1
|
Pujara MS, Murray EA. Prefrontal-Amygdala Pathways for Object and Social Value Representation. J Cogn Neurosci 2024; 36:2687-2696. [PMID: 38527093 PMCID: PMC11602012 DOI: 10.1162/jocn_a_02144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This special focus article was prepared to honor the memory of our National Institutes of Health colleague, friend, and mentor Leslie G. Ungerleider, who passed away in December 2020, and is based on a presentation given at a symposium held in her honor at the National Institutes of Health in September 2022. In this article, we describe an extension of Leslie Ungerleider's influential work on the object analyzer pathway in which the inferior temporal visual cortex interacts with the amygdala, and then discuss a broader role for the amygdala in stimulus-outcome associative learning in humans and nonhuman primates. We summarize extant data from our and others' laboratories regarding two distinct frontal-amygdala circuits that subserve nonsocial and social valuation processes. Both neuropsychological and neurophysiological data suggest a role for the OFC in nonsocial valuation and the ACC in social valuation. More recent evidence supports the possibility that the amygdala functions in conjunction with these frontal regions to subserve these distinct, complex valuation processes. We emphasize the dynamic nature of valuation processes and advocate for additional research on amygdala-frontal interactions in these domains.
Collapse
|
2
|
Jin Y, Song D, Quan Z, Ni J, Qing H. The regulatory effect of the anterior cingulate cortex on helping behavior in juvenile social isolation model mice. Physiol Behav 2024; 287:114698. [PMID: 39306222 DOI: 10.1016/j.physbeh.2024.114698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Social isolation during adolescence negatively impacts the development of adult social behaviors. However, the exact link between social experiences during adolescence and social behaviors in adulthood is not fully understood. In the present study, we investigated how isolation during juvenility affects harm avoidance behavior in a mouse model of juvenile social isolation. We found that mice subjected to social isolation as juveniles display atypical harm avoidance behaviors and that neurons in the anterior cingulate cortex are involved in these abnormal behaviors. Furthermore, we discovered that the chemogenetic activation of anterior cingulate cortex pyramidal neurons can rescue impaired harm-avoidance behaviors in these mice. Our findings provide valuable insights into the potential mechanisms underlying the impact of social experiences on behavior and brain function. Understanding how social isolation during crucial developmental periods can lead to alterations in behavior opens up new avenues for exploring therapeutic interventions for neuropsychiatric disorders characterized by impaired prosocial behaviors.
Collapse
Affiliation(s)
- Yue Jin
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China.
| |
Collapse
|
3
|
Keysers C, Silani G, Gazzola V. Predictive coding for the actions and emotions of others and its deficits in autism spectrum disorders. Neurosci Biobehav Rev 2024; 167:105877. [PMID: 39260714 DOI: 10.1016/j.neubiorev.2024.105877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Traditionally, the neural basis of social perception has been studied by showing participants brief examples of the actions or emotions of others presented in randomized order to prevent participants from anticipating what others do and feel. This approach is optimal to isolate the importance of information flow from lower to higher cortical areas. The degree to which feedback connections and Bayesian hierarchical predictive coding contribute to how mammals process more complex social stimuli has been less explored, and will be the focus of this review. We illustrate paradigms that start to capture how participants predict the actions and emotions of others under more ecological conditions, and discuss the brain activity measurement methods suitable to reveal the importance of feedback connections in these predictions. Together, these efforts draw a richer picture of social cognition in which predictive coding and feedback connections play significant roles. We further discuss how the notion of predicting coding is influencing how we think of autism spectrum disorder.
Collapse
Affiliation(s)
- Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Meibergdreef 47, Amsterdam 1105 BA, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands.
| | - Giorgia Silani
- Department of Clinical and Health Psychology, University of Vienna, Wien, Austria
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Meibergdreef 47, Amsterdam 1105 BA, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Simon Iv J, Rich EL. Neural populations in macaque anterior cingulate cortex encode social image identities. Nat Commun 2024; 15:7500. [PMID: 39209844 PMCID: PMC11362159 DOI: 10.1038/s41467-024-51825-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
The anterior cingulate cortex gyrus (ACCg) has been implicated in prosocial behaviors and reasoning about social cues. While this indicates that ACCg is involved in social behavior, it remains unclear whether ACCg neurons also encode social information during goal-directed actions without social consequences. To address this, we assessed how social information is processed by ACCg neurons in a reward localization task. Here we show that neurons in the ACCg of female rhesus monkeys differentiate the identities of conspecifics in task images, even when identity was task-irrelevant. This was in contrast to the prearcuate cortex (PAC), which has not been strongly linked to social behavior, where neurons differentiated identities in both social and nonsocial images. Many neurons in the ACCg also categorically distinguished social from nonsocial trials, but this encoding was only slightly more common in ACCg compared to the PAC. Together, our results suggest that ACCg neurons are uniquely sensitive to social information that differentiates individuals, which may underlie its role in complex social reasoning.
Collapse
Affiliation(s)
- Joseph Simon Iv
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erin L Rich
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Fan S, Dal Monte O, Nair AR, Fagan NA, Chang SWC. Closed-loop microstimulations of the orbitofrontal cortex during real-life gaze interaction enhance dynamic social attention. Neuron 2024; 112:2631-2644.e6. [PMID: 38823391 PMCID: PMC11309918 DOI: 10.1016/j.neuron.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/11/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Neurons from multiple prefrontal areas encode several key variables of social gaze interaction. To explore the causal roles of the primate prefrontal cortex in real-life gaze interaction, we applied weak closed-loop microstimulations that were precisely triggered by specific social gaze events. Microstimulations of the orbitofrontal cortex, but not the dorsomedial prefrontal cortex or the anterior cingulate cortex, enhanced momentary dynamic social attention in the spatial dimension by decreasing the distance of fixations relative to a partner's eyes and in the temporal dimension by reducing the inter-looking interval and the latency to reciprocate the other's directed gaze. By contrast, on a longer timescale, microstimulations of the dorsomedial prefrontal cortex modulated inter-individual gaze dynamics relative to one's own gaze positions. These findings demonstrate that multiple regions in the primate prefrontal cortex may serve as functionally accessible nodes in controlling different aspects of dynamic social attention and suggest their potential for a therapeutic brain interface.
Collapse
Affiliation(s)
- Siqi Fan
- Department of Psychology, Yale University, New Haven, CT 06520, USA; The Laboratory of Neural Systems, The Rockefeller University, New York, NY 10065, USA
| | - Olga Dal Monte
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Psychology, University of Turin, 10124 Torino, Italy
| | - Amrita R Nair
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Nicholas A Fagan
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
6
|
Yu D, Bao L, Yin B. Emotional contagion in rodents: A comprehensive exploration of mechanisms and multimodal perspectives. Behav Processes 2024; 216:105008. [PMID: 38373472 DOI: 10.1016/j.beproc.2024.105008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/26/2023] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Emotional contagion, a fundamental aspect of empathy, is an automatic and unconscious process in which individuals mimic and synchronize with the emotions of others. Extensively studied in rodents, this phenomenon is mediated through a range of sensory pathways, each contributing distinct insights. The olfactory pathway, marked by two types of pheromones modulated by oxytocin, plays a crucial role in transmitting emotional states. The auditory pathway, involving both squeaks and specific ultrasonic vocalizations, correlates with various emotional states and is essential for expression and communication in rodents. The visual pathway, though less relied upon, encompasses observational motions and facial expressions. The tactile pathway, a more recent focus, underscores the significance of physical interactions such as allogrooming and socio-affective touch in modulating emotional states. This comprehensive review not only highlights plausible neural mechanisms but also poses key questions for future research. It underscores the complexity of multimodal integration in emotional contagion, offering valuable insights for human psychology, neuroscience, animal welfare, and the burgeoning field of animal-human-AI interactions, thereby contributing to the development of a more empathetic intelligent future.
Collapse
Affiliation(s)
- Delin Yu
- School of Psychology, Fujian Normal University, Fuzhou, Fujian 350117, China; Key Laboratory for Learning and Behavioral Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Lili Bao
- School of Psychology, Fujian Normal University, Fuzhou, Fujian 350117, China; Key Laboratory for Learning and Behavioral Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Bin Yin
- School of Psychology, Fujian Normal University, Fuzhou, Fujian 350117, China; Key Laboratory for Learning and Behavioral Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China.
| |
Collapse
|
7
|
Vogel T, Lockwood PL. Normative Processing Needs Multiple Levels of Explanation: From Algorithm to Implementation. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2024; 19:53-56. [PMID: 37506338 PMCID: PMC10790501 DOI: 10.1177/17456916231187393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Norms are the rules about what is allowed or forbidden by social groups. A key debate for norm psychology is whether these rules arise from mechanisms that are domain-specific and genetically inherited or domain-general and deployed for many other nonnorm processes. Here we argue for the importance of assessing and testing domain-specific and domain-general processes at multiple levels of explanation, from algorithmic (psychological) to implementational (neural). We also critically discuss findings from cognitive neuroscience supporting that social and nonsocial learning processes, essential for accounts of cultural evolution, can be dissociated at these two levels. This multilevel framework can generate new hypotheses and empirical tests of cultural evolution accounts of norm processing against purely domain-specific nativist alternatives.
