1
|
Bouret SG. Metabolic hormones, artificial sweeteners and the development of hypothalamic circuits controlling appetite. ANNALES D'ENDOCRINOLOGIE 2025; 86:101767. [PMID: 40339687 DOI: 10.1016/j.ando.2025.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Affiliation(s)
- Sebastien G Bouret
- Inserm UMR-S 1172, Lille neuroscience & cognition, équipe développement et plasticité du cerveau neuroendocrine, Lille, France.
| |
Collapse
|
2
|
Barelle PY, Sicardi A, Schaller F, Buron J, Becquet D, Omnes F, Watrin F, Alifrangis MS, Santos C, Menuet C, François-Bellan AM, Caron E, Klucznik J, Prevot V, Bouret SG, Muscatelli F. Investigation of a mouse model of Prader-Willi Syndrome with combined disruption of Necdin and Magel2. JCI Insight 2025; 10:e185159. [PMID: 40048253 PMCID: PMC12016932 DOI: 10.1172/jci.insight.185159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025] Open
Abstract
Prader-Willi syndrome (PWS) is a multigenic disorder caused by the loss of 7 contiguous paternally expressed genes. Mouse models with inactivation of all PWS genes are lethal. KO mouse models for each candidate gene have been generated, but they lack the functional interactions between PWS genes. Here, we revealed an interplay between Necdin and Magel2 PWS genes and generated a mouse model (named Del Ndn-Magel2 mice) with a deletion including both genes. A subset of Del Ndn-Magel2 mice showed neonatal lethality. Behaviorally, surviving mutant mice exhibited sensory delays during infancy and alterations in social exploration at adulthood. Del Ndn-Magel2 mice had a lower body weight before weaning, persisting after weaning in males only, with reduced fat mass and improved glucose tolerance as well as altered puberty. Adult mutant mice displayed increased ventilation and a persistent increase in apneas following a hypercapnic challenge. Transcriptomics analyses revealed a dysregulation of key circadian genes and alterations of genes associated with axonal function similar to patients with PWS. At neuroanatomical levels, Del Ndn-Magel2 mice had an impaired maturation of oxytocin neurons and a disrupted development of melanocortin circuits. Together, these data indicate that the Del Ndn-Magel2 mouse is a pertinent and genetically relevant model of PWS.
Collapse
Affiliation(s)
- Pierre-Yves Barelle
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France
- FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Alicia Sicardi
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France
- FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Fabienne Schaller
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France
| | - Julie Buron
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France
| | - Denis Becquet
- University of Aix-Marseille, Inst Neurophysiopathol, Marseille, France
| | - Felix Omnes
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France
| | - Françoise Watrin
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France
| | - Marie-Sophie Alifrangis
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France
| | | | - Clément Menuet
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France
| | | | - Emilie Caron
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France
- FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Jessica Klucznik
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France
- FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Vincent Prevot
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France
- FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Sebastien G. Bouret
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France
- FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Françoise Muscatelli
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France
| |
Collapse
|
3
|
Clarke GS, Li H, Heshmati E, Nicholas LM, Gatford KL, Page AJ. Pregnancy and a high-fat, high-sugar diet each attenuate mechanosensitivity of murine gastric vagal afferents, with no additive effects. J Physiol 2025; 603:1461-1481. [PMID: 40023799 PMCID: PMC11908482 DOI: 10.1113/jp286115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/03/2025] [Indexed: 03/04/2025] Open
Abstract
Gastric vagal afferents (GVAs) sense food-related mechanical stimuli and signal to the CNS to initiate meal termination. Pregnancy and diet-induced obesity are independently associated with dampened GVA mechanosensitivity and increased food intake. Whether a high-fat, high-sugar diet (HFHSD) impacts pregnancy-related adaptations in GVA signalling is unknown and was investigated in this study. Three-week-old female Glu Venus-expressing mice, on a C57BL/6 background, were fed standard laboratory diet (SLD) or HFHSD for 12 weeks, and then half of each group were mated to generate late pregnant (Day 17.5; P-SLD N = 12, P-HFHSD N = 14) or non-pregnant (NP-SLD N = 12, NP-HFHSD N = 16) groups. Body weight and food intake were monitored in Promethion metabolic cages from before mating until Day 17.5 of pregnancy or equivalent ages in non-pregnant mice, prior to tissue collection at 07.00 h for in vitro single fibre GVA recording and gene expression analysis. Pregnant mice gained more weight than non-pregnant mice but weight gain was unaffected by diet. By mid-pregnancy, light-phase food intake (kJ and g) was higher in pregnant than in non-pregnant mice (each P < 0.001) due to larger meals (kJ and g, each P < 0.001), irrespective of diet. Pregnancy and HFHSD-feeding reduced tension-sensitive GVA mechanosensitivity (each P < 0.01), but pregnancy did not further downregulate GVA stretch responses within HFHSD mice (P = 0.652). Nodose ganglia growth hormone receptor mRNA abundance was upregulated in pregnancy, possibly contributing to lower GVA mechanosensitivity during pregnancy in SLD mice. Larger light-phase meals in pregnant compared to non-pregnant HFHSD mice may therefore reflect the downregulation of other satiety pathways. KEY POINTS: Gastric vagal afferents (GVAs) regulate food intake by sensing the arrival and quantity of food and communicating this information to the brain. In standard laboratory diet (SLD) mice, gastric tension-sensitive vagal afferent mechanosensitivity was attenuated in pregnant compared to non-pregnant mice, which is concurrent with increases in total food intake and meal size. Nodose ganglia growth hormone receptor mRNA abundance was increased in pregnancy, possibly accounting for attenuated GVA mechanosensitivity in pregnant SLD mice. In non-pregnant mice, tension-sensitive GVA mechanosensitivity was selectively attenuated in high-fat, high-sugar diet (HFHSD) compared to SLD mice. Despite this, HFHSD mice ate less food and smaller meals compared to the SLD mice, suggesting other satiety mechanisms are limiting food intake. Despite higher food intake, there was no further reduction in mechanosensitivity in pregnant HFHSD mice compared to non-pregnant HFHSD mice and further studies are required to increase understanding of food intake regulation across pregnancy.
Collapse
Affiliation(s)
- Georgia S. Clarke
- School of BiomedicineThe University of AdelaideAdelaideSouth AustraliaAustralia
- Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research InstituteSAHMRIAdelaideSouth AustraliaAustralia
| | - Hui Li
- School of BiomedicineThe University of AdelaideAdelaideSouth AustraliaAustralia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research InstituteSAHMRIAdelaideSouth AustraliaAustralia
| | - Elaheh Heshmati
- School of BiomedicineThe University of AdelaideAdelaideSouth AustraliaAustralia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research InstituteSAHMRIAdelaideSouth AustraliaAustralia
| | - Lisa M. Nicholas
- School of BiomedicineThe University of AdelaideAdelaideSouth AustraliaAustralia
- Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
- Adelaide Centre for EpigeneticsThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Kathryn L. Gatford
- School of BiomedicineThe University of AdelaideAdelaideSouth AustraliaAustralia
- Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research InstituteSAHMRIAdelaideSouth AustraliaAustralia
| | - Amanda J. Page
- School of BiomedicineThe University of AdelaideAdelaideSouth AustraliaAustralia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research InstituteSAHMRIAdelaideSouth AustraliaAustralia
| |
Collapse
|
4
|
García-Juárez M, García-Rodríguez A, Cruz-Carrillo G, Flores-Maldonado O, Becerril-Garcia M, Garza-Ocañas L, Torre-Villalvazo I, Camacho-Morales A. Intermittent Fasting Improves Social Interaction and Decreases Inflammatory Markers in Cortex and Hippocampus. Mol Neurobiol 2025; 62:1511-1535. [PMID: 39002056 DOI: 10.1007/s12035-024-04340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Autism spectrum disorder (ASD) is a psychiatric condition characterized by reduced social interaction, anxiety, and stereotypic behaviors related to neuroinflammation and microglia activation. We demonstrated that maternal exposure to Western diet (cafeteria diet or CAF) induced microglia activation, systemic proinflammatory profile, and ASD-like behavior in the offspring. Here, we aimed to identify the effect of alternate day fasting (ADF) as a non-pharmacologic strategy to modulate neuroinflammation and ASD-like behavior in the offspring prenatally exposed to CAF diet. We found that ADF increased plasma beta-hydroxybutyrate (BHB) levels in the offspring exposed to control and CAF diets but not in the cortex (Cx) and hippocampus (Hpp). We observed that ADF increased the CD45 + cells in Cx of both groups; In control individuals, ADF promoted accumulation of CD206 + microglia cells in choroid plexus (CP) and increased in CD45 + macrophages cells and lymphocytes in the Cx. Gestational exposure to CAF diet promoted defective sociability in the offspring; ADF improved social interaction and increased microglia CD206 + in the Hpp and microglia complexity in the dentate gyrus. Additionally, ADF led to attenuation of the ER stress markers (Bip/ATF6/p-JNK) in the Cx and Hpp. Finally, biological modeling showed that fasting promotes higher microglia complexity in Cx, which is related to improvement in social interaction, whereas in dentate gyrus sociability is correlated with less microglia complexity. These data suggest a contribution of intermittent fasting as a physiological stimulus capable of modulating microglia phenotype and complexity in the brain, and social interaction in male mice.
Collapse
Affiliation(s)
- Martín García-Juárez
- Facultad de Medicina, Departamento de Bioquímica, Universidad Autónoma de Nuevo León, Madero y Dr. Aguirre Pequeño. Col. Mitras Centro, C.P. 64460, Monterrey, Nuevo León, Mexico
- Centro de Investigación y Desarrollo en Ciencias de La Salud, Universidad Autónoma de Nuevo León, Unidad de Neurometabolismo, Monterrey, Nuevo León, Mexico
| | - Adamary García-Rodríguez
- Facultad de Medicina, Departamento de Bioquímica, Universidad Autónoma de Nuevo León, Madero y Dr. Aguirre Pequeño. Col. Mitras Centro, C.P. 64460, Monterrey, Nuevo León, Mexico
- Centro de Investigación y Desarrollo en Ciencias de La Salud, Universidad Autónoma de Nuevo León, Unidad de Neurometabolismo, Monterrey, Nuevo León, Mexico
| | - Gabriela Cruz-Carrillo
- Facultad de Medicina, Departamento de Bioquímica, Universidad Autónoma de Nuevo León, Madero y Dr. Aguirre Pequeño. Col. Mitras Centro, C.P. 64460, Monterrey, Nuevo León, Mexico
- Centro de Investigación y Desarrollo en Ciencias de La Salud, Universidad Autónoma de Nuevo León, Unidad de Neurometabolismo, Monterrey, Nuevo León, Mexico
| | - Orlando Flores-Maldonado
- Facultad de Medicina, Departamento de Microbiología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Miguel Becerril-Garcia
- Facultad de Medicina, Departamento de Microbiología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Lourdes Garza-Ocañas
- Department of Pharmacology and Toxicology, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Ivan Torre-Villalvazo
- Departamento de Fisiología de La Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), 14080, Mexico City, Mexico
| | - Alberto Camacho-Morales
- Facultad de Medicina, Departamento de Bioquímica, Universidad Autónoma de Nuevo León, Madero y Dr. Aguirre Pequeño. Col. Mitras Centro, C.P. 64460, Monterrey, Nuevo León, Mexico.
- Centro de Investigación y Desarrollo en Ciencias de La Salud, Universidad Autónoma de Nuevo León, Unidad de Neurometabolismo, Monterrey, Nuevo León, Mexico.
- College of Medicine, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, NL, Mexico.
| |
Collapse
|
5
|
Huang A, Yeum D, Sewaybricker LE, Aleksic S, Thomas M, Melhorn SJ, Earley YF, Schur EA. Update on Hypothalamic Inflammation and Gliosis: Expanding Evidence of Relevance Beyond Obesity. Curr Obes Rep 2025; 14:6. [PMID: 39775194 PMCID: PMC11963668 DOI: 10.1007/s13679-024-00595-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE OF REVIEW To evaluate the role of hypothalamic inflammation and gliosis in human obesity pathogenesis and other disease processes influenced by obesity. RECENT FINDINGS Recent studies using established and novel magnetic resonance imaging (MRI) techniques to assess alterations in hypothalamic microarchitecture in humans support the presence of hypothalamic inflammation and gliosis in adults and children with obesity. Studies also identify prenatal exposure to maternal obesity or diabetes as a risk factor for hypothalamic inflammation and gliosis and increased obesity risk in offspring. Hypothalamic inflammation and gliosis have been further implicated in reproductive dysfunction (specifically polycystic ovarian syndrome and male hypogonadism), cardiovascular disease namely hypertension, and alterations in the gut microbiome, and may also accelerate neurocognitive aging. The most recent translational studies support the link between hypothalamic inflammation and gliosis and obesity pathogenesis in humans and expand our understanding of its influence on broader aspects of human health.
