1
|
Gupta M, Hudait A, Yeager M, Voth GA. Kinetic implications of IP 6 anion binding on the molecular switch of HIV-1 capsid assembly. SCIENCE ADVANCES 2025; 11:eadt7818. [PMID: 40238893 PMCID: PMC12002132 DOI: 10.1126/sciadv.adt7818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025]
Abstract
HIV-1 capsid (CA) proteins self-assemble into a fullerene-shaped CA, enabling cellular transport and nuclear entry of the viral genome. A structural switch comprising the Thr-Val-Gly- Gly (TVGG) motif either assumes a disordered coil or a 310 helix conformation to regulate hexamer or pentamer assembly, respectively. The cellular polyanion inositol hexakisphosphate (IP6) binds to a positively charged pore of CA capsomers rich in arginine and lysine residues mediated by electrostatic interactions. Both IP6 binding and TVGG coil-to-helix transition are essential for pentamer formation. However, the connection between IP6 binding and TVGG conformational switch remains unclear. Using extensive atomistic simulations, we show that IP6 imparts structural order at the central ring, which results in multiple kinetically controlled events leading to the coil-to-helix conformational change of the TVGG motif. IP6 facilitates the helix-to-coil transition by allowing the formation of intermediate conformations. Our results suggest a key kinetic role of IP6 in HIV-1 pentamer formation.
Collapse
Affiliation(s)
- Manish Gupta
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Arpa Hudait
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Mark Yeager
- Frost Institute for Chemistry and Molecular Science, University of Miami, Coral Gables, FL 33124, USA
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Ingram Z, Kline C, Hughson AK, Singh PK, Fischer HL, Radhakrishnan R, Sowd GA, Dos Santos NFB, Ganser-Pornillos BK, Watkins SC, Kane M, Engelman AN, Ambrose Z. Spatiotemporal binding of cyclophilin A and CPSF6 to capsid regulates HIV-1 nuclear entry and integration. mBio 2025; 16:e0016925. [PMID: 40013779 PMCID: PMC11980554 DOI: 10.1128/mbio.00169-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) capsid, which is the target of the antiviral lenacapavir, protects the viral genome and binds multiple host proteins to influence intracellular trafficking, nuclear import, and integration. Previously, we showed that capsid binding to cleavage and polyadenylation specificity factor 6 (CPSF6) in the cytoplasm is competitively inhibited by cyclophilin A (CypA) binding and regulates capsid trafficking, nuclear import, and infection. Here, we determined that a capsid mutant with increased CypA binding affinity had significantly reduced nuclear entry and mislocalized integration. However, disruption of CypA binding to the mutant capsid restored nuclear entry, integration, and infection in a CPSF6-dependent manner. Furthermore, relocalization of CypA expression from the cell cytoplasm to the nucleus failed to restore mutant HIV-1 infection. Our results clarify that sequential binding of CypA and CPSF6 to HIV-1 capsid is required for optimal nuclear entry and integration targeting, providing insights for the development of antiretroviral therapies, such as lenacapavir. IMPORTANCE Human immunodeficiency virus (HIV) encodes a protein that forms a conical shell, called a capsid, that surrounds its genome. The capsid has been shown to protect the viral genome from innate immune sensors in the cell, to help transport the genome toward and into the nucleus, to keep the components of reverse transcription together for conversion of the RNA genome into DNA, and to target viral DNA integration into specific regions of the host genome. In this study, we show that HIV hijacks two host proteins to bind to capsid sequentially in order to choreograph the precise order and timing of these virus replication steps. Disruption of binding of these proteins to capsid or their location in the cell leads to defective HIV nuclear import, integration, and infection. Mutations that exist in the capsid protein of HIV in infected individuals may reduce the efficacy of antiretroviral drugs that target capsid.
Collapse
Affiliation(s)
- Zachary Ingram
- Department of Microbiology and Molecular Genetics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christopher Kline
- Department of Microbiology and Molecular Genetics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alexandra K. Hughson
- Department of Microbiology and Molecular Genetics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Parmit K. Singh
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Hannah L. Fischer
- Department of Microbiology and Molecular Genetics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajalingham Radhakrishnan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gregory A. Sowd
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Nayara F. B. Dos Santos
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, USA
| | - Barbie K. Ganser-Pornillos
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, USA
| | - Simon C. Watkins
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Melissa Kane
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alan N. Engelman
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
McFadden WM, Faerch M, Kirby KA, Dick RA, Torbett BE, Sarafianos SG. Considerations for capsid-targeting antiretrovirals in pre-exposure prophylaxis. Trends Mol Med 2025:S1471-4914(25)00013-9. [PMID: 40021388 DOI: 10.1016/j.molmed.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 03/03/2025]
Abstract
Antiretroviral therapy (ART) impairs viral replication in people living with HIV (PLWH) by suppressing infection or spread. However, not all treatment strategies apply to preventive applications like pre-exposure prophylaxis (PrEP) for uninfected individuals. To prevent the establishment of HIV infection, PrEP must block viral replication either before, or at the stage of integration into the host genome. A promising PrEP approach under investigation utilizes lenacapavir (LEN), which targets the HIV-1 capsid protein (CA) potently before integration. LEN, a first-in-class antiretroviral, has shown high protective efficacy in the ongoing PURPOSE trials thus far. Here, we discuss clinical investigations of LEN, theoretical suitability of preclinical CA-binding antivirals in PrEP, and other key considerations for preventing HIV-1 infection by targeting the capsid.
Collapse
Affiliation(s)
- William M McFadden
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Mia Faerch
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Karen A Kirby
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Robert A Dick
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Bruce E Torbett
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98101, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98101, USA
| | - Stefan G Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| |
Collapse
|
4
|
Zhu Y, Kleinpeter AB, Rey JS, Shen J, Shen Y, Xu J, Hardenbrook N, Chen L, Lucic A, Perilla JR, Freed EO, Zhang P. Structural basis for HIV-1 capsid adaption to rescue IP6-packaging deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.09.637297. [PMID: 39975075 PMCID: PMC11839029 DOI: 10.1101/2025.02.09.637297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Inositol hexakisphosphate (IP6) promotes HIV-1 assembly via its interaction with the immature Gag lattice, effectively enriching IP6 within virions. During particle maturation, the HIV-1 protease cleaves the Gag polyproteins comprising the immature Gag lattice, releasing IP6 from its original binding site and liberating the capsid (CA) domain of Gag. IP6 then promotes the assembly of mature CA protein into the capsid shell of the viral core, which is required for infection of new target cells. Recently, we reported HIV-1 Gag mutants that assemble virions independently of IP6. However, these mutants are non-infectious and unable to assemble stable capsids. Here, we identified a mutation in the C-terminus of CA - G225R - that restores capsid formation and infectivity to these IP6-packaging-deficient mutants. Furthermore, we show that G225R facilitates the in vitro assembly of purified CA into capsid-like particles (CLPs) at IP6 concentrations well below those required for WT CLP assembly. Using single-particle cryoEM, we solved structures of CA hexamer and hexameric lattice of mature CLPs harbouring the G225R mutation assembled in low-IP6 conditions. The high-resolution (2.7 Å) cryoEM structure combined with molecular dynamics simulations of the G225R capsid revealed that the otherwise flexible and disordered C-terminus of CA becomes structured, extending to the pseudo two-fold hexamer-hexamer interface, thereby stabilizing the mature capsid. This work uncovers a structural mechanism by which HIV-1 adapts to a deficiency in IP6 packaging. Furthermore, the ability of G225R to promote mature capsid assembly in low-IP6 conditions provides a valuable tool for capsid-related studies and may indicate a heretofore unknown role for the unstructured C-terminus in HIV-1 capsid assembly.
Collapse
Affiliation(s)
- Yanan Zhu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Institute for Advanced Study in Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Alex B Kleinpeter
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Juan S. Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Juan Shen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Yao Shen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Jialu Xu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Nathan Hardenbrook
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Long Chen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Anka Lucic
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
5
|
Garza CM, Holcomb M, Santos-Martins D, Torbett BE, Forli S. IP6, PF74 affect HIV-1 capsid stability through modulation of hexamer-hexamer tilt angle preference. Biophys J 2025; 124:417-427. [PMID: 39690744 PMCID: PMC11788498 DOI: 10.1016/j.bpj.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/22/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024] Open
Abstract
The HIV-1 capsid is an irregularly shaped protein complex containing the viral genome and several proteins needed for integration into the host cell genome. Small molecules, such as the drug-like compound PF-3450074 (PF74) and the anionic sugar inositolhexakisphosphate (IP6), are known to impact capsid stability, although the mechanisms through which they do so remain unknown. In this study, we employed atomistic molecular dynamics simulations to study the impact of molecules bound to hexamers at the central pore (IP6) and the FG-binding site (PF74) on the interface between capsid oligomers. We found that the IP6 cofactor stabilizes a pair of neighboring hexamers in their flattest configurations, whereas PF74 introduces a strong preference for intermediate tilt angles. These results suggest that the tilt angle between neighboring hexamers is a primary mechanism for the modulation of capsid stability. In addition, hexamer-pentamer interfaces were highly stable, suggesting that pentamers are likely not the locus of disassembly.