Collapse
Affiliation(s)
- Todd Vogel
- Centre for Human Brain Health, School of Psychology, University of Birmingham
| | - Patricia L. Lockwood
- Centre for Human Brain Health, School of Psychology, University of Birmingham
- Institute for Mental Health, School of Psychology, University of Birmingham
- Centre for Developmental Science, School of Psychology, University of Birmingham
| |
Collapse
|
8
|
Isoda M. Decoding social rewards via inter-areal coordination frequency in the brain. Trends Cogn Sci 2023; 27:888-889. [PMID: 37567849 DOI: 10.1016/j.tics.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Vicarious reward plays a pivotal role in shaping altruism and prosociality. However, neural circuit mechanisms underlying the distinction between vicarious reward and experienced reward are poorly understood. Putnam et al. recently demonstrated that the two types of reward are represented by distinct coordination frequencies within the same cingulate-amygdala pathway.
Collapse
Affiliation(s)
- Masaki Isoda
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 240-0193, Japan.
| |
Collapse
|
9
|
Putnam PT, Chu CCJ, Fagan NA, Dal Monte O, Chang SWC. Dissociation of vicarious and experienced rewards by coupling frequency within the same neural pathway. Neuron 2023; 111:2513-2522.e4. [PMID: 37348507 PMCID: PMC10527039 DOI: 10.1016/j.neuron.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/05/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023]
Abstract
Vicarious reward, essential to social learning and decision making, is theorized to engage select brain regions similarly to experienced reward to generate a shared experience. However, it is just as important for neural systems to also differentiate vicarious from experienced rewards for social interaction. Here, we investigated the neuronal interaction between the primate anterior cingulate cortex gyrus (ACCg) and the basolateral amygdala (BLA) when social choices made by monkeys led to either vicarious or experienced reward. Coherence between ACCg spikes and BLA local field potential (LFP) selectively increased in gamma frequencies for vicarious reward, whereas it selectively increased in alpha/beta frequencies for experienced reward. These respectively enhanced couplings for vicarious and experienced rewards were uniquely observed following voluntary choices. Moreover, reward outcomes had consistently strong directional influences from ACCg to BLA. Our findings support a mechanism of vicarious reward where social agency is tagged by interareal coordination frequency within the same shared pathway.
Collapse
Affiliation(s)
- Philip T Putnam
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| | - Cheng-Chi J Chu
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| | - Nicholas A Fagan
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| | - Olga Dal Monte
- Department of Psychology, Yale University, New Haven, CT 06511, USA; Department of Psychology, University of Turin, Torino, Italy
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
10
|
Ojha A, Teresi GI, Slavich GM, Gotlib IH, Ho TC. Social threat, fronto-cingulate-limbic morphometry, and symptom course in depressed adolescents: a longitudinal investigation. Psychol Med 2023; 53:5203-5217. [PMID: 36117278 PMCID: PMC10024647 DOI: 10.1017/s0033291722002239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/05/2022] [Accepted: 06/28/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Psychosocial stressors characterized by social threat, such as interpersonal loss and social rejection, are associated with depression in adolescents. Few studies, however, have examined whether social threat affects fronto-cingulate-limbic systems implicated in adolescent depression. METHODS We assessed lifetime stressor severity across several domains using the Stress and Adversity Inventory (STRAIN) in 57 depressed adolescents (16.15 ± 1.32 years, 34 females), and examined whether the severity of social threat and non-social threat stressors was associated with gray matter volumes (GMVs) in the anterior cingulate cortex (ACC), amygdala, hippocampus, and nucleus accumbens (NAcc). We also examined how lifetime social threat severity and GMVs in these regions related to depressive symptoms at baseline and over 9 months. RESULTS General stressor severity was related to greater depression severity at baseline and over 9 months. Moreover, greater severity of social threat (but not non-social threat) stressors was associated with smaller bilateral amygdala and NAcc GMVs, and smaller bilateral surface areas of caudal and rostral ACC (all pFDR ⩽ 0.048). However, neither social threat nor non-social threat stressor severity was related to hippocampal GMVs (all pFDR ⩾ 0.318). All fronto-cingulate-limbic structures that were associated with the severity of social threat were negatively associated with greater depression severity over 9 months (all pFDR ⩽ 0.014). Post-hoc analyses suggested that gray matter morphometry of bilateral amygdala, NAcc, and rostral and caudal ACC mediated the association between social threat and depression severity in adolescents over 9 months (all pFDR < 0.048). CONCLUSIONS Social threat specifically affects fronto-cingulate-limbic pathways that contribute to the maintenance of depression in adolescents.
Collapse
Affiliation(s)
- Amar Ojha
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Giana I. Teresi
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - George M. Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Ian H. Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Tiffany C. Ho
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| |
Collapse
|
11
|
Faraji J, Metz GAS. Toward reframing brain-social dynamics: current assumptions and future challenges. Front Psychiatry 2023; 14:1211442. [PMID: 37484686 PMCID: PMC10359502 DOI: 10.3389/fpsyt.2023.1211442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Evolutionary analyses suggest that the human social brain and sociality appeared together. The two fundamental tools that accelerated the concurrent emergence of the social brain and sociality include learning and plasticity. The prevailing core idea is that the primate brain and the cortex in particular became reorganised over the course of evolution to facilitate dynamic adaptation to ongoing changes in physical and social environments. Encouraged by computational or survival demands or even by instinctual drives for living in social groups, the brain eventually learned how to learn from social experience via its massive plastic capacity. A fundamental framework for modeling these orchestrated dynamic responses is that social plasticity relies upon neuroplasticity. In the present article, we first provide a glimpse into the concepts of plasticity, experience, with emphasis on social experience. We then acknowledge and integrate the current theoretical concepts to highlight five key intertwined assumptions within social neuroscience that underlie empirical approaches for explaining the brain-social dynamics. We suggest that this epistemological view provides key insights into the ontology of current conceptual frameworks driving future research to successfully deal with new challenges and possible caveats in favour of the formulation of novel assumptions. In the light of contemporary societal challenges, such as global pandemics, natural disasters, violent conflict, and other human tragedies, discovering the mechanisms of social brain plasticity will provide new approaches to support adaptive brain plasticity and social resilience.
Collapse
|
12
|
Rhoads SA, O'Connell K, Berluti K, Ploe ML, Elizabeth HS, Amormino P, Li JL, Dutton MA, VanMeter AS, Marsh AA. Neural responses underlying extraordinary altruists' generosity for socially distant others. PNAS NEXUS 2023; 2:pgad199. [PMID: 37416875 PMCID: PMC10321390 DOI: 10.1093/pnasnexus/pgad199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/22/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023]
Abstract
Most people are much less generous toward strangers than close others, a bias termed social discounting. But people who engage in extraordinary real-world altruism, like altruistic kidney donors, show dramatically reduced social discounting. Why they do so is unclear. Some prior research suggests reduced social discounting requires effortfully overcoming selfishness via recruitment of the temporoparietal junction. Alternatively, reduced social discounting may reflect genuinely valuing strangers' welfare more due to how the subjective value of their outcomes is encoded in regions such as rostral anterior cingulate cortex (ACC) and amygdala. We tested both hypotheses in this pre-registered study. We also tested the hypothesis that a loving-kindness meditation (LKM) training intervention would cause typical adults' neural and behavioral patterns to resemble altruists. Altruists and matched controls (N = 77) completed a social discounting task during functional magnetic resonance imaging; 25 controls were randomized to complete LKM training. Neither behavioral nor imaging analyses supported the hypothesis that altruists' reduced social discounting reflects effortfully overcoming selfishness. Instead, group differences emerged in social value encoding regions, including rostral ACC and amygdala. Activation in these regions corresponded to the subjective valuation of others' welfare predicted by the social discounting model. LKM training did not result in more generous behavioral or neural patterns, but only greater perceived difficulty during social discounting. Our results indicate extraordinary altruists' generosity results from the way regions involved in social decision-making encode the subjective value of others' welfare. Interventions aimed at promoting generosity may thus succeed to the degree they can increase the subjective valuation of others' welfare.