Collapse
Affiliation(s)
- Alyssa Huang
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Dabin Yeum
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Sandra Aleksic
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Melbin Thomas
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Susan J Melhorn
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Yumei Feng Earley
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Ellen A Schur
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Ajwani J, Hwang E, Portillo B, Lieu L, Wallace B, Kabahizi A, He Z, Dong Y, Grose K, Williams KW. Upregulation of Xbp1 in NPY/AgRP neurons reverses diet-induced obesity and ameliorates leptin and insulin resistance. Neuropeptides 2024; 108:102461. [PMID: 39180950 PMCID: PMC11568921 DOI: 10.1016/j.npep.2024.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
The molecular mechanisms underlying neuronal leptin and insulin resistance in obesity and diabetes are not fully understood. In this study, we show that induction of the unfolded protein response transcription factor, spliced X-box binding protein 1 (Xbp1s), in Agouti-Related Peptide (AgRP) neurons alone, is sufficient to not only protect against but also significantly reverse diet-induced obesity (DIO) as well as improve leptin and insulin sensitivity, despite activation of endoplasmic reticulum stress. We also demonstrate that constitutive expression of Xbp1s in AgRP neurons contributes to improved insulin sensitivity and glucose tolerance. Together, our results identify critical molecular mechanisms linking ER stress in arcuate AgRP neurons to acute leptin and insulin resistance as well as liver glucose metabolism in DIO and diabetes.
Collapse
Affiliation(s)
- Jason Ajwani
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Eunsang Hwang
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Bryan Portillo
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Linh Lieu
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Briana Wallace
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Anita Kabahizi
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Zhenyan He
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Yanbin Dong
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Kyle Grose
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
7
|
Hu H, Lu X, He Y, Li J, Wang S, Luo Z, Wang Y, Wei J, Huang H, Duan C, Sun N. Sestrin2 in POMC neurons modulates energy balance and obesity related metabolic disorders via mTOR signaling. J Nutr Biochem 2024; 133:109703. [PMID: 39025457 DOI: 10.1016/j.jnutbio.2024.109703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Sestrin2 is a highly conserved protein that can be induced under various stress conditions. Researches have revealed that the signaling pathway of the mammalian target of rapamycin (mTOR) is essential in modulating both glucose and lipid metabolism. However, the precise involvement of Sestrin2 in the hypothalamus, particularly in pro-opiomelanocortin (POMC) neurons, in control of energy homeostasis remains uncertain. In this study, we aimed to investigate the functional role of Sestrin2 in hypothalamic POMC neurons in regulation of energy balance, as well as revealing the underlying mechanisms. Therefore, cre-dependent AAV virus encoding or silencing Sestrin2 was injected into the hypothalamic ARC of pomc-cre transgenic mice. The results demonstrated that Sestrin2 overexpression in POMC neurons ameliorated high-fat diet (HFD)-induced obesity and increased energy expenditure. Conversely, Sestrin2 deficiency in POMC neurons predisposed mice to HFD induced obesity. Additionally, the thermogenesis of brown adipose tissue and lipolysis of inguinal white adipose tissue were both enhanced by the increased sympathetic nerve innervation in Sestrin2 overexpressed mice. Further exploration revealed that Sestrin2 overexpression inhibited the mTOR signaling pathway in hypothalamic POMC neurons, which may account for the alleviation of systematic metabolic disturbance induced by HFD in these mice. Collectively, our findings demonstrate that Sestrin2 in POMC neurons plays a pivotal role in maintaining energy balance in a context of HFD-induced obesity by inhibiting the mTOR pathway, providing new insights into how hypothalamic neurons respond to nutritional signals to protect against obesity-associated metabolic dysfunction.
Collapse
Affiliation(s)
- Huiling Hu
- Department of Clinical Laboratory, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoxia Lu
- Department of Clinical Laboratory, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuqing He
- Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Li
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Shoujie Wang
- Center for Precision Medicine, Platform of Metabolomics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhijun Luo
- Emergency Department, The Seventh Affiliated Hospital, Southern Medical University, Foshan, China
| | - Ying Wang
- Department of Clinical Laboratory, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jie Wei
- Department of Clinical Laboratory, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hao Huang
- Department of Laboratory Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Chaohui Duan
- Department of Clinical Laboratory, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Nannan Sun
- Department of Obstetrics and Gynecology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Yagoub S, Chesters RA, Ott J, Zhu J, Cantacorps L, Ritter K, Lippert RN. Acute elevated dietary fat alone is not sufficient to decrease AgRP projections in the paraventricular nucleus of the hypothalamus in mice. Sci Rep 2024; 14:20043. [PMID: 39209992 PMCID: PMC11362280 DOI: 10.1038/s41598-024-70870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Within the brain, the connections between neurons are constantly changing in response to environmental stimuli. A prime environmental regulator of neuronal activity is diet, and previous work has highlighted changes in hypothalamic connections in response to diets high in dietary fat and elevated sucrose. We sought to determine if the change in hypothalamic neuronal connections was driven primarily by an elevation in dietary fat alone. Analysis was performed in both male and female animals. We measured Agouti-related peptide (AgRP) neuropeptide and Synaptophysin markers in the paraventricular nucleus of the hypothalamus (PVH) in response to an acute 48 h high fat diet challenge. Using two image analysis methods described in previous studies, an effect of a high fat diet on AgRP neuronal projections in the PVH of male or female mice was not identified. These results suggest that it may not be dietary fat alone that is responsible for the previously published alterations in hypothalamic connections. Future work should focus on deciphering the role of individual macronutrients on neuroanatomical and functional changes.
Collapse
Affiliation(s)
- Selma Yagoub
- German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- University of Potsdam, Potsdam, Germany
| | - Robert A Chesters
- German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jonathan Ott
- German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- University of Potsdam, Potsdam, Germany
| | - Jiajie Zhu
- German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- University of Potsdam, Potsdam, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lídia Cantacorps
- German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Katrin Ritter
- German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Rachel N Lippert
- German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
9
|
Yang Z, Chen F, Zhang Y, Ou M, Tan P, Xu X, Li Q, Zhou S. Therapeutic targeting of white adipose tissue metabolic dysfunction in obesity: mechanisms and opportunities. MedComm (Beijing) 2024; 5:e560. [PMID: 38812572 PMCID: PMC11134193 DOI: 10.1002/mco2.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/31/2024] Open
Abstract
White adipose tissue is not only a highly heterogeneous organ containing various cells, such as adipocytes, adipose stem and progenitor cells, and immune cells, but also an endocrine organ that is highly important for regulating metabolic and immune homeostasis. In individuals with obesity, dynamic cellular changes in adipose tissue result in phenotypic switching and adipose tissue dysfunction, including pathological expansion, WAT fibrosis, immune cell infiltration, endoplasmic reticulum stress, and ectopic lipid accumulation, ultimately leading to chronic low-grade inflammation and insulin resistance. Recently, many distinct subpopulations of adipose tissue have been identified, providing new insights into the potential mechanisms of adipose dysfunction in individuals with obesity. Therefore, targeting white adipose tissue as a therapeutic agent for treating obesity and obesity-related metabolic diseases is of great scientific interest. Here, we provide an overview of white adipose tissue remodeling in individuals with obesity including cellular changes and discuss the underlying regulatory mechanisms of white adipose tissue metabolic dysfunction. Currently, various studies have uncovered promising targets and strategies for obesity treatment. We also outline the potential therapeutic signaling pathways of targeting adipose tissue and summarize existing therapeutic strategies for antiobesity treatment including pharmacological approaches, lifestyle interventions, and novel therapies.
Collapse
Affiliation(s)
- Zi‐Han Yang
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang‐Zhou Chen
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi‐Xiang Zhang
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Min‐Yi Ou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Poh‐Ching Tan
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xue‐Wen Xu
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Qing‐Feng Li
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuang‐Bai Zhou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
10
|
Dearden L, Furigo IC, Pantaleão LC, Wong LWP, Fernandez-Twinn DS, de Almeida-Faria J, Kentistou KA, Carreira MV, Bidault G, Vidal-Puig A, Ong KK, Perry JRB, Donato J, Ozanne SE. Maternal obesity increases hypothalamic miR-505-5p expression in mouse offspring leading to altered fatty acid sensing and increased intake of high-fat food. PLoS Biol 2024; 22:e3002641. [PMID: 38833481 PMCID: PMC11149872 DOI: 10.1371/journal.pbio.3002641] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/25/2024] [Indexed: 06/06/2024] Open
Abstract
In utero exposure to maternal obesity programs increased obesity risk. Animal models show that programmed offspring obesity is preceded by hyperphagia, but the mechanisms that mediate these changes are unknown. Using a mouse model of maternal obesity, we observed increased intake of a high-fat diet (HFD) in offspring of obese mothers that precedes the development of obesity. Through small RNA sequencing, we identified programmed overexpression of hypothalamic miR-505-5p that is established in the fetus, lasts to adulthood and is maintained in hypothalamic neural progenitor cells cultured in vitro. Metabolic hormones and long-chain fatty acids associated with obesity increase miR-505-5p expression in hypothalamic neurons in vitro. We demonstrate that targets of miR-505-5p are enriched in fatty acid metabolism pathways and overexpression of miR-505-5p decreased neuronal fatty acid metabolism in vitro. miR-505-5p targets are associated with increased BMI in human genetic studies. Intra-cerebroventricular injection of miR-505-5p in wild-type mice increased HFD intake, mimicking the phenotype observed in offspring exposed to maternal obesity. Conversely, maternal exercise intervention in an obese mouse pregnancy rescued the programmed increase of hypothalamic miR-505-5p in offspring of obese dams and reduced HFD intake to control offspring levels. This study identifies a novel mechanism by which maternal obesity programs obesity in offspring via increased intake of high-fat foods.
Collapse
Affiliation(s)
- Laura Dearden
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Isadora C. Furigo
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, Brazil
- Centre for Health and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Lucas C. Pantaleão
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - L W. P. Wong
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Denise S. Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Juliana de Almeida-Faria
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
- University of Campinas, Faculty of Medical Sciences, Department of Pharmacology, Campinas, Brazil
| | | | - Maria V. Carreira
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Guillaume Bidault
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Ken K. Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - John R. B. Perry
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, Brazil
| | - Susan E. Ozanne
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| |
Collapse
|
11
|
Olerich KLW, Sewaybricker LE, Kee S, Melhorn SJ, Chandrasekaran S, Schur EA. In utero exposure to maternal diabetes or hypertension and childhood hypothalamic gliosis. Int J Obes (Lond) 2024; 48:594-597. [PMID: 38273035 PMCID: PMC11421291 DOI: 10.1038/s41366-024-01463-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024]
Abstract
Exposure to maternal diabetes (DM) or hypertension (HTN) during pregnancy impacts offspring metabolic health in childhood and beyond. Animal models suggest that induction of hypothalamic inflammation and gliosis in the offspring's hypothalamus is a possible mechanism mediating this effect. We tested, in children, whether in utero exposures to maternal DM or HTN were associated with mediobasal hypothalamic (MBH) gliosis as assessed by brain magnetic resonance imaging (MRI). The study included a subsample of 306 children aged 9-11 years enrolled in the ABCD Study®; 49 were DM-exposed, 53 were HTN-exposed, and 204 (2:1 ratio) were age- and sex-matched children unexposed to DM and/or HTN in utero. We found a significant overall effect of group for the primary outcome of MBH/amygdala (AMY) T2 signal ratio (F(2,300):3.51, p = 0.03). Compared to unexposed children, MBH/AMY T2 signal ratios were significantly higher in the DM-exposed (β:0.05, p = 0.02), but not the HTN-exposed children (β:0.03, p = 0.13), findings that were limited to the MBH and independent of adiposity. We concluded that children exposed to maternal DM in utero display evidence of hypothalamic gliosis, suggesting that gestational DM may have a distinct influence on offspring's brain development and, by extension, children's long-term metabolic health.
Collapse
Affiliation(s)
- Kelsey L W Olerich
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Washington, Seattle, WA, USA
| | | | - Sarah Kee
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Susan J Melhorn
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Ellen A Schur
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Skowronski AA, Leibel RL, LeDuc CA. Neurodevelopmental Programming of Adiposity: Contributions to Obesity Risk. Endocr Rev 2024; 45:253-280. [PMID: 37971140 PMCID: PMC10911958 DOI: 10.1210/endrev/bnad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
This review analyzes the published evidence regarding maternal factors that influence the developmental programming of long-term adiposity in humans and animals via the central nervous system (CNS). We describe the physiological outcomes of perinatal underfeeding and overfeeding and explore potential mechanisms that may mediate the impact of such exposures on the development of feeding circuits within the CNS-including the influences of metabolic hormones and epigenetic changes. The perinatal environment, reflective of maternal nutritional status, contributes to the programming of offspring adiposity. The in utero and early postnatal periods represent critically sensitive developmental windows during which the hormonal and metabolic milieu affects the maturation of the hypothalamus. Maternal hyperglycemia is associated with increased transfer of glucose to the fetus driving fetal hyperinsulinemia. Elevated fetal insulin causes increased adiposity and consequently higher fetal circulating leptin concentration. Mechanistic studies in animal models indicate important roles of leptin and insulin in central and peripheral programming of adiposity, and suggest that optimal concentrations of these hormones are critical during early life. Additionally, the environmental milieu during development may be conveyed to progeny through epigenetic marks and these can potentially be vertically transmitted to subsequent generations. Thus, nutritional and metabolic/endocrine signals during perinatal development can have lifelong (and possibly multigenerational) impacts on offspring body weight regulation.