Collapse
Affiliation(s)
- Chris M Garza
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California; University of California San Diego School of Medicine, La Jolla, California
| | - Matthew Holcomb
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | - Diogo Santos-Martins
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | - Bruce E Torbett
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington; Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California.
| |
Collapse
|
6
|
Morling KL, ElGhazaly M, Milne RSB, Towers GJ. HIV capsids: orchestrators of innate immune evasion, pathogenesis and pandemicity. J Gen Virol 2025; 106. [PMID: 39804283 DOI: 10.1099/jgv.0.002057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Human immunodeficiency virus (HIV) is an exemplar virus, still the most studied and best understood and a model for mechanisms of viral replication, immune evasion and pathogenesis. In this review, we consider the earliest stages of HIV infection from transport of the virion contents through the cytoplasm to integration of the viral genome into host chromatin. We present a holistic model for the virus-host interaction during this pivotal stage of infection. Central to this process is the HIV capsid. The last 10 years have seen a transformation in the way we understand HIV capsid structure and function. We review key discoveries and present our latest thoughts on the capsid as a dynamic regulator of innate immune evasion and chromatin targeting. We also consider the accessory proteins Vpr and Vpx because they are incorporated into particles where they collaborate with capsids to manipulate defensive cellular responses to infection. We argue that effective regulation of capsid uncoating and evasion of innate immunity define pandemic potential and viral pathogenesis, and we review how comparison of different HIV lineages can reveal what makes pandemic lentiviruses special.
Collapse
Affiliation(s)
- Kate L Morling
- Division of Infection and Immunity, UCL, London, WC1E 6BT, UK
| | | | | | - Greg J Towers
- Division of Infection and Immunity, UCL, London, WC1E 6BT, UK
| |
Collapse
|
7
|
Gupta M, Hudait A, Yeager M, Voth GA. Kinetic Implications of IP 6 Anion Binding on the Molecular Switch of the HIV-1 Capsid Assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627050. [PMID: 39677604 PMCID: PMC11643084 DOI: 10.1101/2024.12.05.627050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
HIV-1 capsid proteins (CA) self-assemble into a fullerene-shaped capsid, enabling cellular transport and nuclear entry of the viral genome. A structural switch comprising the Thr-Val-Gly-Gly (TVGG) motif either assumes a disordered coil or a 310 helix conformation to regulate hexamer or pentamer assembly, respectively. The cellular polyanion inositol hexakisphosphate (IP6) binds to a positively charged pore of CA capsomers rich in arginine and lysine residues mediated by electrostatic interactions. Both IP6 binding and TVGG coil-to-helix transition are essential for pentamer formation. However, the connection between IP6 binding and TVGG conformational switch remains unclear. Using extensive atomistic simulations, we show that IP6 imparts structural order at the central ring, which results in multiple kinetically controlled events leading to the coil- to-helix conformational change of the TVGG motif. IP6 facilitates the helix-to-coil transition by allowing the formation of intermediate conformations. Our results identify the key kinetic role of IP6 in HIV-1 pentamer formation.
Collapse
Affiliation(s)
- Manish Gupta
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, United States of America
| | - Arpa Hudait
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, United States of America
| | - Mark Yeager
- Frost Institute for Chemistry and Molecular Science, University of Miami, Coral Gables, FL 33124, United States of America
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146, United States of America
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, United States of America
| |
Collapse
|
8
|
Kleinpeter A, Mallery DL, Renner N, Albecka A, Klarhof JO, Freed EO, James LC. HIV-1 adapts to lost IP6 coordination through second-site mutations that restore conical capsid assembly. Nat Commun 2024; 15:8017. [PMID: 39271696 PMCID: PMC11399258 DOI: 10.1038/s41467-024-51971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The HIV-1 capsid is composed of capsid (CA) protein hexamers and pentamers (capsomers) that contain a central pore hypothesised to regulate capsid assembly and facilitate nucleotide import early during post-infection. These pore functions are mediated by two positively charged rings created by CA Arg-18 (R18) and Lys-25 (K25). Here we describe the forced evolution of viruses containing mutations in R18 and K25. Whilst R18 mutants fail to replicate, K25A viruses acquire compensating mutations that restore nearly wild-type replication fitness. These compensating mutations, which rescue reverse transcription and infection without reintroducing lost pore charges, map to three adaptation hot-spots located within and between capsomers. The second-site suppressor mutations act by restoring the formation of pentamers lost upon K25 mutation, enabling closed conical capsid assembly both in vitro and inside virions. These results indicate that there is no intrinsic requirement for K25 in either nucleotide import or capsid assembly. We propose that whilst HIV-1 must maintain a precise hexamer:pentamer equilibrium for proper capsid assembly, compensatory mutations can tune this equilibrium to restore fitness lost by mutation of the central pore.
Collapse
Affiliation(s)
- Alex Kleinpeter
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, USA.
| | - Donna L Mallery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Nadine Renner
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Anna Albecka
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - J Ole Klarhof
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, USA.
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
9
|
Arribas L, Menéndez-Arias L, Betancor G. May I Help You with Your Coat? HIV-1 Capsid Uncoating and Reverse Transcription. Int J Mol Sci 2024; 25:7167. [PMID: 39000271 PMCID: PMC11241228 DOI: 10.3390/ijms25137167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) capsid is a protein core formed by multiple copies of the viral capsid (CA) protein. Inside the capsid, HIV-1 harbours all the viral components required for replication, including the genomic RNA and viral enzymes reverse transcriptase (RT) and integrase (IN). Upon infection, the RT transforms the genomic RNA into a double-stranded DNA molecule that is subsequently integrated into the host chromosome by IN. For this to happen, the viral capsid must open and release the viral DNA, in a process known as uncoating. Capsid plays a key role during the initial stages of HIV-1 replication; therefore, its stability is intimately related to infection efficiency, and untimely uncoating results in reverse transcription defects. How and where uncoating takes place and its relationship with reverse transcription is not fully understood, but the recent development of novel biochemical and cellular approaches has provided unprecedented detail on these processes. In this review, we present the latest findings on the intricate link between capsid stability, reverse transcription and uncoating, the different models proposed over the years for capsid uncoating, and the role played by other cellular factors on these processes.
Collapse
Affiliation(s)
- Laura Arribas
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain;
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), 28049 Madrid, Spain;
| | - Gilberto Betancor
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain;
| |
Collapse
|
10
|
Ingram Z, Kline C, Hughson AK, Singh PK, Fischer HL, Sowd GA, Watkins SC, Kane M, Engelman AN, Ambrose Z. Spatiotemporal binding of cyclophilin A and CPSF6 to capsid regulates HIV-1 nuclear entry and integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588584. [PMID: 38645162 PMCID: PMC11030324 DOI: 10.1101/2024.04.08.588584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Human immunodeficiency virus type 1 (HIV-1) capsid, which is the target of the antiviral lenacapavir, protects the viral genome and binds multiple host proteins to influence intracellular trafficking, nuclear import, and integration. Previously, we showed that capsid binding to cleavage and polyadenylation specificity factor 6 (CPSF6) in the cytoplasm is competitively inhibited by cyclophilin A (CypA) binding and regulates capsid trafficking, nuclear import, and infection. Here we determined that a capsid mutant with increased CypA binding affinity had significantly reduced nuclear entry and mislocalized integration. However, disruption of CypA binding to the mutant capsid restored nuclear entry, integration, and infection in a CPSF6-dependent manner. Furthermore, relocalization of CypA expression from the cell cytoplasm to the nucleus failed to restore mutant HIV-1 infection. Our results clarify that sequential binding of CypA and CPSF6 to HIV-1 capsid is required for optimal nuclear entry and integration targeting, informing antiretroviral therapies that contain lenacapavir.
Collapse
Affiliation(s)
- Zachary Ingram
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Christopher Kline
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Alexandra K. Hughson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA
| | - Parmit K. Singh
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Hannah L. Fischer
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Gregory A. Sowd
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Simon C. Watkins
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Melissa Kane
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Alan N. Engelman
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA
| |
Collapse
|
11
|
Wang H, Marucci G, Munke A, Hassan MM, Lalle M, Okamoto K. High-resolution comparative atomic structures of two Giardiavirus prototypes infecting G. duodenalis parasite. PLoS Pathog 2024; 20:e1012140. [PMID: 38598600 PMCID: PMC11081498 DOI: 10.1371/journal.ppat.1012140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/09/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
The Giardia lamblia virus (GLV) is a non-enveloped icosahedral dsRNA and endosymbiont virus that infects the zoonotic protozoan parasite Giardia duodenalis (syn. G. lamblia, G. intestinalis), which is a pathogen of mammals, including humans. Elucidating the transmission mechanism of GLV is crucial for gaining an in-depth understanding of the virulence of the virus in G. duodenalis. GLV belongs to the family Totiviridae, which infects yeast and protozoa intracellularly; however, it also transmits extracellularly, similar to the phylogenetically, distantly related toti-like viruses that infect multicellular hosts. The GLV capsid structure is extensively involved in the longstanding discussion concerning extracellular transmission in Totiviridae and toti-like viruses. Hence, this study constructed the first high-resolution comparative atomic models of two GLV strains, namely GLV-HP and GLV-CAT, which showed different intracellular localization and virulence phenotypes, using cryogenic electron microscopy single-particle analysis. The atomic models of the GLV capsids presented swapped C-terminal extensions, extra surface loops, and a lack of cap-snatching pockets, similar to those of toti-like viruses. However, their open pores and absence of the extra crown protein resemble those of other yeast and protozoan Totiviridae viruses, demonstrating the essential structures for extracellular cell-to-cell transmission. The structural comparison between GLV-HP and GLV-CAT indicates the first evidence of critical structural motifs for the transmission and virulence of GLV in G. duodenalis.
