1
|
Park H, Kam TI, Dawson VL, Dawson TM. α-Synuclein pathology as a target in neurodegenerative diseases. Nat Rev Neurol 2025; 21:32-47. [PMID: 39609631 DOI: 10.1038/s41582-024-01043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
α-Synuclein misfolds into pathological forms that lead to various neurodegenerative diseases known collectively as α-synucleinopathies. In this Review, we provide a comprehensive overview of pivotal advances in α-synuclein research. We examine structural features and physiological functions of α-synuclein and summarize current insights into key post-translational modifications, such as nitration, phosphorylation, ubiquitination, sumoylation and truncation, considering their contributions to neurodegeneration. We also highlight the existence of disease-specific α-synuclein strains and their mechanisms of pathological spread, and discuss seed amplification assays and PET tracers as emerging diagnostic tools for detecting pathological α-synuclein in clinical settings. We also discuss α-synuclein aggregation and clearance mechanisms, and review cell-autonomous and non-cell-autonomous processes that contribute to neuronal death, including the roles of adaptive and innate immunity in α-synuclein-driven neurodegeneration. Finally, we highlight promising therapeutic approaches that target pathological α-synuclein and provide insights into emerging areas of research.
Collapse
Affiliation(s)
- Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Wu S, Schekman RW. Intercellular transmission of alpha-synuclein. Front Mol Neurosci 2024; 17:1470171. [PMID: 39324117 PMCID: PMC11422390 DOI: 10.3389/fnmol.2024.1470171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
An emerging theme in Parkinson's disease (PD) is the propagation of α-synuclein pathology as the disease progresses. Research involving the injection of preformed α-synuclein fibrils (PFFs) in animal models has recapitulated the pathological spread observed in PD patients. At the cellular and molecular levels, this intercellular spread requires the translocation of α-synuclein across various membrane barriers. Recent studies have identified subcellular organelles and protein machineries that facilitate these processes. In this review, we discuss the proposed pathways for α-synuclein intercellular transmission, including unconventional secretion, receptor-mediated uptake, endosome escape and nanotube-mediated transfer. In addition, we advocate for a rigorous examination of the evidence for the localization of α-synuclein in extracellular vesicles.
Collapse
Affiliation(s)
| | - Randy W. Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
3
|
Ibrahim D, Simó C, Brown EL, Shmuel S, Panikar SS, Benton A, DeWeerd R, Dehdashti F, Park H, Pereira PMR. PD-L1 has a heterogeneous and dynamic expression in gastric cancer with implications for immunoPET. Front Immunol 2024; 15:1405485. [PMID: 38915392 PMCID: PMC11194338 DOI: 10.3389/fimmu.2024.1405485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction This study aimed to investigate the dynamics of programmed death-ligand 1 (PD-L1) expression, spatial heterogeneity, and binding affinity of FDA-approved anti-PD-L1 antibodies (avelumab and atezolizumab) in gastric cancer. Additionally, we determined how PD-L1 glycosylation impacts antibody accumulation in gastric cancer cells. Methods Dynamic PD-L1 expression was examined in NCIN87 gastric cancer cells. Comparative binding studies of avelumab and atezolizumab were conducted in gastric cancer models, both in vitro and in vivo. Antibody uptake in tumors was visualized through positron emission tomography (PET) imaging. PD-L1 glycosylation status was determined via Western blot analyses before and after PNGase F treatment. Results Consistent findings revealed time-dependent PD-L1 induction in NCIN87 gastric cancer cells and spatial heterogeneity in tumors, as shown by PET imaging and immunofluorescence. Avelumab displayed superior binding affinity to NCIN87 cells compared to atezolizumab, confirmed by in vivo PET imaging and ex vivo biodistribution analyses. Notably, PD-L1 glycosylation at approximately 50 kDa was observed, with PNGase F treatment inducing a shift to 35 kDa in molecular weight. Tissue samples from patient-derived xenografts (PDXs) validated the presence of both glycosylated and deglycosylated PD-L1 (degPD-L1) forms in gastric cancer. Immunofluorescence microscopy and binding assays demonstrated enhanced avelumab binding post-deglycosylation. Discussion This study provides an understanding of dynamic and spatially heterogeneous PD-L1 expression in gastric cancer. Anti-PD-L1 immunoPET was able to visualize gastric tumors, and PD-L1 glycosylation has significant implications for antibody recognition. These insights contribute to demonstrating the complexities of PD-L1 in gastric cancer, holding relevance for refining PD-L1 imaging-based approaches.
Collapse
Affiliation(s)
- Dina Ibrahim
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Cristina Simó
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Emma L. Brown
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Shayla Shmuel
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Sandeep Surendra Panikar
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Alex Benton
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO, United States
| | - Rachel DeWeerd
- Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO, United States
| | - Farrokh Dehdashti
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Haeseong Park
- Gastrointestinal Cancer Center, Center for Cancer Therapeutic Innovation, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Patrícia M. R. Pereira
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
4
|
Mao X, Gu H, Kim D, Kimura Y, Wang N, Xu E, Kumbhar R, Ming X, Wang H, Chen C, Zhang S, Jia C, Liu Y, Bian H, Karuppagounder SS, Akkentli F, Chen Q, Jia L, Hwang H, Lee SH, Ke X, Chang M, Li A, Yang J, Rastegar C, Sriparna M, Ge P, Brahmachari S, Kim S, Zhang S, Shimoda Y, Saar M, Liu H, Kweon SH, Ying M, Workman CJ, Vignali DAA, Muller UC, Liu C, Ko HS, Dawson VL, Dawson TM. Aplp1 interacts with Lag3 to facilitate transmission of pathologic α-synuclein. Nat Commun 2024; 15:4663. [PMID: 38821932 PMCID: PMC11143359 DOI: 10.1038/s41467-024-49016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
Pathologic α-synuclein (α-syn) spreads from cell-to-cell, in part, through binding to the lymphocyte-activation gene 3 (Lag3). Here we report that amyloid β precursor-like protein 1 (Aplp1) interacts with Lag3 that facilitates the binding, internalization, transmission, and toxicity of pathologic α-syn. Deletion of both Aplp1 and Lag3 eliminates the loss of dopaminergic neurons and the accompanying behavioral deficits induced by α-syn preformed fibrils (PFF). Anti-Lag3 prevents the internalization of α-syn PFF by disrupting the interaction of Aplp1 and Lag3, and blocks the neurodegeneration induced by α-syn PFF in vivo. The identification of Aplp1 and the interplay with Lag3 for α-syn PFF induced pathology deepens our insight about molecular mechanisms of cell-to-cell transmission of pathologic α-syn and provides additional targets for therapeutic strategies aimed at preventing neurodegeneration in Parkinson's disease and related α-synucleinopathies.
Collapse
Affiliation(s)
- Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
| | - Hao Gu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Nanjing Brain Hospital, Nanjing, Jiangsu, 210029, PR China
- Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, PR China
| | - Donghoon Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Pharmacology, College of Medicine, Dong-A University, 32 Daesin Gongwwon-ro, Seo-gu, Busan, 49201, Republic of Korea
| | - Yasuyoshi Kimura
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ning Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Enquan Xu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ramhari Kumbhar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA
| | - Xiaotian Ming
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Haibo Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Chan Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Anesthesiology, West China Hospital, Sichuan University. The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai, 201210, China
| | - Chunyu Jia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai, 201210, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yuqing Liu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hetao Bian
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Senthilkumar S Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Fatih Akkentli
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA
| | - Qi Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Longgang Jia
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Heehong Hwang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Su Hyun Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xiyu Ke
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Michael Chang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Amanda Li
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jun Yang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Cyrus Rastegar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Manjari Sriparna
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Preston Ge
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Picower Institute for Learning and Memory, Cambridge, MA, 02139, USA
- Harvard-MIT MD/PhD Program, Harvard Medical School, Boston, MA, 02115, USA
| | - Saurav Brahmachari
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sangjune Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Biological Science and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Shu Zhang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yasushi Shimoda
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomiokamachi, Nagaoka, Niigata, 940-2188, Japan
| | - Martina Saar
- Institute for Pharmacy and Molecular Biotechnology IPMB, Department of Functional Genomics, University of Heidelberg, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Haiqing Liu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, School of Basic Medical Sciences (Institute of Basic Medical Sciences), Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Sin Ho Kweon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mingyao Ying
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 North Broadway, Baltimore, MD, 21205, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, 15232, USA
| | - Ulrike C Muller
- Institute for Pharmacy and Molecular Biotechnology IPMB, Department of Functional Genomics, University of Heidelberg, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai, 201210, China
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Santhosh Kumar S, Naseri NN, Pather SR, Hallacli E, Ndayisaba A, Buenaventura C, Acosta K, Roof J, Fazelinia H, Spruce LA, Luk K, Khurana V, Rhoades E, Shalem O. Sequential CRISPR screening reveals partial NatB inhibition as a strategy to mitigate alpha-synuclein levels in human neurons. SCIENCE ADVANCES 2024; 10:eadj4767. [PMID: 38335281 PMCID: PMC10857481 DOI: 10.1126/sciadv.adj4767] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
Alpha-synuclein (αSyn) protein levels correlate with the risk and severity of Parkinson's disease and related neurodegenerative diseases. Lowering αSyn is being actively investigated as a therapeutic modality. Here, we systematically map the regulatory network that controls endogenous αSyn using sequential CRISPR-knockout and -interference screens in an αSyn gene (SNCA)-tagged cell line and induced pluripotent stem cell-derived neurons (iNeurons). We uncover αSyn modifiers at multiple regulatory layers, with amino-terminal acetyltransferase B (NatB) enzymes being the most potent endogenous αSyn modifiers in both cell lines. Amino-terminal acetylation protects the cytosolic αSyn from rapid degradation by the proteasome in a Ube2w-dependent manner. Moreover, we show that pharmacological inhibition of methionyl-aminopeptidase 2, a regulator of NatB complex formation, attenuates endogenous αSyn in iNeurons carrying SNCA triplication. Together, our study reveals several gene networks that control endogenous αSyn, identifies mechanisms mediating the degradation of nonacetylated αSyn, and illustrates potential therapeutic pathways for decreasing αSyn levels in synucleinopathies.
