1
|
Ainatzi S, Kaufmann SV, Silbern I, Georgiev SV, Lorenz S, Rizzoli SO, Urlaub H. Ca 2+-Triggered (de)ubiquitination Events in Synapses. Mol Cell Proteomics 2025; 24:100946. [PMID: 40089065 PMCID: PMC12008530 DOI: 10.1016/j.mcpro.2025.100946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/29/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025] Open
Abstract
Neuronal communication relies on neurotransmitter release from synaptic vesicles (SVs), whose dynamics are controlled by Ca2+-dependent pathways, as many thoroughly studied phosphorylation cascades. However, little is known about other post-translational modifications, such as ubiquitination. To address this, we analyzed resting and stimulated synaptosomes (isolated synapses) by quantitative mass spectrometry. We identified more than 5000 ubiquitination sites on ∼2000 proteins, the majority of which participate in SV recycling processes. Several proteins showed significant changes in ubiquitination in response to Ca2+ influx, with the most pronounced changes in CaMKIIα and the clathrin adaptor protein AP180. To validate this finding, we generated a CaMKIIα mutant lacking the ubiquitination target site (K291) and analyzed it both in neurons and non-neuronal cells. K291 ubiquitination, close to an important site for CaMKIIα autophosphorylation (T286), influences the synaptic function of this kinase. We suggest that ubiquitination in response to synaptic activity is an important regulator of synaptic function.
Collapse
Affiliation(s)
- Sofia Ainatzi
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center, Goettingen, Germany
| | - Svenja V Kaufmann
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center, Goettingen, Germany
| | - Ivan Silbern
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center, Goettingen, Germany
| | - Svilen V Georgiev
- Department of Neuro- and Sensory Physiology, University Medical Center, Goettingen, Germany
| | - Sonja Lorenz
- Ubiquitin Signaling Specificity, Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center, Goettingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center, Goettingen, Germany; Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Germany; Göttingen Center for Molecular Biosciences, Georg August University Göttingen, Germany.
| |
Collapse
|
2
|
Dutta S, Hensel J, Scott A, Mohallem R, Rossitto LAM, Khan HF, Johnson T, Ferreira CR, Marmolejo JF, Chen X, Jayant K, Aryal UK, Volpicelli-Daley L, Rochet JC. Synaptic phosphoproteome modifications and cortical circuit dysfunction are linked to the early-stage progression of alpha-synuclein aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634820. [PMID: 39896549 PMCID: PMC11785254 DOI: 10.1101/2025.01.24.634820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Cortical dysfunction is increasingly recognized as a major contributor to the non-motor symptoms associated with Parkinson's disease (PD) and other synucleinopathies. Although functional alterations in cortical circuits have been observed in preclinical PD models, the underlying molecular mechanisms are unclear. To bridge this knowledge gap, we investigated tissue-level changes in the cortices of rats and mice treated with alpha-synuclein (aSyn) seeds using a multi-omics approach. Our study revealed significant phosphoproteomic changes, but not global proteomic or lipid profiling changes, in the rat sensorimotor cortex 3 months after intrastriatal injection with aSyn preformed fibrils (PFFs). Gene ontology analysis of the phosphoproteomic data indicated that PFF administration impacted pathways related to synaptic transmission and cytoskeletal organization. Similar phosphoproteomic perturbations were observed in the sensorimotor cortex of mice injected intrastriatally or intracortically with aSyn PFFs. Functional analyses demonstrated increased neuronal firing rates and enhanced spike-spike coherence in the sensorimotor cortices of PFF-treated mice, indicating seed-dependent cortical circuit dysfunction. Bioinformatic analysis of the altered phosphosites suggested the involvement of several kinases, including casein kinase-2 (CK2), which has been previously implicated in PD pathology. Collectively, these findings highlight the importance of phosphorylation-mediated signaling pathways in the cortical response to aSyn pathology spread in PD and related synucleinopathies, setting the stage for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Sayan Dutta
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Jennifer Hensel
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Alicia Scott
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Rodrigo Mohallem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Leigh-Ana M Rossitto
- Department of Neurosciences, School of Medicine, University of California, San Diego, 92161, USA
| | - Hammad Furqan Khan
- Weldon School of Biomedical Engineering, West Lafayette, Indiana, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Teshawn Johnson
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Christina R Ferreira
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907
| | - Jackeline F. Marmolejo
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, 47906, USA
| | - Xu Chen
- Department of Neurosciences, School of Medicine, University of California, San Diego, 92161, USA
| | - Krishna Jayant
- Weldon School of Biomedical Engineering, West Lafayette, Indiana, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Uma K. Aryal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, 47906, USA
| | - Laura Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jean-Christophe Rochet
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
3
|
Reshetniak S, Bogaciu CA, Bonn S, Brose N, Cooper BH, D'Este E, Fauth M, Fernández-Busnadiego R, Fiosins M, Fischer A, Georgiev SV, Jakobs S, Klumpp S, Köster S, Lange F, Lipstein N, Macarrón-Palacios V, Milovanovic D, Moser T, Müller M, Opazo F, Outeiro TF, Pape C, Priesemann V, Rehling P, Salditt T, Schlüter O, Simeth N, Steinem C, Tchumatchenko T, Tetzlaff C, Tirard M, Urlaub H, Wichmann C, Wolf F, Rizzoli SO. The synaptic vesicle cluster as a controller of pre- and postsynaptic structure and function. J Physiol 2024. [PMID: 39367860 DOI: 10.1113/jp286400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024] Open
Abstract
The synaptic vesicle cluster (SVC) is an essential component of chemical synapses, which provides neurotransmitter-loaded vesicles during synaptic activity, at the same time as also controlling the local concentrations of numerous exo- and endocytosis cofactors. In addition, the SVC hosts molecules that participate in other aspects of synaptic function, from cytoskeletal components to adhesion proteins, and affects the location and function of organelles such as mitochondria and the endoplasmic reticulum. We argue here that these features extend the functional involvement of the SVC in synapse formation, signalling and plasticity, as well as synapse stabilization and metabolism. We also propose that changes in the size of the SVC coalesce with changes in the postsynaptic compartment, supporting the interplay between pre- and postsynaptic dynamics. Thereby, the SVC could be seen as an 'all-in-one' regulator of synaptic structure and function, which should be investigated in more detail, to reveal molecular mechanisms that control synaptic function and heterogeneity.
Collapse
Affiliation(s)
- Sofiia Reshetniak
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Cristian A Bogaciu
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Michael Fauth
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
| | - Rubén Fernández-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Maksims Fiosins
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - André Fischer
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Svilen V Georgiev
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Jakobs
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Stefan Klumpp
- Theoretical Biophysics Group, Institute for the Dynamics of Complex Systems, Georg-August University Göttingen, Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Felix Lange
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Noa Lipstein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University Göttingen, Göttingen, Germany
| | - Felipe Opazo
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Constantin Pape
- Institute of Computer Science, Georg-August University Göttingen, Göttingen, Germany
| | - Viola Priesemann
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
- Max-Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Oliver Schlüter
- Clinic for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Nadja Simeth
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Christian Tetzlaff
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Carolin Wichmann
- Institute for Auditory Neuroscience University Medical Center Göttingen, Göttingen, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Fred Wolf
- Max-Planck-Institute for Dynamics and Self-Organization, 37077 Göttingen and Institute for Dynamics of Biological Networks, Georg-August University Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Bromberger S, Zadorozhna Y, Ressler JM, Holzner S, Nawrocki A, Zila N, Springer A, Røssel Larsen M, Schossleitner K. Off-targets of BRAF inhibitors disrupt endothelial signaling and vascular barrier function. Life Sci Alliance 2024; 7:e202402671. [PMID: 38839106 PMCID: PMC11153892 DOI: 10.26508/lsa.202402671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
Targeted therapies against mutant BRAF are effectively used in combination with MEK inhibitors (MEKi) to treat advanced melanoma. However, treatment success is affected by resistance and adverse events (AEs). Approved BRAF inhibitors (BRAFi) show high levels of target promiscuity, which can contribute to these effects. The blood vessel lining is in direct contact with high plasma concentrations of BRAFi, but effects of the inhibitors in this cell type are unknown. Hence, we aimed to characterize responses to approved BRAFi for melanoma in the vascular endothelium. We showed that clinically approved BRAFi induced a paradoxical activation of endothelial MAPK signaling. Moreover, phosphoproteomics revealed distinct sets of off-targets per inhibitor. Endothelial barrier function and junction integrity were impaired upon treatment with vemurafenib and the next-generation dimerization inhibitor PLX8394, but not with dabrafenib or encorafenib. Together, these findings provide insights into the surprisingly distinct side effects of BRAFi on endothelial signaling and functionality. Better understanding of off-target effects could help to identify molecular mechanisms behind AEs and guide the continued development of therapies for BRAF-mutant melanoma.