Collapse
Affiliation(s)
- Alicja A Skowronski
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rudolph L Leibel
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Charles A LeDuc
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
13
|
Cantacorps L, Zhu J, Yagoub S, Coull BM, Falck J, Chesters RA, Ritter K, Serrano-Lope M, Tscherepentschuk K, Kasch LS, Paterson M, Täger P, Baidoe-Ansah D, Pandey S, Igual-Gil C, Braune A, Lippert RN. Developmental metformin exposure does not rescue physiological impairments derived from early exposure to altered maternal metabolic state in offspring mice. Mol Metab 2024; 79:101860. [PMID: 38142972 PMCID: PMC10792763 DOI: 10.1016/j.molmet.2023.101860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023] Open
Abstract
OBJECTIVE The incidence of gestational diabetes mellitus (GDM) and metabolic disorders during pregnancy are increasing globally. This has resulted in increased use of therapeutic interventions such as metformin to aid in glycemic control during pregnancy. Even though metformin can cross the placental barrier, its impact on offspring brain development remains poorly understood. As metformin promotes AMPK signaling, which plays a key role in axonal growth during development, we hypothesized that it may have an impact on hypothalamic signaling and the formation of neuronal projections in the hypothalamus, the key regulator of energy homeostasis. We further hypothesized that this is dependent on the metabolic and nutritional status of the mother at the time of metformin intervention. Using mouse models of maternal overnutrition, we aimed to assess the effects of metformin exposure on offspring physiology and hypothalamic neuronal circuits during key periods of development. METHODS Female C57BL/6N mice received either a control diet or a high-fat diet (HFD) during pregnancy and lactation periods. A subset of dams was fed a HFD exclusively during the lactation. Anti-diabetic treatments were given during the first postnatal weeks. Body weights of male and female offspring were monitored daily until weaning. Circulating metabolic factors and molecular changes in the hypothalamus were assessed at postnatal day 16 using ELISA and Western Blot, respectively. Hypothalamic innervation was assessed by immunostaining at postnatal days 16 and 21. RESULTS We identified alterations in weight gain and circulating hormones in male and female offspring induced by anti-diabetic treatment during the early postnatal period, which were critically dependent on the maternal metabolic state. Furthermore, hypothalamic agouti-related peptide (AgRP) and proopiomelanocortin (POMC) neuronal innervation outcomes in response to anti-diabetic treatment were also modulated by maternal metabolic state. We also identified sex-specific changes in hypothalamic AMPK signaling in response to metformin exposure. CONCLUSION We demonstrate a unique interaction between anti-diabetic treatment and maternal metabolic state, resulting in sex-specific effects on offspring brain development and physiological outcomes. Overall, based on our findings, no positive effect of metformin intervention was observed in the offspring, despite ameliorating effects on maternal metabolic outcomes. In fact, the metabolic state of the mother drives the most dramatic differences in offspring physiology and metformin had no rescuing effect. Our results therefore highlight the need for a deeper understanding of how maternal metabolic state (excessive weight gain versus stable weight during GDM treatment) affects the developing offspring. Further, these results emphasize that the interventions to treat alterations in maternal metabolism during pregnancy need to be reassessed from the perspective of the offspring physiology.
Collapse
Affiliation(s)
- Lídia Cantacorps
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Jiajie Zhu
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Selma Yagoub
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Bethany M Coull
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Joanne Falck
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Robert A Chesters
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Katrin Ritter
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Miguel Serrano-Lope
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Katharina Tscherepentschuk
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Lea-Sophie Kasch
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Maya Paterson
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Paula Täger
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - David Baidoe-Ansah
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Shuchita Pandey
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Carla Igual-Gil
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Annett Braune
- Research Group Intestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Rachel N Lippert
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
14
|
Tüfekci KK, Tatar M, Terzi F, Bakirhan EG. An investigation of the endoplasmic reticulum stress in obesity exposure in the prenatal period. J Chem Neuroanat 2023; 134:102348. [PMID: 37858742 DOI: 10.1016/j.jchemneu.2023.102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVES Exposure to maternal obesity has been shown to make offspring more prone to cognitive and metabolic disorders later in life. Although the underlying mechanisms are unclear, the role of endoplasmic reticulum (ER) stress in the fetal programming process is remarkable. ER stress can be activated by many chronic diseases, including obesity and diabetes. Therefore, our study aimed to investigate the role of ER stress caused by maternal diet-induced obesity in the offspring hippocampus. We also evaluated the protective effect of N-acetylcysteine (NAC) against ER stress. METHODS A rat obesity model was created by providing a high-fat (60 % kcal) diet. N-acetylcysteine (NAC) was administered at a dosage of 150 mg/kg via the intragastric route. The animals were mated at the age of 12 weeks. The same diet was maintained during pregnancy and lactation. The experiment was terminated on the postnatal 28th day, and the offspring's brain tissues were examined. Immunohistochemical staining for ER stress markers was performed on sections taken from tissues after routine histological procedures. RESULTS The results revealed increased GRP78, PERK, and eIF2α immunoreactivities in the hippocampal dentate gyrus (DG) and cornu ammonis 1 (CA1) regions in the obese group offspring, while the expression of those markers in those regions normalized with NAC supplementation (p < 0.01). Statistical analysis of XBP1 immunoreactivity H-scores revealed no difference between the study groups (p > 0.05). DISCUSSION These results suggest that exposure to obesity during the prenatal period may cause increased ER stress in hippocampal neurons, which have an important role in the regulation of learning, memory and behavior, and this may contribute to decreased cognitive performance. On the other hand, NAC stands out as an effective agent that can counteract hippocampal ER stress.
Collapse
Affiliation(s)
- Kıymet Kübra Tüfekci
- Department of Histology and Embryology, Faculty of Medicine, Kastamonu University, Turkiye.
| | - Musa Tatar
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Kastamonu University, Turkiye
| | - Funda Terzi
- Department of Pathology, Faculty of Veterinary Medicine, Kastamonu University, Turkiye
| | - Elfide Gizem Bakirhan
- Department of Histology and Embryology, Faculty of Medicine, Adıyaman University, Turkiye
| |
Collapse
|
15
|
Malpeli A, Fasano MV, Sala M, Obregón P, Casado C, Mendez I, Fotia L, Castrogiovanni D, Varea A, Disalvo L, Tournier A, Mazziota L, Rocha D, Kruger AL, Orellano L, Andreoli MF. Leptin receptor expression in blood mononuclear cells of lactating women is associated with infant body weight: Potential role as a molecular biomarker. Pediatr Obes 2023; 18:e13072. [PMID: 37650320 DOI: 10.1111/ijpo.13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Molecular biomarkers of maternal leptin resistance associated with infant weight are needed. OBJECTIVES To evaluate gene expression of leptin receptor (LEPR), suppressor of cytokine signalling 3 (SOCS3) and insulin receptor in peripheral blood mononuclear cells (PBMCs) of lactating women and their relationship with infant body weight and adiposity. METHODS At day 10 postpartum, maternal gene expression in PBMCs as well as leptin and insulin concentrations in plasma and milk were assessed (n = 68). Infant weight and BMI z-scores, skinfolds and arm circumference were obtained at 10 days and/or at 3 months old. RESULTS In mothers with pre-pregnancy overweight or obesity (OW/OB), LEPR expression was reduced (p = 0.013) whereas plasma and milk leptin and milk insulin concentrations were elevated. LEPR expression was positively related with infant weight z-score (Beta (95% CI): 0.40 (0.17, 0.63), p = 0.001) but not with leptin concentrations. SOCS3 expression was positively related with infant weight z-score (Beta (95% CI): 0.28 (0.04, 0.51), p = 0.024) and arm circumference (Beta (95% CI): 0.57 (0.32, 0.82), p < 0.001). Relationships remained significant after adjusting for maternal and infant confounders. CONCLUSIONS LEPR and SOCS3 gene expression in PBMCs are novel maternal molecular biomarkers that reflect leptin resistance and are associated with infant body weight and adiposity.
Collapse
Affiliation(s)
- Agustina Malpeli
- Instituto de Desarrollo e Investigaciones Pediátricas (IDIP), HIAEP "Sor María Ludovica" de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - María Victoria Fasano
- Instituto de Desarrollo e Investigaciones Pediátricas (IDIP), HIAEP "Sor María Ludovica" de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
- Centro de Matemática de La Plata (CMaLP), Facultad de Ciencias Exactas, Universidad Nacional La Plata (UNLP) - CIC-PBA, La Plata, Argentina
| | - Marisa Sala
- Instituto de Desarrollo e Investigaciones Pediátricas (IDIP), HIAEP "Sor María Ludovica" de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Pablo Obregón
- Instituto de Desarrollo e Investigaciones Pediátricas (IDIP), HIAEP "Sor María Ludovica" de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Carla Casado
- Instituto de Desarrollo e Investigaciones Pediátricas (IDIP), HIAEP "Sor María Ludovica" de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Ignacio Mendez
- Instituto de Desarrollo e Investigaciones Pediátricas (IDIP), HIAEP "Sor María Ludovica" de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Lucrecia Fotia
- Instituto de Desarrollo e Investigaciones Pediátricas (IDIP), HIAEP "Sor María Ludovica" de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Daniel Castrogiovanni
- Instituto Multidisciplinario de Biología Celular (IMBICE), (UNLP - CIC-PBA - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| | - Ana Varea
- Instituto de Desarrollo e Investigaciones Pediátricas (IDIP), HIAEP "Sor María Ludovica" de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Liliana Disalvo
- Instituto de Desarrollo e Investigaciones Pediátricas (IDIP), HIAEP "Sor María Ludovica" de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Andrea Tournier
- Laboratorio Central, HIAEP "Sor María Ludovica" de La Plata, La Plata, Argentina
| | - Lucía Mazziota
- Laboratorio Central, HIAEP "Sor María Ludovica" de La Plata, La Plata, Argentina
| | - Daniela Rocha
- Laboratorio Central, HIAEP "Sor María Ludovica" de La Plata, La Plata, Argentina
| | - Ana Luz Kruger
- Instituto de Desarrollo e Investigaciones Pediátricas (IDIP), HIAEP "Sor María Ludovica" de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
- CONICET, La Plata, Argentina
| | - Laura Orellano
- Laboratorio Central, HIAEP "Sor María Ludovica" de La Plata, La Plata, Argentina
| | - María F Andreoli
- Instituto de Desarrollo e Investigaciones Pediátricas (IDIP), HIAEP "Sor María Ludovica" de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
- CONICET, La Plata, Argentina
| |
Collapse
|
16
|
Ullah R, Shen Y, Zhou YD, Fu J. Perinatal metabolic inflammation in the hypothalamus impairs the development of homeostatic feeding circuitry. Metabolism 2023; 147:155677. [PMID: 37543245 DOI: 10.1016/j.metabol.2023.155677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Over the past few decades, there has been a global increase in childhood obesity. This rise in childhood obesity contributes to the susceptibility of impaired metabolism during both childhood and adulthood. The hypothalamus, specifically the arcuate nucleus (ARC), houses crucial neurons involved in regulating homeostatic feeding. These neurons include proopiomelanocortin (POMC) and agouti-related peptide (AGRP) secreting neurons. They play a vital role in sensing nutrients and metabolic hormones like insulin, leptin, and ghrelin. The neurogenesis of AGRP and POMC neurons completes at birth; however, axon development and synapse formation occur during the postnatal stages in rodents. Insulin, leptin, and ghrelin are the essential regulators of POMC and AGRP neurons. Maternal obesity and postnatal overfeeding or a high-fat diet (HFD) feeding cause metabolic inflammation, disrupted signaling of metabolic hormones, netrin-1, and neurogenic factors, neonatal obesity, and defective neuronal development in animal models; however, the mechanism is unclear. Within the hypothalamus and other brain areas, there exists a wide range of interconnected neuronal populations that regulate various aspects of feeding. However, this review aims to discuss how perinatal metabolic inflammation influences the development of POMC and AGRP neurons within the hypothalamus.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China; Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Yi Shen
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China.
| | - Yu-Dong Zhou
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China.
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China.
| |
Collapse
|
17
|
Brüning JC, Fenselau H. Integrative neurocircuits that control metabolism and food intake. Science 2023; 381:eabl7398. [PMID: 37769095 DOI: 10.1126/science.abl7398] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023]
Abstract
Systemic metabolism has to be constantly adjusted to the variance of food intake and even be prepared for anticipated changes in nutrient availability. Therefore, the brain integrates multiple homeostatic signals with numerous cues that predict future deviations in energy supply. Recently, our understanding of the neural pathways underlying these regulatory principles-as well as their convergence in the hypothalamus as the key coordinator of food intake, energy expenditure, and glucose metabolism-have been revealed. These advances have changed our view of brain-dependent control of metabolic physiology. In this Review, we discuss new concepts about how alterations in these pathways contribute to the development of prevalent metabolic diseases such as obesity and type 2 diabetes mellitus and how this emerging knowledge may provide new targets for their treatment.