Collapse
Affiliation(s)
- Shawn A Rhoads
- Department of Psychology, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
| | - Katherine O'Connell
- Interdisciplinary Program in Neuroscience, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
| | - Kathryn Berluti
- Department of Psychology, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
| | - Montana L Ploe
- Department of Psychology, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
| | - Hannah S Elizabeth
- Department of Psychology, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
| | - Paige Amormino
- Department of Psychology, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
| | - Joanna L Li
- Department of Psychology, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
| | - Mary Ann Dutton
- Department of Psychiatry, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
| | - Ashley Skye VanMeter
- Interdisciplinary Program in Neuroscience, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
- Department of Neurology, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
| | - Abigail A Marsh
- Department of Psychology, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
| |
Collapse
|
13
|
Contreras-Huerta LS, Coll MP, Bird G, Yu H, Prosser A, Lockwood PL, Murphy J, Crockett MJ, Apps MAJ. Neural representations of vicarious rewards are linked to interoception and prosocial behaviour. Neuroimage 2023; 269:119881. [PMID: 36702212 DOI: 10.1016/j.neuroimage.2023.119881] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/12/2022] [Accepted: 01/14/2023] [Indexed: 01/24/2023] Open
Abstract
Every day we constantly observe other people receiving rewards. Theoretical accounts posit that vicarious reward processing might be linked to people's sensitivity to internal body states (interoception) and facilitates a tendency to act prosocially. However, the neural processes underlying the links between vicarious reward processing, interoception, and prosocial behaviour are poorly understood. Previous research has linked vicarious reward processing to the anterior cingulate gyrus (ACCg) and the anterior insula (AI). Can we predict someone's propensity to be prosocial or to be aware of interoceptive signals from variability in how the ACCg and AI process rewards? Here, participants monitored rewards being delivered to themselves or a stranger during functional magnetic resonance imaging. Later, they performed a task measuring their willingness to exert effort to obtain rewards for others, and a task measuring their propensity to be aware and use interoceptive respiratory signals. Using multivariate similarity analysis, we show that people's willingness to be prosocial is predicted by greater similarity between self and other representations in the ACCg. Moreover, greater dissimilarity in self-other representations in the AI is linked to interoceptive propensity. These findings highlight that vicarious reward is linked to bodily signals in AI, and foster prosocial tendencies through the ACCg.
Collapse
Affiliation(s)
- Luis Sebastian Contreras-Huerta
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3PH, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9DU, UK; Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK; Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK; Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Viña del Mar, Chile.
| | - Michel-Pierre Coll
- School of Psychology and CIRRIS research center, Laval University, Quebec City QC G1V 0A6, Canada
| | - Geoffrey Bird
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3PH, UK; School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Hongbo Yu
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Annayah Prosser
- Department of Psychology, University of Bath, BA2 7AY, United Kingdom
| | - Patricia L Lockwood
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3PH, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9DU, UK; Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK; Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK; Christ Church, University of Oxford, Oxford OX1 1DP, UK
| | - Jennifer Murphy
- Department of Psychology, Royal Holloway, University of London, London TW20 0EY, UK
| | - M J Crockett
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3PH, UK; Department of Psychology, Yale University, New Haven, CT 06511, USA; Department of Psychology and University Center for Human Values, Princeton University, Princeton, USA
| | - Matthew A J Apps
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3PH, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9DU, UK; Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK; Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK; Christ Church, University of Oxford, Oxford OX1 1DP, UK.
| |
Collapse
|
14
|
Pisauro MA, Fouragnan EF, Arabadzhiyska DH, Apps MAJ, Philiastides MG. Neural implementation of computational mechanisms underlying the continuous trade-off between cooperation and competition. Nat Commun 2022; 13:6873. [PMID: 36369180 PMCID: PMC9652314 DOI: 10.1038/s41467-022-34509-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Social interactions evolve continuously. Sometimes we cooperate, sometimes we compete, while at other times we strategically position ourselves somewhere in between to account for the ever-changing social contexts around us. Research on social interactions often focuses on a binary dichotomy between competition and cooperation, ignoring people's evolving shifts along a continuum. Here, we develop an economic game - the Space Dilemma - where two players change their degree of cooperativeness over time in cooperative and competitive contexts. Using computational modelling we show how social contexts bias choices and characterise how inferences about others' intentions modulate cooperativeness. Consistent with the modelling predictions, brain regions previously linked to social cognition, including the temporo-parietal junction, dorso-medial prefrontal cortex and the anterior cingulate gyrus, encode social prediction errors and context-dependent signals, correlating with shifts along a cooperation-competition continuum. These results provide a comprehensive account of the computational and neural mechanisms underlying the continuous trade-off between cooperation and competition.
Collapse
Affiliation(s)
- M A Pisauro
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK.
| | - E F Fouragnan
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
- Brain Research Imaging Center and School of Psychology, Faculty of Health, University of Plymouth, Plymouth, UK
| | - D H Arabadzhiyska
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - M A J Apps
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - M G Philiastides
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| |
Collapse
|
15
|
Lockwood PL, Wittmann MK, Nili H, Matsumoto-Ryan M, Abdurahman A, Cutler J, Husain M, Apps MAJ. Distinct neural representations for prosocial and self-benefiting effort. Curr Biol 2022; 32:4172-4185.e7. [PMID: 36029773 PMCID: PMC9616728 DOI: 10.1016/j.cub.2022.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/13/2022] [Accepted: 08/07/2022] [Indexed: 01/09/2023]
Abstract
Prosocial behaviors-actions that benefit others-are central to individual and societal well-being. Although the mechanisms underlying the financial and moral costs of prosocial behaviors are increasingly understood, this work has often ignored a key influence on behavior: effort. Many prosocial acts are effortful, and people are averse to the costs of exerting them. However, how the brain encodes effort costs when actions benefit others is unknown. During fMRI, participants completed a decision-making task where they chose in each trial whether to "work" and exert force (30%-70% of maximum grip strength) or "rest" (no effort) for rewards (2-10 credits). Crucially, on separate trials, they made these decisions either to benefit another person or themselves. We used a combination of multivariate representational similarity analysis and model-based univariate analysis to reveal how the costs of prosocial and self-benefiting efforts are processed. Strikingly, we identified a unique neural signature of effort in the anterior cingulate gyrus (ACCg) for prosocial acts, both when choosing to help others and when exerting force to benefit them. This pattern was absent for self-benefiting behaviors. Moreover, stronger, specific representations of prosocial effort in the ACCg were linked to higher levels of empathy and higher subsequent exerted force to benefit others. In contrast, the ventral tegmental area and ventral insula represented value preferentially when choosing for oneself and not for prosocial acts. These findings advance our understanding of the neural mechanisms of prosocial behavior, highlighting the critical role that effort has in the brain circuits that guide helping others.
Collapse
Affiliation(s)
- Patricia L Lockwood
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK; Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK; Department of Experimental Psychology, University of Oxford, Anna Watts Building, Woodstock Road, Oxford OX2 6GG, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, John Radcliffe Hospital, FMRIB Building, Headington, Oxford OX3 9DU, UK; Christ Church, University of Oxford, St Aldate's, Oxford OX1 1DP, UK.
| | - Marco K Wittmann
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Woodstock Road, Oxford OX2 6GG, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, John Radcliffe Hospital, FMRIB Building, Headington, Oxford OX3 9DU, UK; Department of Experimental Psychology, University College London, 26 Bedford Way, London WC1H 0AP, UK; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, Russell Square House 10-12 Russell Square, London WC1B 5EH, UK
| | - Hamed Nili
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, John Radcliffe Hospital, FMRIB Building, Headington, Oxford OX3 9DU, UK; Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20251 Hamburg, Germany
| | - Mona Matsumoto-Ryan
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Woodstock Road, Oxford OX2 6GG, UK
| | - Ayat Abdurahman
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Woodstock Road, Oxford OX2 6GG, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, John Radcliffe Hospital, FMRIB Building, Headington, Oxford OX3 9DU, UK; Department of Psychology, University of Cambridge, Downing Place, Cambridge CB2 3EB, UK
| | - Jo Cutler
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK; Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK; Department of Experimental Psychology, University of Oxford, Anna Watts Building, Woodstock Road, Oxford OX2 6GG, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Woodstock Road, Oxford OX2 6GG, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Matthew A J Apps
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK; Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK; Department of Experimental Psychology, University of Oxford, Anna Watts Building, Woodstock Road, Oxford OX2 6GG, UK; Christ Church, University of Oxford, St Aldate's, Oxford OX1 1DP, UK
| |
Collapse
|
16
|
Wu YE, Hong W. Neural basis of prosocial behavior. Trends Neurosci 2022; 45:749-762. [PMID: 35853793 PMCID: PMC10039809 DOI: 10.1016/j.tins.2022.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 01/10/2023]
Abstract
The ability to behave in ways that benefit other individuals' well-being is among the most celebrated human characteristics crucial for social cohesiveness. Across mammalian species, animals display various forms of prosocial behaviors - comforting, helping, and resource sharing - to support others' emotions, goals, and/or material needs. In this review, we provide a cross-species view of the behavioral manifestations, proximate and ultimate drives, and neural mechanisms of prosocial behaviors. We summarize key findings from recent studies in humans and rodents that have shed light on the neural mechanisms underlying different processes essential for prosocial interactions, from perception and empathic sharing of others' states to prosocial decisions and actions.