Collapse
Affiliation(s)
- Saranya Santhosh Kumar
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nima N. Naseri
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarshan R. Pather
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erinc Hallacli
- Division of Movement Disorders and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Alain Ndayisaba
- Division of Movement Disorders and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Chris Buenaventura
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Karen Acosta
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Roof
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hossein Fazelinia
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lynn A. Spruce
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kelvin Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vikram Khurana
- Division of Movement Disorders and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Elizabeth Rhoades
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Ophir Shalem
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Birol M, Muñoz IID, Rhoades E. The C-terminus of α-Synuclein Regulates its Dynamic Cellular Internalization by Neurexin 1β. Mol Biol Cell 2023; 34:br21. [PMID: 37729016 PMCID: PMC10848939 DOI: 10.1091/mbc.e22-11-0496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/17/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023] Open
Abstract
The aggregation of the disordered neuronal protein, α-Synuclein (αS), is the primary pathological feature of Parkinson's disease. Current hypotheses favor cell-to-cell spread of αS species as underlying disease progression, driving interest in identifying the molecular species and cellular processes involved in cellular internalization of αS. Prior work from our lab identified the chemically specific interaction between αS and the presynaptic adhesion protein neurexin-1β (N1β) to be capable of driving cellular internalization of both monomer and aggregated forms of αS. Here we explore the physical basis of N1β-driven internalization of αS. Specifically, we show that spontaneous internalization of αS by SH-SY5Y and HEK293 cells expressing N1β requires essentially all of the membrane-binding domain of αS; αS constructs truncated beyond residue 90 bind to N1β in the plasma membrane of HEK cells, but are not internalized. Interestingly, before internalization, αS and N1β codiffuse rapidly in the plasma membrane. αS constructs that are not internalized show very slow mobility themselves, as well as slow N1β diffusion. Finally, we find that truncated αS is capable of blocking internalization of full-length αS. Our results draw attention to the potential therapeutic value of blocking αS-N1β interactions.
Collapse
Affiliation(s)
- Melissa Birol
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
- Max Delbrück Institute for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin 10115, Germany
| | | | - Elizabeth Rhoades
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
7
|
Schorova L, Bedard N, Khayachi A, Ho HH, Bolivar-Pedroso J, Huynh J, Piccirelli M, Wang Y, Plourde M, Luo W, Del Cid-Pellitero E, Shlaifer I, Castellanos-Montiel MJ, Yu Z, Valenzuela DVC, Lacalle-Aurioles M, Kriz A, Ye Y, Durcan TM, Wing SS. USP19 deubiquitinase inactivation regulates α-synuclein ubiquitination and inhibits accumulation of Lewy body-like aggregates in mice. NPJ Parkinsons Dis 2023; 9:157. [PMID: 38017009 PMCID: PMC10684503 DOI: 10.1038/s41531-023-00601-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
The USP19 deubiquitinase is found in a locus associated with Parkinson's Disease (PD), interacts with chaperonins, and promotes secretion of α-synuclein (α-syn) through the misfolding-associated protein secretion (MAPS) pathway. Since these processes might modulate the processing of α-syn aggregates in PD, we inactivated USP19 (KO) in mice expressing the A53T mutation of α-syn and in whom α-syn preformed fibrils (PFF) had been injected in the striatum. Compared to WT, KO brains showed decreased accumulation of phospho-synuclein (pSyn) positive aggregates. This improvement was associated with less activation of microglia and improved performance in a tail-suspension test. Exposure of primary neurons from WT and KO mice to PFF in vitro also led to decreased accumulation of pSyn aggregates. KO did not affect uptake of PFF nor propagation of aggregates in the cultured neurons. We conclude that USP19 instead modulates intracellular dynamics of aggregates. At an early time following PFF injection when the number of pSyn-positive neurons were similar in WT and KO brains, the KO neurons contained less aggregates. KO brain aggregates stained more intensely with anti-ubiquitin antibodies. Immunoprecipitation of soluble proteins from WT and KO brains with antibodies to pSyn showed higher levels of ubiquitinated oligomeric species in the KO samples. We propose that the improved pathology in USP19 KO brains may arise from decreased formation or enhanced clearance of the more ubiquitinated aggregates and/or enhanced disassembly towards more soluble oligomeric species. USP19 inhibition may represent a novel therapeutic approach that targets the intracellular dynamics of α-syn complexes.
Collapse
Affiliation(s)
- Lenka Schorova
- Department of Medicine, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Nathalie Bedard
- Department of Medicine, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Anouar Khayachi
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Hung-Hsiang Ho
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Joao Bolivar-Pedroso
- Department of Medicine, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Julie Huynh
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Mikaela Piccirelli
- Department of Medicine, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Yifei Wang
- Department of Medicine, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Marie Plourde
- Department of Medicine, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Wen Luo
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | - Irina Shlaifer
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - María José Castellanos-Montiel
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Ziqi Yu
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | | | - Anita Kriz
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Yihong Ye
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thomas M Durcan
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
| | - Simon S Wing
- Department of Medicine, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
8
|
Pan B, Gardner SM, Schultz K, Perez RM, Deng S, Shimogawa M, Sato K, Rhoades E, Marmorstein R, Petersson EJ. Semi-Synthetic CoA-α-Synuclein Constructs Trap N-Terminal Acetyltransferase NatB for Binding Mechanism Studies. J Am Chem Soc 2023; 145:14019-14030. [PMID: 37319422 PMCID: PMC10728591 DOI: 10.1021/jacs.3c03887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
N-terminal acetylation is a chemical modification carried out by N-terminal acetyltransferases. A major member of this enzyme family, NatB, acts on much of the human proteome, including α-synuclein (αS), a synaptic protein that mediates vesicle trafficking. NatB acetylation of αS modulates its lipid vesicle binding properties and amyloid fibril formation, which underlies its role in the pathogenesis of Parkinson's disease. Although the molecular details of the interaction between human NatB (hNatB) and the N-terminus of αS have been resolved, whether the remainder of the protein plays a role in interacting with the enzyme is unknown. Here, we execute the first synthesis, by native chemical ligation, of a bisubstrate inhibitor of NatB consisting of coenzyme A and full-length human αS, additionally incorporating two fluorescent probes for studies of conformational dynamics. We use cryo-electron microscopy (cryo-EM) to characterize the structural features of the hNatB/inhibitor complex and show that, beyond the first few residues, αS remains disordered when in complex with hNatB. We further probe changes in the αS conformation by single molecule Förster resonance energy transfer (smFRET) to reveal that the C-terminus expands when bound to hNatB. Computational models based on the cryo-EM and smFRET data help to explain the conformational changes as well as their implications for hNatB substrate recognition and specific inhibition of the interaction with αS. Beyond the study of αS and NatB, these experiments illustrate valuable strategies for the study of challenging structural biology targets through a combination of protein semi-synthesis, cryo-EM, smFRET, and computational modeling.