Collapse
Affiliation(s)
- Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- National Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Henning Fenselau
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Research Group Synaptic Transmission in Energy Homeostasis, Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| |
Collapse
|
18
|
Milà-Guasch M, Ramírez S, Llana SR, Fos-Domènech J, Dropmann LM, Pozo M, Eyre E, Gómez-Valadés AG, Obri A, Haddad-Tóvolli R, Claret M. Maternal emulsifier consumption programs offspring metabolic and neuropsychological health in mice. PLoS Biol 2023; 21:e3002171. [PMID: 37616199 PMCID: PMC10449393 DOI: 10.1371/journal.pbio.3002171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/24/2023] [Indexed: 08/26/2023] Open
Abstract
Modern lifestyle is associated with a major consumption of ultra-processed foods (UPF) due to their practicality and palatability. The ingestion of emulsifiers, a main additive in UPFs, has been related to gut inflammation, microbiota dysbiosis, adiposity, and obesity. Maternal unbalanced nutritional habits during embryonic and perinatal stages perturb offspring's long-term metabolic health, thus increasing obesity and associated comorbidity risk. However, whether maternal emulsifier consumption influences developmental programming in the offspring remains unknown. Here, we show that, in mice, maternal consumption of dietary emulsifiers (1% carboxymethyl cellulose (CMC) and 1% P80 in drinking water), during gestation and lactation, perturbs the development of hypothalamic energy balance regulation centers of the progeny, leads to metabolic impairments, cognition deficits, and induces anxiety-like traits in a sex-specific manner. Our findings support the notion that maternal consumption of emulsifiers, common additives of UPFs, causes mild metabolic and neuropsychological malprogramming in the progeny. Our data call for nutritional advice during gestation.
Collapse
Affiliation(s)
- Maria Milà-Guasch
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sara Ramírez
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sergio R. Llana
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Júlia Fos-Domènech
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Lea Maria Dropmann
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Macarena Pozo
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elena Eyre
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alicia G. Gómez-Valadés
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Arnaud Obri
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Roberta Haddad-Tóvolli
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
- School of Medicine, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Nagagata BA, Ajackson M, Ornellas F, Mandarim-de-Lacerda CA, Aguila MB. Obese mothers supplemented with melatonin during gestation and lactation ameliorate the male offspring's pancreatic islet cellular composition and beta-cell function. J Dev Orig Health Dis 2023; 14:490-500. [PMID: 37366144 DOI: 10.1017/s2040174423000168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Melatonin supplementation to obese mothers during gestation and lactation might benefit the pancreatic islet cellular composition and beta-cell function in male offspring adulthood. C57BL/6 females (mothers) were assigned to two groups (n = 20/each) based on their consumption in control (C 17% kJ as fat) or high-fat diet (HF 49% kJ as fat). Mothers were supplemented with melatonin (Mel) (10 mg/kg daily) during gestation and lactation, or vehicle, forming the groups (n = 10/each): C, CMel, HF, and HFMel. The male offspring were studied, considering they only received the C diet after weaning until three months old. The HF mothers and their offspring showed higher body weight, glucose intolerance, insulin resistance, and low insulin sensitivity than the C ones. However, HFMel mothers and their offspring showed improved glucose metabolism and weight loss than the HF ones. Also, the offspring's higher expressions of pro-inflammatory markers and endoplasmic reticulum (ER) stress were observed in HF but reduced in HFMel. Contrarily, antioxidant enzymes were less expressed in HF but improved in HFMel. In addition, HF showed increased beta-cell mass and hyperinsulinemia but diminished in HFMel. Besides, the beta-cell maturity and identity gene expressions diminished in HF but enhanced in HFMel. In conclusion, obese mothers supplemented with melatonin benefit their offspring's islet cell remodeling and function. In addition, improving pro-inflammatory markers, oxidative stress, and ER stress resulted in better glucose and insulin levels control. Consequently, pancreatic islets and functioning beta cells were preserved in the offspring of obese mothers supplemented with melatonin.
Collapse
Affiliation(s)
- Brenda A Nagagata
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus Ajackson
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Park S, Belfoul AM, Rastelli M, Jang A, Monnoye M, Bae H, Kamitakahara A, Giavalisco P, Sun S, Barelle PY, Plows J, Jang C, Fodor A, Goran MI, Bouret SG. Maternal low-calorie sweetener consumption rewires hypothalamic melanocortin circuits via a gut microbial co-metabolite pathway. JCI Insight 2023; 8:e156397. [PMID: 37014702 PMCID: PMC10322686 DOI: 10.1172/jci.insight.156397] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The prevalence of obesity and type 2 diabetes is growing at an alarming rate, including among pregnant women. Low-calorie sweeteners (LCSs) have increasingly been used as an alternative to sugar to deliver a sweet taste without the excessive caloric load. However, there is little evidence regarding their biological effects, particularly during development. Here, we used a mouse model of maternal LCS consumption to explore the impact of perinatal LCS exposure on the development of neural systems involved in metabolic regulation. We report that adult male, but not female, offspring from both aspartame- and rebaudioside A-exposed dams displayed increased adiposity and developed glucose intolerance. Moreover, maternal LCS consumption reorganized hypothalamic melanocortin circuits and disrupted parasympathetic innervation of pancreatic islets in male offspring. We then identified phenylacetylglycine (PAG) as a unique metabolite that was upregulated in the milk of LCS-fed dams and the serum of their pups. Furthermore, maternal PAG treatment recapitulated some of the key metabolic and neurodevelopmental abnormalities associated with maternal LCS consumption. Together, our data indicate that maternal LCS consumption has enduring consequences on the offspring's metabolism and neural development and that these effects are likely to be mediated through the gut microbial co-metabolite PAG.
Collapse
Affiliation(s)
- Soyoung Park
- The Saban Research Institute, Developmental Neuroscience Program, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Amine M. Belfoul
- University Lille, Inserm, CHU Lille, Laboratory of development and plasticity of the Neuroendocrine brain, Lille Neuroscience & Cognition, Inserm UMR-S1172, Lille, France
| | - Marialetizia Rastelli
- University Lille, Inserm, CHU Lille, Laboratory of development and plasticity of the Neuroendocrine brain, Lille Neuroscience & Cognition, Inserm UMR-S1172, Lille, France
| | - Alice Jang
- The Saban Research Institute, Developmental Neuroscience Program, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Magali Monnoye
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Hosung Bae
- Department of Biological Chemistry, School of Medicine, University of California at Irvine, Irvine, California, USA
| | - Anna Kamitakahara
- The Saban Research Institute, Developmental Neuroscience Program, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Patrick Giavalisco
- Metabolomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Shan Sun
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina Charlotte, Charlotte, North Carolina, USA
| | - Pierre-Yves Barelle
- University Lille, Inserm, CHU Lille, Laboratory of development and plasticity of the Neuroendocrine brain, Lille Neuroscience & Cognition, Inserm UMR-S1172, Lille, France
| | - Jasmine Plows
- Center for Endocrinology, Diabetes and Metabolism, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, School of Medicine, University of California at Irvine, Irvine, California, USA
| | - Anthony Fodor
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina Charlotte, Charlotte, North Carolina, USA
| | - Michael I. Goran
- Center for Endocrinology, Diabetes and Metabolism, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Sebastien G. Bouret
- University Lille, Inserm, CHU Lille, Laboratory of development and plasticity of the Neuroendocrine brain, Lille Neuroscience & Cognition, Inserm UMR-S1172, Lille, France
| |
Collapse
|
21
|
Rasmussen JM, Tuulari JJ, Nolvi S, Thompson PM, Merisaari H, Lavonius M, Karlsson L, Entringer S, Wadhwa PD, Karlsson H, Buss C. Maternal pre-pregnancy body mass index is associated with newborn offspring hypothalamic mean diffusivity: a prospective dual-cohort study. BMC Med 2023; 21:57. [PMID: 36788536 PMCID: PMC9930241 DOI: 10.1186/s12916-023-02743-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND An extensive body of animal literature supports the premise that maternal obesity during pregnancy can alter the development of the fetal hypothalamus (HTH, a critical regulator of energy balance) with implications for offspring obesity risk (i.e., long-term energy imbalance). Yet, the relationship in humans between maternal overweight/obesity during pregnancy and fetal hypothalamic development remains largely unknown. Here, using an international (Finland and California, USA) multi-site diffusion tensor imaging (DTI) dataset, we test the hypothesis that maternal pre-pregnancy BMI is associated with newborn offspring HTH mean diffusivity (HTH MD, a replicable neural correlate of BMI in adults). METHODS HTH MD was independently quantified in two separate BMI-matched cohorts (up to class II obesity; BMIRange = 17-35) using a high-resolution atlas-based definition of HTH. A total of n = 231 mother-child dyads were available for this analysis (nSite,1 = 152, age at MRI = 26.7 ± 8.1 days, gestational age at birth = 39.9 ± 1.2 weeks, nM/F = 82/70, BMI = 24.2 ± 3.8; nSite,2 = 79, age at MRI = 25.6 ± 12.5 days, gestational age at birth = 39.3 ± 1.5 weeks, nM/F = 45/34, BMI = 25.1 ± 4.0). The association between maternal pre-pregnancy BMI and newborn offspring HTH MD was examined separately in each cohort using linear regression adjusting for gestational age at birth, postnatal age at scan, sex, whole white matter mean diffusivity, and DTI quality control criteria. In post hoc analyses, additional potentially confounding factors including socioeconomic status, ethnicity, and obstetric risk were adjusted where appropriate. RESULTS The distribution of maternal pre-pregnancy BMI was comparable across sites but differed by ethnicity and socioeconomic status. A positive linear association between maternal pre-pregnancy BMI and newborn offspring HTH MD was observed at both sites ([Formula: see text]Site,1 = 0.17, pSite,1 = 0.01; [Formula: see text]Site,2 = 0.22, pSite,2 = 0.03) and remained significant after adjusting for cohort-relevant covariates. CONCLUSIONS These findings translate the preclinically established association between maternal obesity during pregnancy and offspring hypothalamic microstructure to the human context. In addition to further replication/generalization, future efforts to identify biological mediators of the association between maternal obesity and fetal HTH development are warranted to develop targeted strategies for the primary prevention of childhood obesity.
Collapse
Affiliation(s)
- Jerod M Rasmussen
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA.
- Department of Pediatrics, University of California, Irvine, CA, 92697, USA.
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
- Turku Collegium for Science Technology and Medicine (TCSMT), University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
- Department of Psychiatry, University of Oxford (Sigrid Juselius Fellowship), Oxford, UK
| | - Saara Nolvi
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
- Turku Institute for Advanced Studies, Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| | - Maria Lavonius
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
- Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
- Department of Clinical Medicine, Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Sonja Entringer
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA
- Department of Pediatrics, University of California, Irvine, CA, 92697, USA
- Department of Medical Psychology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Pathik D Wadhwa
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA
- Department of Pediatrics, University of California, Irvine, CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, 92697, USA
- Department of Obstetrics & Gynecology, University of California, Irvine, CA, 92697, USA
- Department of Epidemiology, University of California, Irvine, CA, 92697, USA
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Claudia Buss
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA
- Department of Pediatrics, University of California, Irvine, CA, 92697, USA
- Department of Medical Psychology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
22
|
Scheidl TB, Brightwell AL, Easson SH, Thompson JA. Maternal obesity and programming of metabolic syndrome in the offspring: searching for mechanisms in the adipocyte progenitor pool. BMC Med 2023; 21:50. [PMID: 36782211 PMCID: PMC9924890 DOI: 10.1186/s12916-023-02730-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/09/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND It is now understood that it is the quality rather than the absolute amount of adipose tissue that confers risk for obesity-associated disease. Adipose-derived stem cells give rise to adipocytes during the developmental establishment of adipose depots. In adult depots, a reservoir of progenitors serves to replace adipocytes that have reached their lifespan and for recruitment to increase lipid buffering capacity under conditions of positive energy balance. MAIN: The adipose tissue expandability hypothesis posits that a failure in de novo differentiation of adipocytes limits lipid storage capacity and leads to spillover of lipids into the circulation, precipitating the onset of obesity-associated disease. Since adipose progenitors are specified to their fate during late fetal life, perturbations in the intrauterine environment may influence the rapid expansion of adipose depots that occurs in childhood or progenitor function in established adult depots. Neonates born to mothers with obesity or diabetes during pregnancy tend to have excessive adiposity at birth and are at increased risk for childhood adiposity and cardiometabolic disease. CONCLUSION In this narrative review, we synthesize current knowledge in the fields of obesity and developmental biology together with literature from the field of the developmental origins of health and disease (DOHaD) to put forth the hypothesis that the intrauterine milieu of pregnancies complicated by maternal metabolic disease disturbs adipogenesis in the fetus, thereby accelerating the trajectory of adipose expansion in early postnatal life and predisposing to impaired adipose plasticity.