Collapse
Affiliation(s)
- Han Wang
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Gianluca Marucci
- Unit of Foodborne and Neglected Parasitic Diseases, Department of Infectious Diseases, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Anna Munke
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Mohammad Maruf Hassan
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Marco Lalle
- Unit of Foodborne and Neglected Parasitic Diseases, Department of Infectious Diseases, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Kenta Okamoto
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Garza CM, Holcomb M, Santos-Martins D, Torbett BE, Forli S. IP6 and PF74 affect HIV-1 Capsid Stability through Modulation of Hexamer-Hexamer Tilt Angle Preference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584513. [PMID: 38559213 PMCID: PMC10979974 DOI: 10.1101/2024.03.11.584513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The HIV-1 capsid is an irregularly shaped complex of about 1200 protein chains containing the viral genome and several viral proteins. Together, these components are the key to unlocking passage into the nucleus, allowing for permanent integration of the viral genome into the host cell genome. Recent interest into the role of the capsid in viral replication has been driven by the approval of the first-in-class drug lenacapavir, which marks the first drug approved to target a non-enzymatic HIV-1 viral protein. In addition to lenacapavir, other small molecules such as the drug-like compound PF74, and the anionic sugar inositolhexakisphosphate (IP6), are known to impact capsid stability, and although this is widely accepted as a therapeutic effect, the mechanisms through which they do so remain unknown. In this study, we employed a systematic atomistic simulation approach to study the impact of molecules bound to hexamers at the central pore (IP6) and the FG-binding site (PF74) on capsid oligomer dynamics, compared to apo hexamers and pentamers. We found that neither small molecule had a sizeable impact on the free energy of binding of the interface between neighboring hexamers but that both had impacts on the free energy profiles of performing angular deformations to the pair of oligomers akin to the variations in curvature along the irregular surface of the capsid. The IP6 cofactor, on one hand, stabilizes a pair of neighboring hexamers in their flattest configurations, whereas without IP6, the hexamers prefer a high tilt angle between them. On the other hand, having PF74 bound introduces a strong preference for intermediate tilt angles. These results suggest that structural instability is a natural feature of the HIV-1 capsid which is modulated by molecules bound in either the central pore or the FG-binding site. Such modulators, despite sharing many of the same effects on non-bonded interactions at the various protein-protein interfaces, have decidedly different effects on the flexibility of the complex. This study provides a detailed model of the HIV-1 capsid and its interactions with small molecules, informing structure-based drug design, as well as experimental design and interpretation.
Collapse
|
13
|
de Pablo PJ, Mateu MG. Mechanical Properties of Viruses. Subcell Biochem 2024; 105:629-691. [PMID: 39738960 DOI: 10.1007/978-3-031-65187-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Structural biology techniques have greatly contributed to unveiling the interplay between molecular structure, physico-chemical properties, and biological function of viruses. In recent years, classic structural approaches are being complemented by single-molecule techniques such as atomic force microscopy and optical tweezers to study physical features of viral particles that are not accessible to classic structural techniques. Among these features are mechanical properties such as stiffness, intrinsic elasticity, tensile strength, and material fatigue. The field of virus mechanics is contributing to materials science by investigating some physical parameters of "soft" biological matter and biological nano-objects. Virus mechanics studies are also starting to unveil the biological implications of some physical properties of viruses and their contribution to virus function. Virus particles are subjected to internal and external forces and they may have adapted to withstand, and even use those forces. This chapter focuses on the mechanical properties of virus particles, their structural determinants, their use to study virus function, and some possible biological implications, of which several examples are provided.
Collapse
Affiliation(s)
- Pedro J de Pablo
- Department of Physics of the Condensed Matter, C03, and IFIMAC (Instituto de Física de la Materia Condensada), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
14
|
Abstract
The HIV-1 capsid, composed of approximately 1,200 copies of the capsid protein, encases genomic RNA alongside viral nucleocapsid, reverse transcriptase, and integrase proteins. After cell entry, the capsid interacts with a myriad of host factors to traverse the cell cytoplasm, pass through the nuclear pore complex (NPC), and then traffic to chromosomal sites for viral DNA integration. Integration may very well require the dissolution of the capsid, but where and when this uncoating event occurs remains hotly debated. Based on size constraints, a long-prevailing view was that uncoating preceded nuclear transport, but recent research has indicated that the capsid may remain largely intact during nuclear import, with perhaps some structural remodeling required for NPC traversal. Completion of reverse transcription in the nucleus may further aid capsid uncoating. One canonical type of host factor, typified by CPSF6, leverages a Phe-Gly (FG) motif to bind capsid. Recent research has shown these peptides reside amid prion-like domains (PrLDs), which are stretches of protein sequence devoid of charged residues. Intermolecular PrLD interactions along the exterior of the capsid shell impart avid host factor binding for productive HIV-1 infection. Herein we overview capsid-host interactions implicated in HIV-1 ingress and discuss important research questions moving forward. Highlighting clinical relevance, the long-acting ultrapotent inhibitor lenacapavir, which engages the same capsid binding pocket as FG host factors, was recently approved to treat people living with HIV.
Collapse
Affiliation(s)
- Sooin Jang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Zgheib S, Taha N, Zeiger M, Glushonkov O, Lequeu T, Anton H, Didier P, Boutant E, Mély Y, Réal E. The human cellular protein NoL12 is a specific partner of the HIV-1 nucleocapsid protein NCp7. J Virol 2023; 97:e0004023. [PMID: 37695057 PMCID: PMC10537728 DOI: 10.1128/jvi.00040-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/12/2023] [Indexed: 09/12/2023] Open
Abstract
The human immunodeficiency virus-1 (HIV-1) nucleocapsid protein (NCp7) is a nucleic acid chaperone protein with two highly conserved zinc fingers. To exert its key roles in the viral cycle, NCp7 interacts with several host proteins. Among them, the human NoL12 protein (hNoL12) was previously identified in genome wide screens as a potential partner of NCp7. hNoL12 is a highly conserved 25 kDa nucleolar RNA-binding protein implicated in the 5'end processing of ribosomal RNA in the nucleolus and thus in the assembly and maturation of ribosomes. In this work, we confirmed the NCp7/hNoL12 interaction in cells by Förster resonance energy transfer visualized by Fluorescence Lifetime Imaging Microscopy and co-immunoprecipitation. The interaction between NCp7 and hNoL12 was found to strongly depend on their both binding to RNA, as shown by the loss of interaction when the cell lysates were pretreated with RNase. Deletion mutants of hNoL12 were tested for their co-immunoprecipitation with NCp7, leading to the identification of the exonuclease domain of hNoL12 as the binding domain for NCp7. Finally, the interaction with hNoL12 was found to be specific of the mature NCp7 and to require NCp7 basic residues. IMPORTANCE HIV-1 mature nucleocapsid (NCp7) results from the maturation of the Gag precursor in the viral particle and is thus mostly abundant in the first phase of the infection which ends with the genomic viral DNA integration in the cell genome. Most if not all the nucleocapsid partners identified so far are not specific of the mature form. We described here the specific interaction in the nucleolus between NCp7 and the human nucleolar protein 12, a protein implicated in ribosomal RNA maturation and DNA damage response. This interaction takes place in the cell nucleolus, a subcellular compartment where NCp7 accumulates. The absence of binding between hNoL12 and Gag makes hNoL12 one of the few known specific cellular partners of NCp7.