Collapse
Affiliation(s)
- Sophie Bromberger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Yuliia Zadorozhna
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Silvio Holzner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Arkadiusz Nawrocki
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Nina Zila
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- University of Applied Sciences FH Campus Wien, Division of Biomedical Science, Vienna, Austria
| | - Alexander Springer
- Department of Pediatric Surgery, Medical University of Vienna, Vienna, Austria
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
5
|
Tsang E, Han VX, Flutter C, Alshammery S, Keating BA, Williams T, Gloss BS, Graham ME, Aryamanesh N, Pang I, Wong M, Winlaw D, Cardamone M, Mohammad S, Gold W, Patel S, Dale RC. Ketogenic diet modifies ribosomal protein dysregulation in KMT2D Kabuki syndrome. EBioMedicine 2024; 104:105156. [PMID: 38768529 PMCID: PMC11134553 DOI: 10.1016/j.ebiom.2024.105156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Kabuki syndrome (KS) is a genetic disorder caused by DNA mutations in KMT2D, a lysine methyltransferase that methylates histones and other proteins, and therefore modifies chromatin structure and subsequent gene expression. Ketones, derived from the ketogenic diet, are histone deacetylase inhibitors that can 'open' chromatin and encourage gene expression. Preclinical studies have shown that the ketogenic diet rescues hippocampal memory neurogenesis in mice with KS via the epigenetic effects of ketones. METHODS Single-cell RNA sequencing and mass spectrometry-based proteomics were used to explore molecular mechanisms of disease in individuals with KS (n = 4) versus controls (n = 4). FINDINGS Pathway enrichment analysis indicated that loss of function mutations in KMT2D are associated with ribosomal protein dysregulation at an RNA and protein level in individuals with KS (FDR <0.05). Cellular proteomics also identified immune dysregulation and increased abundance of other lysine modification and histone binding proteins, representing a potential compensatory mechanism. A 12-year-old boy with KS, suffering from recurrent episodes of cognitive decline, exhibited improved cognitive function and neuropsychological assessment performance after 12 months on the ketogenic diet, with concomitant improvement in transcriptomic ribosomal protein dysregulation. INTERPRETATION Our data reveals that lysine methyltransferase deficiency is associated with ribosomal protein dysfunction, with secondary immune dysregulation. Diet and the production of bioactive molecules such as ketone bodies serve as a significant environmental factor that can induce epigenetic changes and improve clinical outcomes. Integrating transcriptomic, proteomic, and clinical data can define mechanisms of disease and treatment effects in individuals with neurodevelopmental disorders. FUNDING This study was supported by the Dale NHMRC Investigator Grant (APP1193648) (R.D), Petre Foundation (R.D), and The Sydney Children's Hospital Foundation/Kids Research Early and Mid-Career Researcher Grant (E.T).
Collapse
Affiliation(s)
- Erica Tsang
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Velda X Han
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chloe Flutter
- The Kabuki Syndrome Foundation - Volunteer, Northbrook, IL, USA
| | - Sarah Alshammery
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Brooke A Keating
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Tracey Williams
- Kids Rehab, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Brian S Gloss
- Westmead Research Hub, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Mark E Graham
- Biomedical Proteomics, Children's Medical Research Institute, The University of Sydney, Australia
| | - Nader Aryamanesh
- Bioinformatics Group, Children's Medical Research Institute, Westmead, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ignatius Pang
- Bioinformatics Group, Children's Medical Research Institute, Westmead, Sydney, NSW, Australia
| | - Melanie Wong
- The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - David Winlaw
- Heart Centre, Ann and Robert H. Lurie Children's Hospital of Chicago and Feinberg School of Medicine, Northwestern University, USA
| | - Michael Cardamone
- Sydney Children's Hospital, Randwick, NSW, Australia; School of Clinical Medicine, University of New South Wales, NSW, Australia
| | - Shekeeb Mohammad
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Wendy Gold
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW, Australia; Molecular Neurobiology Research Laboratory, Kids Research, The Children's Hospital at Westmead & the Children's Medical Research Institute, NSW, Australia
| | - Shrujna Patel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Russell C Dale
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; The Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Hurtado Silva M, van Waardenberg AJ, Mostafa A, Schoch S, Dietrich D, Graham ME. Multiomics of early epileptogenesis in mice reveals phosphorylation and dephosphorylation-directed growth and synaptic weakening. iScience 2024; 27:109534. [PMID: 38600976 PMCID: PMC11005001 DOI: 10.1016/j.isci.2024.109534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 01/26/2024] [Accepted: 03/16/2024] [Indexed: 04/12/2024] Open
Abstract
To investigate the phosphorylation-based signaling and protein changes occurring early in epileptogenesis, the hippocampi of mice treated with pilocarpine were examined by quantitative mass spectrometry at 4 and 24 h post-status epilepticus at vast depth. Hundreds of posttranscriptional regulatory proteins were the major early targets of increased phosphorylation. At 24 h, many protein level changes were detected and the phosphoproteome continued to be perturbed. The major targets of decreased phosphorylation at 4 and 24 h were a subset of postsynaptic density scaffold proteins, ion channels, and neurotransmitter receptors. Many proteins targeted by dephosphorylation at 4 h also had decreased protein abundance at 24 h, indicating a phosphatase-mediated weakening of synapses. Increased translation was indicated by protein changes at 24 h. These observations, and many additional indicators within this multiomic resource, suggest that early epileptogenesis is characterized by signaling that stimulates both growth and a homeostatic response that weakens excitability.
Collapse
Affiliation(s)
- Mariella Hurtado Silva
- Synapse Proteomics, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | | | - Aya Mostafa
- Department of Neuropathology, University Hospital Bonn, Synaptic Neuroscience Unit, 53127 Bonn, North Rhine-Westphalia, Germany
| | - Susanne Schoch
- Department of Neuropathology, University Hospital Bonn, Synaptic Neuroscience Unit, 53127 Bonn, North Rhine-Westphalia, Germany
| | - Dirk Dietrich
- Department of Neurosurgery, University Hospital Bonn, Synaptic Neuroscience Unit, 53127 Bonn, North Rhine-Westphalia, Germany
| | - Mark E. Graham
- Synapse Proteomics, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
7
|
Yang D, Wang Y, Qi T, Zhang X, Shen L, Ma J, Pang Z, Lal NK, McClatchy DB, Seradj SH, Leung VH, Wang K, Xie Y, Polli FS, Maximov A, Gonzalez OC, de Lecea L, Cline HT, Augustine V, Yates JR, Ye L. Phosphorylation of pyruvate dehydrogenase inversely associates with neuronal activity. Neuron 2024; 112:959-971.e8. [PMID: 38266644 PMCID: PMC11021214 DOI: 10.1016/j.neuron.2023.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 08/24/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
For decades, the expression of immediate early genes (IEGs) such as FOS has been the most widely used molecular marker representing neuronal activation. However, to date, there is no equivalent surrogate available for the decrease of neuronal activity. Here, we developed an optogenetic-based biochemical screen in which population neural activities can be controlled by light with single action potential precision, followed by unbiased phosphoproteomic profiling. We identified that the phosphorylation of pyruvate dehydrogenase (pPDH) inversely correlated with the intensity of action potential firing in primary neurons. In in vivo mouse models, monoclonal antibody-based pPDH immunostaining detected activity decreases across the brain, which were induced by a wide range of factors including general anesthesia, chemogenetic inhibition, sensory experiences, and natural behaviors. Thus, as an inverse activity marker (IAM) in vivo, pPDH can be used together with IEGs or other cell-type markers to profile and identify bi-directional neural dynamics induced by experiences or behaviors.