Collapse
Affiliation(s)
- Buyan Pan
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - Sarah M. Gardner
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kollin Schultz
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryann M. Perez
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - Sunbin Deng
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marie Shimogawa
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - Kohei Sato
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Elizabeth Rhoades
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Ronen Marmorstein
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - E. James Petersson
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Pan B, Gardner S, Schultz K, Perez RM, Deng S, Shimogawa M, Sato K, Rhoades E, Marmorstein R, Petersson EJ. Semi-synthetic CoA-α-Synuclein Constructs Trap N-terminal Acetyltransferase NatB for Binding Mechanism Studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535351. [PMID: 37066334 PMCID: PMC10104007 DOI: 10.1101/2023.04.03.535351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
N-terminal acetylation is a chemical modification carried out by N-terminal acetyltransferases (NATs). A major member of this enzyme family, NatB, acts on much of the human proteome, including α-synuclein (αS), a synaptic protein that mediates vesicle trafficking. NatB acetylation of αS modulates its lipid vesicle binding properties and amyloid fibril formation, which underlies its role in the pathogenesis of Parkinson's disease. Although the molecular details of the interaction between human NatB (hNatB) and the N-terminus of αS have been resolved, whether the remainder of the protein plays a role in interacting with the enzyme is unknown. Here we execute the first synthesis, by native chemical ligation, of a bisubstrate inhibitor of NatB consisting of coenzyme A and full-length human αS, additionally incorporating two fluorescent probes for studies of conformational dynamics. We use cryo-electron microscopy (cryo-EM) to characterize the structural features of the hNatB/inhibitor complex and show that, beyond the first few residues, αS remains disordered when in complex with hNatB. We further probe changes in the αS conformation by single molecule Förster resonance energy transfer (smFRET) to reveal that the C-terminus expands when bound to hNatB. Computational models based on the cryo-EM and smFRET data help to explain the conformational changes and their implications for hNatB substrate recognition and specific inhibition of the interaction with αS. Beyond the study of αS and NatB, these experiments illustrate valuable strategies for the study of challenging structural biology targets through a combination of protein semi-synthesis, cryo-EM, smFRET, and computational modeling.
Collapse
|
10
|
Sebastiao M, Babych M, Quittot N, Kumar K, Arnold AA, Marcotte I, Bourgault S. Development of a novel fluorescence assay for studying lipid bilayer perturbation induced by amyloidogenic peptides using cell plasma membrane vesicles. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184118. [PMID: 36621762 DOI: 10.1016/j.bbamem.2022.184118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/22/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
Numerous pathophysiological conditions are associated with the misfolding and aggregation of proteins into insoluble amyloid fibrils. The mechanisms by which this process leads to cellular dysfunction remain elusive, though several hypotheses point toward the perturbation of the cell plasma membrane by pre-fibrillar intermediates and/or amyloid growth. However, current models to study membrane perturbations are largely limited to synthetic lipid vesicles and most of experimental approaches cannot be transposed to complex cell-derived plasma membrane systems. Herein, vesicles originating from the plasma membrane of erythrocytes and β-pancreatic cells were used to study the perturbations induced by an amyloidogenic peptide, the islet amyloid polypeptide (IAPP). These biologically relevant lipid vesicles displayed a characteristic clustering in the presence of the amyloidogenic peptide, which was able to rupture membranes. By exploiting Förster resonance energy transfer (FRET), a rapid, simple, and potentially high-throughput assay to detect membrane perturbations of intact mammalian cell plasma membrane vesicles was implemented. The FRET kinetics of membrane perturbations closely correlated with the kinetics of thioflavin-T fluorescence associated with amyloid formation. This novel kinetics assay expands the toolbox available to study amyloid-associated membrane damage, bridging the gap between synthetic lipid vesicles and living cells.
Collapse
Affiliation(s)
- Mathew Sebastiao
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO, Quebec, QC, Canada
| | - Margaryta Babych
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO, Quebec, QC, Canada
| | - Noé Quittot
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO, Quebec, QC, Canada
| | - Kiran Kumar
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO, Quebec, QC, Canada
| | - Alexandre A Arnold
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO, Quebec, QC, Canada
| | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO, Quebec, QC, Canada.
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO, Quebec, QC, Canada.
| |
Collapse
|
11
|
Smith JK, Mellick GD, Sykes AM. The role of the endolysosomal pathway in α-synuclein pathogenesis in Parkinson's disease. Front Cell Neurosci 2023; 16:1081426. [PMID: 36704248 PMCID: PMC9871505 DOI: 10.3389/fncel.2022.1081426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disease that is characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta of the midbrain (SNpc). Extensive studies into genetic and cellular models of PD implicate protein trafficking as a prominent contributor to the death of these dopaminergic neurons. Considerable evidence also suggests the involvement of α-synuclein as a central component of the characteristic cell death in PD and it is a major structural constituent of proteinaceous inclusion bodies (Lewy bodies; LB). α-synuclein research has been a vital part of PD research in recent years, with newly discovered evidence suggesting that α-synuclein can propagate through the brain via prion-like mechanisms. Healthy cells can internalize toxic α-synuclein species and seed endogenous α-synuclein to form large, pathogenic aggregates and form LBs. A better understanding of how α-synuclein can propagate, enter and be cleared from the cell is vital for therapeutic strategies.
Collapse
|
12
|
Neupane S, De Cecco E, Aguzzi A. The Hidden Cell-to-Cell Trail of α-Synuclein Aggregates. J Mol Biol 2022:167930. [PMID: 36566800 DOI: 10.1016/j.jmb.2022.167930] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
The progressive accumulation of insoluble aggregates of the presynaptic protein alpha-synuclein (α-Syn) is a hallmark of neurodegenerative disorders including Parkinson's disease (PD), Multiple System Atrophy, and Dementia with Lewy Bodies, commonly referred to as synucleinopathies. Despite considerable progress on the structural biology of these aggregates, the molecular mechanisms mediating their cell-to-cell transmission, propagation, and neurotoxicity remain only partially understood. Numerous studies have highlighted the stereotypical spatiotemporal spreading of pathological α-Syn aggregates across different tissues and anatomically connected brain regions over time. Experimental evidence from various cellular and animal models indicate that α-Syn transfer occurs in two defined steps: the release of pathogenic α-Syn species from infected cells, and their uptake via passive or active endocytic pathways. Once α-Syn aggregates have been internalized, little is known about what drives their toxicity or how they interact with the endogenous protein to promote its misfolding and subsequent aggregation. Similarly, unknown genetic factors modulate different cellular responses to the aggregation and accumulation of pathogenic α-Syn species. Here we discuss the current understanding of the molecular phenomena associated with the intercellular spreading of pathogenic α-Syn seeds and summarize the evidence supporting the transmission hypothesis. Understanding the molecular mechanisms involved in α-Syn aggregates transmission is essential to develop novel targeted therapeutics against PD and related synucleinopathies.
Collapse
Affiliation(s)
- Sandesh Neupane
- Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland. https://twitter.com/neuron_sandesh
| | - Elena De Cecco
- Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland.
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland.
| |
Collapse
|
13
|
Salim S, Ahmad F, Banu A, Mohammad F. Gut microbiome and Parkinson's disease: Perspective on pathogenesis and treatment. J Adv Res 2022:S2090-1232(22)00242-9. [PMID: 36332796 PMCID: PMC10403695 DOI: 10.1016/j.jare.2022.10.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/26/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a disease of ⍺-synuclein aggregation-mediated dopaminergic neuronal loss in the substantia nigra pars compacta, which leads to motor and non-motor symptoms. Through the last two decades of research, there has been growing consensus that inflammation-mediated oxidative stress, mitochondrial dysfunction, and cytokine-induced toxicity are mainly involved in neuronal damage and loss associated with PD. However, it remains unclear how these mechanisms relate to sporadic PD, a more common form of PD. Both enteric and central nervous systems have been implicated in the pathogenesis of sporadic PD, thus highlighting the crosstalk between the gut and brain. AIM of Review: In this review, we summarize how alterations in the gut microbiome can affect PD pathogenesis. We highlight various mechanisms increasing/decreasing the risk of PD development. Based on the previous supporting evidence, we suggest how early interventions could protect against PD development and how controlling specific factors, including our diet, could modify our perspective on disease mechanisms and therapeutics. We explain the strong relationship between the gut microbiota and the brain in PD subjects, by delineating the multiple mechanisms involved inneuroinflammation and oxidative stress. We conclude that the neurodetrimental effects of western diet (WD) and the neuroprotective effects of Mediterranean diets should be further exploredin humans through clinical trials. Key Scientific Concepts of Review: Alterations in the gut microbiome and associated metabolites may contribute to pathogenesis in PD. In some studies, probiotics have been shown to exert anti-oxidative effects in PD via improved mitochondrial dynamics and homeostasis, thus reducing PD-related consequences. However, there is a significant unmet need for randomized clinical trials to investigate the effectiveness of microbial products, probiotic-based supplementation, and dietary intervention in reversing gut microbial dysbiosis in PD.
Collapse
|
14
|
Pintér P, Alpár A. The Role of Extracellular Matrix in Human Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms231911085. [PMID: 36232390 PMCID: PMC9569603 DOI: 10.3390/ijms231911085] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The dense neuropil of the central nervous system leaves only limited space for extracellular substances free. The advent of immunohistochemistry, soon followed by advanced diagnostic tools, enabled us to explore the biochemical heterogeneity and compartmentalization of the brain extracellular matrix in exploratory and clinical research alike. The composition of the extracellular matrix is critical to shape neuronal function; changes in its assembly trigger or reflect brain/spinal cord malfunction. In this study, we focus on extracellular matrix changes in neurodegenerative disorders. We summarize its phenotypic appearance and biochemical characteristics, as well as the major enzymes which regulate and remodel matrix establishment in disease. The specifically built basement membrane of the central nervous system, perineuronal nets and perisynaptic axonal coats can protect neurons from toxic agents, and biochemical analysis revealed how the individual glycosaminoglycan and proteoglycan components interact with these molecules. Depending on the site, type and progress of the disease, select matrix components can either proactively trigger the formation of disease-specific harmful products, or reactively accumulate, likely to reduce tissue breakdown and neuronal loss. We review the diagnostic use and the increasing importance of medical screening of extracellular matrix components, especially enzymes, which informs us about disease status and, better yet, allows us to forecast illness.