Collapse
Affiliation(s)
- Sarwat Zgheib
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Nedal Taha
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Manon Zeiger
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Oleksandr Glushonkov
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Thiebault Lequeu
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Halina Anton
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Pascal Didier
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Emmanuel Boutant
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Yves Mély
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Eléonore Réal
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| |
Collapse
|
16
|
Gres AT, Kirby KA, McFadden WM, Du H, Liu D, Xu C, Bryer AJ, Perilla JR, Shi J, Aiken C, Fu X, Zhang P, Francis AC, Melikyan GB, Sarafianos SG. Multidisciplinary studies with mutated HIV-1 capsid proteins reveal structural mechanisms of lattice stabilization. Nat Commun 2023; 14:5614. [PMID: 37699872 PMCID: PMC10497533 DOI: 10.1038/s41467-023-41197-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 08/25/2023] [Indexed: 09/14/2023] Open
Abstract
HIV-1 capsid (CA) stability is important for viral replication. E45A and P38A mutations enhance and reduce core stability, thus impairing infectivity. Second-site mutations R132T and T216I rescue infectivity. Capsid lattice stability was studied by solving seven crystal structures (in native background), including P38A, P38A/T216I, E45A, E45A/R132T CA, using molecular dynamics simulations of lattices, cryo-electron microscopy of assemblies, time-resolved imaging of uncoating, biophysical and biochemical characterization of assembly and stability. We report pronounced and subtle, short- and long-range rearrangements: (1) A38 destabilized hexamers by loosening interactions between flanking CA protomers in P38A but not P38A/T216I structures. (2) Two E45A structures showed unexpected stabilizing CANTD-CANTD inter-hexamer interactions, variable R18-ring pore sizes, and flipped N-terminal β-hairpin. (3) Altered conformations of E45Aa α9-helices compared to WT, E45A/R132T, WTPF74, WTNup153, and WTCPSF6 decreased PF74, CPSF6, and Nup153 binding, and was reversed in E45A/R132T. (4) An environmentally sensitive electrostatic repulsion between E45 and D51 affected lattice stability, flexibility, ion and water permeabilities, electrostatics, and recognition of host factors.
Collapse
Affiliation(s)
- Anna T Gres
- C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Chemistry, University of Missouri, Columbia, MO, USA
| | - Karen A Kirby
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - William M McFadden
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Haijuan Du
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Dandan Liu
- C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Chaoyi Xu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Alexander J Bryer
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
- Department of Physics & Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jiong Shi
- Department of Pathology, Immunology & Microbiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher Aiken
- Department of Pathology, Immunology & Microbiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiaofeng Fu
- Department of Structural Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, UK
- Electron Bio-Imaging Centre, Diamond Light Sources, Harwell Science and Innovation Campus, Didcot, UK
| | - Ashwanth C Francis
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Gregory B Melikyan
- Children's Healthcare of Atlanta, Atlanta, GA, USA
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Stefan G Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO, USA.
| |
Collapse
|
17
|
Highland CM, Tan A, Ricaña CL, Briggs JAG, Dick RA. Structural insights into HIV-1 polyanion-dependent capsid lattice formation revealed by single particle cryo-EM. Proc Natl Acad Sci U S A 2023; 120:e2220545120. [PMID: 37094124 PMCID: PMC10160977 DOI: 10.1073/pnas.2220545120] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/12/2023] [Indexed: 04/26/2023] Open
Abstract
The HIV-1 capsid houses the viral genome and interacts extensively with host cell proteins throughout the viral life cycle. It is composed of capsid protein (CA), which assembles into a conical fullerene lattice composed of roughly 200 CA hexamers and 12 CA pentamers. Previous structural analyses of individual CA hexamers and pentamers have provided valuable insight into capsid structure and function, but detailed structural information about these assemblies in the broader context of the capsid lattice is lacking. In this study, we combined cryoelectron tomography and single particle analysis (SPA) cryoelectron microscopy to determine structures of continuous regions of the capsid lattice containing both hexamers and pentamers. We also developed a method of liposome scaffold-based in vitro lattice assembly ("lattice templating") that enabled us to directly study the lattice under a wider range of conditions than has previously been possible. Using this approach, we identified a critical role for inositol hexakisphosphate in pentamer formation and determined the structure of the CA lattice bound to the capsid-targeting antiretroviral drug GS-6207 (lenacapavir). Our work reveals key structural details of the mature HIV-1 CA lattice and establishes the combination of lattice templating and SPA as a robust strategy for studying retroviral capsid structure and capsid interactions with host proteins and antiviral compounds.
Collapse
Affiliation(s)
- Carolyn M. Highland
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - Aaron Tan
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, UK
| | - Clifton L. Ricaña
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - John A. G. Briggs
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, UK
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Munich82512, Germany
| | - Robert A. Dick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| |
Collapse
|
18
|
Schatz M, Marty L, Ounadjela C, Tong PBV, Cardace I, Mettling C, Milhiet PE, Costa L, Godefroy C, Pugnière M, Guichou JF, Mesnard JM, Blaise M, Beaumelle B. A Tripartite Complex HIV-1 Tat-Cyclophilin A-Capsid Protein Enables Tat Encapsidation That Is Required for HIV-1 Infectivity. J Virol 2023; 97:e0027823. [PMID: 37129415 PMCID: PMC10134889 DOI: 10.1128/jvi.00278-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023] Open
Abstract
HIV-1 Tat is a key viral protein that stimulates several steps of viral gene expression. Tat is especially required for the transcription of viral genes. Nevertheless, it is still not clear if and how Tat is incorporated into HIV-1 virions. Cyclophilin A (CypA) is a prolyl isomerase that binds to HIV-1 capsid protein (CA) and is thereby encapsidated at the level of 200 to 250 copies of CypA/virion. Here, we found that a Tat-CypA-CA tripartite complex assembles in HIV-1-infected cells and allows Tat encapsidation into HIV virions (1 Tat/1 CypA). Biochemical and biophysical studies showed that high-affinity interactions drive the assembly of the Tat-CypA-CA complex that could be purified by size exclusion chromatography. We prepared different types of viruses devoid of transcriptionally active Tat. They showed a 5- to 10 fold decrease in HIV infectivity, and conversely, encapsidating Tat into ΔTat viruses greatly enhanced infectivity. The absence of encapsidated Tat decreased the efficiency of reverse transcription by ~50% and transcription by more than 90%. We thus identified a Tat-CypA-CA complex that enables Tat encapsidation and showed that encapsidated Tat is required to initiate robust viral transcription and thus viral production at the beginning of cell infection, before neosynthesized Tat becomes available. IMPORTANCE The viral transactivating protein Tat has been shown to stimulate several steps of HIV gene expression. It was found to facilitate reverse transcription. Moreover, Tat is strictly required for the transcription of viral genes. Although the presence of Tat within HIV virions would undoubtedly favor these steps and therefore enable the incoming virus to boost initial viral production, whether and how Tat is present within virions has been a matter a debate. We here described and characterized a tripartite complex between Tat, HIV capsid protein, and the cellular chaperone cyclophilin A that enables efficient and specific Tat encapsidation within HIV virions. We further showed that Tat encapsidation is required for the virus to efficiently initiate infection and viral production. This effect is mainly due to the transcriptional activity of Tat.
Collapse
Affiliation(s)
- Malvina Schatz
- Institut de Recherche en Infectiologie de Montpellier, UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Laetitia Marty
- Institut de Recherche en Infectiologie de Montpellier, UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Camille Ounadjela
- Institut de Recherche en Infectiologie de Montpellier, UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Phuoc Bao Viet Tong
- Institut de Recherche en Infectiologie de Montpellier, UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Ilaria Cardace
- Institut de Recherche en Infectiologie de Montpellier, UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Clément Mettling
- Institut de Génétique Humaine, UPR 1142 CNRS, Montpellier, France
| | - Pierre-Emmanuel Milhiet
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Luca Costa
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Cédric Godefroy
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Martine Pugnière
- Institut de Recherche en Cancérologie de Montpellier, INSERM U 1194, Montpellier, France
| | - Jean-François Guichou
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Jean-Michel Mesnard
- Institut de Recherche en Infectiologie de Montpellier, UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Mickaël Blaise
- Institut de Recherche en Infectiologie de Montpellier, UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Bruno Beaumelle
- Institut de Recherche en Infectiologie de Montpellier, UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
19
|
Bryer AJ, Rey JS, Perilla JR. Performance efficient macromolecular mechanics via sub-nanometer shape based coarse graining. Nat Commun 2023; 14:2014. [PMID: 37037809 PMCID: PMC10086035 DOI: 10.1038/s41467-023-37801-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/30/2023] [Indexed: 04/12/2023] Open
Abstract
Dimensionality reduction via coarse grain modeling is a valuable tool in biomolecular research. For large assemblies, ultra coarse models are often knowledge-based, relying on a priori information to parameterize models thus hindering general predictive capability. Here, we present substantial advances to the shape based coarse graining (SBCG) method, which we refer to as SBCG2. SBCG2 utilizes a revitalized formulation of the topology representing network which makes high-granularity modeling possible, preserving atomistic details that maintain assembly characteristics. Further, we present a method of granularity selection based on charge density Fourier Shell Correlation and have additionally developed a refinement method to optimize, adjust and validate high-granularity models. We demonstrate our approach with the conical HIV-1 capsid and heteromultimeric cofilin-2 bound actin filaments. Our approach is available in the Visual Molecular Dynamics (VMD) software suite, and employs a CHARMM-compatible Hamiltonian that enables high-performance simulation in the GPU-resident NAMD3 molecular dynamics engine.