Collapse
Affiliation(s)
- Taylor B. Scheidl
- Cumming School of Medicine, Calgary, Canada
- Alberta Children’s Hospital Research Institute, Calgary, Canada
- Libin Cardiovascular Institute, Calgary, Canada
- University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1 Canada
| | - Amy L. Brightwell
- University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1 Canada
| | - Sarah H. Easson
- Cumming School of Medicine, Calgary, Canada
- University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1 Canada
| | - Jennifer A. Thompson
- Cumming School of Medicine, Calgary, Canada
- Alberta Children’s Hospital Research Institute, Calgary, Canada
- Libin Cardiovascular Institute, Calgary, Canada
- University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1 Canada
| |
Collapse
|
23
|
Zhang J, Li S, Luo X, Zhang C. Emerging role of hypothalamus in the metabolic regulation in the offspring of maternal obesity. Front Nutr 2023; 10:1094616. [PMID: 36819678 PMCID: PMC9928869 DOI: 10.3389/fnut.2023.1094616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Maternal obesity has a significant impact on the metabolism of offspring both in childhood and adulthood. The metabolic regulation of offspring is influenced by the intrauterine metabolic programming induced by maternal obesity. Nevertheless, the precise mechanisms remain unclear. The hypothalamus is the primary target of metabolic programming and the principal regulatory center of energy metabolism. Accumulating evidence has indicated the crucial role of hypothalamic regulation in the metabolism of offspring exposed to maternal obesity. This article reviews the development of hypothalamus, the role of the hypothalamic regulations in energy homeostasis, possible mechanisms underlying the developmental programming of energy metabolism in offspring, and the potential therapeutic approaches for preventing metabolic diseases later in life. Lastly, we discuss the challenges and future directions of hypothalamic regulation in the metabolism of children born to obese mothers.
Collapse
|
24
|
Haddad-Tóvolli R, Morari J, Barbizan R, Bóbbo VC, Carraro RS, Solon C, Dragano NR, Torsoni MA, Araujo EP, Velloso LA. Maternal obesity damages the median eminence blood-brain barrier structure and function in the progeny: the beneficial impact of cross-fostering by lean mothers. Am J Physiol Endocrinol Metab 2023; 324:E154-E166. [PMID: 36598900 DOI: 10.1152/ajpendo.00268.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Maternal obesity is an important risk factor for obesity, cardiovascular, and metabolic diseases in the offspring. Studies have shown that it leads to hypothalamic inflammation in the progeny, affecting the function of neurons regulating food intake and energy expenditure. In adult mice fed a high-fat diet, one of the hypothalamic abnormalities that contribute to the development of obesity is the damage of the blood-brain barrier (BBB) at the median eminence-arcuate nucleus (ME-ARC) interface; however, how the hypothalamic BBB is affected in the offspring of obese mothers requires further investigation. Here, we used confocal and transmission electron microscopy, transcript expression analysis, glucose tolerance testing, and a cross-fostering intervention to determine the impact of maternal obesity and breastfeeding on BBB integrity at the ME-ARC interface. The offspring of obese mothers were born smaller; conversely, at weaning, they presented larger body mass and glucose intolerance. In addition, maternal obesity-induced structural and functional damage of the offspring's ME-ARC BBB. By a cross-fostering intervention, some of the defects in barrier integrity and metabolism seen during development in an obesogenic diet were recovered. The offspring of obese dams breastfed by lean dams presented a reduction of body mass and glucose intolerance as compared to the offspring continuously exposed to an obesogenic environment during intrauterine and perinatal life; this was accompanied by partial recovery of the anatomical structure of the ME-ARC interface, and by the normalization of transcript expression of genes coding for hypothalamic neurotransmitters involved in energy balance and BBB integrity. Thus, maternal obesity promotes structural and functional damage of the hypothalamic BBB, which is, in part, reverted by lactation by lean mothers.NEW & NOTEWORTHY Maternal dietary habits directly influence offspring health. In this study, we aimed at determining the impact of maternal obesity on BBB integrity. We show that DIO offspring presented a leakier ME-BBB, accompanied by changes in the expression of transcripts encoding for endothelial and tanycytic proteins, as well as of hypothalamic neuropeptides. Breastfeeding in lean dams was sufficient to protect the offspring from ME-BBB disruption, providing a preventive strategy of nutritional intervention during early life.
Collapse
Affiliation(s)
- Roberta Haddad-Tóvolli
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas, Campinas, Brazil
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Joseane Morari
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas, Campinas, Brazil
| | - Roberta Barbizan
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas, Campinas, Brazil
| | - Vanessa C Bóbbo
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas, Campinas, Brazil
| | - Rodrigo S Carraro
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas, Campinas, Brazil
- Center for Anatomy Studies, University San Francisco (USF), Bragança Paulista, Brazil
| | - Carina Solon
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas, Campinas, Brazil
| | - Nathalia R Dragano
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas, Campinas, Brazil
| | - Márcio A Torsoni
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, State University of Campinas, Campinas, Limeira, Brazil
| | - Eliana P Araujo
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas, Campinas, Brazil
- School of Nursing, University of Campinas, Campinas, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas, Campinas, Brazil
| |
Collapse
|
25
|
Salsinha AS, Rodríguez-Alcalá LM, Pimentel LL, Pintado M. Role of bioactive lipids in obesity. BIOACTIVE LIPIDS 2023:133-167. [DOI: 10.1016/b978-0-12-824043-4.00012-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
26
|
Chandrasekaran S, Melhorn S, Olerich KL, Angelo B, Chow T, Xiang A, Schur EA, Page KA. Exposure to Gestational Diabetes Mellitus Prior to 26 Weeks Is Related to the Presence of Mediobasal Hypothalamic Gliosis in Children. Diabetes 2022; 71:2552-2556. [PMID: 36095276 PMCID: PMC9750940 DOI: 10.2337/db22-0448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/08/2022] [Indexed: 01/29/2023]
Abstract
Intrauterine exposure to metabolic dysfunction leads to offspring metabolic dysfunction in human and rodent models, but underlying mechanisms are unclear. The mediobasal hypothalamus (MBH) is involved in energy homeostasis and weight regulation, and MBH gliosis is associated with obesity and insulin resistance. We tested the hypothesis that offspring exposed to gestational diabetes mellitus (GDM) in utero versus those unexposed would show evidence of MBH gliosis. Participants in the BrainChild Study (age 7-11 years with confirmed GDM exposure or no GDM exposure) underwent brain MRI to acquire T2-weighted images. By using the amygdala (AMY) and white matter (WM) as reference regions, MBH:AMY and MBH:WM T2 signal ratios were calculated as a radiologic measure of MBH gliosis. Linear regressions were used to examine associations between GDM exposure (GDM overall) and by timing of GDM exposure (≤26 weeks or >26 weeks) and MBH gliosis. Associations between prepregnancy BMI and child MBH gliosis were examined in secondary analyses. There were no differences in T2 signal ratios in children exposed versus not exposed to GDM overall, but children exposed to early GDM (≤26 weeks of gestation) had higher MBH:WM signal ratios than those not exposed (β = 0.147; SE 0.06; P = 0.03), adjusting for child's age, sex, and BMI z score and maternal prepregnancy BMI, whereas no associations were seen for the control ratio (AMY:WM). Prepregnancy BMI was not associated with evidence of MBH gliosis. Early exposure to GDM was associated with radiologic evidence of MBH gliosis in children. These data provide mechanistic insight into brain pathways by which exposure to GDM may increase risk for metabolic dysfunction.
Collapse
Affiliation(s)
| | - Susan Melhorn
- Department of Medicine, University of Washington, Seattle, WA
| | | | | | - Ting Chow
- Kaiser Permanente Southern California Permanente Medical Group, Pasadena, CA
| | - Anny Xiang
- Kaiser Permanente Southern California Permanente Medical Group, Pasadena, CA
| | - Ellen A. Schur
- Department of Medicine, University of Washington, Seattle, WA
| | | |
Collapse
|
27
|
Izadi MS, Eskandari F, Binayi F, Salimi M, Rashidi FS, Hedayati M, Dargahi L, Ghanbarian H, Zardooz H. Oxidative and endoplasmic reticulum stress develop adverse metabolic effects due to the high-fat high-fructose diet consumption from birth to young adulthood. Life Sci 2022; 309:120924. [PMID: 36063978 DOI: 10.1016/j.lfs.2022.120924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 11/27/2022]
Abstract
AIMS The early postnatal dietary intake has been considered a crucial factor affecting the offspring later life metabolic status. Consistently, this study investigated the oxidative and endoplasmic reticulum (ER) stress intervention in the induction of adverse metabolic effects due to the high-fat high-fructose diet (HFHFD) consumption from birth to young adulthood in rat offspring. MATERIALS AND METHODS After delivery, the dams with their pups were randomly allocated into the normal diet (ND) and HFHFD groups. At weaning, the male offspring were divided into ND-None, ND-DMSO, ND-4-phenyl butyric acid (4-PBA), HFHFD-None, HFHFD-DMSO, and HFHFD-4-PBA groups and fed on their respected diets for five weeks. Then, the drug was injected for ten days. Subsequently, glucose and lipid metabolism parameters, oxidative and ER stress markers, and Wolfram syndrome1 (Wfs1) expression were assessed. KEY FINDINGS In the HFHFD group, anthropometrical parameters, plasma high-density lipoprotein (HDL), and glucose-stimulated insulin secretion and content were decreased. Whereas, the levels of plasma leptin, low-density lipoprotein (LDL) and glucose, hypothalamic leptin, pancreatic catalase activity and glutathione (GSH), pancreatic and hypothalamic malondialdehyde (MDA), binding immunoglobulin protein (BIP) and C/EBP homologous protein (CHOP), and pancreatic WFS1 protein were increased. 4-PBA administration in the HFHFD group, decreased the hypothalamic and pancreatic MDA, BIP and CHOP levels. While, increased the Insulin mRNA and glucose-stimulated insulin secretion and content. SIGNIFICANCE HFHFD intake from birth to young adulthood through the development of pancreatic and hypothalamic oxidative and ER stress, increased the pancreatic WFS1 protein and impaired glucose and lipid homeostasis in male rat offspring.
Collapse
Affiliation(s)
- Mina Sadat Izadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Eskandari
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Binayi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Salimi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sadat Rashidi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Zardooz
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Yarmohammadi F, Hayes AW, Karimi G. The therapeutic effects of berberine against different diseases: A review on the involvement of the endoplasmic reticulum stress. Phytother Res 2022; 36:3215-3231. [PMID: 35778942 DOI: 10.1002/ptr.7539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/12/2022] [Accepted: 05/25/2022] [Indexed: 11/12/2022]
Abstract
Various factors interfere with the endoplasmic reticulum (ER) function, which is involved in protein folding and calcium homeostasis. ER dysfunction referred to as ER stress triggers cell death by apoptosis and inflammation. Berberine (BBR) is an alkaloid extracted from the family Berberidacea. It has shown multiple pharmacological activities, including anti-inflammatory, antioxidative, anti-apoptotic, antiproliferative, and antihypertensive. It has been reported that BBR can decrease apoptosis and inflammation following different pathological conditions, which might be mediated by targeting ER stress pathways. In this manuscript, we reviewed the protective potential of BBR against several diseases, such as metabolic disorders, cancer, intestinal diseases, cardiovascular, liver, kidney, and central nervous system diseases, in both in vivo and in vitro studies.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, Florida, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Rasmussen JM, Thompson PM, Gyllenhammer LE, Lindsay KL, O'Connor TG, Koletzko B, Entringer S, Wadhwa PD, Buss C. Maternal free fatty acid concentration during pregnancy is associated with newborn hypothalamic microstructure in humans. Obesity (Silver Spring) 2022; 30:1462-1471. [PMID: 35785481 PMCID: PMC9541037 DOI: 10.1002/oby.23452] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/23/2022] [Accepted: 03/25/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE This study tested the hypothesis, in a prospective cohort study design, that maternal saturated free fatty acid (sFFA) concentration during pregnancy is prospectively associated with offspring (newborn) hypothalamic (HTH) microstructure and to explore the functional relevance of this association with respect to early-childhood body fat percentage (BF%). METHODS In N = 94 healthy newborns (born mean 39.3 [SD 1.5] weeks gestation), diffusion-weighted magnetic resonance imaging was performed shortly after birth (25.3 [12.5] postnatal days), and a subgroup (n = 37) underwent a dual-energy x-ray absorptiometry scan in early childhood (4.7 [SD 0.7] years). Maternal sFFA concentration during pregnancy was quantified in fasting blood samples via liquid chromatography-mass spectrometry. Infant HTH microstructural integrity was characterized using mean diffusivity (MD). Multiple linear regression was used to test the association between maternal sFFA and HTH MD, accounting for newborn sex, age at scan, mean white matter MD, and image quality. Multiple linear regression models also tested the association between HTH MD and early-childhood BF%, accounting for breastfeeding status. RESULTS Maternal sFFA during pregnancy accounted for 8.3% of the variation in newborn HTH MD (β-std = 0.25; p = 0.006). Furthermore, newborn HTH MD prospectively accounted for 15% of the variation in early-childhood BF% (β-std = 0.32; p = 0.019). CONCLUSIONS These findings suggest that maternal overnutrition during pregnancy may influence the development of the fetal hypothalamus, which, in turn, may have clinical relevance for childhood obesity risk.
