate assembly standards with defined overhangs ("fusion sites") for defined part libraries. The simplest Golden Gate standard would consist of three-part libraries, namely promoter, coding and terminator sequences, respectively. Each library would have defined fusion sites, allowing a hierarchical Golden Gate assembly to generate transcription units. Typically, type IIS enzymes are used, which generate four nucleotide overhangs. This results in small scar sequences in hierarchical DNA assemblies, which can affect the functionality of transcription units. However, there are enzymes that generate three nucleotide overhangs, such as SapI. Here we provide a step-by-step protocol on how to use SapI to assemble transcription units using the start and stop codon for scarless transcription unit assembly. The protocol also provides guidance on how to perform multi-gene Golden Gate assemblies with the resulting transcription units using the Modular Cloning standard. The transcription units expressing fluorophores are used as an example.
Collapse
Affiliation(s)
- Stijn T de Vries
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Laura Kley
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
18
|
Zhang L, Ma D, Yu Y, Luo W, Jiang S, Feng S, Chen Z. Advances in biomacromolecule-functionalized magnetic particles for phytopathogen detection. Talanta 2025; 281:126876. [PMID: 39277940 DOI: 10.1016/j.talanta.2024.126876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/20/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Due to the increasing crop losses caused by common and newly emerging phytopathogens, there is a pressing need for the development of rapid and reliable methods for phytopathogen detection and analysis. Leveraging advancements in biochemical engineering technologies and nanomaterial sciences, researchers have put considerable efforts on utilizing biofunctionalized magnetic micro- and nanoparticles (MPs) to develop rapid and reliable systems for phytopathogen detection. MPs facilitate the rapid, high-throughput analysis and in-field applications, while the biomacromolecules, which play key roles in the biorecognitions, interactions and signal amplification, determine the specificity, sensitivity, reliability, and portability of pathogen detection systems. The integration of MPs and biomacromolecules provides dimensionality- and composition-dependent properties, representing a novel approach to develop phytopathogen detection systems. In this review, we summarize and discuss the general properties, synthesis and characterization of MPs, and focus on biomacromolecule-functionalized MPs as well as their representative applications for phytopathogen detection and analysis reported over the past decade. Extensively studied bioreceptors, such as antibodies, phages and phage proteins, nucleic acids, and glycans that are involved in the recognitions and interactions, are covered and discussed. Additionally, the integration of MPs-based detection system with portable microfluidic devices to facilitate their in-field applications is also discussed. Overall, this review focuses on biomacromolecule-functionalized MPs and their applications for phytopathogen detection, aiming to highlight their potential in developing advanced biosensing systems for effective plant protection.
Collapse
Affiliation(s)
- Libo Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Dumei Ma
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Youbo Yu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Wiewei Luo
- The Ninth Medical Center of Chinese PLA General Hospital, Chaoyang District, Beijing, 100101, China
| | - Shilong Jiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Sheng Feng
- Department of Pathology and Laboratory Medicine, Boston University, Boston, MA, 02118, USA
| | - Zhuo Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
19
|
Rodgers ML, Subramanian S, Fuess LE, He W, Scarpino SV, Roth-Monzón AJ, Jeffries D, Seignon M, Milligan-McClellan K, Carrier R, Steinel NC, Bolnick DI. Rates of evolution differ between cell types identified by single-cell RNAseq in threespine stickleback. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627160. [PMID: 39713298 PMCID: PMC11661130 DOI: 10.1101/2024.12.06.627160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Rates of evolutionary change vary by gene. While some broad gene categories are highly conserved with little divergence over time, others undergo continuous selection pressure and are highly divergent. Here, we combine single-cell RNA sequencing (scRNAseq) with evolutionary genomics to understand whether certain cell types exhibit faster evolutionary divergence (using their characteristic genes), than other types of cells. Merging scRNAseq with population genomic data, we show that cell types differ in the rate at which their characteristic genes evolve, as measured by allele frequency divergence among many populations (F ST ) and between species (dN/dS ratios). Neutrophils, B cells, and fibroblasts exhibit elevated F ST at characteristic genes, while eosinophils in the intestine and thrombocytes in the head kidney exhibit lower F ST than the average for 1000 random genes. Gene network centrality also differed between immune- and non-immune-associated genes, and closeness centrality was positively related to gene F ST . These results highlight the value of merging single cell RNA sequencing technology with evolutionary population genomic data, and reveal that genes which define immune cell types exhibit especially rapid evolution.
Collapse
|
20
|
Mallick M, Boehm V, Xue G, Blackstone M, Gehring N, Chakrabarti S. Modulation of UPF1 catalytic activity upon interaction of SARS-CoV-2 Nucleocapsid protein with factors involved in nonsense mediated-mRNA decay. Nucleic Acids Res 2024; 52:13325-13339. [PMID: 39360627 PMCID: PMC11602160 DOI: 10.1093/nar/gkae829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/09/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024] Open
Abstract
The RNA genome of the SARS-CoV-2 virus encodes for four structural proteins, 16 non-structural proteins and nine putative accessory factors. A high throughput analysis of interactions between human and SARS-CoV-2 proteins identified multiple interactions of the structural Nucleocapsid (N) protein with RNA processing factors. The N-protein, which is responsible for packaging of the viral genomic RNA was found to interact with two RNA helicases, UPF1 and MOV10 that are involved in nonsense-mediated mRNA decay (NMD). Using a combination of biochemical and biophysical methods, we investigated the interaction of the SARS-CoV-2 N-protein with NMD factors at a molecular level. Our studies led us to identify the core NMD factor, UPF2, as an interactor of N. The viral N-protein engages UPF2 in multipartite interactions and can negate the stimulatory effect of UPF2 on UPF1 catalytic activity. N also inhibits UPF1 ATPase and unwinding activities by competing in binding to the RNA substrate. We further investigate the functional implications of inhibition of UPF1 catalytic activity by N in mammalian cells. The interplay of SARS-CoV-2 N with human UPF1 and UPF2 does not affect decay of host cell NMD targets but might play a role in stabilizing the viral RNA genome.
Collapse
Affiliation(s)
- Megha Mallick
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
| | - Volker Boehm
- Institute for Genetics, University of Cologne, Cologne 50674, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
| | - Guangpu Xue
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
| | - Mark Blackstone
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, Cologne 50674, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
| | - Sutapa Chakrabarti
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
| |
Collapse
|
21
|
de Vries ST, Köbel TS, Sanal A, Schindler D. In- & Out-Cloning: plasmid toolboxes for scarless transcription unit and modular Golden Gate acceptor plasmid assembly. Synth Biol (Oxf) 2024; 9:ysae016. [PMID: 39605955 PMCID: PMC11602030 DOI: 10.1093/synbio/ysae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Golden Gate cloning has become one of the most important DNA assembly strategies. The construction of standardized and reusable part libraries, their assembly into transcription units, and the subsequent assembly of multigene constructs is highly reliable and sustainable. Researchers can quickly construct derivatives of their assemblies or entire pathways, and importantly, the standardization of Golden Gate assemblies is compatible with laboratory automation. Most Golden Gate strategies rely on 4-nt overhangs generated by commonly used Type IIS enzymes. However, reduction to 3-nt overhangs allows the use of codons as fusion sites and reduces potential scar sequences. This is particularly important when studying biological functions, as additional nucleotides may alter the structure or stability of the transcribed RNA. To address this issue we use SapI, a Type IIS enzyme generating three nucleotide overhangs, for transcription unit assembly, allowing for codon-based fusion in coding sequences. We created a corresponding plasmid toolbox for basic part generation and transcription unit assembly, a workflow we term as In-Cloning. In-Cloning is downstream compatible with the Modular Cloning standard developed by Sylvestre Marillonnet's group for standardized assembly of multigene constructs. However, the multigene construct plasmids may not be compatible for use with the model organism of choice. Therefore, we have developed a workflow called Out-Cloning to rapidly generate Golden Gate acceptor plasmids. Out-Cloning uses standardized plasmid parts that are assembled into Golden Gate acceptor plasmids using flexible linkers. This allows the systematic construction of acceptor plasmids needed to transfer assembled DNA into the organism of interest.