Collapse
Affiliation(s)
- Ye Emily Wu
- Department of Neurobiology and Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Weizhe Hong
- Department of Neurobiology and Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Wu X, Lu X, Zhang H, Wang X, Kong Y, Hu L. The association between ballroom dance training and empathic concern: Behavioral and brain evidence. Hum Brain Mapp 2022; 44:315-326. [PMID: 35972315 PMCID: PMC9842917 DOI: 10.1002/hbm.26042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/11/2022] [Accepted: 07/29/2022] [Indexed: 01/18/2023] Open
Abstract
Dance is unique in that it is a sport and an art simultaneously. Beyond improving sensorimotor functions, dance training could benefit high-level emotional and cognitive functions. Duo dances also confer the possibility for dancers to develop the abilities to recognize, understand, and share the thoughts and feelings of their dance partners during the long-term dance training. To test this possibility, we collected high-resolution structural and resting-state functional magnetic resonance imaging (MRI) data from 43 expert-level ballroom dancers (a model of long-term exposure to duo dance training) and 40 age-matched and sex-matched nondancers, and measured their empathic ability using a self-report trait empathy scale. We found that ballroom dancers showed higher scores of empathic concern (EC) than controls. The EC scores were positively correlated with years with dance partners but negatively correlated with the number of dance partners for ballroom dancers. These behavioral results were supported by the structural and functional MRI data. Structurally, we observed that the gray matter volumes in the subgenual anterior cingulate cortex (ACC) and EC scores were positively correlated. Functionally, the connectivity between ACC and occipital gyrus was positively correlated with both EC scores and years with dance partners. In addition, the relationship between years with dance partners and EC scores was indirect-only mediated by the ACC-occipital gyrus functional connectivity. Therefore, our findings provided solid evidence for the close link between long-term ballroom dance training and empathy, which deepens our understanding of the neural mechanisms underlying this phenomenon.
Collapse
Affiliation(s)
- Xiao Wu
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina,Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Xuejing Lu
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina,CAS Key Laboratory of Mental HealthInstitute of PsychologyBeijingChina
| | - Huijuan Zhang
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina,CAS Key Laboratory of Mental HealthInstitute of PsychologyBeijingChina
| | - Xiao Wang
- School of ArtBeijing Sport UniversityBeijingChina
| | - Yazhuo Kong
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina,Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Li Hu
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina,CAS Key Laboratory of Mental HealthInstitute of PsychologyBeijingChina
| |
Collapse
|
18
|
Fortier AV, Meisner OC, Nair AR, Chang SWC. Prefrontal Circuits guiding Social Preference: Implications in Autism Spectrum Disorder. Neurosci Biobehav Rev 2022; 141:104803. [PMID: 35908593 PMCID: PMC10122914 DOI: 10.1016/j.neubiorev.2022.104803] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/10/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Abstract
Although Autism Spectrum Disorder (ASD) is increasing in diagnostic prevalence, treatment options are inadequate largely due to limited understanding of ASD's underlying neural mechanisms. Contributing to difficulties in treatment development is the vast heterogeneity of ASD, from physiological causes to clinical presentations. Recent studies suggest that distinct genetic and neurological alterations may converge onto similar underlying neural circuits. Therefore, an improved understanding of neural circuit-level dysfunction in ASD may be a more productive path to developing broader treatments that are effective across a greater spectrum of ASD. Given the social preference behavioral deficits commonly seen in ASD, dysfunction in circuits mediating social preference may contribute to the atypical development of social cognition. We discuss some of the animal models used to study ASD and examine the function and effects of dysregulation of the social preference circuits, notably the medial prefrontal cortex-amygdala and the medial prefrontal cortex-nucleus accumbens circuits, in these animal models. Using the common circuits underlying similar behavioral disruptions of social preference behaviors as an example, we highlight the importance of identifying disruption in convergent circuits to improve the translational success of animal model research for ASD treatment development.
Collapse
Affiliation(s)
- Abigail V Fortier
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Molecular, Cellular, Developmental Biology, New Haven, CT 06520, USA
| | - Olivia C Meisner
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Amrita R Nair
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
19
|
Pujara MS, Ciesinski NK, Reyelts JF, Rhodes SEV, Murray EA. Selective Prefrontal-Amygdala Circuit Interactions Underlie Social and Nonsocial Valuation in Rhesus Macaques. J Neurosci 2022; 42:5593-5604. [PMID: 35654604 PMCID: PMC9295837 DOI: 10.1523/jneurosci.0794-21.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/17/2022] [Accepted: 05/17/2022] [Indexed: 01/16/2023] Open
Abstract
Lesion studies in macaques suggest dissociable functions of the orbitofrontal cortex (OFC) and medial frontal cortex (MFC), with OFC being essential for goal-directed decision-making and MFC supporting social cognition. Bilateral amygdala damage results in impairments in both of these domains. There are extensive reciprocal connections between these prefrontal areas and the amygdala; however, it is not known whether the dissociable roles of OFC and MFC depend on functional interactions with the amygdala. To test this possibility, we compared the performance of male rhesus macaques (Macaca mulatta) with crossed surgical disconnection of the amygdala and either MFC (MFC × AMY, n = 4) or OFC (OFC × AMY, n = 4) to a group of unoperated controls (CON, n = 5). All monkeys were assessed for their performance on two tasks to measure the following: (1) food-retrieval latencies while viewing videos of social and nonsocial stimuli in a test of social interest and (2) object choices based on current food value using reinforcer devaluation in a test of goal-directed decision-making. Compared with the CON group, the MFC × AMY group, but not the OFC × AMY group, showed significantly reduced food-retrieval latencies while viewing videos of conspecifics, indicating reduced social valuation and/or interest. By contrast, on the devaluation task, group OFC × AMY, but not group MFC × AMY, displayed deficits on object choices following changes in food value. These data indicate that the MFC and OFC must functionally interact with the amygdala to support normative social and nonsocial valuation, respectively.SIGNIFICANCE STATEMENT Ascribing value to conspecifics (social) versus objects (nonsocial) may be supported by distinct but overlapping brain networks. Here, we test whether two nonoverlapping regions of the prefrontal cortex, the medial frontal cortex and the orbitofrontal cortex, must causally interact with the amygdala to sustain social valuation and goal-directed decision-making, respectively. We found that these prefrontal-amygdala circuits are functionally dissociable, lending support for the idea that medial frontal and orbital frontal cortex make independent contributions to cognitive appraisals of the environment. These data provide a neural framework for distinct value assignment processes and may enhance our understanding of the cognitive deficits observed following brain injury or in the development of mental health disorders.
Collapse
Affiliation(s)
- Maia S Pujara
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Nicole K Ciesinski
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Joseph F Reyelts
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Sarah E V Rhodes
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Elisabeth A Murray
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland 20892
| |
Collapse
|
20
|
Mirror neurons 30 years later: implications and applications. Trends Cogn Sci 2022; 26:767-781. [PMID: 35803832 DOI: 10.1016/j.tics.2022.06.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/21/2022] [Accepted: 06/07/2022] [Indexed: 12/30/2022]
Abstract
Mirror neurons (MNs) were first described in a seminal paper in 1992 as a class of monkey premotor cells discharging during both action execution and observation. Despite their debated origin and function, recent studies in several species, from birds to humans, revealed that beyond MNs properly so called, a variety of cell types distributed among multiple motor, sensory, and emotional brain areas form a 'mirror mechanism' more complex and flexible than originally thought, which has an evolutionarily conserved role in social interaction. Here, we trace the current limits and envisage the future trends of this discovery, showing that it inspired translational research and the development of new neurorehabilitation approaches, and constitutes a point of no return in social and affective neuroscience.