Collapse
Affiliation(s)
- Dong Yang
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yu Wang
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tianbo Qi
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xi Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Leyao Shen
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jingrui Ma
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neurobiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhengyuan Pang
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Neeraj K Lal
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel B McClatchy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Saba Heydari Seradj
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Verina H Leung
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kristina Wang
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yi Xie
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Filip S Polli
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anton Maximov
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Hollis T Cline
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Vineet Augustine
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neurobiology, University of California San Diego, La Jolla, CA 92093, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Li Ye
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
8
|
Al Tarrass M, Belmudes L, Koça D, Azemard V, Liu H, Al Tabosh T, Ciais D, Desroches-Castan A, Battail C, Couté Y, Bouvard C, Bailly S. Large-scale phosphoproteomics reveals activation of the MAPK/GADD45β/P38 axis and cell cycle inhibition in response to BMP9 and BMP10 stimulation in endothelial cells. Cell Commun Signal 2024; 22:158. [PMID: 38439036 PMCID: PMC10910747 DOI: 10.1186/s12964-024-01486-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/11/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND BMP9 and BMP10 are two major regulators of vascular homeostasis. These two ligands bind with high affinity to the endothelial type I kinase receptor ALK1, together with a type II receptor, leading to the direct phosphorylation of the SMAD transcription factors. Apart from this canonical pathway, little is known. Interestingly, mutations in this signaling pathway have been identified in two rare cardiovascular diseases, hereditary hemorrhagic telangiectasia and pulmonary arterial hypertension. METHODS To get an overview of the signaling pathways modulated by BMP9 and BMP10 stimulation in endothelial cells, we employed an unbiased phosphoproteomic-based strategy. Identified phosphosites were validated by western blot analysis and regulated targets by RT-qPCR. Cell cycle analysis was analyzed by flow cytometry. RESULTS Large-scale phosphoproteomics revealed that BMP9 and BMP10 treatment induced a very similar phosphoproteomic profile. These BMPs activated a non-canonical transcriptional SMAD-dependent MAPK pathway (MEKK4/P38). We were able to validate this signaling pathway and demonstrated that this activation required the expression of the protein GADD45β. In turn, activated P38 phosphorylated the heat shock protein HSP27 and the endocytosis protein Eps15 (EGF receptor pathway substrate), and regulated the expression of specific genes (E-selectin, hyaluronan synthase 2 and cyclooxygenase 2). This study also highlighted the modulation in phosphorylation of proteins involved in transcriptional regulation (phosphorylation of the endothelial transcription factor ERG) and cell cycle inhibition (CDK4/6 pathway). Accordingly, we found that BMP10 induced a G1 cell cycle arrest and inhibited the mRNA expression of E2F2, cyclinD1 and cyclinA1. CONCLUSIONS Overall, our phosphoproteomic screen identified numerous proteins whose phosphorylation state is impacted by BMP9 and BMP10 treatment, paving the way for a better understanding of the molecular mechanisms regulated by BMP signaling in vascular diseases.
Collapse
Affiliation(s)
- Mohammad Al Tarrass
- Biosanté Unit U1292, Grenoble Alpes University, CEA, Grenoble, 38000, France
| | - Lucid Belmudes
- Grenoble Alpes University, CEA, INSERM, UA13 BGE, CNRS, CEA, FR2048, Grenoble, France
| | - Dzenis Koça
- Biosanté Unit U1292, Grenoble Alpes University, CEA, Grenoble, 38000, France
| | - Valentin Azemard
- Biosanté Unit U1292, Grenoble Alpes University, CEA, Grenoble, 38000, France
| | - Hequn Liu
- Biosanté Unit U1292, Grenoble Alpes University, CEA, Grenoble, 38000, France
| | - Tala Al Tabosh
- Biosanté Unit U1292, Grenoble Alpes University, CEA, Grenoble, 38000, France
| | - Delphine Ciais
- Biosanté Unit U1292, Grenoble Alpes University, CEA, Grenoble, 38000, France
- Present address: Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France
| | | | - Christophe Battail
- Biosanté Unit U1292, Grenoble Alpes University, CEA, Grenoble, 38000, France
- Grenoble Alpes University, CEA, INSERM, UA13 BGE, CNRS, CEA, FR2048, Grenoble, France
| | - Yohann Couté
- Grenoble Alpes University, CEA, INSERM, UA13 BGE, CNRS, CEA, FR2048, Grenoble, France
| | - Claire Bouvard
- Biosanté Unit U1292, Grenoble Alpes University, CEA, Grenoble, 38000, France
| | - Sabine Bailly
- Biosanté Unit U1292, Grenoble Alpes University, CEA, Grenoble, 38000, France.
| |
Collapse
|
9
|
Longfield SF, Mollazade M, Wallis TP, Gormal RS, Joensuu M, Wark JR, van Waardenberg AJ, Small C, Graham ME, Meunier FA, Martínez-Mármol R. Tau forms synaptic nano-biomolecular condensates controlling the dynamic clustering of recycling synaptic vesicles. Nat Commun 2023; 14:7277. [PMID: 37949856 PMCID: PMC10638352 DOI: 10.1038/s41467-023-43130-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Neuronal communication relies on the release of neurotransmitters from various populations of synaptic vesicles. Despite displaying vastly different release probabilities and mobilities, the reserve and recycling pool of vesicles co-exist within a single cluster suggesting that small synaptic biomolecular condensates could regulate their nanoscale distribution. Here, we performed a large-scale activity-dependent phosphoproteome analysis of hippocampal neurons in vitro and identified Tau as a highly phosphorylated and disordered candidate protein. Single-molecule super-resolution microscopy revealed that Tau undergoes liquid-liquid phase separation to generate presynaptic nanoclusters whose density and number are regulated by activity. This activity-dependent diffusion process allows Tau to translocate into the presynapse where it forms biomolecular condensates, to selectively control the mobility of recycling vesicles. Tau, therefore, forms presynaptic nano-biomolecular condensates that regulate the nanoscale organization of synaptic vesicles in an activity-dependent manner.
Collapse
Affiliation(s)
- Shanley F Longfield
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Mahdie Mollazade
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Jesse R Wark
- Synapse Proteomics, Children's Medical Research Institute (CMRI), The University of Sydney, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | | | - Christopher Small
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Mark E Graham
- Synapse Proteomics, Children's Medical Research Institute (CMRI), The University of Sydney, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia.