Collapse
Affiliation(s)
- Stijn T de Vries
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg 35043, Germany
| | - Tania S Köbel
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg 35043, Germany
| | - Ahmet Sanal
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg 35043, Germany
| | - Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg 35043, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 14, Marburg 35032, Germany
| |
Collapse
|
22
|
Lewis JH, Kojima H, Suenaga M, Petsopoulos D, Fujisawa Y, Truong XL, Warren DL. The era of cybertaxonomy: X-ray microtomography reveals cryptic diversity and concealed cuticular sculpture in Aphanerostethus Voss, 1957 (Coleoptera, Curculionidae). Zookeys 2024; 1217:1-45. [PMID: 39512488 PMCID: PMC11538850 DOI: 10.3897/zookeys.1217.126626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/26/2024] [Indexed: 11/15/2024] Open
Abstract
Weevils represent one of the most speciose and economically important animal clades, but remain poorly studied across much of the Oriental Region. Here, an integrative revision of the Oriental, flightless genus Aphanerostethus Voss, 1957 (Curculionidae: Molytinae) based on X-ray microtomography, multi-gene DNA barcoding (CO1, Cytb, 16S), and traditional morphological techniques (light microscopy, dissections) is presented. Twelve new species, namely, A.armatus Lewis & Kojima, sp. nov., A.bifidus Kojima & Lewis, sp. nov., A.darlingi Lewis, sp. nov., A.decoratus Lewis & Kojima, sp. nov., A.falcatus Kojima, Lewis & Fujisawa, sp. nov., A.incurvatus Kojima & Lewis, sp. nov., A.japonicus Lewis & Kojima, sp. nov., A.magnus Lewis & Kojima, sp. nov., A.morimotoi Kojima & Lewis, sp. nov., A.nudus Lewis & Kojima, sp. nov., A.spinosus Lewis & Kojima, sp. nov., and A.taiwanus Lewis, Fujisawa & Kojima, sp. nov. are described from Japan, Taiwan, Vietnam, and Malaysia. A neotype is designated for A.vannideki Voss, 1957. The hitherto monotypic genus Darumazo Morimoto & Miyakawa, 1985, syn. nov. is synonymized under Aphanerostethus based on new morphological data and Aphanerostethusdistinctus (Morimoto & Miyakawa, 1985), comb. nov. is transferred accordingly. X-ray microtomography is successfully used to explore for stable interspecific differences in cuticular, internal and micro morphology. Remarkable species-specific sexual dimorphism in the metatibial uncus is described in seven of the newly described Aphanerostethus species and the evolution of this character is discussed.
Collapse
Affiliation(s)
- Jake H. Lewis
- Environmental Science and Informatics Section, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495 Japan
- Department of Natural History, New Brunswick Museum, 277 Douglas Avenue, Saint John, New Brunswick, E2K 1E5, Canada
| | - Hiroaki Kojima
- Laboratory of Entomology, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa, 243-0034, Japan
| | - Miyuki Suenaga
- Environmental Science and Informatics Section, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495 Japan
| | - Dimitrios Petsopoulos
- Environmental Science and Informatics Section, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495 Japan
| | - Yusuke Fujisawa
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Xuan Lam Truong
- Shonan Fujisawa Junior and Senior High School, Keio University, 5466 Endo, Fujisawa, Kanagawa Prefecture, 252-0816 Japan
| | - Dan L. Warren
- Environmental Science and Informatics Section, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495 Japan
- Institute of Ecology & Biological Resources, Vietnamese Academy of Science & Technology, 18 Hoang Quoc Viet Road, Cau Giay, Ha Noi, Vietnam
| |
Collapse
|
23
|
Naranbat D, Brassard LÀ, Lawandy N, Tripathi A. Peripheral blood to next-generation sequencing ready DNA library: a novel engineering design for automation. BMC Genomics 2024; 25:987. [PMID: 39438788 PMCID: PMC11494769 DOI: 10.1186/s12864-024-10892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Whole genome sequencing (WGS) has become a gold standard for diagnosing genomic variation. Peripheral blood is a common sample source for the extraction of nucleic acids for Next-Generation Sequencing (NGS) applications. Here, we present an integrated and fully automated device design that uses new concepts of fluid mechanics, heat-mass transfer, and thermodynamics of enzymatic reactions to extract nucleic acids from the blood and perform DNA library preparation from a pre-filled plate. We demonstrate that the presented device effectively extracts dsDNA with an average of 25.03 µg/mL and 25.91 µg/mL yield from citrate-stabilized human peripheral blood stored in Fresh (4 °C) and Frozen (-20 °C) conditions, respectively. Furthermore, our method automatically extracts nucleic acids and creates a high-quality sequence-ready DNA library from blood stabilized with citrate and EDTA for 8 samples simultaneously in a single run with a total operation time of ~ 7 h. Our results show the required coverage and depth of the genome, highlighting an essential application of this device in processing blood samples for genome sequencing.
Collapse
Affiliation(s)
- Dulguunnaran Naranbat
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Lothar À Brassard
- Revvity Chemagen Technologie GmbH, Arnold-Sommerfeld-Ring 2, 52499, Baesweiler, Germany
| | - Nabil Lawandy
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
24
|
Xie W, Xue J, Chen R, Su H, Fang X, Wu Q, Yang W, Jia L. Extraction of Genomic DNA from Soil Samples by Polyethylene Glycol-Modified Magnetic Particles via Isopropanol Promotion and Ca 2+ Mediation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20550-20558. [PMID: 39288013 DOI: 10.1021/acs.langmuir.4c02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obtaining reliable and informative DNA data from soil samples is challenging due to the presence of interfering substances and typically low DNA yields. In this work, we prepared poly(ethylene glycol)-modified magnetic particles (PEG@Fe3O4) for DNA purification. The particles leverage the facilitative effect of calcium ions (Ca2+), which act as bridges between DNA and PEG@Fe3O4 by coordinating with the phosphate groups of DNA and the hydroxyl groups on the particles. The addition of 2-propanol further enhances this Ca2+-mediated DNA adsorption by inducing a conformational change from the B-form to the more compact A-form of DNA. PEG@Fe3O4 demonstrates a DNA adsorption capacity of 144.6 mg g-1. When applied to the extraction of genomic DNA from soil samples, PEG@Fe3O4 outperforms commercial kits and traditional phenol-chloroform extraction methods in terms of DNA yield and purity. Furthermore, we developed a 16-channel automated DNA extraction device to streamline the process and reduce the extraction time. The successful amplification of target bacterial and fungal amplicons underscores the potential of this automated, device-assisted method for studying soil microbial diversity.
Collapse
Affiliation(s)
- Wenting Xie
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Jialiang Xue
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Ruobo Chen
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Huihui Su
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xun Fang
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qingxi Wu
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wenjuan Yang
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Li Jia
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
25
|
Ling Y, Xu P, Afiqah-Aleng N, Ishak SD, Wang Y, Shu-Chien AC, Sung YY, Rozaimi R, Liew HJ, Fazhan H, Waiho K. Physiological adaptation and gut microbiota changes of orange mud crab Scylla olivacea in response to increased temperature condition. AQUATIC SCIENCES 2024; 86:100. [DOI: 10.1007/s00027-024-01120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/07/2024] [Indexed: 01/05/2025]
|
26
|
Shelton K, Deshpande GN, Sanchez GJ, Vogel JR, Miller AC, Florea G, Jeffries ER, De Leόn KB, Stevenson B, Kuhn KG. Real-Time Monitoring of SARS-CoV-2 Variants in Oklahoma Wastewater through Allele-Specific RT-qPCR. Microorganisms 2024; 12:2001. [PMID: 39458310 PMCID: PMC11509313 DOI: 10.3390/microorganisms12102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
During the COVID-19 pandemic, wastewater surveillance was used to monitor community transmission of SARS-CoV-2. As new genetic variants emerged, the need for timely identification of these variants in wastewater became an important focus. In response to increased reports of Omicron transmission across the United States, the Oklahoma Wastewater Surveillance team utilized allele-specific RT-qPCR assays to detect and differentiate variants, such as Omicron, from other variants found in wastewater in Oklahoma. The PCR assays showed presence of the Omicron variant in Oklahoma on average two weeks before official reports, which was confirmed through genomic sequencing of selected wastewater samples. Through continued surveillance from November 2021 to January 2022, we also demonstrated the transition from prevalence of the Delta variant to prevalence of the Omicron variant in local communities. We further assessed how this transition correlated with certain demographic factors characterizing each community. Our results highlight RT-qPCR assays as a rapid, simple, and cost-effective method for monitoring the community spread of SARS-CoV-2 genetic variants in wastewater. Additionally, they demonstrate that specific demographic factors such as ethnic composition and household income can correlate with the timing of SARS-CoV-2 variant introduction and spread.