Collapse
Affiliation(s)
- Jerod M. Rasmussen
- Development, Health and Disease Research ProgramUniversity of California, IrvineIrvineCaliforniaUSA
- Department of PediatricsUniversity of California, IrvineIrvineCaliforniaUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Lauren E. Gyllenhammer
- Development, Health and Disease Research ProgramUniversity of California, IrvineIrvineCaliforniaUSA
- Department of PediatricsUniversity of California, IrvineIrvineCaliforniaUSA
| | - Karen L. Lindsay
- Department of PediatricsUniversity of California, IrvineIrvineCaliforniaUSA
- University of California, Irvine Susan Samueli Integrative Health InstituteCollege of Health Sciences, University of California, IrvineIrvineCaliforniaUSA
| | - Thomas G. O'Connor
- Departments of Psychiatry, Psychology, Neuroscience, and Obstetrics and GynecologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Department of Pediatrics, Dr von Hauner Children's HospitalLudwig‐Maximillian University Munich, University HospitalsMunichGermany
| | - Sonja Entringer
- Development, Health and Disease Research ProgramUniversity of California, IrvineIrvineCaliforniaUSA
- Department of PediatricsUniversity of California, IrvineIrvineCaliforniaUSA
- Institute of Medical PsychologyCharité University Hospital Berlin, corporate member of Free University of Berlin, Humboldt‐University of BerlinBerlinGermany
| | - Pathik D. Wadhwa
- Development, Health and Disease Research ProgramUniversity of California, IrvineIrvineCaliforniaUSA
- Department of PediatricsUniversity of California, IrvineIrvineCaliforniaUSA
- Department of Psychiatry and Human BehaviorUniversity of California, IrvineIrvineCaliforniaUSA
- Department of Obstetrics and GynecologyUniversity of California, IrvineIrvineCaliforniaUSA
- Department of EpidemiologyUniversity of California, IrvineIrvineCaliforniaUSA
| | - Claudia Buss
- Development, Health and Disease Research ProgramUniversity of California, IrvineIrvineCaliforniaUSA
- Department of PediatricsUniversity of California, IrvineIrvineCaliforniaUSA
- Institute of Medical PsychologyCharité University Hospital Berlin, corporate member of Free University of Berlin, Humboldt‐University of BerlinBerlinGermany
| |
Collapse
|
30
|
Lippert RN, Brüning JC. Maternal Metabolic Programming of the Developing Central Nervous System: Unified Pathways to Metabolic and Psychiatric Disorders. Biol Psychiatry 2022; 91:898-906. [PMID: 34330407 DOI: 10.1016/j.biopsych.2021.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022]
Abstract
The perinatal period presents a critical time in offspring development where environmental insults can have damaging impacts on the future health of the offspring. This can lead to sustained alterations in offspring development, metabolism, and predisposition to both metabolic and psychiatric diseases. The central nervous system is one of the most sensitive targets in response to maternal obesity and/or type 2 diabetes mellitus. While many of the effects of obesity on brain function in adults are known, we are only now beginning to understand the multitude of changes that occur in the brain during development on exposure to maternal overnutrition. Specifically, given recent links between maternal metabolic state and onset of neurodevelopmental diseases, the specific changes that are occurring in the offspring are even more relevant for the study of disease onset. It is therefore critical to understand the developmental effects of maternal obesity and/or type 2 diabetes mellitus and further to define the underlying cellular and molecular changes in the fetal brain. This review focuses on the current advancements in the study of maternal programming of brain development with particular emphasis on brain connectivity, specific regional effects, newly studied peripheral contributors, and key windows of interventions where maternal bodyweight and food intake may drive the most detrimental effects on the brain and associated metabolic and behavioral consequences.
Collapse
Affiliation(s)
- Rachel N Lippert
- German Institute of Human Nutrition Potsdam Rehbrücke, Potsdam, Germany; German Center for Diabetes Research, Neuherberg, Germany; Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Jens C Brüning
- German Center for Diabetes Research, Neuherberg, Germany; Max Planck Institute for Metabolism Research, Cologne, Germany; Policlinic for Endocrinology, Diabetes and Preventive Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
31
|
The central nervous system control of energy homeostasis: high fat diet induced hypothalamic microinflammation and obesity. Brain Res Bull 2022; 185:99-106. [PMID: 35525336 DOI: 10.1016/j.brainresbull.2022.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 11/22/2022]
Abstract
Obesity is believed to arise through the imbalance of energy homeostasis controlled by the central nervous system, where the hypothalamus plays the fundamental role in energy metabolism. In this review, we will provide an overview regarding the functions of POMC neurons and AgRP neurons in acute nucleus of the hypothalamus which mediated the energy metabolism, highlighting their interactions with peripheral organs derived hormones in control of energy homeostasis. Furthermore, the role of high fat diet induced hypothalamic microinflammation in the pathogenesis of obesity will be discussed. We hope this review could help researchers to understand the mechanism of hypothalamus in control of energy metabolism, and design related drugs to block the pathways involving in the impaired metabolism in obese patients.
Collapse
|
32
|
Jazwiec PA, Patterson VS, Ribeiro TA, Yeo E, Kennedy KM, Mathias PCF, Petrik JJ, Sloboda DM. Paternal obesity induces placental hypoxia and sex-specific impairments in placental vascularization and offspring metabolism. Biol Reprod 2022; 107:574-589. [PMID: 35377412 PMCID: PMC9382389 DOI: 10.1093/biolre/ioac066] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/31/2022] [Indexed: 12/03/2022] Open
Abstract
Paternal obesity predisposes offspring to metabolic dysfunction, but the underlying mechanisms remain unclear. We investigated whether this metabolic dysfunction is associated with changes in placental vascular development and is fueled by endoplasmic reticulum (ER) stress-mediated changes in fetal hepatic development. We also determined whether paternal obesity indirectly affects the in utero environment by disrupting maternal metabolic adaptations to pregnancy. Male mice fed a standard chow or high fat diet (60%kcal fat) for 8–10 weeks were time-mated with female mice to generate pregnancies and offspring. Glucose tolerance was evaluated in dams at mid-gestation (embryonic day (E) 14.5) and late gestation (E18.5). Hypoxia, angiogenesis, endocrine function, macronutrient transport, and ER stress markers were evaluated in E14.5 and E18.5 placentae and/or fetal livers. Maternal glucose tolerance was assessed at E14.5 and E18.5. Metabolic parameters were assessed in offspring at ~60 days of age. Paternal obesity did not alter maternal glucose tolerance but induced placental hypoxia and altered placental angiogenic markers, with the most pronounced effects in female placentae. Paternal obesity increased ER stress-related protein levels (ATF6 and PERK) in the fetal liver and altered hepatic expression of gluconeogenic factors at E18.5. Offspring of obese fathers were glucose intolerant and had impaired whole-body energy metabolism, with more pronounced effects in female offspring. Metabolic deficits in offspring due to paternal obesity may be mediated by sex-specific changes in placental vessel structure and integrity that contribute to placental hypoxia and may lead to poor fetal oxygenation and impairments in fetal metabolic signaling pathways in the liver.
Collapse
Affiliation(s)
- Patrycja A Jazwiec
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S 4L8, Canada
| | - Violet S Patterson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S 4L8, Canada
| | - Tatiane A Ribeiro
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S 4L8, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton L8S 4L8, Canada.,Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Paraná 87020-900, Brazil
| | - Erica Yeo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S 4L8, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton L8S 4L8, Canada
| | - Katherine M Kennedy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S 4L8, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton L8S 4L8, Canada
| | - Paulo C F Mathias
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Paraná 87020-900, Brazil
| | - Jim J Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S 4L8, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton L8S 4L8, Canada.,Department of Pediatrics, McMaster University, Hamilton L8S 4L8, Canada.,Department of Obstetrics and Gynecology, McMaster University, Hamilton L8S 4L8, Canada
| |
Collapse
|
33
|
Savva C, Helguero LA, González-Granillo M, Melo T, Couto D, Buyandelger B, Gustafsson S, Liu J, Domingues MR, Li X, Korach-André M. Maternal high-fat diet programs white and brown adipose tissue lipidome and transcriptome in offspring in a sex- and tissue-dependent manner in mice. Int J Obes (Lond) 2022; 46:831-842. [PMID: 34997206 PMCID: PMC8960419 DOI: 10.1038/s41366-021-01060-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 12/10/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The prevalence of overweight and obesity among children has drastically increased during the last decades and maternal obesity has been demonstrated as one of the ultimate factors. Nutrition-stimulated transgenerational regulation of key metabolic genes is fundamental to the developmental origins of the metabolic syndrome. Fetal nutrition may differently influence female and male offspring. METHODS Mice dam were fed either a control diet or a high-fat diet (HFD) for 6-week prior mating and continued their respective diet during gestation and lactation. At weaning, female and male offspring were fed the HFD until sacrifice. White (WAT) and brown (BAT) adipose tissues were investigated in vivo by nuclear magnetic resonance at two different timepoints in life (midterm and endterm) and tissues were collected at endterm for lipidomic analysis and RNA sequencing. We explored the sex-dependent metabolic adaptation and gene programming changes by maternal HFD in visceral AT (VAT), subcutaneous AT (SAT) and BAT of offspring. RESULTS We show that the triglyceride profile varies between adipose depots, sexes and maternal diet. In female offspring, maternal HFD remodels the triglycerides profile in SAT and BAT, and increases thermogenesis and cell differentiation in BAT, which may prevent metabolic complication later in life. Male offspring exhibit whitening of BAT and hyperplasia in VAT when born from high-fat mothers, with impaired metabolic profile. Maternal HFD differentially programs gene expression in WAT and BAT of female and male offspring. CONCLUSION Maternal HFD modulates metabolic profile in offspring in a sex-dependent manner. A sex- and maternal diet-dependent gene programming exists in VAT, SAT, and BAT which may be key player in the sexual dimorphism in the metabolic adaptation later in life.
Collapse
Affiliation(s)
- Christina Savva
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Luisa A Helguero
- Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Marcela González-Granillo
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Tânia Melo
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Daniela Couto
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Byambajav Buyandelger
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Sonja Gustafsson
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jianping Liu
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Xidan Li
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Marion Korach-André
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden.
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden.
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
34
|
Bouret SG. Developmental programming of hypothalamic melanocortin circuits. Exp Mol Med 2022; 54:403-413. [PMID: 35474338 PMCID: PMC9076880 DOI: 10.1038/s12276-021-00625-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 01/14/2023] Open
Abstract
The melanocortin system plays a critical role in the central regulation of food intake and energy balance. This system consists of neurons producing pro-opiomelanocortin (POMC), melanocortin receptors (MC4Rs), and the endogenous antagonist agouti-related peptide (AgRP). Pomc and Mc4r deficiency in rodents and humans causes early onset of obesity, whereas a loss of Agrp function is associated with leanness. Accumulating evidence shows that many chronic diseases, including obesity, might originate during early life. The melanocortin system develops during a relatively long period beginning during embryonic life with the birth of POMC and AgRP neurons and continuing postnatally with the assembly of their neuronal circuitry. The development of the melanocortin system requires the tight temporal regulation of molecular factors, such as transcription factors and axon guidance molecules, and cellular mechanisms, such as autophagy. It also involves a complex interplay of endocrine and nutritional factors. The disruption of one or more of these developmental factors can lead to abnormal maturation and function of the melanocortin system and has profound metabolic consequences later in life.
Collapse
Affiliation(s)
- Sebastien G Bouret
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition Research Center, UMR-S 1172, Lille, 59000, France.
- University of Lille, FHU 1,000 Days for Health, Lille, 59000, France.
| |
Collapse
|
35
|
Rasmussen JM, Thompson PM, Entringer S, Buss C, Wadhwa PD. Fetal programming of human energy homeostasis brain networks: Issues and considerations. Obes Rev 2022; 23:e13392. [PMID: 34845821 DOI: 10.1111/obr.13392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/29/2021] [Accepted: 10/24/2021] [Indexed: 02/07/2023]
Abstract
In this paper, we present a transdisciplinary framework and testable hypotheses regarding the process of fetal programming of energy homeostasis brain circuitry. Our model proposes that key aspects of energy homeostasis brain circuitry already are functional by the time of birth (with substantial interindividual variation); that this phenotypic variation at birth is an important determinant of subsequent susceptibility for energy imbalance and childhood obesity risk; and that this brain circuitry exhibits developmental plasticity, in that it is influenced by conditions during intrauterine life, particularly maternal-placental-fetal endocrine, immune/inflammatory, and metabolic processes and their upstream determinants. We review evidence that supports the scientific premise for each element of this formulation, identify future research directions, particularly recent advances that may facilitate a better quantification of the ontogeny of energy homeostasis brain networks, highlight animal and in vitro-based approaches that may better address the determinants of interindividual variation in energy homeostasis brain networks, and discuss the implications of this formulation for the development of strategies targeted towards the primary prevention of childhood obesity.