- School of Biomedical Science, The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia.
| | - Ramón Martínez-Mármol
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
10
|
Blumrich EM, Nicholson-Fish JC, Pronot M, Davenport EC, Kurian D, Cole A, Smillie KJ, Cousin MA. Phosphatidylinositol 4-kinase IIα is a glycogen synthase kinase 3-regulated interaction hub for activity-dependent bulk endocytosis. Cell Rep 2023; 42:112633. [PMID: 37314927 DOI: 10.1016/j.celrep.2023.112633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/04/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023] Open
Abstract
Phosphatidylinositol 4-kinase IIα (PI4KIIα) generates essential phospholipids and is a cargo for endosomal adaptor proteins. Activity-dependent bulk endocytosis (ADBE) is the dominant synaptic vesicle endocytosis mode during high neuronal activity and is sustained by glycogen synthase kinase 3β (GSK3β) activity. We reveal the GSK3β substrate PI4KIIα is essential for ADBE via its depletion in primary neuronal cultures. Kinase-dead PI4KIIα rescues ADBE in these neurons but not a phosphomimetic form mutated at the GSK3β site, Ser-47. Ser-47 phosphomimetic peptides inhibit ADBE in a dominant-negative manner, confirming that Ser-47 phosphorylation is essential for ADBE. Phosphomimetic PI4KIIα interacts with a specific cohort of presynaptic molecules, two of which, AGAP2 and CAMKV, are also essential for ADBE when depleted in neurons. Thus, PI4KIIα is a GSK3β-dependent interaction hub that silos essential ADBE molecules for liberation during neuronal activity.
Collapse
Affiliation(s)
- Eva-Maria Blumrich
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK
| | - Jessica C Nicholson-Fish
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK
| | - Marie Pronot
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK
| | - Elizabeth C Davenport
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK
| | - Dominic Kurian
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland EH25 9RG, UK
| | - Adam Cole
- Neurosignalling and Mood Disorders Group, The Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Karen J Smillie
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK.
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK.
| |
Collapse
|
11
|
Yang D, Wang Y, Qi T, Zhang X, Shen L, Ma J, Pang Z, Lal NK, McClatchy DB, Wang K, Xie Y, Polli F, Maximov A, Augustine V, Cline HT, Yates JR, Ye L. Phosphorylation of pyruvate dehydrogenase marks the inhibition of in vivo neuronal activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532494. [PMID: 36993270 PMCID: PMC10054949 DOI: 10.1101/2023.03.13.532494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
For decades, the expression of immediate early genes (IEGs) such as c- fos has been the most widely used molecular marker representing neuronal activation. However, to date, there is no equivalent surrogate available for the decrease of neuronal activity (i.e., inhibition). Here, we developed an optogenetic-based biochemical screen in which population neural activities can be controlled by light with single action potential precision, followed by unbiased phosphoproteomic profiling. We identified that the phosphorylation of pyruvate dehydrogenase (pPDH) inversely correlated with the intensity of action potential firing in primary neurons. In in vivo mouse models, monoclonal antibody-based pPDH immunostaining detected neuronal inhibition across the brain induced by a wide range of factors including general anesthesia, sensory experiences, and natural behaviors. Thus, as an in vivo marker for neuronal inhibition, pPDH can be used together with IEGs or other cell-type markers to profile and identify bi-directional neural dynamics induced by experiences or behaviors.
Collapse
|
12
|
Kudryashova I. Presynaptic Plasticity Is Associated with Actin Polymerization. BIOCHEMISTRY (MOSCOW) 2023; 88:392-403. [PMID: 37076285 DOI: 10.1134/s0006297923030082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Modulation of presynaptic short-term plasticity induced by actin polymerization was studied in rat hippocampal slices using the paired-pulse paradigm. Schaffer collaterals were stimulated with paired pulses with a 70-ms interstimulus interval every 30 s before and during perfusion with jasplakinolide, an activator of actin polymerization. Jasplakinolide application resulted in the increase in the amplitudes of CA3-CA1 responses (potentiation) accompanied by a decrease in the paired-pulse facilitation, suggesting induction of presynaptic modifications. Jasplakinolide-induced potentiation depended on the initial paired-pulse rate. These data indicate that the jasplakinolide-mediated changes in actin polymerization increased the probability of neurotransmitter release. Less typical for CA3-CA1 synapses responses, such as a very low paired-pulse ratio (close to 1 or even lower) or even paired-pulse depression, were affected differently. Thus, jasplakinolide caused potentiation of the second, but not the first response to the paired stimulus, which increased the paired-pulse ratio from 0.8 to 1.0 on average, suggesting a negative impact of jasplakinolide on the mechanisms promoting paired-pulse depression. In general, actin polymerization facilitated potentiation, although the patterns of potentiation differed depending on the initial synapse characteristics. We conclude that in addition to the increase in the neurotransmitter release probability, jasplakinolide induced other actin polymerization-dependent mechanisms, including those involved in the paired-pulse depression.
Collapse
Affiliation(s)
- Irina Kudryashova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
13
|
Leahy SN, Song C, Vita DJ, Broadie K. FMRP activity and control of Csw/SHP2 translation regulate MAPK-dependent synaptic transmission. PLoS Biol 2023; 21:e3001969. [PMID: 36701299 PMCID: PMC9879533 DOI: 10.1371/journal.pbio.3001969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/16/2022] [Indexed: 01/27/2023] Open
Abstract
Noonan syndrome (NS) and NS with multiple lentigines (NSML) cognitive dysfunction are linked to SH2 domain-containing protein tyrosine phosphatase-2 (SHP2) gain-of-function (GoF) and loss-of-function (LoF), respectively. In Drosophila disease models, we find both SHP2 mutations from human patients and corkscrew (csw) homolog LoF/GoF elevate glutamatergic transmission. Cell-targeted RNAi and neurotransmitter release analyses reveal a presynaptic requirement. Consistently, all mutants exhibit reduced synaptic depression during high-frequency stimulation. Both LoF and GoF mutants also show impaired synaptic plasticity, including reduced facilitation, augmentation, and post-tetanic potentiation. NS/NSML diseases are characterized by elevated MAPK/ERK signaling, and drugs suppressing this signaling restore normal neurotransmission in mutants. Fragile X syndrome (FXS) is likewise characterized by elevated MAPK/ERK signaling. Fragile X Mental Retardation Protein (FMRP) binds csw mRNA and neuronal Csw protein is elevated in Drosophila fragile X mental retardation 1 (dfmr1) nulls. Moreover, phosphorylated ERK (pERK) is increased in dfmr1 and csw null presynaptic boutons. We find presynaptic pERK activation in response to stimulation is reduced in dfmr1 and csw nulls. Trans-heterozygous csw/+; dfmr1/+ recapitulate elevated presynaptic pERK activation and function, showing FMRP and Csw/SHP2 act within the same signaling pathway. Thus, a FMRP and SHP2 MAPK/ERK regulative mechanism controls basal and activity-dependent neurotransmission strength.
Collapse
Affiliation(s)
- Shannon N. Leahy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee, United States of America
| | - Chunzhu Song
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee, United States of America
| | - Dominic J. Vita
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee, United States of America
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University and Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
14
|
Montenegro‐Venegas C, Guhathakurta D, Pina‐Fernandez E, Andres‐Alonso M, Plattner F, Gundelfinger ED, Fejtova A. Bassoon controls synaptic vesicle release via regulation of presynaptic phosphorylation and
cAMP. EMBO Rep 2022; 23:e53659. [PMID: 35766170 PMCID: PMC9346490 DOI: 10.15252/embr.202153659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/11/2022] Open
Abstract
Neuronal presynaptic terminals contain hundreds of neurotransmitter‐filled synaptic vesicles (SVs). The morphologically uniform SVs differ in their release competence segregating into functional pools that differentially contribute to neurotransmission. The presynaptic scaffold bassoon is required for neurotransmission, but the underlying molecular mechanisms are unknown. We report that glutamatergic synapses lacking bassoon feature decreased SV release competence and increased resting pool of SVs as assessed by imaging of SV release in cultured neurons. CDK5/calcineurin and cAMP/PKA presynaptic signalling are dysregulated, resulting in an aberrant phosphorylation of their downstream effectors synapsin1 and SNAP25, well‐known regulators of SV release competence. An acute pharmacological restoration of physiological CDK5 and cAMP/PKA activity fully normalises the SV pools in neurons lacking bassoon. Finally, we demonstrate that CDK5‐dependent regulation of PDE4 activity interacts with cAMP/PKA signalling and thereby controls SV release competence. These data reveal that bassoon organises SV pools in glutamatergic synapses via regulation of presynaptic phosphorylation and cAMP homeostasis and indicate a role of CDK5/PDE4/cAMP axis in the control of neurotransmitter release.