Collapse
Affiliation(s)
- Kristen Shelton
- School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK 73071, USA; (K.S.); (G.J.S.); (J.R.V.); (A.C.M.)
| | - Gargi N. Deshpande
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Gilson J. Sanchez
- School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK 73071, USA; (K.S.); (G.J.S.); (J.R.V.); (A.C.M.)
| | - Jason R. Vogel
- School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK 73071, USA; (K.S.); (G.J.S.); (J.R.V.); (A.C.M.)
| | - A. Caitlin Miller
- School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK 73071, USA; (K.S.); (G.J.S.); (J.R.V.); (A.C.M.)
| | - Gabriel Florea
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
| | - Erin R. Jeffries
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA; (E.R.J.); (K.B.D.L.); (B.S.)
| | - Kara B. De Leόn
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA; (E.R.J.); (K.B.D.L.); (B.S.)
| | - Bradley Stevenson
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA; (E.R.J.); (K.B.D.L.); (B.S.)
- Earth and Planetary Science, Northwestern University, Evanston, IL 60208, USA
| | - Katrin Gaardbo Kuhn
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| |
Collapse
|
27
|
Newman T, Bond DM, Ishihara T, Rizzoli P, Gouil Q, Hore TA, Shaw G, Renfree MB. PRKACB is a novel imprinted gene in marsupials. Epigenetics Chromatin 2024; 17:29. [PMID: 39342354 PMCID: PMC11438212 DOI: 10.1186/s13072-024-00552-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Genomic imprinting results in parent-of-origin-specific gene expression and, among vertebrates, is found only in therian mammals: marsupials and eutherians. A differentially methylated region (DMR), in which the methylation status of CpG dinucleotides differs between the two alleles, can mark the parental identity of imprinted genes. We developed a computational pipeline that detected CpG islands (CGIs) marked by both methylated and unmethylated signals in whole genome bisulfite sequencing data. This approach identified candidate marsupial DMRs in a publicly available koala methylome. One of these candidate DMRs was associated with PRKACB, a gene encoding the protein kinase A catalytic subunit beta. Nothing is known about the imprinting status of PRKACB in eutherian mammals although mutations of this gene are associated with endocrine neoplasia and other developmental disorders. RESULTS In the tammar wallaby and brushtail possum there was parent-of-origin-specific DNA methylation in the PRKACB DMR in which the maternal allele was methylated and the paternal allele was unmethylated. There were multiple RNAs transcribed from this locus. Allele-specific expression analysis identified paternal expression of a PRKACB lncRNA and an mRNA isoform. Comparison of the PRKACB gene start site between marsupials and eutherians demonstrated that the CGI is longer in marsupials. The PRKACB gene product functions in the same signalling pathway as the guanine nucleotide-binding protein alpha subunit encoded at the GNAS locus, a known eutherian imprinted gene. In a mouse methylome Gnas had three differentially methylated CGIs, while in the koala methylome the GNAS locus had two unmethylated CGIs. CONCLUSIONS We conclude that PRKACB is a novel, DMR-associated marsupial imprinted gene. Imprinting of PRKACB in marsupials and GNAS in eutherians may indicate a conserved selection pressure for imprinting of the protein kinase A signalling pathway in therians with the two lineages adapting by imprinting different genes.
Collapse
Affiliation(s)
- Trent Newman
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Donna M Bond
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Teruhito Ishihara
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Phoebe Rizzoli
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Quentin Gouil
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3010, Australia
| | - Timothy A Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
28
|
Brück M, Köbel TS, Dittmar S, Ramírez Rojas AA, Georg J, Berghoff BA, Schindler D. A library-based approach allows systematic and rapid evaluation of seed region length and reveals design rules for synthetic bacterial small RNAs. iScience 2024; 27:110774. [PMID: 39280619 PMCID: PMC11402225 DOI: 10.1016/j.isci.2024.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/14/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
All organisms must respond to environmental changes. In bacteria, small RNAs (sRNAs) are an important aspect of the regulation network underlying the adaptation to such changes. sRNAs base-pair with their target mRNAs, allowing rapid modulation of the proteome. This post-transcriptional regulation is usually facilitated by RNA chaperones, such as Hfq. sRNAs have a potential as synthetic regulators that can be modulated by rational design. In this study, we use a library-based approach and oxacillin susceptibility assays to investigate the importance of the seed region length for synthetic sRNAs based on RybB and SgrS scaffolds in Escherichia coli. In the presence of Hfq we show that 12 nucleotides are sufficient for regulation. Furthermore, we observe a scaffold-specific Hfq-dependency and processing by RNase E. Our results provide information for design considerations of synthetic sRNAs in basic and applied research.
Collapse
Affiliation(s)
- Michel Brück
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Tania S Köbel
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Sophie Dittmar
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Adán A Ramírez Rojas
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Jens Georg
- Institut für Biologie III, Albert-Ludwigs-Universität Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Bork A Berghoff
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Daniel Schindler
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Karl-von-Frisch-Straße 14, 35032 Marburg, Germany
| |
Collapse
|
29
|
Lui LM, Nielsen TN. Decomposing a San Francisco estuary microbiome using long-read metagenomics reveals species- and strain-level dominance from picoeukaryotes to viruses. mSystems 2024; 9:e0024224. [PMID: 39158287 PMCID: PMC11406994 DOI: 10.1128/msystems.00242-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024] Open
Abstract
Although long-read sequencing has enabled obtaining high-quality and complete genomes from metagenomes, many challenges still remain to completely decompose a metagenome into its constituent prokaryotic and viral genomes. This study focuses on decomposing an estuarine metagenome to obtain a more accurate estimate of microbial diversity. To achieve this, we developed a new bead-based DNA extraction method, a novel bin refinement method, and obtained 150 Gbp of Nanopore sequencing. We estimate that there are ~500 bacterial and archaeal species in our sample and obtained 68 high-quality bins (>90% complete, <5% contamination, ≤5 contigs, contig length of >100 kbp, and all ribosomal and tRNA genes). We also obtained many contigs of picoeukaryotes, environmental DNA of larger eukaryotes such as mammals, and complete mitochondrial and chloroplast genomes and detected ~40,000 viral populations. Our analysis indicates that there are only a few strains that comprise most of the species abundances. IMPORTANCE Ocean and estuarine microbiomes play critical roles in global element cycling and ecosystem function. Despite the importance of these microbial communities, many species still have not been cultured in the lab. Environmental sequencing is the primary way the function and population dynamics of these communities can be studied. Long-read sequencing provides an avenue to overcome limitations of short-read technologies to obtain complete microbial genomes but comes with its own technical challenges, such as needed sequencing depth and obtaining high-quality DNA. We present here new sampling and bioinformatics methods to attempt decomposing an estuarine microbiome into its constituent genomes. Our results suggest there are only a few strains that comprise most of the species abundances from viruses to picoeukaryotes, and to fully decompose a metagenome of this diversity requires 1 Tbp of long-read sequencing. We anticipate that as long-read sequencing technologies continue to improve, less sequencing will be needed.
Collapse
Affiliation(s)
- Lauren M Lui
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Torben N Nielsen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
30
|
Lee YJ, Phang GJ, Chen CC, Ou JH, Fan YH, Huang YT. Optimal liquid-based DNA preservation for DNA barcoding of field-collected fungal specimens. Heliyon 2024; 10:e36829. [PMID: 39281619 PMCID: PMC11401026 DOI: 10.1016/j.heliyon.2024.e36829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
Preserving fungal tissue DNA in the field is essential for molecular ecological research, enabling the study of fungal biodiversity and community dynamics. This study systematically compares two liquid-based preservation solutions, RNAlater and DESS, for their effectiveness in maintaining macrofungi DNA integrity during field collection and storage. The research encompasses both controlled experiments and real-world field collections. In the controlled experiments, two fungal species were preserved in RNAlater and DESS at different temperatures and durations. DNA extraction success rates were high, but DNA quality and quantity metrics exhibited variations across samples. However, both preservation solutions demonstrated their viability for preserving fungal DNA, with no significant differences between them. In the field-collected macrofungi experiment, 160 paired fungal specimens were preserved in RNAlater and DESS, respectively. Including a drying process to facilitate tissue lysis for DNA extraction significantly impacted the outcomes. RNAlater showed a higher success rate and better DNA quality and quantity compared to DESS. Statistical analysis, including paired and independent t-tests, confirmed significant differences in DNA quality and quantity between the two preservation methods for field-collected samples. This study evaluates RNAlater and DESS for preserving macrofungi DNA in field conditions. Both methods are effective, but RNAlater is superior when a drying step is included in DNA extraction. Researchers can choose based on their specific needs without compromising DNA integrity. These findings advance fungal molecular ecology and DNA preservation strategies in ecological and environmental studies.