Collapse
|
21
|
Dal Monte O, Fan S, Fagan NA, Chu CCJ, Zhou MB, Putnam PT, Nair AR, Chang SWC. Widespread implementations of interactive social gaze neurons in the primate prefrontal-amygdala networks. Neuron 2022; 110:2183-2197.e7. [PMID: 35545090 DOI: 10.1016/j.neuron.2022.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/10/2022] [Accepted: 04/09/2022] [Indexed: 01/16/2023]
Abstract
Social gaze interaction powerfully shapes interpersonal communication. However, compared with social perception, very little is known about the neuronal underpinnings of real-life social gaze interaction. Here, we studied a large number of neurons spanning four regions in primate prefrontal-amygdala networks and demonstrate robust single-cell foundations of interactive social gaze in the orbitofrontal, dorsomedial prefrontal, and anterior cingulate cortices, in addition to the amygdala. Many neurons in these areas exhibited high temporal heterogeneity for social discriminability, with a selectivity bias for looking at a conspecific compared with an object. Notably, a large proportion of neurons in each brain region parametrically tracked the gaze of self or other, providing substrates for social gaze monitoring. Furthermore, several neurons displayed selective encoding of mutual eye contact in an agent-specific manner. These findings provide evidence of widespread implementations of interactive social gaze neurons in the primate prefrontal-amygdala networks during social gaze interaction.
Collapse
Affiliation(s)
- Olga Dal Monte
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Psychology, University of Turin, 10124 Torino, Italy
| | - Siqi Fan
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Nicholas A Fagan
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Cheng-Chi J Chu
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Michael B Zhou
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Philip T Putnam
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Amrita R Nair
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
22
|
Murray EA, Fellows LK. Prefrontal cortex interactions with the amygdala in primates. Neuropsychopharmacology 2022; 47:163-179. [PMID: 34446829 PMCID: PMC8616954 DOI: 10.1038/s41386-021-01128-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
This review addresses functional interactions between the primate prefrontal cortex (PFC) and the amygdala, with emphasis on their contributions to behavior and cognition. The interplay between these two telencephalic structures contributes to adaptive behavior and to the evolutionary success of all primate species. In our species, dysfunction in this circuitry creates vulnerabilities to psychopathologies. Here, we describe amygdala-PFC contributions to behaviors that have direct relevance to Darwinian fitness: learned approach and avoidance, foraging, predator defense, and social signaling, which have in common the need for flexibility and sensitivity to specific and rapidly changing contexts. Examples include the prediction of positive outcomes, such as food availability, food desirability, and various social rewards, or of negative outcomes, such as threats of harm from predators or conspecifics. To promote fitness optimally, these stimulus-outcome associations need to be rapidly updated when an associative contingency changes or when the value of a predicted outcome changes. We review evidence from nonhuman primates implicating the PFC, the amygdala, and their functional interactions in these processes, with links to experimental work and clinical findings in humans where possible.
Collapse
Affiliation(s)
| | - Lesley K Fellows
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
23
|
Meisner OC, Nair A, Chang SWC. Amygdala connectivity and implications for social cognition and disorders. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:381-403. [PMID: 35964984 PMCID: PMC9436700 DOI: 10.1016/b978-0-12-823493-8.00017-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The amygdala is a hub of subcortical region that is crucial in a wide array of affective and motivation-related behaviors. While early research contributed significantly to our understanding of this region's extensive connections to other subcortical and cortical regions, recent methodological advances have enabled researchers to better understand the details of these circuits and their behavioral contributions. Much of this work has focused specifically on investigating the role of amygdala circuits in social cognition. In this chapter, we review both long-standing knowledge and novel research on the amygdala's structure, function, and involvement in social cognition. We focus specifically on the amygdala's circuits with the medial prefrontal cortex, the orbitofrontal cortex, and the hippocampus, as these regions share extensive anatomic and functional connections with the amygdala. Furthermore, we discuss how dysfunction in the amygdala may contribute to social deficits in clinical disorders including autism spectrum disorder, social anxiety disorder, and Williams syndrome. We conclude that social functions mediated by the amygdala are orchestrated through multiple intricate interactions between the amygdala and its interconnected brain regions, endorsing the importance of understanding the amygdala from network perspectives.
Collapse
Affiliation(s)
- Olivia C Meisner
- Department of Psychology, Yale University, New Haven, CT, United States; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
| | - Amrita Nair
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT, United States; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States.
| |
Collapse
|
24
|
Zoh Y, Chang SWC, Crockett MJ. The prefrontal cortex and (uniquely) human cooperation: a comparative perspective. Neuropsychopharmacology 2022; 47:119-133. [PMID: 34413478 PMCID: PMC8617274 DOI: 10.1038/s41386-021-01092-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/03/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Humans have an exceptional ability to cooperate relative to many other species. We review the neural mechanisms supporting human cooperation, focusing on the prefrontal cortex. One key feature of human social life is the prevalence of cooperative norms that guide social behavior and prescribe punishment for noncompliance. Taking a comparative approach, we consider shared and unique aspects of cooperative behaviors in humans relative to nonhuman primates, as well as divergences in brain structure that might support uniquely human aspects of cooperation. We highlight a medial prefrontal network common to nonhuman primates and humans supporting a foundational process in cooperative decision-making: valuing outcomes for oneself and others. This medial prefrontal network interacts with lateral prefrontal areas that are thought to represent cooperative norms and modulate value representations to guide behavior appropriate to the local social context. Finally, we propose that more recently evolved anterior regions of prefrontal cortex play a role in arbitrating between cooperative norms across social contexts, and suggest how future research might fruitfully examine the neural basis of norm arbitration.
Collapse
Affiliation(s)
- Yoonseo Zoh
- grid.47100.320000000419368710Department of Psychology, Yale University, New Haven, USA
| | - Steve W. C. Chang
- grid.47100.320000000419368710Department of Psychology, Yale University, New Haven, USA
| | - Molly J. Crockett
- grid.47100.320000000419368710Department of Psychology, Yale University, New Haven, USA
| |
Collapse
|
25
|
Yokoyama C, Autio JA, Ikeda T, Sallet J, Mars RB, Van Essen DC, Glasser MF, Sadato N, Hayashi T. Comparative connectomics of the primate social brain. Neuroimage 2021; 245:118693. [PMID: 34732327 PMCID: PMC9159291 DOI: 10.1016/j.neuroimage.2021.118693] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/27/2021] [Accepted: 10/29/2021] [Indexed: 01/13/2023] Open
Abstract
Social interaction is thought to provide a selection pressure for human intelligence, yet little is known about its neurobiological basis and evolution throughout the primate lineage. Recent advances in neuroimaging have enabled whole brain investigation of brain structure, function, and connectivity in humans and non-human primates (NHPs), leading to a nascent field of comparative connectomics. However, linking social behavior to brain organization across the primates remains challenging. Here, we review the current understanding of the macroscale neural mechanisms of social behaviors from the viewpoint of system neuroscience. We first demonstrate an association between the number of cortical neurons and the size of social groups across primates, suggesting a link between neural information-processing capacity and social capabilities. Moreover, by capitalizing on recent advances in species-harmonized functional MRI, we demonstrate that portions of the mirror neuron system and default-mode networks, which are thought to be important for representation of the other's actions and sense of self, respectively, exhibit similarities in functional organization in macaque monkeys and humans, suggesting possible homologies. With respect to these two networks, we describe recent developments in the neurobiology of social perception, joint attention, personality and social complexity. Together, the Human Connectome Project (HCP)-style comparative neuroimaging, hyperscanning, behavioral, and other multi-modal investigations are expected to yield important insights into the evolutionary foundations of human social behavior.
Collapse
Affiliation(s)
- Chihiro Yokoyama
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Joonas A Autio
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takuro Ikeda
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Jérôme Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, Oxford University, Oxford, United Kingdom; University of Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - David C Van Essen
- Departments of Neuroscience, Washington University Medical School, St Louis, MO, United States of America
| | - Matthew F Glasser
- Departments of Neuroscience, Washington University Medical School, St Louis, MO, United States of America; Department of Radiology, Washington University Medical School, St Louis, MO, United States of America
| | - Norihiro Sadato
- National Institute for Physiological Sciences, Okazaki, Japan; The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, Japan
| | - Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
26
|
Neurocomputational mechanisms engaged in moral choices and moral learning. Neurosci Biobehav Rev 2021; 132:50-60. [PMID: 34826508 DOI: 10.1016/j.neubiorev.2021.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022]
Abstract
The neural circuitry involved in moral decisions has been studied since the early days of cognitive neuroscience, mainly using moral dilemma. However, the neurocomputational mechanisms describing how the human brain makes moral decisions and learns in various moral contexts are only starting to be established. Here we review recent results from an emerging field using model-based fMRI, which describes moral choices at a mechanistic level. These findings unify the field of moral decision making, extend a conceptual framework previously developed for value-based decision making and characterize how moral processes are computed in the brain. Moral dilemma can be modeled as value-based decisions that weigh self-interests against moral costs/harm to others and different types of prediction errors can be distinguished in different aspects of moral learning. These key computational signals help to describe moral choices and moral learning at an algorithmic level and to reveal how these cognitive operations are implemented in the brain. This researches provide a foundation to account for the neurocomputational mechanisms underlying moral decision making.