Collapse
Affiliation(s)
- Jerod M Rasmussen
- Development, Health and Disease Research Program, University of California, Irvine, California, USA.,Department of Pediatrics, University of California, Irvine, California, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Sonja Entringer
- Development, Health and Disease Research Program, University of California, Irvine, California, USA.,Department of Pediatrics, University of California, Irvine, California, USA.,Department of Medical Psychology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Departments of Psychiatry and Human Behavior, Obstetrics and Gynecology, Epidemiology, University of California, Irvine, California, USA
| | - Claudia Buss
- Development, Health and Disease Research Program, University of California, Irvine, California, USA.,Department of Pediatrics, University of California, Irvine, California, USA.,Department of Medical Psychology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Departments of Psychiatry and Human Behavior, Obstetrics and Gynecology, Epidemiology, University of California, Irvine, California, USA
| | - Pathik D Wadhwa
- Development, Health and Disease Research Program, University of California, Irvine, California, USA.,Department of Pediatrics, University of California, Irvine, California, USA.,Departments of Psychiatry and Human Behavior, Obstetrics and Gynecology, Epidemiology, University of California, Irvine, California, USA.,Department of Obstetrics and Gynecology, University of California, Irvine, California, USA.,Department of Epidemiology, University of California, Irvine, California, USA
| |
Collapse
|
36
|
Ajoolabady A, Liu S, Klionsky DJ, Lip GYH, Tuomilehto J, Kavalakatt S, Pereira DM, Samali A, Ren J. ER stress in obesity pathogenesis and management. Trends Pharmacol Sci 2022; 43:97-109. [PMID: 34893351 PMCID: PMC8796296 DOI: 10.1016/j.tips.2021.11.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
Given the unprecedented global pandemic of obesity, a better understanding of the etiology of adiposity will be necessary to ensure effective management of obesity and related complications. Among the various potential factors contributing to obesity, endoplasmic reticulum (ER) stress refers to a state of excessive protein unfolding or misfolding that is commonly found in metabolic diseases including diabetes mellitus, insulin resistance (IR), and non-alcoholic fatty liver disease, although its role in obesogenesis remains controversial. ER stress is thought to drive adiposity by dampening energy expenditure, making ER stress a likely therapeutic target for the management of obesity. We summarize the role of ER stress and the ER stress response in the onset and development of obesity, and discuss the underlying mechanisms involved with a view to identifying novel therapeutic strategies for obesity prevention and management.
Collapse
Affiliation(s)
- Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Simin Liu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Departments of Epidemiology, Medicine, and Surgery and Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gregory Y H Lip
- University of Liverpool Institute of Ageing and Chronic Disease, Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | - Jaakko Tuomilehto
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland; Department of Public Health, University of Helsinki, Helsinki, Finland; Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sina Kavalakatt
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, Dasman, Kuwait
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
37
|
Furigo IC, Dearden L. Mechanisms mediating the impact of maternal obesity on offspring hypothalamic development and later function. Front Endocrinol (Lausanne) 2022; 13:1078955. [PMID: 36619540 PMCID: PMC9813846 DOI: 10.3389/fendo.2022.1078955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
As obesity rates have risen around the world, so to have pregnancies complicated by maternal obesity. Obesity during pregnancy is not only associated with negative health outcomes for the mother and the baby during pregnancy and birth, there is also strong evidence that exposure to maternal obesity causes an increased risk to develop obesity, diabetes and cardiovascular disease later in life. Animal models have demonstrated that increased weight gain in offspring exposed to maternal obesity is usually preceded by increased food intake, implicating altered neuronal control of food intake as a likely area of change. The hypothalamus is the primary site in the brain for maintaining energy homeostasis, which it coordinates by sensing whole body nutrient status and appropriately adjusting parameters including food intake. The development of the hypothalamus is plastic and regulated by metabolic hormones such as leptin, ghrelin and insulin, making it vulnerable to disruption in an obese in utero environment. This review will summarise how the hypothalamus develops, how maternal obesity impacts on structure and function of the hypothalamus in the offspring, and the factors that are altered in an obese in utero environment that may mediate the permanent changes to hypothalamic function in exposed individuals.
Collapse
Affiliation(s)
- Isadora C. Furigo
- Centre for Sport, Exercise and Life Sciences, School of Life Sciences, Coventry University, Coventry, United Kingdom
| | - Laura Dearden
- Metabolic Research Laboratories, Wellcome MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Laura Dearden,
| |
Collapse
|
38
|
Lanzillo M, Gervais M, Croizier S. Ontogeny of the Projections From the Dorsomedial Division of the Anterior Bed Nucleus of the Stria Terminalis to Hypothalamic Nuclei. Front Neurosci 2021; 15:748186. [PMID: 34916896 PMCID: PMC8669758 DOI: 10.3389/fnins.2021.748186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/27/2021] [Indexed: 12/01/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) is a telencephalic structure well-connected to hypothalamic regions known to control goal-oriented behaviors such as feeding. In particular, we showed that the dorsomedial division of the anterior BNST innervate neurons of the paraventricular (PVH), dorsomedial (DMH), and arcuate (ARH) hypothalamic nuclei as well as the lateral hypothalamic area (LHA). While the anatomy of these projections has been characterized in mice, their ontogeny has not been studied. In this study, we used the DiI-based tract tracing approach to study the development of BNST projections innervating several hypothalamic areas including the PVH, DMH, ARH, and LHA. These results indicate that projections from the dorsomedial division of the anterior BNST to hypothalamic nuclei are immature at birth and substantially reach the PVH, DMH, and the LHA at P10. In the ARH, only sparse fibers are observed at P10, but their density increased markedly between P12 and P14. Collectively, these findings provide new insight into the ontogeny of hypothalamic circuits, and highlight the importance of considering the developmental context as a direct modulator in their proper formation.
Collapse
Affiliation(s)
- Marc Lanzillo
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Manon Gervais
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Sophie Croizier
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
39
|
Vickers MH. Early life nutrition and neuroendocrine programming. Neuropharmacology 2021; 205:108921. [PMID: 34902348 DOI: 10.1016/j.neuropharm.2021.108921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022]
Abstract
Alterations in the nutritional environment in early life can significantly increase the risk for obesity and a range of development of metabolic disorders in offspring in later life, effects that can be passed onto future generations. This process, termed development programming, provides the framework of the developmental origins of health and disease (DOHaD) paradigm. Early life nutritional compromise including undernutrition, overnutrition or specific macro/micronutrient deficiencies, results in a range of adverse health outcomes in offspring that can be further exacerbated by a poor postnatal nutritional environment. Although the mechanisms underlying programming remain poorly defined, a common feature across the phenotypes displayed in preclinical models is that of altered wiring of neuroendocrine circuits that regulate satiety and energy balance. As such, altered maternal nutritional exposures during critical early periods of developmental plasticity can result in aberrant hardwiring of these circuits with lasting adverse consequences for the offspring. There is also increasing evidence around the role of an altered epigenome and the gut-brain axis in mediating some of the central programming effects observed. Further, although such programming was once considered to result in a permanent change in developmental trajectory, there is evidence, at least from preclinical models, that programming can be reversed via targeted nutritional manipulations during early development. Further work is required at a mechanistic level to allow for identification for early markers of later disease risk, delineation of sex-specific effects and pathways to implementation of strategies aimed at breaking the transgenerational transmission of disease.
Collapse
Affiliation(s)
- M H Vickers
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand.
| |
Collapse
|
40
|
Ajoolabady A, Wang S, Kroemer G, Klionsky DJ, Uversky VN, Sowers JR, Aslkhodapasandhokmabad H, Bi Y, Ge J, Ren J. ER Stress in Cardiometabolic Diseases: From Molecular Mechanisms to Therapeutics. Endocr Rev 2021; 42:839-871. [PMID: 33693711 DOI: 10.1210/endrev/bnab006] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 02/08/2023]
Abstract
The endoplasmic reticulum (ER) hosts linear polypeptides and fosters natural folding of proteins through ER-residing chaperones and enzymes. Failure of the ER to align and compose proper protein architecture leads to accumulation of misfolded/unfolded proteins in the ER lumen, which disturbs ER homeostasis to provoke ER stress. Presence of ER stress initiates the cytoprotective unfolded protein response (UPR) to restore ER homeostasis or instigates a rather maladaptive UPR to promote cell death. Although a wide array of cellular processes such as persistent autophagy, dysregulated mitophagy, and secretion of proinflammatory cytokines may contribute to the onset and progression of cardiometabolic diseases, it is well perceived that ER stress also evokes the onset and development of cardiometabolic diseases, particularly cardiovascular diseases (CVDs), diabetes mellitus, obesity, and chronic kidney disease (CKD). Meanwhile, these pathological conditions further aggravate ER stress, creating a rather vicious cycle. Here in this review, we aimed at summarizing and updating the available information on ER stress in CVDs, diabetes mellitus, obesity, and CKD, hoping to offer novel insights for the management of these cardiometabolic comorbidities through regulation of ER stress.
Collapse
Affiliation(s)
- Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
| | - Shuyi Wang
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
- School of Medicine Shanghai University, Shanghai 200444, China
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | - James R Sowers
- Dalton and Diabetes and Cardiovascular Center, University of Missouri Columbia, Columbia, Missouri 65212, USA
| | | | - Yaguang Bi
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Jun Ren
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
41
|
Zhou P, Guan H, Guo Y, Zhu L, Liu X. Maternal High-Fat Diet Programs Renal Peroxisomes and Activates NLRP3 Inflammasome-Mediated Pyroptosis in the Rat Fetus. J Inflamm Res 2021; 14:5095-5110. [PMID: 34675590 PMCID: PMC8502058 DOI: 10.2147/jir.s329972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/21/2021] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Maternal obesity impairs kidney development and function of the offspring and leads to a greater risk of kidney disease in adulthood. The present study aimed to investigate the link between peroxisomes, oxidative stress (OS), and inflammasomes in the fetal kidney of maternal obesity rats and to explore the potential therapeutic effects of the antioxidant pyrroloquinoline quinone (PQQ). METHODS Maternal obesity rats were developed by administration of a high fat diet plus supplementation with PQQ (40 mg/kg body weight) as a potential therapy. Renal histology was observed by Periodic Acid-Schiff staining. The expression profiles of peroxins, fatty acid β-oxidation enzymes, antioxidants, and the regulators of the unfolded protein response (UPR) pathway and NLRP3 inflammasome were analyzed in the kidneys and tubular epithelial cells (TECs) from near-term fetuses (embryonic day 20). RESULTS The present work revealed that: 1) a maternal high fat diet (MHF) led to higher blood pressure in adult offspring; 2) MHF led to downregulation of peroxisome markers PEX3 and 14 in fetal kidneys; 3) the antioxidant SOD2 and catalase were decreased, and oxidative stress marker Ephx2 was increased; 4) MHF-induced activation of the UPR pathway; 5) the KEAP1-NRF2 pathway was activated; 6) activation of the NLRP3 inflammasome led to secretion of pro-inflammation factors; 7) in TECs, the changes in PEXs and NLRP3 are similar to tissues, but UPR and NRF2 pathways showed opposite trends; 8) and the antioxidant PQQ alleviated maternal lipotoxicity by decreasing ROS levels and inhibiting activation of ER stress and inflammasome in fetal kidney. CONCLUSION A maternal high fat diet decreased the number of peroxisomes, subsequently activated OS and inflammasomes, resulting in pyroptosis and apoptosis in fetal kidney. The antioxidant PQQ served a protective role against the effects of lipotoxicity on kidney programming and, thus, is a potential candidate to prevent maternal obesity-induced renal programming.
Collapse
Affiliation(s)
- Pei Zhou
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People’s Republic of China
| | - Hongbo Guan
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People’s Republic of China
| | - Yanyan Guo
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People’s Republic of China
| | - Liangliang Zhu
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People’s Republic of China
| | - Xiaomei Liu
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People’s Republic of China
| |
Collapse
|
42
|
Ullah R, Rauf N, Nabi G, Yi S, Yu-Dong Z, Fu J. Mechanistic insight into high-fat diet-induced metabolic inflammation in the arcuate nucleus of the hypothalamus. Biomed Pharmacother 2021; 142:112012. [PMID: 34388531 DOI: 10.1016/j.biopha.2021.112012] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022] Open
Abstract
A high-fat diet (HFD) is linked with cytokines production by non-neuronal cells within the hypothalamus, which mediates metabolic inflammation. These cytokines then activate different inflammatory mediators in the arcuate nucleus of the hypothalamus (ARC), a primary hypothalamic area accommodating proopiomelanocortin (POMC) and agouti-related peptide (AGRP) neurons, first-order neurons that sense and integrate peripheral metabolic signals and then respond accordingly. These mediators, such as inhibitor of κB kinase-β (IKKβ), suppression of cytokine signaling 3 (SOCS3), c-Jun N-terminal kinases (JNKs), protein kinase C (PKC), etc., cause insulin and leptin resistance in POMC and AGRP neurons and support obesity and related metabolic complications. On the other hand, inhibition of these mediators has been shown to counteract the impaired metabolism. Therefore, it is important to discuss the contribution of neuronal and non-neuronal cells in HFD-induced hypothalamic inflammation. Furthermore, understanding few other questions, such as the diets causing hypothalamic inflammation, the gender disparity in response to HFD feeding, and how hypothalamic inflammation affects ARC neurons to cause impaired metabolism, will be helpful for the development of therapeutic approaches to prevent or treat HFD-induced obesity.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Naveed Rauf
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Ghulam Nabi
- Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China; Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Shen Yi
- Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| | - Zhou Yu-Dong
- Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; National Clinical Research Center for Child Health, Hangzhou 310052, China; National Children's Regional Medical Center, Hangzhou 310052, China.