Collapse
Affiliation(s)
- Panka Pintér
- Department of Anatomy, Semmelweis University, 1113 Budapest, Hungary
| | - Alán Alpár
- Department of Anatomy, Semmelweis University, 1113 Budapest, Hungary
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, 1051 Budapest, Hungary
- Correspondence:
| |
Collapse
|
15
|
Bell R, Thrush RJ, Castellana-Cruz M, Oeller M, Staats R, Nene A, Flagmeier P, Xu CK, Satapathy S, Galvagnion C, Wilson MR, Dobson CM, Kumita JR, Vendruscolo M. N-Terminal Acetylation of α-Synuclein Slows down Its Aggregation Process and Alters the Morphology of the Resulting Aggregates. Biochemistry 2022; 61:1743-1756. [PMID: 35944093 PMCID: PMC9454101 DOI: 10.1021/acs.biochem.2c00104] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/09/2022] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is associated with the aberrant aggregation of α-synuclein. Although the causes of this process are still unclear, post-translational modifications of α-synuclein are likely to play a modulatory role. Since α-synuclein is constitutively N-terminally acetylated, we investigated how this post-translational modification alters the aggregation behavior of this protein. By applying a three-pronged aggregation kinetics approach, we observed that N-terminal acetylation results in a reduced rate of lipid-induced aggregation and slows down both elongation and fibril-catalyzed aggregate proliferation. An analysis of the amyloid fibrils produced by the aggregation process revealed different morphologies for the acetylated and non-acetylated forms in both lipid-induced aggregation and seed-induced aggregation assays. In addition, we found that fibrils formed by acetylated α-synuclein exhibit a lower β-sheet content. These findings indicate that N-terminal acetylation of α-synuclein alters its lipid-dependent aggregation behavior, reduces its rate of in vitro aggregation, and affects the structural properties of its fibrillar aggregates.
Collapse
Affiliation(s)
- Rosie Bell
- Centre for
Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Rebecca J. Thrush
- Centre for
Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Marta Castellana-Cruz
- Centre for
Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Marc Oeller
- Centre for
Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Roxine Staats
- Centre for
Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Aishwarya Nene
- Centre for
Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Patrick Flagmeier
- Centre for
Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Catherine K. Xu
- Centre for
Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Sandeep Satapathy
- Department
of Cell Biology, Blavantik Institute, Harvard
Medical School, Boston, Massachusetts 02115, United States
| | - Celine Galvagnion
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Mark R. Wilson
- School
of Chemistry and Molecular Bioscience, Molecular Horizons Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Christopher M. Dobson
- Centre for
Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Janet R. Kumita
- Department
of Pharmacology, University of Cambridge, Cambridge CB2 1PD, U.K.
| | - Michele Vendruscolo
- Centre for
Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
16
|
α-Synuclein Conformational Plasticity: Physiologic States, Pathologic Strains, and Biotechnological Applications. Biomolecules 2022; 12:biom12070994. [PMID: 35883550 PMCID: PMC9313095 DOI: 10.3390/biom12070994] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 02/08/2023] Open
Abstract
α-Synuclein (αS) is remarkable for both its extensive conformational plasticity and pathologic prion-like properties. Physiologically, αS may populate disordered monomeric, helically folded tetrameric, or membrane-bound oligomeric states. Pathologically, αS may assemble into toxic oligomers and subsequently fibrils, the prion-like transmission of which is implicated in a class of neurodegenerative disorders collectively termed α-synucleinopathies. Notably, αS does not adopt a single "amyloid fold", but rather exists as structurally distinct amyloid-like conformations referred to as "strains". The inoculation of animal models with different strains induces distinct pathologies, and emerging evidence suggests that the propagation of disease-specific strains underlies the differential pathologies observed in patients with different α-synucleinopathies. The characterization of αS strains has provided insight into the structural basis for the overlapping, yet distinct, symptoms of Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies. In this review, we first explore the physiological and pathological differences between conformational states of αS. We then discuss recent studies on the influence of micro-environmental factors on αS species formation, propagation, and the resultant pathological characteristics. Lastly, we review how an understanding of αS conformational properties has been translated to emerging strain amplification technologies, which have provided further insight into the role of specific strains in distinct α-synucleinopathies, and show promise for the early diagnosis of disease.
Collapse
|
17
|
Menon S, Armstrong S, Hamzeh A, Visanji NP, Sardi SP, Tandon A. Alpha-Synuclein Targeting Therapeutics for Parkinson's Disease and Related Synucleinopathies. Front Neurol 2022; 13:852003. [PMID: 35614915 PMCID: PMC9124903 DOI: 10.3389/fneur.2022.852003] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022] Open
Abstract
α-Synuclein (asyn) is a key pathogenetic factor in a group of neurodegenerative diseases generically known as synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Although the initial triggers of pathology and progression are unclear, multiple lines of evidence support therapeutic targeting of asyn in order to limit its prion-like misfolding. Here, we review recent pre-clinical and clinical work that offers promising treatment strategies to sequester, degrade, or silence asyn expression as a means to reduce the levels of seed or substrate. These diverse approaches include removal of aggregated asyn with passive or active immunization or by expression of vectorized antibodies, modulating kinetics of misfolding with small molecule anti-aggregants, lowering asyn gene expression by antisense oligonucleotides or inhibitory RNA, and pharmacological activation of asyn degradation pathways. We also discuss recent technological advances in combining low intensity focused ultrasound with intravenous microbubbles to transiently increase blood-brain barrier permeability for improved brain delivery and target engagement of these large molecule anti-asyn biologics.
Collapse
Affiliation(s)
- Sindhu Menon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Sabrina Armstrong
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Amir Hamzeh
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Naomi P. Visanji
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, Toronto, ON, Canada
| | | | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Moretto E, Stuart S, Surana S, Vargas JNS, Schiavo G. The Role of Extracellular Matrix Components in the Spreading of Pathological Protein Aggregates. Front Cell Neurosci 2022; 16:844211. [PMID: 35573838 PMCID: PMC9100790 DOI: 10.3389/fncel.2022.844211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
Several neurodegenerative diseases are characterized by the accumulation of aggregated misfolded proteins. These pathological agents have been suggested to propagate in the brain via mechanisms similar to that observed for the prion protein, where a misfolded variant is transferred from an affected brain region to a healthy one, thereby inducing the misfolding and/or aggregation of correctly folded copies. This process has been characterized for several proteins, such as α-synuclein, tau, amyloid beta (Aβ) and less extensively for huntingtin and TDP-43. α-synuclein, tau, TDP-43 and huntingtin are intracellular proteins, and their aggregates are located in the cytosol or nucleus of neurons. They have been shown to spread between cells and this event occurs, at least partially, via secretion of these protein aggregates in the extracellular space followed by re-uptake. Conversely, Aβ aggregates are found mainly extracellularly, and their spreading occurs in the extracellular space between brain regions. Due to the inherent nature of their spreading modalities, these proteins are exposed to components of the extracellular matrix (ECM), including glycans, proteases and core matrix proteins. These ECM components can interact with or process pathological misfolded proteins, potentially changing their properties and thus regulating their spreading capabilities. Here, we present an overview of the documented roles of ECM components in the spreading of pathological protein aggregates in neurodegenerative diseases with the objective of identifying the current gaps in knowledge and stimulating further research in the field. This could potentially lead to the identification of druggable targets to slow down the spreading and/or progression of these pathologies.
Collapse
Affiliation(s)
- Edoardo Moretto
- Institute of Neuroscience, National Research Council, CNR, Milan, Italy
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- *Correspondence: Edoardo Moretto,
| | - Skye Stuart
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sunaina Surana
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, United Kingdom
| | - Jose Norberto S. Vargas
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, United Kingdom
| | - Giampietro Schiavo
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, United Kingdom
- Giampietro Schiavo,
| |
Collapse
|
19
|
Huang M, Xu L, Liu J, Huang P, Tan Y, Chen S. Cell–Cell Communication Alterations via Intercellular Signaling Pathways in Substantia Nigra of Parkinson’s Disease. Front Aging Neurosci 2022; 14:828457. [PMID: 35283752 PMCID: PMC8914319 DOI: 10.3389/fnagi.2022.828457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative movement disorder characterized with dopaminergic neuron (DaN) loss within the substantia nigra (SN). Despite bulk studies focusing on intracellular mechanisms of PD inside DaNs, few studies have explored the pathogeneses outside DaNs, or between DaNs and other cells. Here, we set out to probe the implication of intercellular communication involving DaNs in the pathogeneses of PD at a systemic level with bioinformatics methods. We harvested three online published single-cell/single-nucleus transcriptomic sequencing (sc/snRNA-seq) datasets of human SN (GSE126838, GSE140231, and GSE157783) from the Gene Expression Omnibus (GEO) database, and integrated them with one of the latest integration algorithms called Harmony. We then applied CellChat, the latest cell–cell communication analytic algorithm, to our integrated dataset. We first found that the overall communication quantity was decreased while the overall communication strength was enhanced in PD sample compared with control sample. We then focused on the intercellular communication where DaNs are involved, and found that the communications between DaNs and other cell types via certain signaling pathways were selectively altered in PD, including some growth factors, neurotrophic factors, chemokines, etc. pathways. Our bioinformatics analysis showed that the alteration in intercellular communications involving DaNs might be a previously underestimated aspect of PD pathogeneses with novel translational potential.