Collapse
|
27
|
Scott JT, Bourne JA. Modelling behaviors relevant to brain disorders in the nonhuman primate: Are we there yet? Prog Neurobiol 2021; 208:102183. [PMID: 34728308 DOI: 10.1016/j.pneurobio.2021.102183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022]
Abstract
Recent years have seen a profound resurgence of activity with nonhuman primates (NHPs) to model human brain disorders. From marmosets to macaques, the study of NHP species offers a unique window into the function of primate-specific neural circuits that are impossible to examine in other models. Examining how these circuits manifest into the complex behaviors of primates, such as advanced cognitive and social functions, has provided enormous insights to date into the mechanisms underlying symptoms of numerous neurological and neuropsychiatric illnesses. With the recent optimization of modern techniques to manipulate and measure neural activity in vivo, such as optogenetics and calcium imaging, NHP research is more well-equipped than ever to probe the neural mechanisms underlying pathological behavior. However, methods for behavioral experimentation and analysis in NHPs have noticeably failed to keep pace with these advances. As behavior ultimately lies at the junction between preclinical findings and its translation to clinical outcomes for brain disorders, approaches to improve the integrity, reproducibility, and translatability of behavioral experiments in NHPs requires critical evaluation. In this review, we provide a unifying account of existing brain disorder models using NHPs, and provide insights into the present and emerging contributions of behavioral studies to the field.
Collapse
Affiliation(s)
- Jack T Scott
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
28
|
Interaction between decision-making and interoceptive representations of bodily arousal in frontal cortex. Proc Natl Acad Sci U S A 2021; 118:2014781118. [PMID: 34452993 PMCID: PMC8536360 DOI: 10.1073/pnas.2014781118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
How bodily arousal states influence decision-making has been a central question in psychology, but the neural mechanisms are unclear. We recorded heart rate (HR), a measure of bodily arousal, while simultaneously monitoring neural activity in orbitofrontal cortex (OFC) and dorsal anterior cingulate cortex (dACC) of macaques making reward-guided decisions. In intact macaques, higher HR was associated with shorter reaction times. Concurrently, the activity of a set of neurons in OFC and dACC selectively encoded HR. Following amygdala lesions, HR generally increased, and now the relationship between HR and reaction times was altered. At the neural level, the balance of encoding in dACC shifted toward signaling HR, suggesting a specific mechanism through which bodily arousal influences decision-making. Decision-making and representations of arousal are intimately linked. Behavioral investigations have classically shown that either too little or too much bodily arousal is detrimental to decision-making, indicating that there is an inverted “U” relationship between bodily arousal and performance. How these processes interact at the level of single neurons as well as the neural circuits involved are unclear. Here we recorded neural activity from orbitofrontal cortex (OFC) and dorsal anterior cingulate cortex (dACC) of macaque monkeys while they made reward-guided decisions. Heart rate (HR) was also recorded and used as a proxy for bodily arousal. Recordings were made both before and after subjects received excitotoxic lesions of the bilateral amygdala. In intact monkeys, higher HR facilitated reaction times (RTs). Concurrently, a set of neurons in OFC and dACC selectively encoded trial-by-trial variations in HR independent of reward value. After amygdala lesions, HR increased, and the relationship between HR and RTs was altered. Concurrent with this change, there was an increase in the proportion of dACC neurons encoding HR. Applying a population-coding analysis, we show that after bilateral amygdala lesions, the balance of encoding in dACC is skewed away from signaling either reward value or choice direction toward HR coding around the time that choices are made. Taken together, the present results provide insight into how bodily arousal and decision-making are signaled in frontal cortex.
Collapse
|
29
|
Molapour T, Hagan CC, Silston B, Wu H, Ramstead M, Friston K, Mobbs D. Seven computations of the social brain. Soc Cogn Affect Neurosci 2021; 16:745-760. [PMID: 33629102 PMCID: PMC8343565 DOI: 10.1093/scan/nsab024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/01/2020] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
The social environment presents the human brain with the most complex information processing demands. The computations that the brain must perform occur in parallel, combine social and nonsocial cues, produce verbal and nonverbal signals and involve multiple cognitive systems, including memory, attention, emotion and learning. This occurs dynamically and at timescales ranging from milliseconds to years. Here, we propose that during social interactions, seven core operations interact to underwrite coherent social functioning; these operations accumulate evidence efficiently-from multiple modalities-when inferring what to do next. We deconstruct the social brain and outline the key components entailed for successful human-social interaction. These include (i) social perception; (ii) social inferences, such as mentalizing; (iii) social learning; (iv) social signaling through verbal and nonverbal cues; (v) social drives (e.g. how to increase one's status); (vi) determining the social identity of agents, including oneself and (vii) minimizing uncertainty within the current social context by integrating sensory signals and inferences. We argue that while it is important to examine these distinct aspects of social inference, to understand the true nature of the human social brain, we must also explain how the brain integrates information from the social world.
Collapse
Affiliation(s)
- Tanaz Molapour
- Department of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cindy C Hagan
- Department of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Brian Silston
- Department of Psychology, Columbia University, New York, NY 10027, USA
| | - Haiyan Wu
- Department of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- CAS Key Laboratory of Behavioral Science, Department of Psychology, University of Chinese Academy of Sciences, Beijing, 10010, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 10010 China
| | - Maxwell Ramstead
- Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A2, Canada
- Culture, Mind, and Brain Program, McGill University, Montreal, Quebec H3A 1A2, Canada
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Dean Mobbs
- Department of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
30
|
Abstract
Although rodent research provides important insights into neural correlates of human psychology, new cortical areas, connections, and cognitive abilities emerged during primate evolution, including human evolution. Comparison of human brains with those of nonhuman primates reveals two aspects of human brain evolution particularly relevant to emotional disorders: expansion of homotypical association areas and expansion of the hippocampus. Two uniquely human cognitive capacities link these phylogenetic developments with emotion: a subjective sense of participating in and reexperiencing remembered events and a limitless capacity to imagine details of future events. These abilities provided evolving humans with selective advantages, but they also created proclivities for emotional problems. The first capacity evokes the "reliving" of past events in the "here-and-now," accompanied by emotional responses that occurred during memory encoding. It contributes to risk for stress-related syndromes, such as posttraumatic stress disorder. The second capacity, an ability to imagine future events without temporal limitations, facilitates flexible, goal-related behavior by drawing on and creating a uniquely rich array of mental representations. It promotes goal achievement and reduces errors, but the mental construction of future events also contributes to developmental aspects of anxiety and mood disorders. With maturation of homotypical association areas, the concrete concerns of childhood expand to encompass the abstract apprehensions of adolescence and adulthood. These cognitive capacities and their dysfunction are amenable to a research agenda that melds experimental therapeutic interventions, cognitive neuropsychology, and developmental psychology in both humans and nonhuman primates.
Collapse
Affiliation(s)
- Daniel S. Pine
- Section on Development and Affective Neuroscience, Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD 20892
| | - Steven P. Wise
- Olschefskie Institute for the Neurobiology of Knowledge, Bethesda, MD 20814
| | - Elisabeth A. Murray
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD 20892
| |
Collapse
|
31
|
Abstract
In order to understand ecologically meaningful social behaviors and their neural substrates in humans and other animals, researchers have been using a variety of social stimuli in the laboratory with a goal of extracting specific processes in real-life scenarios. However, certain stimuli may not be sufficiently effective at evoking typical social behaviors and neural responses. Here, we review empirical research employing different types of social stimuli by classifying them into five levels of naturalism. We describe the advantages and limitations while providing selected example studies for each level. We emphasize the important trade-off between experimental control and ecological validity across the five levels of naturalism. Taking advantage of newly emerging tools, such as real-time videos, virtual avatars, and wireless neural sampling techniques, researchers are now more than ever able to adopt social stimuli at a higher level of naturalism to better capture the dynamics and contingency of real-life social interaction.