Collapse
Affiliation(s)
- Carolina Montenegro‐Venegas
- Department of Neurochemistry and Molecular Biology Leibniz Institute for Neurobiology Magdeburg Germany
- Center for Behavioral Brain Sciences (CBBS) Magdeburg Germany
- Institute for Pharmacology and Toxicology, Medical Faculty Otto von Guericke University Magdeburg Germany
| | - Debarpan Guhathakurta
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy Universitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | | | - Maria Andres‐Alonso
- RG Presynaptic Plasticity Leibniz Institute for Neurobiology Magdeburg Germany
| | | | - Eckart D Gundelfinger
- Department of Neurochemistry and Molecular Biology Leibniz Institute for Neurobiology Magdeburg Germany
- Center for Behavioral Brain Sciences (CBBS) Magdeburg Germany
- Institute for Pharmacology and Toxicology, Medical Faculty Otto von Guericke University Magdeburg Germany
| | - Anna Fejtova
- Department of Neurochemistry and Molecular Biology Leibniz Institute for Neurobiology Magdeburg Germany
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy Universitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
- RG Presynaptic Plasticity Leibniz Institute for Neurobiology Magdeburg Germany
| |
Collapse
|
15
|
Downton P, Sanna F, Maidstone R, Poolman TM, Hayter EA, Dickson SH, Ciccone NA, Early JO, Adamson A, Spiller DG, Simpkins DA, Baxter M, Fischer R, Rattray M, Loudon ASI, Gibbs JE, Bechtold DA, Ray DW. Chronic inflammatory arthritis drives systemic changes in circadian energy metabolism. Proc Natl Acad Sci U S A 2022; 119:e2112781119. [PMID: 35482925 PMCID: PMC9170023 DOI: 10.1073/pnas.2112781119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/01/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic inflammation underpins many human diseases. Morbidity and mortality associated with chronic inflammation are often mediated through metabolic dysfunction. Inflammatory and metabolic processes vary through circadian time, suggesting an important temporal crosstalk between these systems. Using an established mouse model of rheumatoid arthritis, we show that chronic inflammatory arthritis results in rhythmic joint inflammation and drives major changes in muscle and liver energy metabolism and rhythmic gene expression. Transcriptional and phosphoproteomic analyses revealed alterations in lipid metabolism and mitochondrial function associated with increased EGFR-JAK-STAT3 signaling. Metabolomic analyses confirmed rhythmic metabolic rewiring with impaired β-oxidation and lipid handling and revealed a pronounced shunt toward sphingolipid and ceramide accumulation. The arthritis-related production of ceramides was most pronounced during the day, which is the time of peak inflammation and increased reliance on fatty acid oxidation. Thus, our data demonstrate that localized joint inflammation drives a time-of-day–dependent build-up of bioactive lipid species driven by rhythmic inflammation and altered EGFR-STAT signaling.
Collapse
Affiliation(s)
- Polly Downton
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Fabio Sanna
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Robert Maidstone
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Toryn M. Poolman
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Edward A. Hayter
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Suzanna H. Dickson
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Nick A. Ciccone
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - James O. Early
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Antony Adamson
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - David G. Spiller
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Devin A. Simpkins
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Matthew Baxter
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, United Kingdom
| | - Magnus Rattray
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Andrew S. I. Loudon
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Julie E. Gibbs
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - David A. Bechtold
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - David W. Ray
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|
16
|
Müller JA, Betzin J, Santos-Tejedor J, Mayer A, Oprişoreanu AM, Engholm-Keller K, Paulußen I, Gulakova P, McGovern TD, Gschossman LJ, Schönhense E, Wark JR, Lamprecht A, Becker AJ, Waardenberg AJ, Graham ME, Dietrich D, Schoch S. A presynaptic phosphosignaling hub for lasting homeostatic plasticity. Cell Rep 2022; 39:110696. [PMID: 35443170 DOI: 10.1016/j.celrep.2022.110696] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/26/2021] [Accepted: 03/29/2022] [Indexed: 11/29/2022] Open
Abstract
Stable function of networks requires that synapses adapt their strength to levels of neuronal activity, and failure to do so results in cognitive disorders. How such homeostatic regulation may be implemented in mammalian synapses remains poorly understood. Here we show that the phosphorylation status of several positions of the active-zone (AZ) protein RIM1 are relevant for synaptic glutamate release. Position RIMS1045 is necessary and sufficient for expression of silencing-induced homeostatic plasticity and is kept phosphorylated by serine arginine protein kinase 2 (SRPK2). SRPK2-induced upscaling of synaptic release leads to additional RIM1 nanoclusters and docked vesicles at the AZ and is not observed in the absence of RIM1 and occluded by RIMS1045E. Our data suggest that SRPK2 and RIM1 represent a presynaptic phosphosignaling hub that is involved in the homeostatic balance of synaptic coupling of neuronal networks.
Collapse
Affiliation(s)
- Johannes Alexander Müller
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany; Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Julia Betzin
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Jorge Santos-Tejedor
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Annika Mayer
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Ana-Maria Oprişoreanu
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Kasper Engholm-Keller
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark; Synapse Proteomics, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | | | - Polina Gulakova
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany; Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | | | - Lena Johanna Gschossman
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany; Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Eva Schönhense
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Jesse R Wark
- Synapse Proteomics, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | - Alf Lamprecht
- Department of Pharmaceutics, Bonn University, Bonn, Germany
| | - Albert J Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Ashley J Waardenberg
- Australian Institute for Tropical Health and Medicine, James Cook University, Smithfield, QLD 4878, Australia; i-Synapse, Cairns, QLD, Australia
| | - Mark E Graham
- Synapse Proteomics, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | - Dirk Dietrich
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.
| | - Susanne Schoch
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
17
|
Kesharwani A, Schwarz K, Dembla E, Dembla M, Schmitz F. Early Changes in Exo- and Endocytosis in the EAE Mouse Model of Multiple Sclerosis Correlate with Decreased Synaptic Ribbon Size and Reduced Ribbon-Associated Vesicle Pools in Rod Photoreceptor Synapses. Int J Mol Sci 2021; 22:ijms221910789. [PMID: 34639129 PMCID: PMC8509850 DOI: 10.3390/ijms221910789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system that finally leads to demyelination. Demyelinating optic neuritis is a frequent symptom in MS. Recent studies also revealed synapse dysfunctions in MS patients and MS mouse models. We previously reported alterations of photoreceptor ribbon synapses in the experimental auto-immune encephalomyelitis (EAE) mouse model of MS. In the present study, we found that the previously observed decreased imunosignals of photoreceptor ribbons in early EAE resulted from a decrease in synaptic ribbon size, whereas the number/density of ribbons in photoreceptor synapses remained unchanged. Smaller photoreceptor ribbons are associated with fewer docked and ribbon-associated vesicles. At a functional level, depolarization-evoked exocytosis as monitored by optical recording was diminished even as early as on day 7 after EAE induction. Moreover compensatory, post-depolarization endocytosis was decreased. Decreased post-depolarization endocytosis in early EAE correlated with diminished synaptic enrichment of dynamin3. In contrast, basal endocytosis in photoreceptor synapses of resting non-depolarized retinal slices was increased in early EAE. Increased basal endocytosis correlated with increased de-phosphorylation of dynamin1. Thus, multiple endocytic pathways in photoreceptor synapse are differentially affected in early EAE and likely contribute to the observed synapse pathology in early EAE.