| |
Collapse
|
43
|
Fatty acids role on obesity induced hypothalamus inflammation: From problem to solution – A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Natarajan SK, Bruett T, Muthuraj PG, Sahoo PK, Power J, Mott JL, Hanson C, Anderson-Berry A. Saturated free fatty acids induce placental trophoblast lipoapoptosis. PLoS One 2021; 16:e0249907. [PMID: 33886600 PMCID: PMC8062006 DOI: 10.1371/journal.pone.0249907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Obesity during pregnancy increases the risk for maternal complications like gestational diabetes, preeclampsia, and maternal inflammation. Maternal obesity also increases the risk of childhood obesity, intrauterine growth restriction (IUGR) and diabetes to the offspring. Increased circulating free fatty acids (FFAs) in obesity due to adipose tissue lipolysis induces lipoapoptosis to hepatocytes, cholangiocytes, and pancreatic-β-cells. During the third trimester of human pregnancy, there is an increase in maternal lipolysis and release of FFAs into the circulation. It is currently unknown if increased FFAs during gestation as a result of maternal obesity cause placental cell lipoapoptosis. Increased exposure of FFAs during maternal obesity has been shown to result in placental lipotoxicity. The objective of the present study is to determine saturated FFA-induced trophoblast lipoapoptosis and also to test the protective role of monounsaturated fatty acids against FFA-induced trophoblast lipoapoptosis using in vitro cell culture model. Here, we hypothesize that saturated FFAs induce placental trophoblast lipoapoptosis, which was prevented by monounsaturated fatty acids. METHODS Biochemical and structural markers of apoptosis by characteristic nuclear morphological changes with DAPI staining, and caspase 3/7 activity was assessed. Cleaved PARP and cleaved caspase 3 were examined by western blot analysis. RESULTS Treatment of trophoblast cell lines, JEG-3 and JAR cells with palmitate (PA) or stearate (SA) induces trophoblast lipoapoptosis as evidenced by a significant increase in apoptotic nuclear morphological changes and caspase 3/7 activity. We observed that saturated FFAs caused a concentration-dependent increase in placental trophoblast lipoapoptosis. We also observed that monounsaturated fatty acids like palmitoleate and oleate mitigates placental trophoblast lipoapoptosis caused due to PA exposure. CONCLUSION We show that saturated FFAs induce trophoblast lipoapoptosis. Co-treatment of monounsaturated fatty acids like palmitoleate and oleate protects against FFA-induced trophoblast lipoapoptosis.
Collapse
Affiliation(s)
- Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States of America
- * E-mail:
| | - Taylor Bruett
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Philma Glora Muthuraj
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Prakash K. Sahoo
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Jillian Power
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Justin L. Mott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Corrine Hanson
- College of Allied Health Professions Medical Nutrition Education, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Ann Anderson-Berry
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States of America
| |
Collapse
|
45
|
Amato AA, Wheeler HB, Blumberg B. Obesity and endocrine-disrupting chemicals. Endocr Connect 2021; 10:R87-R105. [PMID: 33449914 PMCID: PMC7983487 DOI: 10.1530/ec-20-0578] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Obesity is now a worldwide pandemic. The usual explanation given for the prevalence of obesity is that it results from consumption of a calorie dense diet coupled with physical inactivity. However, this model inadequately explains rising obesity in adults and in children over the past few decades, indicating that other factors must be important contributors. An endocrine-disrupting chemical (EDC) is an exogenous chemical, or mixture that interferes with any aspect of hormone action. EDCs have become pervasive in our environment, allowing humans to be exposed daily through ingestion, inhalation, and direct dermal contact. Exposure to EDCs has been causally linked with obesity in model organisms and associated with obesity occurrence in humans. Obesogens promote adipogenesis and obesity, in vivo, by a variety of mechanisms. The environmental obesogen model holds that exposure to obesogens elicits a predisposition to obesity and that such exposures may be an important yet overlooked factor in the obesity pandemic. Effects produced by EDCs and obesogen exposure may be passed to subsequent, unexposed generations. This "generational toxicology" is not currently factored into risk assessment by regulators but may be another important factor in the obesity pandemic as well as in the worldwide increases in the incidence of noncommunicable diseases that plague populations everywhere. This review addresses the current evidence on how obesogens affect body mass, discusses long-known chemicals that have been more recently identified as obesogens, and how the accumulated knowledge can help identify EDCs hazards.
Collapse
Affiliation(s)
- Angelica Amorim Amato
- Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, Brazil
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Hailey Brit Wheeler
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
- Department of Biomedical Engineering, University of California, Irvine, California, USA
| |
Collapse
|
46
|
Mechanisms Underlying the Cognitive and Behavioural Effects of Maternal Obesity. Nutrients 2021; 13:nu13010240. [PMID: 33467657 PMCID: PMC7829712 DOI: 10.3390/nu13010240] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
The widespread consumption of 'western'-style diets along with sedentary lifestyles has led to a global epidemic of obesity. Epidemiological, clinical and preclinical evidence suggests that maternal obesity, overnutrition and unhealthy dietary patterns programs have lasting adverse effects on the physical and mental health of offspring. We review currently available preclinical and clinical evidence and summarise possible underlying neurobiological mechanisms by which maternal overnutrition may perturb offspring cognitive function, affective state and psychosocial behaviour, with a focus on (1) neuroinflammation; (2) disrupted neuronal circuities and connectivity; and (3) dysregulated brain hormones. We briefly summarise research implicating the gut microbiota in maternal obesity-induced changes to offspring behaviour. In animal models, maternal obesogenic diet consumption disrupts CNS homeostasis in offspring, which is critical for healthy neurodevelopment, by altering hypothalamic and hippocampal development and recruitment of glial cells, which subsequently dysregulates dopaminergic and serotonergic systems. The adverse effects of maternal obesogenic diets are also conferred through changes to hormones including leptin, insulin and oxytocin which interact with these brain regions and neuronal circuits. Furthermore, accumulating evidence suggests that the gut microbiome may directly and indirectly contribute to these maternal diet effects in both human and animal studies. As the specific pathways shaping abnormal behaviour in offspring in the context of maternal obesogenic diet exposure remain unknown, further investigations are needed to address this knowledge gap. Use of animal models permits investigation of changes in neuroinflammation, neurotransmitter activity and hormones across global brain network and sex differences, which could be directly and indirectly modulated by the gut microbiome.
Collapse
|
47
|
Loganathan N, McIlwraith EK, Belsham DD. Bisphenol A Induces Agrp Gene Expression in Hypothalamic Neurons through a Mechanism Involving ATF3. Neuroendocrinology 2021; 111:678-695. [PMID: 32575098 DOI: 10.1159/000509592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/22/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Bisphenol A (BPA) is a ubiquitous endocrine disrupting chemical and obesogen. Although limited evidence exists of the effects of BPA on hypothalamic agouti-related peptide (AgRP) levels, the mechanisms underlying these effects remain unknown. Given that AgRP is a potent orexigenic neuropeptide, determining the mechanism by which BPA increases AgRP is critical to preventing the progression to metabolic disease. METHODS Using quantitative reverse transcriptase polymerase chain reaction, we investigated the response of Agrp-expressing mouse hypothalamic cell lines to BPA treatment. The percentage of total BPA entering hypothalamic cells in culture was quantified using an enzyme-linked immunosorbent assay. In order to identify the mechanism underlying BPA-mediated changes in Agrp, siRNA knockdown of transcription factors, FOXO1, CHOP, ATF3, ATF4, ATF6, and small-molecule inhibitors of endoplasmic reticulum stress, JNK or MEK/ERK were used. RESULTS BPA increased mRNA levels of Agrp in six hypothalamic cell lines (mHypoA-59, mHypoE-41, mHypoA-2/12, mHypoE-46, mHypoE-44, and mHypoE-42). Interestingly, only 18% of the total BPA in the culture medium entered the cells after 24 h, suggesting that the exposure concentration is much lower than the treatment concentration. BPA increased pre-Agrp mRNA levels, indicating increased Agrp transcription. Knockdown of the transcription factor ATF3 prevented BPA-mediated increase in Agrp, pre-Agrp, and in part Npy mRNA levels. However, chemical chaperone, sodium phenylbutyrate, JNK inhibitor, SP600125, or the MEK/ERK inhibitor PD0352901 did not block BPA-induced Agrp upregulation. CONCLUSION Overall, these results indicate that hypothalamic Agrp is susceptible to dysregulation by BPA and implicate ATF3 as a common mediator of the orexigenic effects of BPA in hypothalamic neurons.
Collapse
Affiliation(s)
- Neruja Loganathan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Emma K McIlwraith
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada,
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada,
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada,
| |
Collapse
|
48
|
Dearden L, Buller S, Furigo IC, Fernandez-Twinn DS, Ozanne SE. Maternal obesity causes fetal hypothalamic insulin resistance and disrupts development of hypothalamic feeding pathways. Mol Metab 2020; 42:101079. [PMID: 32919096 PMCID: PMC7549144 DOI: 10.1016/j.molmet.2020.101079] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
Objective Perinatal exposure to maternal obesity results in predisposition of offspring to develop obesity later in life. Increased weight gain in offspring exposed to maternal obesity is usually associated with hyperphagia, implicating altered central regulation of food intake as a cause. We aimed to define how maternal obesity impacts early development of the hypothalamus to program lasting dysfunction in feeding regulatory pathways. Methods Mice offspring of diet-induced obese mothers were compared to the offspring of lean control mothers. We analysed gene expression in the fetal hypothalamus, alongside neurosphere assays to investigate the effects of maternal obesity on neural progenitor cell proliferation in vitro. Western blotting was used to investigate the insulin signalling pathway in the fetal hypothalamus. Characterisation of cell type and neuropeptide profile in adulthood was linked with analyses of feeding behaviour. Results There was a reduction in the expression of proliferative genes in the fetal hypothalamus of offspring exposed to maternal obesity. This reduction in proliferation was maintained in vitro when hypothalamic neural progenitor cells were grown as neurospheres. Hypothalamic fetal gene expression and neurosphere growth correlated with maternal body weight and insulin levels. Foetuses of obese mothers showed hypothalamic insulin resistance, which may be causative of reduced proliferation. Furthermore, maternal obesity activated the Notch signalling pathway in neonatal offspring hypothalamus, resulting in decreased neurogenesis. Adult offspring of obese mothers displayed an altered ratio of anorexigenic and orexigenic signals in the arcuate nucleus, associated with an inability to maintain energy homeostasis when metabolically challenged. Conclusions These findings show that maternal obesity alters the molecular signature in the developing hypothalamus, which is associated with disrupted growth and development of hypothalamic precursor cells and defective feeding regulation in adulthood. This is the first report of fetal hypothalamic insulin resistance in an obese pregnancy and suggests a mechanism by which maternal obesity causes permanent changes to hypothalamic structure and function. Exposure to maternal obesity reduces hypothalamic neural progenitor cell growth. Maternal obesity activates hypothalamic Notch signalling and reduces neurogenesis. Maternal obesity causes fetal hypothalamic insulin resistance. Maternal obesity alters the ratio of anorexigenic/orexigenic signals in ARC. Changes in food intake precede increased adiposity in offspring of obese dams.
Collapse
Affiliation(s)
- L Dearden
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Hospital, Cambridge, CB20QQ, United Kingdom.
| | - S Buller
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Hospital, Cambridge, CB20QQ, United Kingdom
| | - I C Furigo
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Hospital, Cambridge, CB20QQ, United Kingdom
| | - D S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Hospital, Cambridge, CB20QQ, United Kingdom
| | - S E Ozanne
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Hospital, Cambridge, CB20QQ, United Kingdom
| |
Collapse
|
49
|
Relationship of prenatal maternal obesity and diabetes to offspring neurodevelopmental and psychiatric disorders: a narrative review. Int J Obes (Lond) 2020; 44:1981-2000. [PMID: 32494038 PMCID: PMC7508672 DOI: 10.1038/s41366-020-0609-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 04/20/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
Abstract
Obesity and diabetes is a worldwide public health problem among women of reproductive age. This narrative review highlights recent epidemiological studies regarding associations of maternal obesity and diabetes with neurodevelopmental and psychiatric disorders in offspring, and provides an overview of plausible underlying mechanisms and challenges for future human studies. A comprehensive search strategy selected terms that corresponded to the domains of interest (maternal obesity, different types of diabetes, offspring cognitive functions and neuropsychiatric disorders). The databases searched for articles published between January 2010 and April 2019 were PubMed, Web of Science and CINAHL. Evidence from epidemiological studies strongly suggests that maternal pre-pregnancy obesity is associated with increased risks for autism spectrum disorder, attention-deficit hyperactivity disorder and cognitive dysfunction with modest effect sizes, and that maternal diabetes is associated with the risk of the former two disorders. The influence of maternal obesity on other psychiatric disorders is less well studied, but there are reports of associations with increased risks for offspring depression, anxiety, schizophrenia and eating disorders, at modest effect sizes. It remains unclear whether these associations are due to intrauterine mechanisms or explained by confounding family-based sociodemographic, lifestyle and genetic factors. The plausible underlying mechanisms have been explored primarily in animal models, and are yet to be further investigated in human studies.
Collapse
|
50
|
Morris A. Maternal obesity disrupts hypothalamic development. Nat Rev Endocrinol 2020; 16:300-301. [PMID: 32235874 DOI: 10.1038/s41574-020-0356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|