Collapse
Affiliation(s)
- Yu-Ja Lee
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Guan Jie Phang
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Che-Chih Chen
- Department of Biology, National Museum of Natural Science, Taichung, 404605, Taiwan
- Department of Plant Pathology, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Jie-Hao Ou
- Department of Plant Pathology, National Chung Hsing University, Taichung, 402202, Taiwan
- Tohoku Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Morioka, 0200123, Japan
| | - Yu-Hsuan Fan
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yin-Tse Huang
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| |
Collapse
|
31
|
Peña-Diaz P, Braymer JJ, Vacek V, Zelená M, Lometto S, Mais CN, Hrdý I, Treitli SC, Hochberg GKA, Py B, Lill R, Hampl V. Characterization of the SUF FeS cluster synthesis machinery in the amitochondriate eukaryote Monocercomonoides exilis. Curr Biol 2024; 34:3855-3865.e7. [PMID: 39089256 DOI: 10.1016/j.cub.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/06/2024] [Accepted: 07/02/2024] [Indexed: 08/03/2024]
Abstract
Monocercomonoides exilis is the first known amitochondriate eukaryote. Loss of mitochondria in M. exilis ocurred after the replacement of the essential mitochondrial iron-sulfur cluster (ISC) assembly machinery by a unique, bacteria-derived, cytosolic SUF system. It has been hypothesized that the MeSuf pathway, in cooperation with proteins of the cytosolic iron-sulfur protein assembly (CIA) system, is responsible for the biogenesis of FeS clusters in M. exilis, yet biochemical evidence is pending. Here, we address the M. exilis MeSuf system and show that SUF genes, individually or in tandem, support the loading of iron-sulfur (FeS) clusters into the reporter protein IscR in Escherichia coli. The Suf proteins MeSufB, MeSufC, and MeSufDSU interact in vivo with one another and with Suf proteins of E. coli. In vitro, the M. exilis Suf proteins form large complexes of varying composition and hence may function as a dynamic biosynthetic system in the protist. The putative FeS cluster scaffold MeSufB-MeSufC (MeSufBC) forms multiple oligomeric complexes, some of which bind FeS clusters and form selectively only in the presence of adenosine nucleotides. The multi-domain fusion protein MeSufDSU binds a PLP cofactor and can form higher-order complexes with MeSufB and MeSufC. Our work demonstrates the biochemical property of M. exilis Suf proteins to act as a functional FeS cluster assembly system and provides insights into the molecular mechanism of this unique eukaryotic SUF system.
Collapse
Affiliation(s)
- Priscila Peña-Diaz
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic.
| | - Joseph J Braymer
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany; Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Karl-von-Frisch-Straße 14, 35032 Marburg, Germany.
| | - Vojtěch Vacek
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic
| | - Marie Zelená
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic
| | - Stefano Lometto
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Christopher-Nils Mais
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Karl-von-Frisch-Straße 14, 35032 Marburg, Germany; Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic
| | - Sebastian C Treitli
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic
| | - Georg K A Hochberg
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Karl-von-Frisch-Straße 14, 35032 Marburg, Germany; Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany; Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Béatrice Py
- Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille Université, UMR 7283, Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, Marseille, France
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany; Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Karl-von-Frisch-Straße 14, 35032 Marburg, Germany
| | - Vladimír Hampl
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic.
| |
Collapse
|
32
|
Wan Y, Li X, Chen X, He Y, Suo W, Yang X, Xie Z. Optimization of microRNA extraction from the plasma of the common carp. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-19. [PMID: 39235212 DOI: 10.1080/15257770.2024.2400200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Efficient and safe extraction of microRNAs (miRNAs) from biological samples is pivotal for genetic regulation studies and biotechnological applications. This study focuses on optimizing the microRNA extraction process from the plasma of common carp, a significant species in aquaculture. Recognizing the limitations and hazards of commercial extraction kits, which often employ toxic chemicals like phenol and chloroform, we sought to develop a safer and more effective alternative. Our optimized protocol utilizes guanidinium isothiocyanate (GITC) and sarkosyl, omitting hazardous substances. We explored several parameters including GITC concentration, the addition of sarkosyl, and the role of sodium chloride in enhancing miRNA yield. Our findings demonstrate that optimal conditions involve a GITC concentration of 4.2 M, a 3% sarkosyl concentration, and the use of sodium chloride at 0.5 M. We also investigated the utility of glycogen as a nucleic acid carrier, finding 160 µg to be the optimal concentration. Comparative analysis with commercial kits indicated our method provides higher miRNA yields with reduced cycle threshold values, underscoring the effectiveness of our custom protocol. This optimized approach not only enhances miRNA recovery but also emphasizes safety and cost-effectiveness, making it a valuable method for both research and practical applications in aquaculture.
Collapse
Affiliation(s)
- Yiwen Wan
- Hunan Fisheries Science Institute, Changsha, PR China
| | - Xiaoling Li
- Hunan Fisheries Science Institute, Changsha, PR China
| | - Xiangyi Chen
- Hunan Fisheries Science Institute, Changsha, PR China
| | - Yong He
- Hunan Fisheries Science Institute, Changsha, PR China
| | - Wenwen Suo
- Hunan Fisheries Science Institute, Changsha, PR China
| | - Xiao Yang
- Hunan Fisheries Science Institute, Changsha, PR China
| | - Zhonggui Xie
- Hunan Fisheries Science Institute, Changsha, PR China
| |
Collapse
|
33
|
Nelemans T, Tas A, Kikkert M, van Hemert MJ. Usutu virus NS4A suppresses the host interferon response by disrupting MAVS signaling. Virus Res 2024; 347:199431. [PMID: 38969013 PMCID: PMC11292556 DOI: 10.1016/j.virusres.2024.199431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Usutu virus (USUV) is an emerging flavivirus that can infect birds and mammals. In humans, in severe cases, it may cause neuroinvasive disease. The innate immune system, and in particular the interferon response, functions as the important first line of defense against invading pathogens such as USUV. Many, if not all, viruses have developed mechanisms to suppress and/or evade the interferon response in order to facilitate their replication. The ability of USUV to antagonize the interferon response has so far remained largely unexplored. Using dual-luciferase reporter assays we observed that multiple of the USUV nonstructural (NS) proteins were involved in suppressing IFN-β production and signaling. In particular NS4A was very effective at suppressing IFN-β production. We found that NS4A interacted with the mitochondrial antiviral signaling protein (MAVS) and thereby blocked its interaction with melanoma differentiation-associated protein 5 (MDA5), resulting in reduced IFN-β production. The TM1 domain of NS4A was found to be essential for binding to MAVS. By screening a panel of flavivirus NS4A proteins we found that the interaction of NS4A with MAVS is conserved among flaviviruses. The increased understanding of the role of NS4A in flavivirus immune evasion could aid the development of vaccines and therapeutic strategies.