Collapse
Affiliation(s)
- Maoxin Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Xu
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yuyan Tan,
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai, China
- Shengdi Chen,
| |
Collapse
|
20
|
Modeling the cellular fate of alpha-synuclein aggregates: A pathway to pathology. Curr Opin Neurobiol 2022; 72:171-177. [PMID: 35131527 PMCID: PMC9235864 DOI: 10.1016/j.conb.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/07/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder that is characterized by pathological protein inclusions that form in the brains of patients, leading to neuron loss and the observed clinical symptoms. These inclusions, containing aggregates of the protein α-Synuclein, spread throughout the brain as the disease progresses. This spreading follows patterns that inform our understanding of the disease. One way to further our understanding of disease progression is to model the discrete steps from when a cell first encounters an aggregate to when those aggregates propagate to new cells. This review will serve to highlight the recent progress made in the effort to better understand the mechanistic steps that determine how this propagation happens at the cellular level.
Collapse
|
21
|
Grosso Jasutkar H, Oh SE, Mouradian MM. Therapeutics in the Pipeline Targeting α-Synuclein for Parkinson's Disease. Pharmacol Rev 2022; 74:207-237. [PMID: 35017177 PMCID: PMC11034868 DOI: 10.1124/pharmrev.120.000133] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and the fastest growing neurologic disease in the world, yet no disease-modifying therapy is available for this disabling condition. Multiple lines of evidence implicate the protein α-synuclein (α-Syn) in the pathogenesis of PD, and as such, there is intense interest in targeting α-Syn for potential disease modification. α-Syn is also a key pathogenic protein in other synucleionpathies, most commonly dementia with Lewy bodies. Thus, therapeutics targeting this protein will have utility in these disorders as well. Here we discuss the various approaches that are being investigated to prevent and mitigate α-Syn toxicity in PD, including clearing its pathologic aggregates from the brain using immunization strategies, inhibiting its misfolding and aggregation, reducing its expression level, enhancing cellular clearance mechanisms, preventing its cell-to-cell transmission within the brain and perhaps from the periphery, and targeting other proteins associated with or implicated in PD that contribute to α-Syn toxicity. We also discuss the therapeutics in the pipeline that harness these strategies. Finally, we discuss the challenges and opportunities for the field in the discovery and development of therapeutics for disease modification in PD. SIGNIFICANCE STATEMENT: PD is the second most common neurodegenerative disorder, for which disease-modifying therapies remain a major unmet need. A large body of evidence points to α-synuclein as a key pathogenic protein in this disease as well as in dementia with Lewy bodies, making it of leading therapeutic interest. This review discusses the various approaches being investigated and progress made to date toward discovering and developing therapeutics that would slow and stop progression of these disabling diseases.
Collapse
Affiliation(s)
- Hilary Grosso Jasutkar
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Stephanie E Oh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| |
Collapse
|
22
|
Burnell SEA, Capitani L, MacLachlan BJ, Mason GH, Gallimore AM, Godkin A. Seven mysteries of LAG-3: a multi-faceted immune receptor of increasing complexity. IMMUNOTHERAPY ADVANCES 2021; 2:ltab025. [PMID: 35265944 PMCID: PMC8895726 DOI: 10.1093/immadv/ltab025] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Despite three decades of research to its name and increasing interest in immunotherapies that target it, LAG-3 remains an elusive co-inhibitory receptor in comparison to the well-established PD-1 and CTLA-4. As such, LAG-3 targeting therapies have yet to achieve the clinical success of therapies targeting other checkpoints. This could, in part, be attributed to the many unanswered questions that remain regarding LAG-3 biology. Of these, we address: (i) the function of the many LAG-3-ligand interactions, (ii) the hurdles that remain to acquire a high-resolution structure of LAG-3, (iii) the under-studied LAG-3 signal transduction mechanism, (iv) the elusive soluble form of LAG-3, (v) the implications of the lack of (significant) phenotype of LAG-3 knockout mice, (vi) the reports of LAG-3 expression on the epithelium, and (vii) the conflicting reports of LAG-3 expression (and potential contributions to pathology) in the brain. These mysteries which surround LAG-3 highlight how the ever-evolving study of its biology continues to reveal ever-increasing complexity in its role as an immune receptor. Importantly, answering the questions which shroud LAG-3 in mystery will allow the maximum therapeutic benefit of LAG-3 targeting immunotherapies in cancer, autoimmunity and beyond.
Collapse
Affiliation(s)
- Stephanie E A Burnell
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | - Lorenzo Capitani
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | - Bruce J MacLachlan
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | - Georgina H Mason
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | - Awen M Gallimore
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | - Andrew Godkin
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
- Department of Gastroenterology and Hepatology, University Hospital of Wales, Heath Park, Cardiff, UK
| |
Collapse
|
23
|
Conroy LR, Hawkinson TR, Young LEA, Gentry MS, Sun RC. Emerging roles of N-linked glycosylation in brain physiology and disorders. Trends Endocrinol Metab 2021; 32:980-993. [PMID: 34756776 PMCID: PMC8589112 DOI: 10.1016/j.tem.2021.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022]
Abstract
N-linked glycosylation is a complex, co- and post-translational series of events that connects metabolism to signaling in almost all cells. Metabolic assembly of N-linked glycans spans multiple cellular compartments, and early N-linked glycan biosynthesis is a central mediator of protein folding and the unfolded protein response (UPR). In the brain, N-linked glycosylated proteins participate in a myriad of processes, from electrical gradients to neurotransmission. However, it is less clear how perturbations in N-linked glycosylation impact and even potentially drive aspects of neurological disorders. In this review, we discuss our current understanding of the metabolic origins of N-linked glycans in the brain, their role in modulating neuronal function, and how aberrant N-linked glycosylation can drive neurological disorders.
Collapse
Affiliation(s)
- Lindsey R Conroy
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA; Markey Cancer Center, Lexington, KY 40508-0536, USA
| | - Tara R Hawkinson
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Ramon C Sun
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA; Markey Cancer Center, Lexington, KY 40508-0536, USA; Sanders Brown Center for Aging, Lexington, KY 40508-0536, USA.
| |
Collapse
|
24
|
Glycoconjugate journal special issue on: the glycobiology of Parkinson's disease. Glycoconj J 2021; 39:55-74. [PMID: 34757539 DOI: 10.1007/s10719-021-10024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects over 10 million aging people worldwide. This condition is characterized by the degeneration of dopaminergic neurons in the pars compacta region of the substantia nigra (SNpc) and by aggregation of proteins, commonly α-synuclein (SNCA). The formation of Lewy bodies that encapsulate aggregated proteins in lipid vesicles is a hallmark of PD. Glycosylation of proteins and neuroinflammation are involved in the pathogenesis. SNCA has many posttranslational modifications and interacts with components of membranes that affect aggregation. The large membrane lipid dolichol accumulates in the brain upon age and has a significant effect on membrane structure. The replacement of dopamine and dopaminergic neurons are at the forefront of therapeutic development. This review examines the role of membrane lipids, glycolipids, glycoproteins and dopamine in the aggregation of SNCA and development of PD. We discuss the SNCA-dopamine-neuromelanin-dolichol axis and the role of membranes in neuronal stem cells that could be a regenerative therapy for PD patients.
Collapse
|
25
|
N-alpha-acetylation of Huntingtin protein increases its propensity to aggregate. J Biol Chem 2021; 297:101363. [PMID: 34732320 PMCID: PMC8640455 DOI: 10.1016/j.jbc.2021.101363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder caused by a poly-CAG expansion in the first exon of the HTT gene, resulting in an extended poly-glutamine tract in the N-terminal domain of the Huntingtin (Htt) protein product. Proteolytic fragments of the poly-glutamine–containing N-terminal domain form intranuclear aggregates that are correlated with HD. Post-translational modification of Htt has been shown to alter its function and aggregation properties. However, the effect of N-terminal Htt acetylation has not yet been considered. Here, we developed a bacterial system to produce unmodified or N-terminally acetylated and aggregation-inducible Htt protein. We used this system together with biochemical, biophysical, and imaging studies to confirm that the Htt N-terminus is an in vitro substrate for the NatA N-terminal acetyltransferase and show that N-terminal acetylation promotes aggregation. These studies represent the first link between N-terminal acetylation and the promotion of a neurodegenerative disease and implicates NatA-mediated Htt acetylation as a new potential therapeutic target in HD.