Collapse
Affiliation(s)
- Alexander J Bryer
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Juan S Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
20
|
Renner N, Kleinpeter A, Mallery DL, Albecka A, Rifat Faysal KM, Böcking T, Saiardi A, Freed EO, James LC. HIV-1 is dependent on its immature lattice to recruit IP6 for mature capsid assembly. Nat Struct Mol Biol 2023; 30:370-382. [PMID: 36624347 PMCID: PMC7614341 DOI: 10.1038/s41594-022-00887-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 11/03/2022] [Indexed: 01/11/2023]
Abstract
HIV-1 Gag metamorphoses inside each virion, from an immature lattice that forms during viral production to a mature capsid that drives infection. Here we show that the immature lattice is required to concentrate the cellular metabolite inositol hexakisphosphate (IP6) into virions to catalyze mature capsid assembly. Disabling the ability of HIV-1 to enrich IP6 does not prevent immature lattice formation or production of the virus. However, without sufficient IP6 molecules inside each virion, HIV-1 can no longer build a stable capsid and fails to become infectious. IP6 cannot be replaced by other inositol phosphate (IP) molecules, as substitution with other IPs profoundly slows mature assembly kinetics and results in virions with gross morphological defects. Our results demonstrate that while HIV-1 can become independent of IP6 for immature assembly, it remains dependent upon the metabolite for mature capsid formation.
Collapse
Affiliation(s)
- Nadine Renner
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Alex Kleinpeter
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Donna L Mallery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Anna Albecka
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - K M Rifat Faysal
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Adolfo Saiardi
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
| |
Collapse
|
21
|
Zuliani-Alvarez L, Govasli ML, Rasaiyaah J, Monit C, Perry SO, Sumner RP, McAlpine-Scott S, Dickson C, Rifat Faysal KM, Hilditch L, Miles RJ, Bibollet-Ruche F, Hahn BH, Boecking T, Pinotsis N, James LC, Jacques DA, Towers GJ. Evasion of cGAS and TRIM5 defines pandemic HIV. Nat Microbiol 2022; 7:1762-1776. [PMID: 36289397 PMCID: PMC9613477 DOI: 10.1038/s41564-022-01247-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022]
Abstract
Of the 13 known independent zoonoses of simian immunodeficiency viruses to humans, only one, leading to human immunodeficiency virus (HIV) type 1(M) has become pandemic, causing over 80 million human infections. To understand the specific features associated with pandemic human-to-human HIV spread, we compared replication of HIV-1(M) with non-pandemic HIV-(O) and HIV-2 strains in myeloid cell models. We found that non-pandemic HIV lineages replicate less well than HIV-1(M) owing to activation of cGAS and TRIM5-mediated antiviral responses. We applied phylogenetic and X-ray crystallography structural analyses to identify differences between pandemic and non-pandemic HIV capsids. We found that genetic reversal of two specific amino acid adaptations in HIV-1(M) enables activation of TRIM5, cGAS and innate immune responses. We propose a model in which the parental lineage of pandemic HIV-1(M) evolved a capsid that prevents cGAS and TRIM5 triggering, thereby allowing silent replication in myeloid cells. We hypothesize that this capsid adaptation promotes human-to-human spread through avoidance of innate immune response activation.
Collapse
Affiliation(s)
- Lorena Zuliani-Alvarez
- Division of Infection and Immunity, UCL, London, UK
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
| | | | | | - Chris Monit
- Division of Infection and Immunity, UCL, London, UK
- Carnall Farrar, London, UK
| | - Stephen O Perry
- Division of Infection and Immunity, UCL, London, UK
- Quell Therapeutics Ltd, Translation & Innovation Hub, London, UK
| | | | | | - Claire Dickson
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - K M Rifat Faysal
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Laura Hilditch
- Division of Infection and Immunity, UCL, London, UK
- Nucleus Global, London, UK
| | | | - Frederic Bibollet-Ruche
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Till Boecking
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | - Leo C James
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - David A Jacques
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia.
| | - Greg J Towers
- Division of Infection and Immunity, UCL, London, UK.
| |
Collapse
|
22
|
Nicastro G, Lucci M, Oregioni A, Kelly G, Frenkiel TA, Taylor IA. CP-MAS and solution NMR studies of allosteric communication in CA-assemblies of HIV-1. J Mol Biol 2022; 434:167691. [PMID: 35738429 DOI: 10.1016/j.jmb.2022.167691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 10/18/2022]
Abstract
Solution and solid-state NMR spectroscopy are highly complementary techniques for studying structure and dynamics in very high molecular weight systems. Here we have analysed the dynamics of HIV-1 capsid (CA) assemblies in presence of the cofactors IP6 and ATPγS and the host-factor CPSF6 using a combination of solution state and cross polarisation magic angle spinning (CP-MAS) solid-state NMR. In particular, dynamical effects on ns to µs and µs to ms timescales are observed revealing diverse motions in assembled CA. Using CP-MAS NMR, we exploited the sensitivity of the amide/Cα-Cβ backbone chemical shifts in DARR and NCA spectra to observe the plasticity of the HIV-1 CA tubular assemblies and also map the binding of cofactors and the dynamics of cofactor-CA complexes. In solution, we measured how the addition of host- and co-factors to CA -hexamers perturbed the chemical shifts and relaxation properties of CA-Ile and -Met methyl groups using transverse-relaxation-optimized NMR spectroscopy to exploit the sensitivity of methyl groups as probes in high-molecular weight proteins. These data show how dynamics of the CA protein assembly over a range of spatial and temporal scales play a critical role in CA function. Moreover, we show that binding of IP6, ATPγS and CPSF6 results in local chemical shift as well as dynamic changes for a significant, contiguous portion of CA, highlighting how allosteric pathways communicate ligand interactions between adjacent CA protomers.
Collapse
Affiliation(s)
- Giuseppe Nicastro
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Massimo Lucci
- CIRMMP, University of Florence, Via L. Sacconi, 6 50019 Sesto Fiorentino (FI), Italy
| | - Alain Oregioni
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Geoff Kelly
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Tom A Frenkiel
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
23
|
Müller TG, Zila V, Müller B, Kräusslich HG. Nuclear Capsid Uncoating and Reverse Transcription of HIV-1. Annu Rev Virol 2022; 9:261-284. [PMID: 35704745 DOI: 10.1146/annurev-virology-020922-110929] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
After cell entry, human immunodeficiency virus type 1 (HIV-1) replication involves reverse transcription of the RNA genome, nuclear import of the subviral complex without nuclear envelope breakdown, and integration of the viral complementary DNA into the host genome. Here, we discuss recent evidence indicating that completion of reverse transcription and viral genome uncoating occur in the nucleus rather than in the cytoplasm, as previously thought, and suggest a testable model for nuclear import and uncoating. Multiple recent studies indicated that the cone-shaped capsid, which encases the genome and replication proteins, not only serves as a reaction container for reverse transcription and as a shield from innate immune sensors but also may constitute the elusive HIV-1 nuclear import factor. Rupture of the capsid may be triggered in the nucleus by completion of reverse transcription, by yet-unknown nuclear factors, or by physical damage, and it appears to occur in close temporal and spatial association with the integration process. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Thorsten G Müller
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany;
| | - Vojtech Zila
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany;
| | - Barbara Müller
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany;
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; .,German Center for Infection Research, Heidelberg, Germany
| |
Collapse
|
24
|
Balasubramaniam M, Davids BO, Bryer A, Xu C, Thapa S, Shi J, Aiken C, Pandhare J, Perilla JR, Dash C. HIV-1 mutants that escape the cytotoxic T-lymphocytes are defective in viral DNA integration. PNAS NEXUS 2022; 1:pgac064. [PMID: 35719891 PMCID: PMC9198661 DOI: 10.1093/pnasnexus/pgac064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/17/2022] [Indexed: 12/02/2022]
Abstract
HIV-1 replication is durably controlled without antiretroviral therapy (ART) in certain infected individuals called elite controllers (ECs). These individuals express specific human leukocyte antigens (HLA) that tag HIV-infected cells for elimination by presenting viral epitopes to CD8+ cytotoxic T-lymphocytes (CTL). In HIV-infected individuals expressing HLA-B27, CTLs primarily target the viral capsid protein (CA)-derived KK10 epitope. While selection of CA mutation R264K helps HIV-1 escape this potent CTL response, the accompanying fitness cost severely diminishes virus infectivity. Interestingly, selection of a compensatory CA mutation S173A restores HIV-1 replication. However, the molecular mechanism(s) underlying HIV-1 escape from this ART-free virus control by CTLs is not fully understood. Here, we report that the R264K mutation-associated infectivity defect arises primarily from impaired HIV-1 DNA integration, which is restored by the S173A mutation. Unexpectedly, the integration defect of the R264K variant was also restored upon depletion of the host cyclophilin A. These findings reveal a nuclear crosstalk between CA and HIV-1 integration as well as identify a previously unknown role of cyclophilin A in viral DNA integration. Finally, our study identifies a novel immune escape mechanism of an HIV-1 variant escaping a CA-directed CTL response.