Collapse
Affiliation(s)
- Tessa Nelemans
- Molecular Virology Laboratory, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
| | - Ali Tas
- Molecular Virology Laboratory, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Kikkert
- Molecular Virology Laboratory, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands.
| | - Martijn J van Hemert
- Molecular Virology Laboratory, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
34
|
Rajapaksha RD, Brooks C, Rascon A, Fadem A, Nguyen I, Kuehl PJ, Farmer JT. Comparative analysis of high-throughput RNA extraction kits in Naïve Non-Human Primate (NHP) tissues for downstream applications utilizing Xeno Internal Positive Control (IPC). J Pharmacol Toxicol Methods 2024; 129:107549. [PMID: 39236994 DOI: 10.1016/j.vascn.2024.107549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Ribonucleic acid (RNA) extraction and purification play pivotal roles in molecular biology and cell and gene therapy, where the quality and integrity of RNA are critical for downstream applications. Automated high-throughput systems have gained interest due to their potential for scalability and reduced labor requirements compared to manual methods. However, ensuring high-throughput capabilities, reproducibility, and reliability while maintaining RNA yield and purity remains challenging. This study evaluated and compared the performance of four commercially available high-throughput magnetic bead-based RNA extraction kits across six types of naïve non-human primate (NHP) tissue matrices: brain, heart, kidney, liver, lung, and spleen. The assessment focused on RNA purity, yield, and extraction efficiency (EE) using Xeno Internal Positive Control (IPC) spiking. Samples (∼50 mg) were homogenized via bead-beating and processed according to the manufacturer's protocol on the KingFisher Flex platform in eight replicates. RNA purity and yield were measured using a NanoDrop® spectrophotometer, while EE was evaluated via real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The findings indicate consistent high RNA purity across all tested extraction kits, yet substantial variation in RNA yield. Extraction efficiency exhibited variations across tissue types, with decreasing trends observed from brain to lung tissues. These results underscore the importance of careful kit selection and method optimization for achieving reliable downstream applications. The MagMAX™ mirVana™ Total RNA Isolation Kit stands out as the most accurate and reproducible, making it the preferred choice for applications requiring high RNA quality and consistency. Other kits, such as the Maxwell® HT simplyRNA Kit, offer a good balance between cost and performance, though with some trade-offs in precision. These findings highlight the importance of selecting the appropriate RNA isolation method based on the specific needs of the research, underscoring the critical role of accurate nucleic acid extraction in gene and cell therapy research. In conclusion, this study highlights the critical factors influencing RNA extraction performance, emphasizing the need for researchers and practitioners to consider both kit performance and tissue characteristics when designing experimental protocols. These insights contribute to the ongoing efforts to enhance the reproducibility and reliability of RNA extraction methods in molecular biology and cell/gene therapy applications.
Collapse
Affiliation(s)
- Ruwini D Rajapaksha
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108-5127, United States of America.
| | - Catherine Brooks
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108-5127, United States of America
| | - Adriana Rascon
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108-5127, United States of America
| | - Adam Fadem
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108-5127, United States of America
| | - Ivy Nguyen
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108-5127, United States of America
| | - Philip J Kuehl
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108-5127, United States of America
| | - John T Farmer
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108-5127, United States of America
| |
Collapse
|
35
|
Khera HK, Mishra R. Nucleic Acid Based Testing (NABing): A Game Changer Technology for Public Health. Mol Biotechnol 2024; 66:2168-2200. [PMID: 37695473 DOI: 10.1007/s12033-023-00870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Timely and accurate detection of the causal agent of a disease is crucial to restrict suffering and save lives. Mere symptoms are often not enough to detect the root cause of the disease. Better diagnostics applied for screening at a population level and sensitive detection assays remain the crucial component of disease surveillance which may include clinical, plant, and environmental samples, including wastewater. The recent advances in genome sequencing, nucleic acid amplification, and detection methods have revolutionized nucleic acid-based testing (NABing) and screening assays. A typical NABing assay consists of three modules: isolation of the nucleic acid from the collected sample, identification of the target sequence, and final reading the target with the help of a signal, which may be in the form of color, fluorescence, etc. Here, we review current NABing assays covering the different aspects of all three modules. We also describe the frequently used target amplification or signal amplification procedures along with the variety of applications of this fast-evolving technology and challenges in implementation of NABing in the context of disease management especially in low-resource settings.
Collapse
Affiliation(s)
- Harvinder Kour Khera
- Tata Institute for Genetics and Society, New inStem Building NCBS Campus, GKVK Post, Bellary Road, Bengaluru, 560065, India.
| | - Rakesh Mishra
- Tata Institute for Genetics and Society, New inStem Building NCBS Campus, GKVK Post, Bellary Road, Bengaluru, 560065, India.
- CSIR-Centre for Cellular and Molecular Biology, Uppal Rd, IICT Colony, Habsiguda, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
36
|
Fang X, Pu X, Xie W, Yang W, Jia L. Poly(3,4-dihydroxyphenylalanine)-modified cellulose paper for the extraction of deoxyribonucleic acid by a laboratory-built automated extraction device. J Chromatogr A 2024; 1731:465199. [PMID: 39053252 DOI: 10.1016/j.chroma.2024.465199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The success of polymerase chain reaction (PCR) depends on the quality of deoxyribonucleic acid (DNA) templates. This study developed a cost-effective and eco-friendly DNA extraction system utilizing poly(3,4-dihydroxyphenylalanine)-modified cellulose paper (polyDOPA@paper). PolyDOPA@paper was prepared by oxidatively self-polymerizing DOPA under weak alkaline conditions and utilizing the adhesive property of polyDOPA on different materials. Compared to the uncoated cellulose paper, polyDOPA coating significantly enhances DNA adsorption owing to its abundant amino, carboxyl, and hydroxyl moieties. The DNA extraction mechanism using polyDOPA@paper was discussed. The maximum adsorption capacity of polyDOPA@paper for DNA was 20.7 μg cm-2. Moreover, an automated extraction system was designed and fabricated using 3D printing technology. The device simplifies the operation and ensures the reproducibility and consistency of the results. More importantly, it eliminates the need for specialized training of operators. The feasibility of the polyDOPA@paper-based automated extraction system was evaluated by quantitatively detecting Escherichia coli in spiked milk samples via a real-time PCR. The detection limit was 102 cfu mL-1. The results suggest that the system would have significant potential in detecting pathogens.
Collapse
Affiliation(s)
- Xun Fang
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaoxiao Pu
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wenting Xie
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wenjuan Yang
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Li Jia
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
37
|
Das S, Delamare‐Deboutteville J, Barnes AC, Rudenko O. Extraction of high-molecular-weight DNA from Streptococcus spp. for nanopore sequencing in resource-limited settings. Microbiologyopen 2024; 13:e1432. [PMID: 39166362 PMCID: PMC11336654 DOI: 10.1002/mbo3.1432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
The long-read sequencing platform MinION, developed by Oxford Nanopore Technologies, enables the sequencing of bacterial genomes in resource-limited settings, such as field conditions or low- and middle-income countries. For this purpose, protocols for extracting high-molecular-weight DNA using nonhazardous, inexpensive reagents and equipment are needed, and some methods have been developed for gram-negative bacteria. However, we found that without modification, these protocols are unsuitable for gram-positive Streptococcus spp., a major threat to fish farming and food security in low- and middle-income countries. Multiple approaches were evaluated, and the most effective was an extraction method using lysozyme, sodium dodecyl sulfate, and proteinase K for lysis of bacterial cells and magnetic beads for DNA recovery. We optimized the method to consistently achieve sufficient yields of pure high-molecular-weight DNA with minimal reagents and time and developed a version of the protocol which can be performed without a centrifuge or electrical power. The suitability of the method was verified by MinION sequencing and assembly of 12 genomes of epidemiologically diverse fish-pathogenic Streptococcus iniae and Streptococcus agalactiae isolates. The combination of effective high-molecular-weight DNA extraction and MinION sequencing enabled the discovery of a naturally occurring 15 kb low-copy number mobilizable plasmid in S. iniae, which we name pSI1. We expect that our resource-limited settings-adapted protocol for high-molecular-weight DNA extraction could be implemented successfully for similarly recalcitrant-to-lysis gram-positive bacteria, and it represents a method of choice for MinION-based disease diagnostics in low- and middle-income countries.
Collapse
Affiliation(s)
- Suvra Das
- School of the Environment and Centre for Marine ScienceThe University of QueenslandSaint LuciaQueenslandAustralia
| | | | - Andrew C. Barnes
- School of the Environment and Centre for Marine ScienceThe University of QueenslandSaint LuciaQueenslandAustralia
| | - Oleksandra Rudenko
- School of the Environment and Centre for Marine ScienceThe University of QueenslandSaint LuciaQueenslandAustralia
| |
Collapse
|
38
|
Bond DM, Veale A, Alexander A, Hore TA. Coat colour in marsupials: genetic variants at the ASIP locus determine grey and black fur of the brushtail possum. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240806. [PMID: 39086822 PMCID: PMC11288674 DOI: 10.1098/rsos.240806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024]
Abstract
The possession of fur or hair is a defining characteristic of mammals and can occur in a variety of colours and patterns. While genetic determinants of coat colour are well described in eutherian 'placental' mammals, the other major mammalian infraclass, marsupials, is grossly understudied. The fur of the common brushtail possum (Trichosurus vulpecula), an iconic native mammal found throughout Australia and introduced into Aotearoa New Zealand, possesses two main colour morphs: grey and black. To identify genetic variants associated with coat colour, we performed a genome-wide association study (GWAS) with genotype by sequencing (GBS) data. Single nucleotide variants (SNVs) on chromosome 3, close to the agouti signalling protein (ASIP) gene that controls the temporal and spatial distribution of pigments in eutherian mammals, were identified. Fine-mapping identified a C>T variant at chr3:100483705 that results in a ASIP:p.Arg115Cys missense substitution, and animals homozygous for this variant have black fur. In addition to uncovering the first genetic determinant of coat colour in a natural marsupial population, comparative analysis of ASIP in divergent marsupial species identified the dasyurids as having accelerated evolution, reflecting their well described diversity of coat colour and pattern.