Collapse
|
26
|
Shimogawa M, Petersson EJ. New strategies for fluorescently labeling proteins in the study of amyloids. Curr Opin Chem Biol 2021; 64:57-66. [PMID: 34091264 PMCID: PMC8585672 DOI: 10.1016/j.cbpa.2021.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 01/25/2023]
Abstract
Amyloid proteins are widely studied, both for their unusual biophysical properties and their association with disorders such as Alzheimer's and Parkinson's disease. Fluorescence-based methods using site-specifically labeled proteins can provide information on the details of their structural dynamics and their roles in specific biological processes. Here, we describe the application of different labeling methods and novel fluorescent probe strategies to the study of amyloid proteins, both for in vitro biophysical experiments and for in vivo imaging. These labeling tools can be elegantly used to answer important questions on the function and pathology of amyloid proteins.
Collapse
Affiliation(s)
- Marie Shimogawa
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
27
|
Bell R, Vendruscolo M. Modulation of the Interactions Between α-Synuclein and Lipid Membranes by Post-translational Modifications. Front Neurol 2021; 12:661117. [PMID: 34335440 PMCID: PMC8319954 DOI: 10.3389/fneur.2021.661117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease is characterised by the presence in brain tissue of aberrant inclusions known as Lewy bodies and Lewy neurites, which are deposits composed by α-synuclein and a variety of other cellular components, including in particular lipid membranes. The dysregulation of the balance between lipid homeostasis and α-synuclein homeostasis is therefore likely to be closely involved in the onset and progression of Parkinson's disease and related synucleinopathies. As our understanding of this balance is increasing, we describe recent advances in the characterisation of the role of post-translational modifications in modulating the interactions of α-synuclein with lipid membranes. We then discuss the impact of these advances on the development of novel diagnostic and therapeutic tools for synucleinopathies.
Collapse
Affiliation(s)
| | - Michele Vendruscolo
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
28
|
Zhang S, Liu YQ, Jia C, Lim YJ, Feng G, Xu E, Long H, Kimura Y, Tao Y, Zhao C, Wang C, Liu Z, Hu JJ, Ma MR, Liu Z, Jiang L, Li D, Wang R, Dawson VL, Dawson TM, Li YM, Mao X, Liu C. Mechanistic basis for receptor-mediated pathological α-synuclein fibril cell-to-cell transmission in Parkinson's disease. Proc Natl Acad Sci U S A 2021; 118:e2011196118. [PMID: 34172566 PMCID: PMC8256039 DOI: 10.1073/pnas.2011196118] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The spread of pathological α-synuclein (α-syn) is a crucial event in the progression of Parkinson's disease (PD). Cell surface receptors such as lymphocyte activation gene 3 (LAG3) and amyloid precursor-like protein 1 (APLP1) can preferentially bind α-syn in the amyloid over monomeric state to initiate cell-to-cell transmission. However, the molecular mechanism underlying this selective binding is unknown. Here, we perform an array of biophysical experiments and reveal that LAG3 D1 and APLP1 E1 domains commonly use an alkaline surface to bind the acidic C terminus, especially residues 118 to 140, of α-syn. The formation of amyloid fibrils not only can disrupt the intramolecular interactions between the C terminus and the amyloid-forming core of α-syn but can also condense the C terminus on fibril surface, which remarkably increase the binding affinity of α-syn to the receptors. Based on this mechanism, we find that phosphorylation at serine 129 (pS129), a hallmark modification of pathological α-syn, can further enhance the interaction between α-syn fibrils and the receptors. This finding is further confirmed by the higher efficiency of pS129 fibrils in cellular internalization, seeding, and inducing PD-like α-syn pathology in transgenic mice. Our work illuminates the mechanistic understanding on the spread of pathological α-syn and provides structural information for therapeutic targeting on the interaction of α-syn fibrils and receptors as a potential treatment for PD.
Collapse
Affiliation(s)
- Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yu-Qing Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chunyu Jia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yeh-Jun Lim
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Guoqin Feng
- State Key Laboratory of Bio-organic Chemistry and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Enquan Xu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Houfang Long
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yasuyoshi Kimura
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Youqi Tao
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chunyu Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuchu Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenying Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Jian Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Meng-Rong Ma
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhijun Liu
- National Center for Protein Science Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lin Jiang
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, CA 90095
| | - Dan Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Renxiao Wang
- State Key Laboratory of Bio-organic Chemistry and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
- Shanxi Key Laboratory of Innovative Drugs for the Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030619, China
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China;
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China;
| |
Collapse
|
29
|
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder resulting from the death of dopamine neurons in the substantia nigra pars compacta. Our understanding of PD biology has been enriched by the identification of genes involved in its rare, inheritable forms, termed PARK genes. These genes encode proteins including α-syn, LRRK2, VPS35, parkin, PINK1, and DJ1, which can cause monogenetic PD when mutated. Investigating the cellular functions of these proteins has been instrumental in identifying signaling pathways that mediate pathology in PD and neuroprotective mechanisms active during homeostatic and pathological conditions. It is now evident that many PD-associated proteins perform multiple functions in PD-associated signaling pathways in neurons. Furthermore, several PARK proteins contribute to non-cell-autonomous mechanisms of neuron death, such as neuroinflammation. A comprehensive understanding of cell-autonomous and non-cell-autonomous pathways involved in PD is essential for developing therapeutics that may slow or halt its progression.
Collapse
Affiliation(s)
- Nikhil Panicker
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Preston Ge
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA.,Diana Helis Henry Medical Research Foundation, New Orleans, LA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA.,Diana Helis Henry Medical Research Foundation, New Orleans, LA
| |
Collapse
|
30
|
Henrich MT, Geibl FF, Lakshminarasimhan H, Stegmann A, Giasson BI, Mao X, Dawson VL, Dawson TM, Oertel WH, Surmeier DJ. Determinants of seeding and spreading of α-synuclein pathology in the brain. SCIENCE ADVANCES 2020; 6:eabc2487. [PMID: 33177086 PMCID: PMC7673735 DOI: 10.1126/sciadv.abc2487] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/22/2020] [Indexed: 05/22/2023]
Abstract
In Parkinson's disease (PD), fibrillar forms of α-synuclein are hypothesized to propagate through synaptically coupled networks, causing Lewy pathology (LP) and neurodegeneration. To more rigorously characterize the determinants of spreading, preformed α-synuclein fibrils were injected into the mouse pedunculopontine nucleus (PPN), a brain region that manifests LP in PD patients and the distribution of developing α-synuclein pathology compared to that ascertained by anterograde and retrograde connectomic mapping. Within the PPN, α-synuclein pathology was cell-specific, being robust in PD-vulnerable cholinergic neurons but not in neighboring noncholinergic neurons. While nearly all neurons projecting to PPN cholinergics manifested α-synuclein pathology, the kinetics, magnitude, and persistence of the propagated pathology were unrelated to the strength of those connections. Thus, neuronal phenotype governs the somatodendritic uptake of pathological α-synuclein, and while the afferent connectome restricts the subsequent spreading of pathology, its magnitude and persistence is not a strict function of the strength of coupling.