Collapse
Affiliation(s)
| | - Benem-Orom Davids
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| | - Alex Bryer
- Department of Chemistry, University of Delaware, Newark, DE - 19716, USA
| | - Chaoyi Xu
- Department of Chemistry, University of Delaware, Newark, DE - 19716, USA
| | - Santosh Thapa
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| | - Jiong Shi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN - 37232, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN - 37232, USA
| | - Jui Pandhare
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| | - Juan R Perilla
- Department of Chemistry, University of Delaware, Newark, DE - 19716, USA
| | - Chandravanu Dash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| |
Collapse
|
25
|
Rousso I, Deshpande A. Applications of Atomic Force Microscopy in HIV-1 Research. Viruses 2022; 14:v14030648. [PMID: 35337055 PMCID: PMC8955997 DOI: 10.3390/v14030648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
Obtaining an understanding of the mechanism underlying the interrelations between the structure and function of HIV-1 is of pivotal importance. In previous decades, this mechanism was addressed extensively in a variety of studies using conventional approaches. More recently, atomic force microscopy, which is a relatively new technique with unique capabilities, has been utilized to study HIV-1 biology. Atomic force microscopy can generate high-resolution images at the nanometer-scale and analyze the mechanical properties of individual HIV-1 virions, virus components (e.g., capsids), and infected live cells under near-physiological environments. This review describes the working principles and various imaging and analysis modes of atomic force microscopy, and elaborates on its distinctive contributions to HIV-1 research in areas such as mechanobiology and the physics of infection.
Collapse
|
26
|
Zhang MJ, Stear JH, Jacques DA, Böcking T. Insights into HIV uncoating from single-particle imaging techniques. Biophys Rev 2022; 14:23-32. [PMID: 35340594 PMCID: PMC8921429 DOI: 10.1007/s12551-021-00922-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/23/2021] [Indexed: 01/13/2023] Open
Abstract
Human immunodeficiency virus (HIV) is the most extensively researched human pathogen. Despite this massive scientific endeavour, several fundamental viral processes remain enigmatic. One such critical process is uncoating-the event that releases the viral genome from the proteinaceous shell of the capsid during infection. While this process is conceptually simple, the molecular underpinnings, timing, regulation, and cellular location of uncoating remain contentious. This review describes the hurdles that have limited our understanding in this area and presents recently deployed in vitro and in cellulo techniques that have been developed expressly with the aim of directly visualising capsid uncoating at the single-particle level and understanding the mechanics behind this essential aspect of HIV infection.
Collapse
Affiliation(s)
- Margaret J. Zhang
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Jeffrey H. Stear
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - David A. Jacques
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| |
Collapse
|
27
|
Gien H, Morse M, McCauley MJ, Kitzrow JP, Musier-Forsyth K, Gorelick RJ, Rouzina I, Williams MC. HIV-1 Nucleocapsid Protein Binds Double-Stranded DNA in Multiple Modes to Regulate Compaction and Capsid Uncoating. Viruses 2022; 14:235. [PMID: 35215829 PMCID: PMC8879225 DOI: 10.3390/v14020235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
The HIV-1 nucleocapsid protein (NC) is a multi-functional protein necessary for viral replication. Recent studies have demonstrated reverse transcription occurs inside the fully intact viral capsid and that the timing of reverse transcription and uncoating are correlated. How a nearly 10 kbp viral DNA genome is stably contained within a narrow capsid with diameter similar to the persistence length of double-stranded (ds) DNA, and the role of NC in this process, are not well understood. In this study, we use optical tweezers, fluorescence imaging, and atomic force microscopy to observe NC binding a single long DNA substrate in multiple modes. We find that NC binds and saturates the DNA substrate in a non-specific binding mode that triggers uniform DNA self-attraction, condensing the DNA into a tight globule at a constant force up to 10 pN. When NC is removed from solution, the globule dissipates over time, but specifically-bound NC maintains long-range DNA looping that is less compact but highly stable. Both binding modes are additionally observed using AFM imaging. These results suggest multiple binding modes of NC compact DNA into a conformation compatible with reverse transcription, regulating the genomic pressure on the capsid and preventing premature uncoating.
Collapse
Affiliation(s)
- Helena Gien
- Department of Physics, Northeastern University, Boston, MA 02115, USA; (H.G.); (M.M.); (M.J.M.)
| | - Michael Morse
- Department of Physics, Northeastern University, Boston, MA 02115, USA; (H.G.); (M.M.); (M.J.M.)
| | - Micah J. McCauley
- Department of Physics, Northeastern University, Boston, MA 02115, USA; (H.G.); (M.M.); (M.J.M.)
| | - Jonathan P. Kitzrow
- Department of Chemistry and Biochemistry, Center for Retroviral Research and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA; (J.P.K.); (K.M.-F.); (I.R.)
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retroviral Research and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA; (J.P.K.); (K.M.-F.); (I.R.)
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA;
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Center for Retroviral Research and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA; (J.P.K.); (K.M.-F.); (I.R.)
| | - Mark C. Williams
- Department of Physics, Northeastern University, Boston, MA 02115, USA; (H.G.); (M.M.); (M.J.M.)
| |
Collapse
|
28
|
McFadden WM, Snyder AA, Kirby KA, Tedbury PR, Raj M, Wang Z, Sarafianos SG. Rotten to the core: antivirals targeting the HIV-1 capsid core. Retrovirology 2021; 18:41. [PMID: 34937567 PMCID: PMC8693499 DOI: 10.1186/s12977-021-00583-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
The capsid core of HIV-1 is a large macromolecular assembly that surrounds the viral genome and is an essential component of the infectious virus. In addition to its multiple roles throughout the viral life cycle, the capsid interacts with multiple host factors. Owing to its indispensable nature, the HIV-1 capsid has been the target of numerous antiretrovirals, though most capsid-targeting molecules have not had clinical success until recently. Lenacapavir, a long-acting drug that targets the HIV-1 capsid, is currently undergoing phase 2/3 clinical trials, making it the most successful capsid inhibitor to-date. In this review, we detail the role of the HIV-1 capsid protein in the virus life cycle, categorize antiviral compounds based on their targeting of five sites within the HIV-1 capsid, and discuss their molecular interactions and mechanisms of action. The diverse range of inhibition mechanisms provides insight into possible new strategies for designing novel HIV-1 drugs and furthers our understanding of HIV-1 biology. ![]()
Collapse
Affiliation(s)
- William M McFadden
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Alexa A Snyder
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Philip R Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Monika Raj
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
| |
Collapse
|
29
|
Ricaña CL, Dick RA. Inositol Phosphates and Retroviral Assembly: A Cellular Perspective. Viruses 2021; 13:2516. [PMID: 34960784 PMCID: PMC8703376 DOI: 10.3390/v13122516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding the molecular mechanisms of retroviral assembly has been a decades-long endeavor. With the recent discovery of inositol hexakisphosphate (IP6) acting as an assembly co-factor for human immunodeficiency virus (HIV), great strides have been made in retroviral research. In this review, the enzymatic pathways to synthesize and metabolize inositol phosphates (IPs) relevant to retroviral assembly are discussed. The functions of these enzymes and IPs are outlined in the context of the cellular biology important for retroviruses. Lastly, the recent advances in understanding the role of IPs in retroviral biology are surveyed.
Collapse
Affiliation(s)
| | - Robert A. Dick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
30
|
Abstract
The HIV-1 capsid, composed of the CA protein, is the target of the novel antiretroviral drug lenacapavir (LCV). CA inhibitors block host factor binding and alter capsid stability to prevent nuclear entry and reverse transcription (RTN), respectively. Capsid stability is mediated in vitro by binding to the host cell metabolite inositol hexakisphosphate (IP6). IP6 depletion in target cells has little effect on HIV-1 infection. We hypothesized that capsid-altering concentrations of CA inhibitors might reveal an effect of IP6 depletion on HIV-1 infection in target cells. To test this, we studied the effects of IP6 depletion on inhibition of infection by the CA inhibitors PF74 and LCV. At low doses of either compound that affect HIV-1 nuclear entry, no effect of IP6 depletion on antiviral activity was observed. Increased antiviral activity was observed in IP6-depleted cells at inhibitor concentrations that affect capsid stability, correlating with increased RTN inhibition. Assays of uncoating and endogenous RTN of purified cores in vitro provided additional support. Our results show that inositol phosphates stabilize the HIV-1 capsid in target cells, thereby dampening the antiviral effects of capsid-targeting antiviral compounds. We propose that targeting of the IP6-binding site in conjunction with CA inhibitors will lead to robust antiretroviral therapy (ART). IMPORTANCE HIV-1 infection and subsequent depletion of CD4+ T cells result in AIDS. Antiretroviral therapy treatment of infected individuals prevents progression to AIDS. The HIV-1 capsid has recently become an ART target. Capsid inhibitors block HIV-1 infection at multiple steps, offering advantages over current ART. The cellular metabolite inositol hexakisphosphate (IP6) binds the HIV-1 capsid, stabilizing it in vitro. However, the function of this interaction in target cells is unclear. Our results imply that IP6 stabilizes the incoming HIV-1 capsid in cells, thus limiting the antiviral efficiency of capsid-destabilizing antivirals. We present a model of capsid inhibitor function and propose that targeting of the IP6-binding site in conjunction with capsid inhibitors currently in development will lead to more robust ART.