Collapse
Affiliation(s)
- Donna M. Bond
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Andrew Veale
- Manaaki Whenua—Landcare Research, Lincoln, New Zealand
| | - Alana Alexander
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Timothy A. Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
39
|
Salgado-Benvindo C, Tas A, Zevenhoven-Dobbe JC, van der Meer Y, Sidorov IA, Leijs AA, Wanningen P, Gelderloos AT, van Kasteren PB, Snijder EJ, van Hemert MJ. Characterization of SARS-CoV-2 replication in human H1299/ACE2 cells: A versatile and practical infection model for antiviral research and beyond. Antiviral Res 2024; 227:105903. [PMID: 38723907 DOI: 10.1016/j.antiviral.2024.105903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/12/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
A range of cell culture infection models have been used to study SARS-CoV-2 and perform antiviral drug research. Commonly used African green monkey Vero, human lung-derived Calu-3 and ACE2+TMPRSS2-expressing A549 cells, each have their limitations. Here, we describe human ACE2-expressing H1299 lung cells as a more efficient and robust model for SARS-CoV-2 research. These cells are as easy to handle as Vero cells, support SARS-CoV-2 replication to high titers, display a functional innate immune response and are suitable for plaque assays, microscopy, the production of (genetically stable) virus stocks and antiviral assays. H1299/ACE2-based (CPE reduction) assays can be performed without adding a P-gP drug efflux pump inhibitor, which is often required in Vero-based assays. Moreover, H1299/ACE2 cells allowed us to perform CPE reduction assays with omicron variants that did not work in Vero-based assays. In summary, H1299/ACE2 cells are a versatile infection model to study SARS-CoV-2 replication in the context of antiviral drug development and virus-host interaction studies.
Collapse
Affiliation(s)
- Clarisse Salgado-Benvindo
- Molecular Virology Laboratory, Center for Infectious Diseases, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Ali Tas
- Molecular Virology Laboratory, Center for Infectious Diseases, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Jessika C Zevenhoven-Dobbe
- Molecular Virology Laboratory, Center for Infectious Diseases, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Yvonne van der Meer
- Molecular Virology Laboratory, Center for Infectious Diseases, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Igor A Sidorov
- Molecular Virology Laboratory, Center for Infectious Diseases, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Anouk A Leijs
- Molecular Virology Laboratory, Center for Infectious Diseases, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Patrick Wanningen
- Molecular Virology Laboratory, Center for Infectious Diseases, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Anne T Gelderloos
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3720 BA, Bilthoven, the Netherlands
| | - Puck B van Kasteren
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3720 BA, Bilthoven, the Netherlands
| | - Eric J Snijder
- Molecular Virology Laboratory, Center for Infectious Diseases, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Martijn J van Hemert
- Molecular Virology Laboratory, Center for Infectious Diseases, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands.
| |
Collapse
|
40
|
Zeleňáková A, Zeleňák V, Beňová E, Kočíková B, Király N, Hrubovčák P, Szűcsová J, Nagy Ľ, Klementová M, Mačák J, Závišová V, Bednarčík J, Kupčík J, Jacková A, Volavka D, Košuth J, Vilček Š. The surface modification of the silica-coated magnetic nanoparticles and their application in molecular diagnostics of virus infection. Sci Rep 2024; 14:14427. [PMID: 38910140 PMCID: PMC11194262 DOI: 10.1038/s41598-024-64839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/13/2024] [Indexed: 06/25/2024] Open
Abstract
The study presents a series of examples of magnetic nanoparticle systems designed for the diagnosis of viral diseases. In this interdisciplinary work, we describe one of the most comprehensive synthetic approaches for the preparation and functionalization of smart nanoparticle systems for rapid and effective RT-PCR diagnostics and isolation of viral RNA. Twelve different organic ligands and inorganic porous silica were used for surface functionalization of the Fe3O4 magnetic core to increase the number of active centres for efficient RNA binding from human swab samples. Different nanoparticle systems with common beads were characterized by HRTEM, SEM, FT-IR, XRD, XPS and magnetic measurements. We demonstrate the application of the fundamental models modified to fit the experimental zero-field cooling magnetization data. We discuss the influence of the nanoparticle shell parameters (morphology, thickness, ligands) on the overall magnetic performance of the systems. The prepared nanoparticles were tested for the isolation of viral RNA from tissue samples infected with hepatitis E virus-HEV and from biofluid samples of SARS-CoV-2 positive patients. The efficiency of RNA isolation was quantified by RT-qPCR method.
Collapse
Affiliation(s)
- A Zeleňáková
- Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, 04001, Košice, Slovakia.
| | - V Zeleňák
- Institute of Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 04001, Košice, Slovakia
| | - E Beňová
- Institute of Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 04001, Košice, Slovakia
| | - B Kočíková
- Department of Epizootiology, Parasitology and Public Health Protection, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181, Košice, Slovakia
| | - N Király
- Institute of Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 04001, Košice, Slovakia
| | - P Hrubovčák
- Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, 04001, Košice, Slovakia
| | - J Szűcsová
- Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, 04001, Košice, Slovakia
| | - Ľ Nagy
- Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, 04001, Košice, Slovakia
| | - M Klementová
- Institute of Physics of the CAS, v.v.i., Na Slovance 1999/2, 182 21, Praha 8, Czech Republic
| | - J Mačák
- Synlab Slovakia s. r. o Department of Clinical Microbiology, Opatovská Cesta 10, 04001, Košice, Slovakia
| | - V Závišová
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001, Košice, Slovakia
| | - J Bednarčík
- Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, 04001, Košice, Slovakia
| | - J Kupčík
- Institute of Physics of the CAS, v.v.i., Na Slovance 1999/2, 182 21, Praha 8, Czech Republic
| | - A Jacková
- Department of Epizootiology, Parasitology and Public Health Protection, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181, Košice, Slovakia
| | - D Volavka
- Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, 04001, Košice, Slovakia
| | - J Košuth
- Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University, Šrobárova 2, 04154, Košice, Slovakia
| | - Š Vilček
- Department of Epizootiology, Parasitology and Public Health Protection, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181, Košice, Slovakia
| |
Collapse
|
41
|
Karkhaneh F, Sadr ZK, Rad AM, Divsalar A. Detection of tetanus toxoid with iron magnetic nanobioprobe. Biomed Phys Eng Express 2024; 10:045030. [PMID: 38479000 DOI: 10.1088/2057-1976/ad33a8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/13/2024] [Indexed: 05/26/2024]
Abstract
Diagnosis of diseases with low facilities, speed, accuracy and sensitivity is an important matter in treatment. Bioprobes based on iron oxide nanoparticles are a good candidate for early detection of deadly and infectious diseases such as tetanus due to their high reactivity, biocompatibility, low production cost and sample separation under a magnetic field. In this study, silane groups were coated on surface of iron oxide nanoparticles using tetraethoxysilane (TEOS) hydrolysis. Also, NH2groups were generated on the surface of silanized nanoparticles using 3-aminopropyl triethoxy silane (APTES). Antibody was immobilized on the surface of silanized nanoparticles using TCT trichlorothriazine as activator. Silanization and stabilized antibody were investigated by using of FT-IR, EDX, VSM, SRB technique. UV/vis spectroscopy, fluorescence, agglutination test and ELISA were used for biosensor performance and specificity. The results of FT-IR spectroscopy showed that Si-O-Si and Si-O-Fe bonds and TCT chlorine and amine groups of tetanus anti-toxoid antibodies were formed on the surface of iron oxide nanoparticles. The presence of Si, N and C elements in EDX analysis confirms the silanization of iron oxide nanoparticles. VSM results showed that the amount of magnetic nanoparticles after conjugation is sufficient for biological applications. Antibody stabilization on nanoparticles increased the adsorption intensity in the uv/vis spectrometer. The fluorescence intensity of nano bioprobe increased in the presence of 10 ng ml-1. Nanobio probes were observed as agglomerates in the presence of tetanus toxoid antigen. The presence of tetanus antigen caused the formation of antigen-nanobioprobe antigen complex. Identification of this complex by HRP-bound antibody confirmed the specificity of nanobioprobe. Tetanus magnetic nanobioprobe with a diagnostic limit of 10 ng ml-1of tetanus antigen in a short time can be a good tool in LOC devices and microfluidic chips.