Collapse
Affiliation(s)
- Siqi Fan
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Olga Dal Monte
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Psychology, University of Turin, Torino, Italy
| | - Steve W.C. Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
32
|
Cutler J, Wittmann MK, Abdurahman A, Hargitai LD, Drew D, Husain M, Lockwood PL. Ageing is associated with disrupted reinforcement learning whilst learning to help others is preserved. Nat Commun 2021; 12:4440. [PMID: 34290236 PMCID: PMC8295324 DOI: 10.1038/s41467-021-24576-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Reinforcement learning is a fundamental mechanism displayed by many species. However, adaptive behaviour depends not only on learning about actions and outcomes that affect ourselves, but also those that affect others. Using computational reinforcement learning models, we tested whether young (age 18-36) and older (age 60-80, total n = 152) adults learn to gain rewards for themselves, another person (prosocial), or neither individual (control). Detailed model comparison showed that a model with separate learning rates for each recipient best explained behaviour. Young adults learned faster when their actions benefitted themselves, compared to others. Compared to young adults, older adults showed reduced self-relevant learning rates but preserved prosocial learning. Moreover, levels of subclinical self-reported psychopathic traits (including lack of concern for others) were lower in older adults and the core affective-interpersonal component of this measure negatively correlated with prosocial learning. These findings suggest learning to benefit others is preserved across the lifespan with implications for reinforcement learning and theories of healthy ageing.
Collapse
Affiliation(s)
- Jo Cutler
- Centre for Human Brain Health and Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Marco K Wittmann
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Ayat Abdurahman
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Luca D Hargitai
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Daniel Drew
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Masud Husain
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Patricia L Lockwood
- Centre for Human Brain Health and Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
- Christ Church, University of Oxford, Oxford, UK.
| |
Collapse
|
33
|
Testard C, Tremblay S, Platt M. From the field to the lab and back: neuroethology of primate social behavior. Curr Opin Neurobiol 2021; 68:76-83. [PMID: 33567386 PMCID: PMC8243779 DOI: 10.1016/j.conb.2021.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022]
Abstract
Social mammals with more numerous and stronger social relationships live longer, healthier lives. Despite the established importance of social relationships, our understanding of the neurobiological mechanisms by which they are pursued, formed, and maintained in primates remains largely confined to highly controlled laboratory settings which do not allow natural, dynamic social interactions to unfold. In this review, we argue that the neurobiological study of primate social behavior would benefit from adopting a neuroethological approach, that is, a perspective grounded in natural, species-typical behavior, with careful selection of animal models according to the scientific question at hand. We highlight macaques and marmosets as key animal models for human social behavior and summarize recent findings in the social domain for both species. We then review pioneering studies of dynamic social behaviors in small animals, which can inspire studies in larger primates where the technological landscape is now ripe for an ethological overhaul.
Collapse
Affiliation(s)
- Camille Testard
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Sébastien Tremblay
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Platt
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Psychology Department, University of Pennsylvania, Philadelphia, PA 19104, USA; Marketing Department, The Wharton School of Business, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Basile BM, Joiner JA, Dal Monte O, Fagan NA, Karaskiewicz CL, Lucas DR, Chang SWC, Murray EA. Autonomic arousal tracks outcome salience not valence in monkeys making social decisions. Behav Neurosci 2021; 135:443-452. [PMID: 34264694 PMCID: PMC8489567 DOI: 10.1037/bne0000424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The evolutionary and neural underpinnings of human prosociality are still being identified. A growing body of evidence suggests that some species find the sight of another individual receiving a reward reinforcing, called vicarious reinforcement, and that this capacity is supported by a network of brain areas including the anterior cingulate cortex (ACC) and the amygdala. At the same time, analyses of autonomic arousal have been increasingly used to contextualize and guide neural research, especially for studies of reward processing. Here, we characterized the autonomic pupil response of eight monkeys across two laboratories in two different versions of a vicarious reinforcement paradigm. Monkeys were cued as to whether an upcoming reward would be delivered to them, another monkey, or nobody and could accept or decline the offer. As expected, all monkeys in both laboratories showed a marked preference for juice to the self, together with a reliable prosocial preference for juice to a social partner compared to juice to nobody. However, contrary to our expectations, we found that pupils were widest in anticipation of juice to the self, moderately sized in anticipation of juice to nobody, and narrowest in anticipation of juice to a social partner. This effect was seen across both laboratories and regardless of specific task parameters. The seemingly paradoxical pupil effect can be explained by a model in which pupil size tracks outcome salience, prosocial tendencies track outcome valence, and the relation between salience and valence is U-shaped. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Benjamin M. Basile
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jessica A. Joiner
- Department of Psychology, Yale University, New Haven, CT, 06511, USA
| | - Olga Dal Monte
- Department of Psychology, Yale University, New Haven, CT, 06511, USA
- Department of Psychology, University of Turin, Torino, Italy
| | - Nicholas A. Fagan
- Department of Psychology, Yale University, New Haven, CT, 06511, USA
| | - Chloe L. Karaskiewicz
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel R. Lucas
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Steve W. C. Chang
- Department of Psychology, Yale University, New Haven, CT, 06511, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06520, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Elisabeth A. Murray
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
35
|
Isoda M. The Role of the Medial Prefrontal Cortex in Moderating Neural Representations of Self and Other in Primates. Annu Rev Neurosci 2021; 44:295-313. [PMID: 33752448 DOI: 10.1146/annurev-neuro-101420-011820] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As a frontal node in the primate social brain, the medial prefrontal cortex (MPFC) plays a critical role in coordinating one's own behavior with respect to that of others. Current literature demonstrates that single neurons in the MPFC encode behavior-related variables such as intentions, actions, and rewards, specifically for self and other, and that the MPFC comes into play when reflecting upon oneself and others. The social moderator account of MPFC function can explain maladaptive social cognition in people with autism spectrum disorder, which tips the balance in favor of self-centered perspectives rather than taking into consideration the perspective of others. Several strands of evidence suggest a hypothesis that the MPFC represents different other mental models, depending on the context at hand, to better predict others' emotions and behaviors. This hypothesis also accounts for aberrant MPFC activity in autistic individuals while they are mentalizing others.
Collapse
Affiliation(s)
- Masaki Isoda
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan; .,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
36
|
Paradiso E, Gazzola V, Keysers C. Neural mechanisms necessary for empathy-related phenomena across species. Curr Opin Neurobiol 2021; 68:107-115. [PMID: 33756399 DOI: 10.1016/j.conb.2021.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
The neural basis of empathy and prosociality has received much interest over the past decades. Neuroimaging studies localized a network of brain regions with activity that correlates with empathy. Here, we review how the emergence of rodent and nonhuman primate models of empathy-related phenomena supplements human lesion and neuromodulation studies providing evidence that activity in several nodes is necessary for these phenomena to occur. We review proof that (i) affective states triggered by the emotions of others, (ii) motivations to act in ways that benefit others, and (iii) emotion recognition can be altered by perturbing brain activity in many nodes identified by human neuroimaging, with strongest evidence for the cingulate and the amygdala. We also include evidence that manipulations of the oxytocin system and analgesics can have such effects, the latter providing causal evidence for the recruitment of an individual's own nociceptive system to feel with the pain of others.
Collapse
Affiliation(s)
- Enrica Paradiso
- Netherlands Institute for Neuroscience, KNAW, Amsterdam, Netherlands
| | - Valeria Gazzola
- Netherlands Institute for Neuroscience, KNAW, Amsterdam, Netherlands; Brain and Cognition, Department of Psychology, University of Amsterdam, Netherlands.
| | - Christian Keysers
- Netherlands Institute for Neuroscience, KNAW, Amsterdam, Netherlands; Brain and Cognition, Department of Psychology, University of Amsterdam, Netherlands.
| |
Collapse
|
37
|
Maturation of amygdala inputs regulate shifts in social and fear behaviors: A substrate for developmental effects of stress. Neurosci Biobehav Rev 2021; 125:11-25. [PMID: 33581221 DOI: 10.1016/j.neubiorev.2021.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 11/21/2022]
Abstract
Stress can negatively impact brain function and behaviors across the lifespan. However, stressors during adolescence have particularly harmful effects on brain maturation, and on fear and social behaviors that extend beyond adolescence. Throughout development, social behaviors are refined and the ability to suppress fear increases, both of which are dependent on amygdala activity. We review rodent literature focusing on developmental changes in social and fear behaviors, cortico-amygdala circuits underlying these changes, and how this circuitry is altered by stress. We first describe changes in fear and social behaviors from adolescence to adulthood and parallel developmental changes in cortico-amygdala circuitry. We propose a framework in which maturation of cortical inputs to the amygdala promote changes in social drive and fear regulation, and the particularly damaging effects of stress during adolescence may occur through lasting changes in this circuit. This framework may explain why anxiety and social pathologies commonly co-occur, adolescents are especially vulnerable to stressors impacting social and fear behaviors, and predisposed towards psychiatric disorders related to abnormal cortico-amygdala circuits.