Collapse
|
31
|
Ni T, Zhu Y, Yang Z, Xu C, Chaban Y, Nesterova T, Ning J, Böcking T, Parker MW, Monnie C, Ahn J, Perilla JR, Zhang P. Structure of native HIV-1 cores and their interactions with IP6 and CypA. SCIENCE ADVANCES 2021; 7:eabj5715. [PMID: 34797722 PMCID: PMC8604400 DOI: 10.1126/sciadv.abj5715] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/01/2021] [Indexed: 05/24/2023]
Abstract
The viral capsid plays essential roles in HIV replication and is a major platform engaging host factors. To overcome challenges in study native capsid structure, we used the perfringolysin O to perforate the membrane of HIV-1 particles, thus allowing host proteins and small molecules to access the native capsid while improving cryo–electron microscopy image quality. Using cryo–electron tomography and subtomogram averaging, we determined the structures of native capsomers in the presence and absence of inositol hexakisphosphate (IP6) and cyclophilin A and constructed an all-atom model of a complete HIV-1 capsid. Our structures reveal two IP6 binding sites and modes of cyclophilin A interactions. Free energy calculations substantiate the two binding sites at R18 and K25 and further show a prohibitive energy barrier for IP6 to pass through the pentamer. Our results demonstrate that perfringolysin O perforation is a valuable tool for structural analyses of enveloped virus capsids and interactions with host cell factors.
Collapse
Affiliation(s)
- Tao Ni
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Yanan Zhu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Zhengyi Yang
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Chaoyi Xu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Yuriy Chaban
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Tanya Nesterova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Jiying Ning
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW, Sydney, Australia
| | - Michael W. Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Christina Monnie
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jinwoo Ahn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
32
|
Long M, Toesca J, Guillon C. Review and Perspectives on the Structure-Function Relationships of the Gag Subunits of Feline Immunodeficiency Virus. Pathogens 2021; 10:pathogens10111502. [PMID: 34832657 PMCID: PMC8621984 DOI: 10.3390/pathogens10111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The Gag polyprotein is implied in the budding as well as the establishment of the supramolecular architecture of infectious retroviral particles. It is also involved in the early phases of the replication of retroviruses by protecting and transporting the viral genome towards the nucleus of the infected cell until its integration in the host genome. Therefore, understanding the structure-function relationships of the Gag subunits is crucial as each of them can represent a therapeutic target. Though the field has been explored for some time in the area of Human Immunodeficiency Virus (HIV), it is only in the last decade that structural data on Feline Immunodeficiency Virus (FIV) Gag subunits have emerged. As FIV is an important veterinary issue, both in domestic cats and endangered feline species, such data are of prime importance for the development of anti-FIV molecules targeting Gag. This review will focus on the recent advances and perspectives on the structure-function relationships of each subunit of the FIV Gag polyprotein.
Collapse
Affiliation(s)
- Mathieu Long
- Retroviruses and Structural Biochemistry, Molecular Microbiology and Structural Biochemistry, CNRS, Univ Lyon, UMR5086, 69007 Lyon, France; (M.L.); (J.T.)
- Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, 221 00 Scania, Sweden
| | - Johan Toesca
- Retroviruses and Structural Biochemistry, Molecular Microbiology and Structural Biochemistry, CNRS, Univ Lyon, UMR5086, 69007 Lyon, France; (M.L.); (J.T.)
- Enveloped Viruses, Vectors and Immunotherapy, CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, UMR5308, ENS Lyon, 69007 Lyon, France
| | - Christophe Guillon
- Retroviruses and Structural Biochemistry, Molecular Microbiology and Structural Biochemistry, CNRS, Univ Lyon, UMR5086, 69007 Lyon, France; (M.L.); (J.T.)
- Correspondence:
| |
Collapse
|
33
|
Ingram Z, Fischer DK, Ambrose Z. Disassembling the Nature of Capsid: Biochemical, Genetic, and Imaging Approaches to Assess HIV-1 Capsid Functions. Viruses 2021; 13:v13112237. [PMID: 34835043 PMCID: PMC8618418 DOI: 10.3390/v13112237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) capsid and its disassembly, or capsid uncoating, has remained an active area of study over the past several decades. Our understanding of the HIV-1 capsid as solely a protective shell has since shifted with discoveries linking it to other complex replication events. The interplay of the HIV-1 capsid with reverse transcription, nuclear import, and integration has led to an expansion of knowledge of capsid functionality. Coincident with advances in microscopy, cell, and biochemistry assays, several models of capsid disassembly have been proposed, in which it occurs in either the cytoplasmic, nuclear envelope, or nuclear regions of the cell. Here, we discuss how the understanding of the HIV-1 capsid has evolved and the key methods that made these discoveries possible.
Collapse
Affiliation(s)
- Zachary Ingram
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; (Z.I.); (D.K.F.)
- Pittsburgh Center for HIV Protein Interactions, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Douglas K. Fischer
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; (Z.I.); (D.K.F.)
- Pittsburgh Center for HIV Protein Interactions, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; (Z.I.); (D.K.F.)
- Pittsburgh Center for HIV Protein Interactions, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Correspondence:
| |
Collapse
|
34
|
Saito A, Yamashita M. HIV-1 capsid variability: viral exploitation and evasion of capsid-binding molecules. Retrovirology 2021; 18:32. [PMID: 34702294 PMCID: PMC8549334 DOI: 10.1186/s12977-021-00577-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
The HIV-1 capsid, a conical shell encasing viral nucleoprotein complexes, is involved in multiple post-entry processes during viral replication. Many host factors can directly bind to the HIV-1 capsid protein (CA) and either promote or prevent HIV-1 infection. The viral capsid is currently being explored as a novel target for therapeutic interventions. In the past few decades, significant progress has been made in our understanding of the capsid–host interactions and mechanisms of action of capsid-targeting antivirals. At the same time, a large number of different viral capsids, which derive from many HIV-1 mutants, naturally occurring variants, or diverse lentiviruses, have been characterized for their interactions with capsid-binding molecules in great detail utilizing various experimental techniques. This review provides an overview of how sequence variation in CA influences phenotypic properties of HIV-1. We will focus on sequence differences that alter capsid–host interactions and give a brief account of drug resistant mutations in CA and their mutational effects on viral phenotypes. Increased knowledge of the sequence-function relationship of CA helps us deepen our understanding of the adaptive potential of the viral capsid.
Collapse
Affiliation(s)
- Akatsuki Saito
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Masahiro Yamashita
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
35
|
Jones PE, Pérez-Segura C, Bryer AJ, Perilla JR, Hadden-Perilla JA. Molecular dynamics of the viral life cycle: progress and prospects. Curr Opin Virol 2021; 50:128-138. [PMID: 34464843 PMCID: PMC8651149 DOI: 10.1016/j.coviro.2021.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 01/29/2023]
Abstract
Molecular dynamics (MD) simulations across spatiotemporal resolutions are widely applied to study viruses and represent the central technique uniting the field of computational virology. We discuss the progress of MD in elucidating the dynamics of the viral life cycle, including the status of modeling intact extracellular virions and leveraging advanced simulations to mimic active life cycle processes. We further remark on the prospects of MD for continued contributions to the basic science characterization of viruses, especially given the increasing availability of high-quality experimental data and supercomputing power. Overall, integrative computational methods that are closely guided by experiments are unmatched in the level of detail they provide, enabling-now and in the future-new discoveries relevant to thwarting viral infection.
Collapse
Affiliation(s)
- Peter Eugene Jones
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Carolina Pérez-Segura
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Alexander J Bryer
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Jodi A Hadden-Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
36
|
Obr M, Schur FKM, Dick RA. A Structural Perspective of the Role of IP6 in Immature and Mature Retroviral Assembly. Viruses 2021; 13:1853. [PMID: 34578434 PMCID: PMC8473085 DOI: 10.3390/v13091853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 11/17/2022] Open
Abstract
The small cellular molecule inositol hexakisphosphate (IP6) has been known for ~20 years to promote the in vitro assembly of HIV-1 into immature virus-like particles. However, the molecular details underlying this effect have been determined only recently, with the identification of the IP6 binding site in the immature Gag lattice. IP6 also promotes formation of the mature capsid protein (CA) lattice via a second IP6 binding site, and enhances core stability, creating a favorable environment for reverse transcription. IP6 also enhances assembly of other retroviruses, from both the Lentivirus and the Alpharetrovirus genera. These findings suggest that IP6 may have a conserved function throughout the family Retroviridae. Here, we discuss the different steps in the viral life cycle that are influenced by IP6, and describe in detail how IP6 interacts with the immature and mature lattices of different retroviruses.