Collapse
Affiliation(s)
- Farzaneh Karkhaneh
- Institute for Convergence Science & Technology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Ziba Karimi Sadr
- Institute for Convergence Science & Technology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Ahmad Molai Rad
- Institute for Convergence Science & Technology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Adele Divsalar
- Faculty of Biological Science, Kharazmi University, Tehran, Iran
| |
Collapse
|
42
|
Chau C, Mohanan G, Macaulay I, Actis P, Wälti C. Automated Purification of DNA Origami with SPRI Beads. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308776. [PMID: 38054620 PMCID: PMC11475516 DOI: 10.1002/smll.202308776] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Indexed: 12/07/2023]
Abstract
DNA origami synthesis is a well-established technique with wide-ranging applications. In most cases, the synthesized origami must be purified to remove excess materials such as DNA oligos and other functional molecules. While several purification techniques are routinely used, all have limitations, and cannot be integrated with robotic systems. Here the use of solid-phase reversible immobilization (SPRI) beads as a scalable, high-throughput, and automatable method to purify DNA origami is demonstrated. Not only can this method remove unreacted oligos and biomolecules with yields comparable to existing methods while maintaining the high structural integrity of the origami, but it can also be integrated into an automated workflow to purify simultaneously large numbers and quantities of samples. It is envisioned that the SPRI beads purification method will improve the scalability of DNA nanostructures synthesis both for research and commercial applications.
Collapse
Affiliation(s)
- Chalmers Chau
- School of Electronic and Electrical EngineeringUniversity of LeedsLeedsLS2 9JTUK
- Bragg Centre for Materials ResearchUniversity of LeedsLeedsLS2 9JTUK
| | - Gayathri Mohanan
- School of Electronic and Electrical EngineeringUniversity of LeedsLeedsLS2 9JTUK
- Bragg Centre for Materials ResearchUniversity of LeedsLeedsLS2 9JTUK
| | - Iain Macaulay
- Earlham InstituteNorwich Research ParkNorwichNR1 7UZUK
- School of Biological SciencesUniversity of East AngliaNorwichNorfolkNR4 7TJUK
| | - Paolo Actis
- School of Electronic and Electrical EngineeringUniversity of LeedsLeedsLS2 9JTUK
- Bragg Centre for Materials ResearchUniversity of LeedsLeedsLS2 9JTUK
| | - Christoph Wälti
- School of Electronic and Electrical EngineeringUniversity of LeedsLeedsLS2 9JTUK
- Bragg Centre for Materials ResearchUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
43
|
Lindeboom TA, Sanchez Olmos MDC, Schulz K, Brinkmann CK, Ramírez Rojas AA, Hochrein L, Schindler D. An Optimized Genotyping Workflow for Identifying Highly SCRaMbLEd Synthetic Yeasts. ACS Synth Biol 2024; 13:1116-1127. [PMID: 38597458 PMCID: PMC11036488 DOI: 10.1021/acssynbio.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Synthetic Sc2.0 yeast strains contain hundreds to thousands of loxPsym recombination sites that allow restructuring of the Saccharomyces cerevisiae genome by SCRaMbLE. Thus, a highly diverse yeast population can arise from a single genotype. The selection of genetically diverse candidates with rearranged synthetic chromosomes for downstream analysis requires an efficient and straightforward workflow. Here we present loxTags, a set of qPCR primers for genotyping across loxPsym sites to detect not only deletions but also inversions and translocations after SCRaMbLE. To cope with the large number of amplicons, we generated qTagGer, a qPCR genotyping primer prediction tool. Using loxTag-based genotyping and long-read sequencing, we show that light-inducible Cre recombinase L-SCRaMbLE can efficiently generate diverse recombination events when applied to Sc2.0 strains containing a linear or a circular version of synthetic chromosome III.
Collapse
Affiliation(s)
- Timon A Lindeboom
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | | | - Karina Schulz
- Department of Molecular Biology, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| | - Cedric K Brinkmann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Adán A Ramírez Rojas
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Lena Hochrein
- Department of Molecular Biology, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| | - Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35032Marburg, Germany
| |
Collapse
|
44
|
Coombes PE, Dickman MJ. Optimisation of denaturing ion pair reversed phase HPLC for the purification of ssDNA in SELEX. J Chromatogr A 2024; 1719:464699. [PMID: 38382212 DOI: 10.1016/j.chroma.2024.464699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
Aptamers have shown great promise as oligonucleotide-based affinity ligands for various medicinal and industrial applications. A critical step in the production of DNA aptamers via selective enhancement of ligands by exponential enrichment (SELEX) is the generation of ssDNA from dsDNA. There are a number of caveats associated with current methods for ssDNA generation, which can lower success rates of SELEX experiments. They often result in low yields thereby decreasing diversity or fail to eliminate parasitic PCR by-products leading to accumulation of by-products from round to round. Both contribute to the failure of SELEX protocols and therefore potentially limit the impact of aptamers compared to their peptide-based antibody counterparts. We have developed a novel method using ion pair reversed phase HPLC (IP RP HPLC) employed under denaturing conditions for the ssDNA re-generation stage of SELEX following PCR. We have utilised a range of 5' chemical modifications on PCR primers to amplify PCR fragments prior to separation and purification of the DNA strands using denaturing IP RP HPLC. We have optimised mobile phases to enable complete denaturation of the dsDNA at moderate temperatures that circumvents the requirement of high temperatures and results in separation of the ssDNA based on differences in their hydrophobicity. Validation of the ssDNA isolation and purity assessment was performed by interfacing the IP RP HPLC with mass spectrometry and fluorescence-based detection. The results show that using a 5' Texas Red modification on the reverse primer in the PCR stage enabled purification of the ssDNA from its complimentary strand via IP RP HPLC under denaturing conditions. Additionally, we have confirmed the purity of the ssDNA generated as well as the complete denaturation of the PCR product via the use of mass-spectrometry and fluorescence analysis therefore proving the selective elimination of PCR by-products and the unwanted complementary strand. Following lyophilisation, ssDNA yields of up to 80% were obtained. In comparison the streptavidin biotin affinity chromatography also generates pure ssDNA with a yield of 55%. The application of this method to rapidly generate and purify ssDNA of the correct size, offers the opportunity to improve the development of new aptamers via SELEX.
Collapse
Affiliation(s)
- Paul E Coombes
- Department of Chemical & Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Mark J Dickman
- Department of Chemical & Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK.
| |
Collapse
|
45
|
Shahi F, Rasti M, Moradi M. Overview of the different methods for RNA preparation in COVID-19 diagnosis process during the pandemic. Anal Biochem 2024; 686:115410. [PMID: 38006951 DOI: 10.1016/j.ab.2023.115410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The COVID-19 pandemic brought to light the impact of a widespread disease on various aspects of human relationships, communities, and economies. One notable consequence was the increased demand for diagnostic kits, laboratory reagents, and personal health equipment. This surge in testing capacity worldwide led to shortages in the supply of essential items, including RNA extraction kits, which are crucial for detecting COVID-19 infections. To address this scarcity, researchers have proposed alternative and cost-effective strategies for RNA extraction, utilizing both chemical and physical solutions and extraction-free methods. These approaches aim to alleviate the challenges associated with the overwhelming number of tests being conducted in laboratories. The purpose of this review is intends to provide a comprehensive summary of the various kit-free RNA extraction methods available for COVID-19 diagnosis during the pandemic.