Collapse
Affiliation(s)
- Martin T Henrich
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Neurology, Philipps University Marburg, Marburg 35043, Germany
| | - Fanni F Geibl
- Department of Neurology, Philipps University Marburg, Marburg 35043, Germany
| | - Harini Lakshminarasimhan
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Anna Stegmann
- Department of Neurology, Philipps University Marburg, Marburg 35043, Germany
| | - Benoit I Giasson
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Wolfgang H Oertel
- Department of Neurology, Philipps University Marburg, Marburg 35043, Germany
| | - D James Surmeier
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
31
|
Fouka M, Mavroeidi P, Tsaka G, Xilouri M. In Search of Effective Treatments Targeting α-Synuclein Toxicity in Synucleinopathies: Pros and Cons. Front Cell Dev Biol 2020; 8:559791. [PMID: 33015057 PMCID: PMC7500083 DOI: 10.3389/fcell.2020.559791] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD), multiple system atrophy (MSA) and Dementia with Lewy bodies (DLB) represent pathologically similar, progressive neurodegenerative disorders characterized by the pathological aggregation of the neuronal protein α-synuclein. PD and DLB are characterized by the abnormal accumulation and aggregation of α-synuclein in proteinaceous inclusions within neurons named Lewy bodies (LBs) and Lewy neurites (LNs), whereas in MSA α-synuclein inclusions are mainly detected within oligodendrocytes named glial cytoplasmic inclusions (GCIs). The presence of pathologically aggregated α-synuclein along with components of the protein degradation machinery, such as ubiquitin and p62, in LBs and GCIs is considered to underlie the pathogenic cascade that eventually leads to the severe neurodegeneration and neuroinflammation that characterizes these diseases. Importantly, α-synuclein is proposed to undergo pathogenic misfolding and oligomerization into higher-order structures, revealing self-templating conformations, and to exert the ability of "prion-like" spreading between cells. Therefore, the manner in which the protein is produced, is modified within neural cells and is degraded, represents a major focus of current research efforts in the field. Given that α-synuclein protein load is critical to disease pathogenesis, the identification of means to limit intracellular protein burden and halt α-synuclein propagation represents an obvious therapeutic approach in synucleinopathies. However, up to date the development of effective therapeutic strategies to prevent degeneration in synucleinopathies is limited, due to the lack of knowledge regarding the precise mechanisms underlying the observed pathology. This review critically summarizes the recent developed strategies to counteract α-synuclein toxicity, including those aimed to increase protein degradation, to prevent protein aggregation and cell-to-cell propagation, or to engage antibodies against α-synuclein and discuss open questions and unknowns for future therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
32
|
Simple and Complex Sugars in Parkinson's Disease: a Bittersweet Taste. Mol Neurobiol 2020; 57:2934-2943. [PMID: 32430844 DOI: 10.1007/s12035-020-01931-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022]
Abstract
Neuronal homeostasis depends on both simple and complex sugars (the glycoconjugates), and derangement of their metabolism is liable to impair neural function and lead to neurodegeneration. Glucose levels boost glycation phenomena, a wide series of non-enzymatic reactions that give rise to various intermediates and end-products that are potentially dangerous in neurons. Glycoconjugates, including glycoproteins, glycolipids, and glycosaminoglycans, contribute to the constitution of the unique features of neuron membranes and extracellular matrix in the nervous system. Glycosylation defects are indeed frequently associated with nervous system disturbances and neurodegeneration. Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms associated with the loss of dopaminergic neurons in the pars compacta of the substantia nigra. Neurons present intracytoplasmic inclusions of α-synuclein aggregates involved in the disease pathogenesis together with the impairment of the autophagy-lysosome function, oxidative stress, and defective traffic and turnover of membrane components. In the present review, we selected relevant recent contributions concerning the direct involvement of glycation and glycosylation in α-synuclein stability, impaired autophagy and lysosomal function in PD, focusing on potential models of PD pathogenesis provided by genetic variants of glycosphingolipid processing enzymes, especially glucocerebrosidase (GBA). Moreover, we collected data aimed at defining the glycomic profile of PD patients as a tool to help in diagnosis and patient subtyping, as well as those pointing to sugar-related compounds with potential therapeutic applications in PD.
Collapse
|
33
|
A myosin-7B-dependent endocytosis pathway mediates cellular entry of α-synuclein fibrils and polycation-bearing cargos. Proc Natl Acad Sci U S A 2020; 117:10865-10875. [PMID: 32366666 DOI: 10.1073/pnas.1918617117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cell-to-cell transmission of misfolding-prone α-synuclein (α-Syn) has emerged as a key pathological event in Parkinson's disease. This process is initiated when α-Syn-bearing fibrils enter cells via clathrin-mediated endocytosis, but the underlying mechanisms are unclear. Using a CRISPR-mediated knockout screen, we identify SLC35B2 and myosin-7B (MYO7B) as critical endocytosis regulators for α-Syn preformed fibrils (PFFs). We show that SLC35B2, as a key regulator of heparan sulfate proteoglycan (HSPG) biosynthesis, is essential for recruiting α-Syn PFFs to the cell surface because this process is mediated by interactions between negatively charged sugar moieties of HSPGs and clustered K-T-K motifs in α-Syn PFFs. By contrast, MYO7B regulates α-Syn PFF cell entry by maintaining a plasma membrane-associated actin network that controls membrane dynamics. Without MYO7B or actin filaments, many clathrin-coated pits fail to be severed from the membrane, causing accumulation of large clathrin-containing "scars" on the cell surface. Intriguingly, the requirement for MYO7B in endocytosis is restricted to α-Syn PFFs and other polycation-bearing cargos that enter cells via HSPGs. Thus, our study not only defines regulatory factors for α-Syn PFF endocytosis, but also reveals a previously unknown endocytosis mechanism for HSPG-binding cargos in general, which requires forces generated by MYO7B and actin filaments.
Collapse
|
34
|
Schaffert LN, Carter WG. Do Post-Translational Modifications Influence Protein Aggregation in Neurodegenerative Diseases: A Systematic Review. Brain Sci 2020; 10:232. [PMID: 32290481 PMCID: PMC7226274 DOI: 10.3390/brainsci10040232] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
The accumulation of abnormal protein aggregates represents a universal hallmark of neurodegenerative diseases (NDDs). Post-translational modifications (PTMs) regulate protein structure and function. Dysregulated PTMs may influence the propensity for protein aggregation in NDD-proteinopathies. To investigate this, we systematically reviewed the literature to evaluate effects of PTMs on aggregation propensity for major proteins linked to the pathogenesis and/or progression of NDDs. A search of PubMed, MEDLINE, EMBASE, and Web of Science Core Collection was conducted to retrieve studies that investigated an association between PTMs and protein aggregation in seven NDDs: Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), spinocerebellar ataxias, transmissible spongiform encephalopathy, and multiple sclerosis. Together, 1222 studies were identified, of which 69 met eligibility criteria. We identified that the following PTMs, in isolation or combination, potentially act as modulators of proteinopathy in NDDs: isoaspartate formation in Aβ, phosphorylation of Aβ or tau in AD; acetylation, 4-hydroxy-2-neonal modification, O-GlcNAcylation or phosphorylation of α-synuclein in PD; acetylation or phosphorylation of TAR DNA-binding protein-43 in ALS, and SUMOylation of superoxide dismutase-1 in ALS; and phosphorylation of huntingtin in HD. The potential pharmacological manipulation of these aggregation-modulating PTMs represents an as-yet untapped source of therapy to treat NDDs.
Collapse
Affiliation(s)
| | - Wayne G. Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK;
| |
Collapse
|
35
|
Initiation and propagation of α-synuclein aggregation in the nervous system. Mol Neurodegener 2020; 15:19. [PMID: 32143659 PMCID: PMC7060612 DOI: 10.1186/s13024-020-00368-6] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
The two main pathological hallmarks of Parkinson’s disease are loss of dopamine neurons in the substantia nigra pars compacta and proteinaceous amyloid fibrils composed mostly of α-synuclein, called Lewy pathology. Levodopa to enhance dopaminergic transmission remains one of the most effective treatment for alleviating the motor symptoms of Parkinson’s disease (Olanow, Mov Disord 34:812–815, 2019). In addition, deep brain stimulation (Bronstein et al., Arch Neurol 68:165, 2011) to modulate basal ganglia circuit activity successfully alleviates some motor symptoms. MRI guided focused ultrasound in the subthalamic nucleus is a promising therapeutic strategy as well (Martinez-Fernandez et al., Lancet Neurol 17:54–63, 2018). However, to date, there exists no treatment that stops the progression of this disease. The findings that α-synuclein can be released from neurons and inherited through interconnected neural networks opened the door for discovering novel treatment strategies to prevent the formation and spread of Lewy pathology with the goal of halting PD in its tracks. This hypothesis is based on discoveries that pathologic aggregates of α-synuclein induce the endogenous α-synuclein protein to adopt a similar pathologic conformation, and is thus self-propagating. Phase I clinical trials are currently ongoing to test treatments such as immunotherapy to prevent the neuron to neuron spread of extracellular aggregates. Although tremendous progress has been made in understanding how Lewy pathology forms and spreads throughout the brain, cell intrinsic factors also play a critical role in the formation of pathologic α-synuclein, such as mechanisms that increase endogenous α-synuclein levels, selective expression profiles in distinct neuron subtypes, mutations and altered function of proteins involved in α-synuclein synthesis and degradation, and oxidative stress. Strategies that prevent the formation of pathologic α-synuclein should consider extracellular release and propagation, as well as neuron intrinsic mechanisms.
Collapse
|
36
|
Vinueza-Gavilanes R, Íñigo-Marco I, Larrea L, Lasa M, Carte B, Santamaría E, Fernández-Irigoyen J, Bugallo R, Aragón T, Aldabe R, Arrasate M. N-terminal acetylation mutants affect alpha-synuclein stability, protein levels and neuronal toxicity. Neurobiol Dis 2020; 137:104781. [PMID: 31991248 DOI: 10.1016/j.nbd.2020.104781] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 02/07/2023] Open
Abstract
Alpha-synuclein (aSyn) protein levels are sufficient to drive Parkinson's disease (PD) and other synucleinopathies. Despite the biomedical/therapeutic potential of aSyn protein regulation, little is known about mechanisms that limit/control aSyn levels. Here, we investigate the role of a post-translational modification, N-terminal acetylation, in aSyn neurotoxicity. N-terminal acetylation occurs in all aSyn molecules and has been proposed to determine its lipid binding and aggregation capacities; however, its effect in aSyn stability/neurotoxicity has not been evaluated. We generated N-terminal mutants that alter or block physiological aSyn N-terminal acetylation in wild-type or pathological mutant E46K aSyn versions and confirmed N-terminal acetylation status by mass spectrometry. By optical pulse-labeling in living primary neurons we documented a reduced half-life and accumulation of aSyn N-terminal mutants. To analyze the effect of N-terminal acetylation mutants in neuronal toxicity we took advantage of a neuronal model where aSyn toxicity was scored by longitudinal survival analysis. Salient features of aSyn neurotoxicity were previously investigated with this approach. aSyn-dependent neuronal death was recapitulated either by higher aSyn protein levels in the case of WT aSyn, or by the combined effect of protein levels and enhanced neurotoxicity conveyed by the E46K mutation. aSyn N-terminal mutations decreased E46K aSyn-dependent neuronal death both by reducing protein levels and, importantly, by reducing the intrinsic E46K aSyn toxicity, being the D2P mutant the least toxic. Together, our results illustrate that the N-terminus determines, most likely through its acetylation, aSyn protein levels and toxicity, identifying this modification as a potential therapeutic target.