Collapse
Affiliation(s)
- Ajay Kesharwani
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, 66421 Homburg, Germany; (K.S.); (E.D.); (M.D.); (F.S.)
- Correspondence:
| | - Karin Schwarz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, 66421 Homburg, Germany; (K.S.); (E.D.); (M.D.); (F.S.)
| | - Ekta Dembla
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, 66421 Homburg, Germany; (K.S.); (E.D.); (M.D.); (F.S.)
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mayur Dembla
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, 66421 Homburg, Germany; (K.S.); (E.D.); (M.D.); (F.S.)
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Frank Schmitz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, 66421 Homburg, Germany; (K.S.); (E.D.); (M.D.); (F.S.)
| |
Collapse
|
18
|
Perez JD, Fusco CM, Schuman EM. A Functional Dissection of the mRNA and Locally Synthesized Protein Population in Neuronal Dendrites and Axons. Annu Rev Genet 2021; 55:183-207. [PMID: 34460296 DOI: 10.1146/annurev-genet-030321-054851] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurons are characterized by a complex morphology that enables the generation of subcellular compartments with unique biochemical and biophysical properties, such as dendrites, axons, and synapses. To sustain these different compartments and carry a wide array of elaborate operations, neurons express a diverse repertoire of gene products. Extensive regulation at both the messenger RNA (mRNA) and protein levels allows for the differentiation of subcellular compartments as well as numerous forms of plasticity in response to variable stimuli. Among the multiple mechanisms that control cellular functions, mRNA translation is manipulated by neurons to regulate where and when a protein emerges. Interestingly, transcriptomic and translatomic profiles of both dendrites and axons have revealed that the mRNA population only partially predicts the local protein population and that this relation significantly varies between different gene groups. Here, we describe the space that local translation occupies within the large molecular and regulatory complexity of neurons, in contrast to other modes of regulation. We then discuss the specialized organization of mRNAs within different neuronal compartments, as revealed by profiles of the local transcriptome. Finally, we discuss the features and functional implications of both locally correlated-and anticorrelated-mRNA-protein relations both under baseline conditions and during synaptic plasticity. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Julio D Perez
- Max Planck Institute for Brain Research, 60438 Frankfurt, Germany;
| | - Claudia M Fusco
- Max Planck Institute for Brain Research, 60438 Frankfurt, Germany;
| | - Erin M Schuman
- Max Planck Institute for Brain Research, 60438 Frankfurt, Germany;
| |
Collapse
|
19
|
Desch K, Langer JD, Schuman EM. Dynamic bi-directional phosphorylation events associated with the reciprocal regulation of synapses during homeostatic up- and down-scaling. Cell Rep 2021; 36:109583. [PMID: 34433048 PMCID: PMC8411114 DOI: 10.1016/j.celrep.2021.109583] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/15/2021] [Accepted: 07/29/2021] [Indexed: 01/17/2023] Open
Abstract
Homeostatic synaptic scaling allows for bi-directional adjustment of the strength of synaptic connections in response to changes in their input. Protein phosphorylation modulates many neuronal processes, but it has not been studied on a global scale during synaptic scaling. Here, we use liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses to measure changes in the phosphoproteome in response to up- or down-scaling in cultured cortical neurons over minutes to 24 h. Of ~45,000 phosphorylation events, ~3,300 (associated with 1,285 phosphoproteins) are regulated by homeostatic scaling. Activity-sensitive phosphoproteins are predominantly located at synapses and involved in cytoskeletal reorganization. We identify many early phosphorylation events that could serve as sensors for the activity offset as well as late and/or persistent phosphoregulation that could represent effector mechanisms driving the homeostatic response. Much of the persistent phosphorylation is reciprocally regulated by up- or down-scaling, suggesting that mechanisms underlying these two poles of synaptic regulation make use of a common signaling axis. Global proteome and phosphoproteome dynamics following homeostatic synaptic scaling Approximately 3,300 activity-sensitive, synapse-associated phospho-events Persistent signaling of ~25% of initial phospho-events (min to 24 h) Persistent and reciprocal phosphoregulation links synaptic up- and down-scaling
Collapse
Affiliation(s)
- Kristina Desch
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Julian D Langer
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany.
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany.
| |
Collapse
|
20
|
Proteomic Analysis Unveils Expressional Changes in Cytoskeleton- and Synaptic Plasticity-Associated Proteins in Rat Brain Six Months after Withdrawal from Morphine. Life (Basel) 2021; 11:life11070683. [PMID: 34357055 PMCID: PMC8304287 DOI: 10.3390/life11070683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 07/10/2021] [Indexed: 11/17/2022] Open
Abstract
Drug withdrawal is associated with abstinence symptoms including deficits in cognitive functions that may persist even after prolonged discontinuation of drug intake. Cognitive deficits are, at least partially, caused by alterations in synaptic plasticity but the precise molecular mechanisms have not yet been fully identified. In the present study, changes in proteomic and phosphoproteomic profiles of selected brain regions (cortex, hippocampus, striatum, and cerebellum) from rats abstaining for six months after cessation of chronic treatment with morphine were determined by label-free quantitative (LFQ) proteomic analysis. Interestingly, prolonged morphine withdrawal was found to be associated especially with alterations in protein phosphorylation and to a lesser extent in protein expression. Gene ontology (GO) term analysis revealed enrichment in biological processes related to synaptic plasticity, cytoskeleton organization, and GTPase activity. More specifically, significant changes were observed in proteins localized in synaptic vesicles (e.g., synapsin-1, SV2a, Rab3a), in the active zone of the presynaptic nerve terminal (e.g., Bassoon, Piccolo, Rims1), and in the postsynaptic density (e.g., cadherin 13, catenins, Arhgap35, Shank3, Arhgef7). Other differentially phosphorylated proteins were associated with microtubule dynamics (microtubule-associated proteins, Tppp, collapsin response mediator proteins) and the actin–spectrin network (e.g., spectrins, adducins, band 4.1-like protein 1). Taken together, a six-month morphine withdrawal was manifested by significant alterations in the phosphorylation of synaptic proteins. The altered phosphorylation patterns modulating the function of synaptic proteins may contribute to long-term neuroadaptations induced by drug use and withdrawal.
Collapse
|
21
|
Floriou-Servou A, von Ziegler L, Waag R, Schläppi C, Germain PL, Bohacek J. The Acute Stress Response in the Multiomic Era. Biol Psychiatry 2021; 89:1116-1126. [PMID: 33722387 DOI: 10.1016/j.biopsych.2020.12.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/13/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022]
Abstract
Studying the stress response is a major pillar of neuroscience research not only because stress is a daily reality but also because the exquisitely fine-tuned bodily changes triggered by stress are a neuroendocrinological marvel. While the genome-wide changes induced by chronic stress have been extensively studied, we know surprisingly little about the complex molecular cascades triggered by acute stressors, the building blocks of chronic stress. The acute stress (or fight-or-flight) response mobilizes organismal energy resources to meet situational demands. However, successful stress coping also requires the efficient termination of the stress response. Maladaptive coping-particularly in response to severe or repeated stressors-can lead to allostatic (over)load, causing wear and tear on tissues, exhaustion, and disease. We propose that deep molecular profiling of the changes triggered by acute stressors could provide molecular correlates for allostatic load and predict healthy or maladaptive stress responses. We present a theoretical framework to interpret multiomic data in light of energy homeostasis and activity-dependent gene regulation, and we review the signaling cascades and molecular changes rapidly induced by acute stress in different cell types in the brain. In addition, we review and reanalyze recent data from multiomic screens conducted mainly in the rodent hippocampus and amygdala after acute psychophysical stressors. We identify challenges surrounding experimental design and data analysis, and we highlight promising new research directions to better understand the stress response on a multiomic level.