Collapse
Affiliation(s)
- Fatemeh Shahi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Rasti
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Melika Moradi
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| |
Collapse
|
46
|
Ramírez Rojas A, Brinkmann CK, Köbel TS, Schindler D. DuBA.flow─A Low-Cost, Long-Read Amplicon Sequencing Workflow for the Validation of Synthetic DNA Constructs. ACS Synth Biol 2024; 13:457-465. [PMID: 38295293 PMCID: PMC10877597 DOI: 10.1021/acssynbio.3c00522] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 02/02/2024]
Abstract
Modern biological science, especially synthetic biology, relies heavily on the construction of DNA elements, often in the form of plasmids. Plasmids are used for a variety of applications, including the expression of proteins for subsequent purification, the expression of heterologous pathways for the production of valuable compounds, and the study of biological functions and mechanisms. For all applications, a critical step after the construction of a plasmid is its sequence validation. The traditional method for sequence determination is Sanger sequencing, which is limited to approximately 1000 bp per reaction. Here, we present a highly scalable in-house method for rapid validation of amplified DNA sequences using long-read Nanopore sequencing. We developed two-step amplicon and transposase strategies to provide maximum flexibility for dual barcode sequencing. We also provide an automated analysis pipeline to quickly and reliably analyze sequencing results and provide easy-to-interpret results for each sample. The user-friendly DuBA.flow start-to-finish pipeline is widely applicable. Furthermore, we show that construct validation using DuBA.flow can be performed by barcoded colony PCR amplicon sequencing, thus accelerating research.
Collapse
Affiliation(s)
- Adán
A. Ramírez Rojas
- Max
Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Cedric K. Brinkmann
- Max
Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Tania S. Köbel
- Max
Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Daniel Schindler
- Max
Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
- Center
for Synthetic Microbiology, Philipps-University
Marburg, Karl-von-Frisch-Str.
14, 35032 Marburg, Germany
| |
Collapse
|
47
|
Wang H, Zhao X, Tan L, Zhu J, Hyten D. Crop DNA extraction with lab-made magnetic nanoparticles. PLoS One 2024; 19:e0296847. [PMID: 38190402 PMCID: PMC10773960 DOI: 10.1371/journal.pone.0296847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
Molecular breeding methods, such as marker-assisted selection and genomic selection, require high-throughput and cost-effective methods for isolating genomic DNA from plants, specifically from crop tissue or seed with high polysaccharides, lipids, and proteins. A quick and inexpensive high-throughput method for isolating genomic DNA from seed and leaf tissue from multiple crops was tested with a DNA isolation method that combines CTAB extraction buffer and lab-made SA-coated magnetic nanoparticles. This method is capable of isolating quality genomic DNA from leaf tissue and seeds in less than 2 hours with fewer steps than a standard CTAB extraction method. The yield of the genomic DNA was 582-729 ng per 5 leaf discs or 216-1869 ng per seed in soybean, 2.92-62.6 ng per 5 leaf discs or 78.9-219 ng per seed in wheat, and 30.9-35.4 ng per 5 leaf discs in maize. The isolated DNA was tested with multiple molecular breeding methods and was found to be of sufficient quality and quantity for PCR and targeted genotyping by sequencing methods such as molecular inversion probes (MIPs). The combination of SA-coated magnetic nanoparticles and CTAB extraction buffer is a fast, simple, and environmentally friendly, high-throughput method for both leaf tissues and seed(s) DNA preparation at low cost per sample. The DNA obtained from this method can be deployed in applied breeding programs for marker-assisted selection or genomic selection.
Collapse
Affiliation(s)
- Haichuan Wang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Xueqi Zhao
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi’an Jiaotong University, Xi’an, China
| | - Li Tan
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Junwei Zhu
- USDA-ARS, Lincoln, Nebraska, United States of America
| | - David Hyten
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
48
|
Brück M, Berghoff BA, Schindler D. In Silico Design, In Vitro Construction, and In Vivo Application of Synthetic Small Regulatory RNAs in Bacteria. Methods Mol Biol 2024; 2760:479-507. [PMID: 38468105 DOI: 10.1007/978-1-0716-3658-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Small regulatory RNAs (sRNAs) are short non-coding RNAs in bacteria capable of post-transcriptional regulation. sRNAs have recently gained attention as tools in basic and applied sciences, for example, to fine-tune genetic circuits or biotechnological processes. Even though sRNAs often have a rather simple and modular structure, the design of functional synthetic sRNAs is not necessarily trivial. This protocol outlines how to use computational predictions and synthetic biology approaches to design, construct, and validate synthetic sRNA functionality for their application in bacteria. The computational tool, SEEDling, matches the optimal seed region with the user-selected sRNA scaffold for repression of target mRNAs. The synthetic sRNAs are assembled using Golden Gate cloning and their functionality is subsequently validated. The protocol uses the acrA mRNA as an exemplary proof-of-concept target in Escherichia coli. Since AcrA is part of a multidrug efflux pump, acrA repression can be revealed by assessing oxacillin susceptibility in a phenotypic screen. However, in case target repression does not result in a screenable phenotype, an alternative validation of synthetic sRNA functionality based on a fluorescence reporter is described.
Collapse
Affiliation(s)
- Michel Brück
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Institute for Microbiology and Molecular Biology, Justus-Liebig University Giessen, Giessen, Germany
| | - Bork A Berghoff
- Institute for Microbiology and Molecular Biology, Justus-Liebig University Giessen, Giessen, Germany
| | - Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
49
|
Zumkeller C, Schindler D, Felder J, Waldminghaus T. Modular Assembly of Synthetic Secondary Chromosomes. Methods Mol Biol 2024; 2819:157-187. [PMID: 39028507 DOI: 10.1007/978-1-0716-3930-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The development of novel DNA assembly methods in recent years has paved the way for the construction of synthetic replicons to be used for basic research and biotechnological applications. A learning-by-building approach can now answer questions about how chromosomes must be constructed to maintain genetic information. Here we describe an efficient pipeline for the design and assembly of synthetic, secondary chromosomes in Escherichia coli based on the popular modular cloning (MoClo) system.
Collapse
Affiliation(s)
- Celine Zumkeller
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen, Germany
| | - Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Jennifer Felder
- Technische Universität Darmstadt, Faculty of Biology, Darmstadt, Germany
| | | |
Collapse
|
50
|
Nan X, Hardinge P, Hoehn S, Dighe SN, Ukeri J, Pease DF, Griffin J, Warrington JI, Saud Z, Hottinger E, Webster G, Jones D, Kille P, Weightman A, Stanton R, Castell OK, Murray JAH, Jurkowski TP. VarLOCK: sequencing-independent, rapid detection of SARS-CoV-2 variants of concern for point-of-care testing, qPCR pipelines and national wastewater surveillance. Sci Rep 2023; 13:20832. [PMID: 38012215 PMCID: PMC10681975 DOI: 10.1038/s41598-023-47289-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/11/2023] [Indexed: 11/29/2023] Open
Abstract
The COVID-19 pandemic demonstrated the need for rapid molecular diagnostics. Vaccination programs can provide protection and facilitate the opening of society, but newly emergent and existing viral variants capable of evading the immune system endanger their efficacy. Effective surveillance for Variants of Concern (VOC) is therefore important. Rapid and specific molecular diagnostics can provide speed and coverage advantages compared to genomic sequencing alone, benefitting the public health response and facilitating VOC containment. Here we expand the recently developed SARS-CoV-2 CRISPR-Cas detection technology (SHERLOCK) to provide rapid and sensitive discrimination of SARS-CoV-2 VOCs that can be used at point of care, implemented in the pipelines of small or large testing facilities, and even determine the proportion of VOCs in pooled population-level wastewater samples. This technology complements sequencing efforts to allow facile and rapid identification of individuals infected with VOCs to help break infection chains. We show the optimisation of our VarLOCK assays (Variant-specific SHERLOCK) for multiple specific mutations in the S gene of SARS-CoV-2 and validation with samples from the Cardiff University Testing Service. We also show the applicability of VarLOCK to national wastewater surveillance of SARS-CoV-2 variants and the rapid adaptability of the technique for new and emerging VOCs.
Collapse
Affiliation(s)
- Xinsheng Nan
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Patrick Hardinge
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK.
| | - Sven Hoehn
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Shrinivas Nivrutti Dighe
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - John Ukeri
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Darius F Pease
- COVID-19 Screening Service, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Joshua Griffin
- COVID-19 Screening Service, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Jessica I Warrington
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
- Biodexa Pharmaceuticals (Wales) Ltd, 1 Caspian Point, Caspian Way, Cardiff, CF10 4DQ, UK
| | - Zack Saud
- Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Emma Hottinger
- COVID-19 Screening Service, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Gordon Webster
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Davey Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Peter Kille
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
- COVID-19 Screening Service, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Andrew Weightman
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Richard Stanton
- Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Oliver K Castell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - James A H Murray
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Tomasz P Jurkowski
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK.
- COVID-19 Screening Service, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK.
| |
Collapse
|