Collapse
|
38
|
Putnam PT, Chang SWC. Social processing by the primate medial frontal cortex. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 158:213-248. [PMID: 33785146 DOI: 10.1016/bs.irn.2020.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The primate medial frontal cortex is comprised of several brain regions that are consistently implicated in regulating complex social behaviors. The medial frontal cortex is also critically involved in many non-social behaviors, such as those involved in reward, affective, and decision-making processes, broadly implicating the fundamental role of the medial frontal cortex in internally guided cognition. An essential question therefore is what unique contributions, if any, does the medial frontal cortex make to social behaviors? In this chapter, we outline several neural algorithms necessary for mediating adaptive social interactions and discuss selected evidence from behavioral neurophysiology experiments supporting the role of the medial frontal cortex in implementing these algorithms. By doing so, we primarily focus on research in nonhuman primates and examine several key attributes of the medial frontal cortex. Specifically, we review neuronal substrates in the medial frontal cortex uniquely suitable for enabling social monitoring, observational and vicarious learning, as well as predicting the behaviors of social partners. Moreover, by utilizing the three levels of organization in information processing systems proposed by Marr (1982) and recently adapted by Lockwood, Apps, and Chang (2020) for social information processing, we survey selected social functions of the medial frontal cortex through the lens of socially relevant algorithms and implementations. Overall, this chapter provides a broad overview of the behavioral neurophysiology literature endorsing the importance of socially relevant neural algorithms implemented by the primate medial frontal cortex for regulating social interactions.
Collapse
Affiliation(s)
- Philip T Putnam
- Department of Psychology, Yale University, New Haven, CT, United States.
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT, United States; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
39
|
Sallet J, Emberton A, Wood J, Rushworth M. Impact of internal and external factors on prosocial choices in rhesus macaques. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190678. [PMID: 33423628 PMCID: PMC7815427 DOI: 10.1098/rstb.2019.0678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
While traditional economic models assume that agents are self-interested, humans and most non-human primates are social species. Therefore, many of decisions they make require the integration of information about other social agents. This study asks to what extent information about social status and the social context in which decisions are taken impact on reward-guided decisions in rhesus macaques. We tested 12 monkeys of varying dominance status in several experimental versions of a two-choice task in which reward could be delivered to self only, only another monkey, both the self and another monkey, or neither. Results showed dominant animals were more prone to make prosocial choices than subordinates, but only when the decision was between a reward for self only and a reward for both self and other. If the choice was between a reward for self only and a reward for other only, no animal expressed altruistic behaviour. Finally, prosocial choices were true social decisions as they were strikingly reduced when the social partner was replaced by a non-social object. These results showed that as in humans, rhesus macaques' social decisions are adaptive and modulated by social status and the cost associated with being prosocial. This article is part of the theme issue 'Existence and prevalence of economic behaviours among non-human primates'.
Collapse
Affiliation(s)
- Jérôme Sallet
- Wellcome Integrative Neuroimaging Centre, Department of Experimental Psychology, Oxford, OX1 3SR, UK.,Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Andrew Emberton
- Biomedical Sciences Services, University of Oxford, Oxford, OX1 3SR, UK
| | - Jessica Wood
- Biomedical Sciences Services, University of Oxford, Oxford, OX1 3SR, UK
| | - Matthew Rushworth
- Wellcome Integrative Neuroimaging Centre, Department of Experimental Psychology, Oxford, OX1 3SR, UK
| |
Collapse
|
40
|
Simon J, Rudebeck PH, Rich EL. From affective to cognitive processing: Functional organization of the medial frontal cortex. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 158:1-28. [PMID: 33785142 DOI: 10.1016/bs.irn.2020.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The medial wall of the primate frontal lobe encompasses multiple anatomical subregions. Based on distinct neurophysiological correlates and effects of lesions, individual areas are thought to play unique roles in behavior. Further, evidence suggests that dysfunction localized to specific subregions is commonly found in different neuropsychiatric disorders. The neurobiological underpinnings of these disorders, however, remain far from clear. Here, to better understand the functions of medial frontal cortex (MFC) and its role in psychiatric disease, we focus on its functional organization. We describe the emerging pattern in which more dorsal regions subserve temporally extended cognitive functions and more ventral regions predominantly subserve affective functions. We focus on two specific domains, decision-making and social cognition, that require integration across emotion and cognition. In each case, we discuss the current understanding of the functions believed to depend on subregions of MFC as a stepping-stone to speculate on how they might work in unison. We conclude with an overview of how symptoms of certain psychiatric disorders relate to our understanding of MFC functional organization and how further discovery could fuel advances in circuit-based therapies.
Collapse
Affiliation(s)
- Joseph Simon
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Erin L Rich
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
41
|
Gangopadhyay P, Chawla M, Dal Monte O, Chang SWC. Prefrontal-amygdala circuits in social decision-making. Nat Neurosci 2020; 24:5-18. [PMID: 33169032 DOI: 10.1038/s41593-020-00738-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 10/02/2020] [Indexed: 12/20/2022]
Abstract
An increasing amount of research effort is being directed toward investigating the neural bases of social cognition from a systems neuroscience perspective. Evidence from multiple animal species is beginning to provide a mechanistic understanding of the substrates of social behaviors at multiple levels of neurobiology, ranging from those underlying high-level social constructs in humans and their more rudimentary underpinnings in monkeys to circuit-level and cell-type-specific instantiations of social behaviors in rodents. Here we review literature examining the neural mechanisms of social decision-making in humans, non-human primates and rodents, focusing on the amygdala and the medial and orbital prefrontal cortical regions and their functional interactions. We also discuss how the neuropeptide oxytocin impacts these circuits and their downstream effects on social behaviors. Overall, we conclude that regulated interactions of neuronal activity in the prefrontal-amygdala pathways critically contribute to social decision-making in the brains of primates and rodents.
Collapse
Affiliation(s)
| | - Megha Chawla
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Olga Dal Monte
- Department of Psychology, Yale University, New Haven, CT, USA.,Department of Psychology, University of Turin, Torino, Italy
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT, USA. .,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA. .,Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
42
|
Lockwood PL, Apps MAJ, Chang SWC. Is There a 'Social' Brain? Implementations and Algorithms. Trends Cogn Sci 2020; 24:802-813. [PMID: 32736965 DOI: 10.1016/j.tics.2020.06.011] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022]
Abstract
A fundamental question in psychology and neuroscience is the extent to which cognitive and neural processes are specialised for social behaviour, or are shared with other 'non-social' cognitive, perceptual, and motor faculties. Here we apply the influential framework of Marr (1982) across research in humans, monkeys, and rodents to propose that information processing can be understood as 'social' or 'non-social' at different levels. We argue that processes can be socially specialised at the implementational and/or the algorithmic level, and that changing the goal of social behaviour can also change social specificity. This framework could provide important new insights into the nature of social behaviour across species, facilitate greater integration, and inspire novel theoretical and empirical approaches.
Collapse
Affiliation(s)
- Patricia L Lockwood
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK; Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
| | - Matthew A J Apps
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK; Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
43
|
Lockwood PL, O’Nell KC, Apps MAJ. Anterior cingulate cortex: A brain system necessary for learning to reward others? PLoS Biol 2020; 18:e3000735. [PMID: 32530924 PMCID: PMC7314188 DOI: 10.1371/journal.pbio.3000735] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/24/2020] [Indexed: 11/21/2022] Open
Abstract
Helping a friend move house, donating to charity, volunteering assistance during a crisis. Humans and other species alike regularly undertake prosocial behaviors—actions that benefit others without necessarily helping ourselves. But how does the brain learn what acts are prosocial? Basile and colleagues show that removal of the anterior cingulate cortex (ACC) prevents monkeys from learning what actions are prosocial but does not stop them carrying out previously learned prosocial behaviors. This highlights that the ability to learn what actions are prosocial and choosing to perform helpful acts may be distinct cognitive processes, with only the former depending on ACC. How do we learn which actions benefit others? This Primer discusses a recent study showing that removal of the anterior cingulate cortex prevents monkeys from learning new actions that benefit others, but does not stop them from carrying out previously learned prosocial acts.
Collapse
Affiliation(s)
- Patricia L. Lockwood
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Kathryn C. O’Nell
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Matthew A. J. Apps
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|