Collapse
Affiliation(s)
- Amalia Floriou-Servou
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, Switzerland
| | - Lukas von Ziegler
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, Switzerland
| | - Rebecca Waag
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, Switzerland
| | - Christa Schläppi
- Computational Neurogenomics, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, Switzerland
| | - Pierre-Luc Germain
- Computational Neurogenomics, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, Switzerland; Laboratory of Statistical Bioinformatics, Department for Molecular Life Sciences, University of Zürich, Zürich, Switzerland.
| | - Johannes Bohacek
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, Switzerland.
| |
Collapse
|
22
|
Großkopf H, Walter K, Karkossa I, von Bergen M, Schubert K. Non-Genomic AhR-Signaling Modulates the Immune Response in Endotoxin-Activated Macrophages After Activation by the Environmental Stressor BaP. Front Immunol 2021; 12:620270. [PMID: 33868237 PMCID: PMC8045971 DOI: 10.3389/fimmu.2021.620270] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Emerging studies revealed that the Aryl hydrocarbon receptor (AhR), a receptor sensing environmental contaminants, is executing an immunomodulatory function. However, it is an open question to which extent this is achieved by its role as a transcription factor or via non-genomic signaling. We utilized a multi-post-translational modification-omics approach to examine non-genomic AhR-signaling after activation with endogenous (FICZ) or exogenous (BaP) ligand in endotoxin-activated (LPS) monocyte-derived macrophages. While AhR activation affected abundances of few proteins, regulation of ubiquitination and phosphorylation were highly pronounced. Although the number and strength of effects depended on the applied AhR-ligand, both ligands increased ubiquitination of Rac1, which participates in PI3K/AKT-pathway-dependent macrophage activation, resulting in a pro-inflammatory phenotype. In contrast, co-treatment with ligand and LPS revealed a decreased AKT activity mediating an anti-inflammatory effect. Thus, our data show an immunomodulatory effect of AhR activation through a Rac1ubiquitination-dependent mechanism that attenuated AKT-signaling, resulting in a mitigated inflammatory response.
Collapse
Affiliation(s)
- Henning Großkopf
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Katharina Walter
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany.,Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
23
|
Harper CB, Smillie KJ. Current molecular approaches to investigate pre-synaptic dysfunction. J Neurochem 2021; 157:107-129. [PMID: 33544872 DOI: 10.1111/jnc.15316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022]
Abstract
Over the course of the last few decades it has become clear that many neurodevelopmental and neurodegenerative disorders have a synaptic defect, which contributes to pathogenicity. A rise in new techniques, and in particular '-omics'-based methods providing large datasets, has led to an increase in potential proteins and pathways implicated in synaptic function and related disorders. Additionally, advancements in imaging techniques have led to the recent discovery of alternative modes of synaptic vesicle recycling. This has resulted in a lack of clarity over the precise role of different pathways in maintaining synaptic function and whether these new pathways are dysfunctional in neurodevelopmental and neurodegenerative disorders. A greater understanding of the molecular detail of pre-synaptic function in health and disease is key to targeting new proteins and pathways for novel treatments and the variety of new techniques currently available provides an ideal opportunity to investigate these functions. This review focuses on techniques to interrogate pre-synaptic function, concentrating mainly on synaptic vesicle recycling. It further examines techniques to determine the underlying molecular mechanism of pre-synaptic dysfunction and discusses methods to identify molecular targets, along with protein-protein interactions and cellular localization. In combination, these techniques will provide an expanding and more complete picture of pre-synaptic function. With the application of recent technological advances, we are able to resolve events with higher spatial and temporal resolution, leading research towards a greater understanding of dysfunction at the presynapse and the role it plays in pathogenicity.
Collapse
Affiliation(s)
- Callista B Harper
- Centre for Discovery Brain Sciences, University of Edinburgh, Scotland, UK
| | - Karen J Smillie
- Centre for Discovery Brain Sciences, University of Edinburgh, Scotland, UK
| |
Collapse
|
24
|
Xu Y, Song X, Wang D, Wang Y, Li P, Li J. Proteomic insights into synaptic signaling in the brain: the past, present and future. Mol Brain 2021; 14:37. [PMID: 33596935 PMCID: PMC7888154 DOI: 10.1186/s13041-021-00750-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Chemical synapses in the brain connect neurons to form neural circuits, providing the structural and functional bases for neural communication. Disrupted synaptic signaling is closely related to a variety of neurological and psychiatric disorders. In the past two decades, proteomics has blossomed as a versatile tool in biological and biomedical research, rendering a wealth of information toward decoding the molecular machinery of life. There is enormous interest in employing proteomic approaches for the study of synapses, and substantial progress has been made. Here, we review the findings of proteomic studies of chemical synapses in the brain, with special attention paid to the key players in synaptic signaling, i.e., the synaptic protein complexes and their post-translational modifications. Looking toward the future, we discuss the technological advances in proteomics such as data-independent acquisition mass spectrometry (DIA-MS), cross-linking in combination with mass spectrometry (CXMS), and proximity proteomics, along with their potential to untangle the mystery of how the brain functions at the molecular level. Last but not least, we introduce the newly developed synaptomic methods. These methods and their successful applications marked the beginnings of the synaptomics era.
Collapse
Affiliation(s)
- Yalan Xu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Xiuyue Song
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Dong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Jing Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
25
|
Silbern I, Pan KT, Fiosins M, Bonn S, Rizzoli SO, Fornasiero EF, Urlaub H, Jahn R. Protein Phosphorylation in Depolarized Synaptosomes: Dissecting Primary Effects of Calcium from Synaptic Vesicle Cycling. Mol Cell Proteomics 2021; 20:100061. [PMID: 33582301 PMCID: PMC7995663 DOI: 10.1016/j.mcpro.2021.100061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/02/2021] [Indexed: 01/20/2023] Open
Abstract
Synaptic transmission is mediated by the regulated exocytosis of synaptic vesicles. When the presynaptic membrane is depolarized by an incoming action potential, voltage-gated calcium channels open, resulting in the influx of calcium ions that triggers the fusion of synaptic vesicles (SVs) with the plasma membrane. SVs are recycled by endocytosis. Phosphorylation of synaptic proteins plays a major role in these processes, and several studies have shown that the synaptic phosphoproteome changes rapidly in response to depolarization. However, it is unclear which of these changes are directly linked to SV cycling and which might regulate other presynaptic functions that are also controlled by calcium-dependent kinases and phosphatases. To address this question, we analyzed changes in the phosphoproteome using rat synaptosomes in which exocytosis was blocked with botulinum neurotoxins (BoNTs) while depolarization-induced calcium influx remained unchanged. BoNT-treatment significantly alters the response of the synaptic phoshoproteome to depolarization and results in reduced phosphorylation levels when compared with stimulation of synaptosomes by depolarization with KCl alone. We dissect the primary Ca2+-dependent phosphorylation from SV-cycling-dependent phosphorylation and confirm an effect of such SV-cycling-dependent phosphorylation events on syntaxin-1a-T21/T23, synaptobrevin-S75, and cannabinoid receptor-1-S314/T322 on exo- and endocytosis in cultured hippocampal neurons.
Collapse
Affiliation(s)
- Ivan Silbern
- Institute of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Kuan-Ting Pan
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Maksims Fiosins
- German Center for Neurodegenerative Diseases, Tübingen, Germany; Institute for Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- German Center for Neurodegenerative Diseases, Tübingen, Germany; Institute for Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Göttingen, Germany
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany.
| | - Henning Urlaub
- Institute of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany.