Collapse
Affiliation(s)
- Rodrigo Vinueza-Gavilanes
- University of Navarra, Center for Applied Medical Research (CIMA), Neuroscience Program, Pamplona 31008, Spain; University of Navarra, School of Medicine, Graduate Program on Neuroscience and Cognition, Pamplona 31008, Spain.
| | - Ignacio Íñigo-Marco
- University of Navarra, Center for Applied Medical Research (CIMA), Neuroscience Program, Pamplona 31008, Spain.
| | - Laura Larrea
- University of Navarra, Center for Applied Medical Research (CIMA), Neuroscience Program, Pamplona 31008, Spain.
| | - Marta Lasa
- University of Navarra, Center for Applied Medical Research (CIMA), Hematology-Oncology Program, Pamplona 31008, Spain.
| | - Beatriz Carte
- University of Navarra, Center for Applied Medical Research (CIMA), Gene Therapy and Regulation of Gene Expression Program, Pamplona 31008, Spain; Digestive System and Metabolism Diseases Department, Navarra Institute for Health Research (IdiSNA), Pamplona 31008, Spain.
| | - Enrique Santamaría
- Proteored-Institute of Health Carlos III (ISCIII), Clinical Neuroproteomics Unit, Navarrabiomed, Navarra Health Department, Public University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona 31008, Spain.
| | - Joaquín Fernández-Irigoyen
- Proteored-Institute of Health Carlos III (ISCIII), Clinical Neuroproteomics Unit, Navarrabiomed, Navarra Health Department, Public University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona 31008, Spain.
| | - Ricardo Bugallo
- University of Navarra, Center for Applied Medical Research (CIMA), Neuroscience Program, Pamplona 31008, Spain; University of Navarra, School of Medicine, Graduate Program on Neuroscience and Cognition, Pamplona 31008, Spain.
| | - Tomás Aragón
- University of Navarra, Center for Applied Medical Research (CIMA), Gene Therapy and Regulation of Gene Expression Program, Pamplona 31008, Spain; Digestive System and Metabolism Diseases Department, Navarra Institute for Health Research (IdiSNA), Pamplona 31008, Spain.
| | - Rafael Aldabe
- University of Navarra, Center for Applied Medical Research (CIMA), Gene Therapy and Regulation of Gene Expression Program, Pamplona 31008, Spain; Digestive System and Metabolism Diseases Department, Navarra Institute for Health Research (IdiSNA), Pamplona 31008, Spain.
| | - Montserrat Arrasate
- University of Navarra, Center for Applied Medical Research (CIMA), Neuroscience Program, Pamplona 31008, Spain; University of Navarra, School of Medicine, Pamplona 31008, Spain; Neuroscience Department, Navarra Institute for Health Research (IdiSNA), Pamplona 31008, Spain.
| |
Collapse
|
37
|
Birol M, Melo AM. Untangling the Conformational Polymorphism of Disordered Proteins Associated With Neurodegeneration at the Single-Molecule Level. Front Mol Neurosci 2020; 12:309. [PMID: 31998071 PMCID: PMC6965022 DOI: 10.3389/fnmol.2019.00309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022] Open
Abstract
A large fraction of the human genome encodes intrinsically disordered proteins/regions (IDPs/IDRs) that are involved in diverse cellular functions/regulation and dysfunctions. Moreover, several neurodegenerative disorders are associated with the pathological self-assembly of neuronal IDPs, including tau [Alzheimer's disease (AD)], α-synuclein [Parkinson's disease (PD)], and huntingtin exon 1 [Huntington's disease (HD)]. Therefore, there is an urgent and emerging clinical interest in understanding the physical and structural features of their functional and disease states. However, their biophysical characterization is inherently challenging by traditional ensemble techniques. First, unlike globular proteins, IDPs lack stable secondary/tertiary structures under physiological conditions and may interact with multiple and distinct biological partners, subsequently folding differentially, thus contributing to the conformational polymorphism. Second, amyloidogenic IDPs display a high aggregation propensity, undergoing complex heterogeneous self-assembly mechanisms. In this review article, we discuss the advantages of employing cutting-edge single-molecule fluorescence (SMF) techniques to characterize the conformational ensemble of three selected neuronal IDPs (huntingtin exon 1, tau, and α-synuclein). Specifically, we survey the versatility of these powerful approaches to describe their monomeric conformational ensemble under functional and aggregation-prone conditions, and binding to biological partners. Together, the information gained from these studies provides unique insights into the role of gain or loss of function of these disordered proteins in neurodegeneration, which may assist the development of new therapeutic molecules to prevent and treat these devastating human disorders.
Collapse
Affiliation(s)
- Melissa Birol
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Ana M Melo
- Centro de Química-Física Molecular- IN and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
38
|
Wang W, Gopal S, Pocock R, Xiao Z. Glycan Mimetics from Natural Products: New Therapeutic Opportunities for Neurodegenerative Disease. Molecules 2019; 24:molecules24244604. [PMID: 31888221 PMCID: PMC6943557 DOI: 10.3390/molecules24244604] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative diseases (NDs) affect millions of people worldwide. Characterized by the functional loss and death of neurons, NDs lead to symptoms (dementia and seizures) that affect the daily lives of patients. In spite of extensive research into NDs, the number of approved drugs for their treatment remains limited. There is therefore an urgent need to develop new approaches for the prevention and treatment of NDs. Glycans (carbohydrate chains) are ubiquitous, abundant, and structural complex natural biopolymers. Glycans often covalently attach to proteins and lipids to regulate cellular recognition, adhesion, and signaling. The importance of glycans in both the developing and mature nervous system is well characterized. Moreover, glycan dysregulation has been observed in NDs such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS). Therefore, glycans are promising but underexploited therapeutic targets. In this review, we summarize the current understanding of glycans in NDs. We also discuss a number of natural products that functionally mimic glycans to protect neurons, which therefore represent promising new therapeutic approaches for patients with NDs.
Collapse
|
39
|
Yang X, Williams JK, Yan R, Mouradian MM, Baum J. Increased Dynamics of α-Synuclein Fibrils by β-Synuclein Leads to Reduced Seeding and Cytotoxicity. Sci Rep 2019; 9:17579. [PMID: 31772376 PMCID: PMC6879756 DOI: 10.1038/s41598-019-54063-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
Alpha-synuclein (αS) fibrils are toxic to cells and contribute to the pathogenesis and progression of Parkinson's disease and other synucleinopathies. β-Synuclein (βS), which co-localizes with αS, has been shown to provide a neuroprotective effect, but the molecular mechanism by which this occurs remains elusive. Here we show that αS fibrils formed in the presence of βS are less cytotoxic, exhibit reduced cell seeding capacity and are more resistant to fibril shedding compared to αS fibrils alone. Using solid-state NMR, we found that the overall structure of the core of αS fibrils when co-incubated with βS is minimally perturbed, however, the dynamics of Lys and Thr residues, located primarily in the imperfect KTKEGV repeats of the αS N-terminus, are increased. Our results suggest that amyloid fibril dynamics may play a key role in modulating toxicity and seeding. Thus, enhancing the dynamics of amyloid fibrils may be a strategy for future therapeutic targeting of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xue Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Jonathan K Williams
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Run Yan
- RWJMS Institute for Neurological Therapeutics, Rutgers Biomedical and Health Sciences, and Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - M Maral Mouradian
- RWJMS Institute for Neurological Therapeutics, Rutgers Biomedical and Health Sciences, and Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
40
|
Abstract
Parkinson's disease etiology involves amyloid formation by α-synuclein (αSyn). In vivo, αSyn is constitutively acetylated at the α-amino N-terminus. Here, we find N-terminally acetylated αSyn (Ac-αSyn) aggregates more slowly than non-acetylated αSyn (NH3-αSyn) with significantly reduced sensitivity to thioflavin T (ThT). Fibril differences were characterized by transmission electron microscopy, circular dichroism spectroscopy, and limited proteolysis. Interestingly, the low-ThT Ac-αSyn fibrils seed both acetylated and non-acetylated αSyn and faithfully propagate the low-ThT character through several generations, indicating a stable fibril polymorph. In contrast, the high-ThT NH3-αSyn seeds lose fidelity over subsequent generations. Despite it being outside of the amyloid core, the chemical nature of the N-terminus modulates αSyn aggregation and fibril polymorphism.
Collapse
Affiliation(s)
- Matthew D Watson
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Jennifer C Lee
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| |
Collapse
|