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
26
|
The challenge of detecting modifications on proteins. Essays Biochem 2020; 64:135-153. [PMID: 31957791 DOI: 10.1042/ebc20190055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022]
Abstract
Post-translational modifications (PTMs) are integral to the regulation of protein function, characterising their role in this process is vital to understanding how cells work in both healthy and diseased states. Mass spectrometry (MS) facilitates the mass determination and sequencing of peptides, and thereby also the detection of site-specific PTMs. However, numerous challenges in this field continue to persist. The diverse chemical properties, low abundance, labile nature and instability of many PTMs, in combination with the more practical issues of compatibility with MS and bioinformatics challenges, contribute to the arduous nature of their analysis. In this review, we present an overview of the established MS-based approaches for analysing PTMs and the common complications associated with their investigation, including examples of specific challenges focusing on phosphorylation, lysine acetylation and redox modifications.
Collapse
|
27
|
Boll I, Jensen P, Schwämmle V, Larsen MR. Depolarization-dependent Induction of Site-specific Changes in Sialylation on N-linked Glycoproteins in Rat Nerve Terminals. Mol Cell Proteomics 2020; 19:1418-1435. [PMID: 32518069 PMCID: PMC8143646 DOI: 10.1074/mcp.ra119.001896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Synaptic transmission leading to release of neurotransmitters in the nervous system is a fast and highly dynamic process. Previously, protein interaction and phosphorylation have been thought to be the main regulators of synaptic transmission. Here we show that sialylation of N-linked glycosylation is a novel potential modulator of neurotransmitter release mechanisms by investigating depolarization-dependent changes of formerly sialylated N-linked glycopeptides. We suggest that negatively charged sialic acids can be modulated, similarly to phosphorylation, by the action of sialyltransferases and sialidases thereby changing local structure and function of membrane glycoproteins. We characterized site-specific alteration in sialylation on N-linked glycoproteins in isolated rat nerve terminals after brief depolarization using quantitative sialiomics. We identified 1965 formerly sialylated N-linked glycosites in synaptic proteins and found that the abundances of 430 glycosites changed after 5 s depolarization. We observed changes on essential synaptic proteins such as synaptic vesicle proteins, ion channels and transporters, neurotransmitter receptors and cell adhesion molecules. This study is to our knowledge the first to describe ultra-fast site-specific modulation of the sialiome after brief stimulation of a biological system.
Collapse
Affiliation(s)
- Inga Boll
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Pia Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
28
|
Wells CA, Choi J. Transcriptional Profiling of Stem Cells: Moving from Descriptive to Predictive Paradigms. Stem Cell Reports 2020; 13:237-246. [PMID: 31412285 PMCID: PMC6700522 DOI: 10.1016/j.stemcr.2019.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/24/2022] Open
Abstract
Transcriptional profiling is a powerful tool commonly used to benchmark stem cells and their differentiated progeny. As the wealth of stem cell data builds in public repositories, we highlight common data traps, and review approaches to combine and mine this data for new cell classification and cell prediction tools. We touch on future trends for stem cell profiling, such as single-cell profiling, long-read sequencing, and improved methods for measuring molecular modifications on chromatin and RNA that bring new challenges and opportunities for stem cell analysis.
Collapse
Affiliation(s)
- Christine A Wells
- Centre for Stem Cell Systems, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville 3010, Australia.
| | - Jarny Choi
- Centre for Stem Cell Systems, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
29
|
Ruiter M, Houy S, Engholm-Keller K, Graham ME, Sørensen JB. SNAP-25 phosphorylation at Ser187 is not involved in Ca 2+ or phorbolester-dependent potentiation of synaptic release. Mol Cell Neurosci 2019; 102:103452. [PMID: 31794878 DOI: 10.1016/j.mcn.2019.103452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/13/2019] [Accepted: 11/29/2019] [Indexed: 11/25/2022] Open
Abstract
SNAP-25, one of the three SNARE-proteins responsible for synaptic release, can be phosphorylated by Protein Kinase C on Ser-187, close to the fusion pore. In neuroendocrine cells, this phosphorylation event potentiates vesicle recruitment into releasable pools, whereas the consequences of phosphorylation for synaptic release remain unclear. We mutated Ser-187 and expressed two mutants (S187C and S187E) in the context of the SNAP-25B-isoform in SNAP-25 knockout glutamatergic autaptic neurons. Whole-cell patch clamp recordings were performed to assess the effect of Ser-187 phosphorylation on synaptic transmission. Blocking phosphorylation by expressing the S187C mutant did not affect synapse density, basic evoked or spontaneous neurotransmission, the readily-releasable pool size or its Ca2+-independent or Ca2+-dependent replenishment. Furthermore, it did not affect the response to phorbol esters, which activate PKC. Expressing S187C in the context of the SNAP-25A isoform also did not affect synaptic transmission. Strikingly, the - potentially phosphomimetic - mutant S187E reduced spontaneous release and release probability, with the largest effect seen in the SNAP-25B isoform, showing that a negative charge in this position is detrimental for neurotransmission, in agreement with electrostatic fusion triggering. During the course of our experiments, we found that higher SNAP-25B expression levels led to decreased paired pulse potentiation, probably due to higher release probabilities. Under these conditions, the potentiation of evoked EPSCs by phorbol esters was followed by a persistent down-regulation, probably due to a ceiling effect. In conclusion, our results indicate that phosphorylation of Ser-187 in SNAP-25 is not involved in modulation of synaptic release by Ca2+ or phorbol esters.
Collapse
Affiliation(s)
- Marvin Ruiter
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3C, 2200 Copenhagen N, Denmark
| | - Sébastien Houy
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3C, 2200 Copenhagen N, Denmark
| | - Kasper Engholm-Keller
- Synapse Proteomics Group, Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead NSW 2145, New South Wales, Australia; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Mark E Graham
- Synapse Proteomics Group, Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead NSW 2145, New South Wales, Australia
| | - Jakob B Sørensen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3C, 2200 Copenhagen N, Denmark.
| |
Collapse
|
30
|
Moshkanbaryans L, Chan LS, Engholm-Keller K, Wark JR, Robinson PJ, Graham ME. The interaction of assembly protein AP180 and clathrin is inhibited by multi-site phospho-mimetics. Neurochem Int 2019; 129:104474. [PMID: 31129113 DOI: 10.1016/j.neuint.2019.104474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
Abstract
Clathrin-mediated endocytosis at the nerve terminal is dependent on assembly protein 180 (AP180) and adapter protein complex 2 (AP2). Both membrane adapter proteins bind to each other and to clathrin, to drive assembly of the clathrin coat over nascent synaptic vesicles. Using knowledge of in vivo phosphorylation sites, AP180 was mutated to determine the effect on binding. N-terminally truncated AP180 exhibited phospho-mimetic (Ser/Thr to Glu)-dependent interaction with AP2, but not clathrin. C-terminally truncated and full length phospho-mutant AP180 bound less AP2 than wild type. However, there was no difference in AP2 binding for the phospho-mimetic or phospho-deficient (Ser/Thr to Ala) AP180 mutants. Thus, the phospho-mutant approach did not provide clarity for the role of phosphorylation in AP180-AP2 binding. Clathrin exhibited a phospho-mimetic-dependent interaction with full-length AP180. Furthermore, phospho-mimetic AP180 was deficient at assembling clathrin cages. These latter discoveries support a model where AP180 phosphorylation inhibits clathrin binding and assembly.
Collapse
Affiliation(s)
- Lia Moshkanbaryans
- Children's Medical Research Institute, The University of Sydney, Westmead, Australia
| | - Ling-Shan Chan
- Children's Medical Research Institute, The University of Sydney, Westmead, Australia
| | - Kasper Engholm-Keller
- Children's Medical Research Institute, The University of Sydney, Westmead, Australia; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark; Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Westmead, Australia
| | - Jesse Ray Wark
- Children's Medical Research Institute, The University of Sydney, Westmead, Australia
| | - Phillip James Robinson
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Westmead, Australia
| | - Mark Evan Graham
- Children's Medical Research Institute, The University of Sydney, Westmead, Australia.
| |
Collapse
|