Collapse
Affiliation(s)
- Martin Obr
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria;
| | - Florian K. M. Schur
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria;
| | - Robert A. Dick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
37
|
Poston D, Zang T, Bieniasz P. Derivation and characterization of an HIV-1 mutant that rescues IP 6 binding deficiency. Retrovirology 2021; 18:25. [PMID: 34454514 PMCID: PMC8403458 DOI: 10.1186/s12977-021-00571-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A critical step in the HIV-1 replication cycle is the assembly of Gag proteins to form virions at the plasma membrane. Virion assembly and maturation are facilitated by the cellular polyanion inositol hexaphosphate (IP6), which is proposed to stabilize both the immature Gag lattice and the mature capsid lattice by binding to rings of primary amines at the center of Gag or capsid protein (CA) hexamers. The amino acids comprising these rings are critical for proper virion formation and their substitution results in assembly deficits or impaired infectiousness. To better understand the nature of the deficits that accompany IP6 binding deficiency, we passaged HIV-1 mutants that had substitutions in IP6 coordinating residues to select for compensatory mutations. RESULTS We found a mutation, a threonine to isoleucine substitution at position 371 (T371I) in Gag, that restored replication competence to an IP6-binding-deficient HIV-1 mutant. Notably, unlike wild-type HIV-1, the assembly and infectiousness of resulting virus was not impaired when IP6 biosynthetic enzymes were genetically ablated. Surprisingly, we also found that the maturation inhibitor Bevirimat (BVM) could restore the assembly and replication of an IP6-binding deficient mutant. Moreover, using BVM-dependent mutants we were able to image BVM-induced assembly of individual HIV-1 particles assembly in living cells. CONCLUSIONS Overall these results suggest that IP6-Gag and Gag-Gag contacts are finely tuned to generate a Gag lattice of optimal stability, and that under certain conditions BVM can rescue IP6 deficiency. Additionally, our work identifies an inducible virion assembly system that can be utilized to visualize HIV-1 assembly events using live cell microscopy.
Collapse
Affiliation(s)
- Daniel Poston
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Trinity Zang
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Paul Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
38
|
AlBurtamani N, Paul A, Fassati A. The Role of Capsid in the Early Steps of HIV-1 Infection: New Insights into the Core of the Matter. Viruses 2021; 13:v13061161. [PMID: 34204384 PMCID: PMC8234406 DOI: 10.3390/v13061161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 01/27/2023] Open
Abstract
In recent years, major advances in research and experimental approaches have significantly increased our knowledge on the role of the HIV-1 capsid in the virus life cycle, from reverse transcription to integration and gene expression. This makes the capsid protein a good pharmacological target to inhibit HIV-1 replication. This review covers our current understanding of the role of the viral capsid in the HIV-1 life cycle and its interaction with different host factors that enable reverse transcription, trafficking towards the nucleus, nuclear import and integration into host chromosomes. It also describes different promising small molecules, some of them in clinical trials, as potential targets for HIV-1 therapy.
Collapse
|
39
|
Jiang K, Humbert N, K K S, Rouzina I, Mely Y, Westerlund F. The HIV-1 nucleocapsid chaperone protein forms locally compacted globules on long double-stranded DNA. Nucleic Acids Res 2021; 49:4550-4563. [PMID: 33872352 PMCID: PMC8096146 DOI: 10.1093/nar/gkab236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 01/14/2023] Open
Abstract
The nucleocapsid (NC) protein plays key roles in Human Immunodeficiency Virus 1 (HIV-1) replication, notably by condensing and protecting the viral RNA genome and by chaperoning its reverse transcription into double-stranded DNA (dsDNA). Recent findings suggest that integration of viral dsDNA into the host genome, and hence productive infection, is linked to a small subpopulation of viral complexes where reverse transcription was completed within the intact capsid. Therefore, the synthesized dsDNA has to be tightly compacted, most likely by NC, to prevent breaking of the capsid in these complexes. To investigate NC’s ability to compact viral dsDNA, we here characterize the compaction of single dsDNA molecules under unsaturated NC binding conditions using nanofluidic channels. Compaction is shown to result from accumulation of NC at one or few compaction sites, which leads to small dsDNA condensates. NC preferentially initiates compaction at flexible regions along the dsDNA, such as AT-rich regions and DNA ends. Upon further NC binding, these condensates develop into a globular state containing the whole dsDNA molecule. These findings support NC’s role in viral dsDNA compaction within the mature HIV-1 capsid and suggest a possible scenario for the gradual dsDNA decondensation upon capsid uncoating and NC loss.
Collapse
Affiliation(s)
- Kai Jiang
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE 412 96, Sweden
| | - Nicolas Humbert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch F 67401, France
| | - Sriram K K
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE 412 96, Sweden
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA
| | - Yves Mely
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch F 67401, France
| | - Fredrik Westerlund
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE 412 96, Sweden
| |
Collapse
|
40
|
HIV-1 uncoating occurs via a series of rapid biomechanical changes in the core related to individual stages of reverse transcription. J Virol 2021; 95:JVI.00166-21. [PMID: 33692202 PMCID: PMC8139671 DOI: 10.1128/jvi.00166-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The HIV core consists of the viral genome and associated proteins encased by a cone-shaped protein shell termed the capsid. Successful infection requires reverse transcription of the viral genome and disassembly of the capsid shell within a cell in a process known as uncoating. The integrity of the viral capsid is critical for reverse transcription, yet the viral capsid must be breached to release the nascent viral DNA prior to integration. We employed atomic force microscopy to study the stiffness changes in HIV-1 cores during reverse transcription in vitro in reactions containing the capsid-stabilizing host metabolite IP6 Cores exhibited a series of stiffness spikes, with up to three spikes typically occurring between 10-30, 40-80, and 120-160 minutes after initiation of reverse transcription. Addition of the reverse transcriptase (RT) inhibitor efavirenz eliminated the appearance of these spikes and the subsequent disassembly of the capsid, thus establishing that both result from reverse transcription. Using timed addition of efavirenz, and analysis of an RNAseH-defective RT mutant, we established that the first stiffness spike requires minus-strand strong stop DNA synthesis, with subsequent spikes requiring later stages of reverse transcription. Additional rapid AFM imaging experiments revealed repeated morphological changes in cores that were temporally correlated with the observed stiffness spikes. Our study reveals discrete mechanical changes in the viral core that are likely related to specific stages of reverse transcription. These reverse-transcription-induced changes in the capsid progressively remodel the viral core to prime it for temporally accurate uncoating in target cells.ImportanceFor successful infection, the HIV-1 genome, which is enclosed inside a capsid shell, must be reverse transcribed into double-stranded DNA and released from the capsid (in a process known as uncoating) before it can be integrated into the target cell genome. The mechanism of HIV-1 uncoating is a pivotal question of long standing. Using atomic force microscopy to analyze individual HIV-1 cores during reverse transcription, we observe a reproducible pattern of stiffness spikes. These spikes were shown to be associated with distinct stages of the reverse transcription reaction. Our findings suggest that these reverse-transcription-induced alterations gradually prepared the core for uncoating at the right time and location in target cells.
Collapse
|
41
|
Perilla JR, Hadden-Perilla JA, Gronenborn AM, Polenova T. Integrative structural biology of HIV-1 capsid protein assemblies: combining experiment and computation. Curr Opin Virol 2021; 48:57-64. [PMID: 33901736 DOI: 10.1016/j.coviro.2021.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/11/2021] [Accepted: 03/20/2021] [Indexed: 12/31/2022]
Abstract
HIV-1 is the causative agent of acquired immunodeficiency syndrome (AIDS), a global pandemic that has claimed 32.7 million lives since 1981. Despite decades of research, there is no cure for the disease, with 38 million people currently infected with HIV. Attractive therapeutic targets for drug development are mature HIV-1 capsids, immature Gag polyprotein assemblies, and Gag maturation intermediates, although their complex architectures, pleomorphism, and dynamics render these assemblies challenging for structural biology. The recent development of integrative approaches, combining experimental and computational methods has enabled atomic-level characterization of structures and dynamics of capsid and Gag assemblies, and revealed their interactions with small-molecule inhibitors and host factors. These structures provide important insights that will guide the development of capsid and maturation inhibitors.
Collapse
Affiliation(s)
- Juan R Perilla
- University of Delaware, Department of Chemistry and Biochemistry, Newark, DE, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jodi A Hadden-Perilla
- University of Delaware, Department of Chemistry and Biochemistry, Newark, DE, United States
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Tatyana Polenova
- University of Delaware, Department of Chemistry and Biochemistry, Newark, DE, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
42
|
Zhuang S, Torbett BE. Interactions of HIV-1 Capsid with Host Factors and Their Implications for Developing Novel Therapeutics. Viruses 2021; 13:417. [PMID: 33807824 PMCID: PMC8001122 DOI: 10.3390/v13030417] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
The Human Immunodeficiency Virus type 1 (HIV-1) virion contains a conical shell, termed capsid, encasing the viral RNA genome. After cellular entry of the virion, the capsid is released and ensures the protection and delivery of the HIV-1 genome to the host nucleus for integration. The capsid relies on many virus-host factor interactions which are regulated spatiotemporally throughout the course of infection. In this paper, we will review the current understanding of the highly dynamic HIV-1 capsid-host interplay during the early stages of viral replication, namely intracellular capsid trafficking after viral fusion, nuclear import, uncoating, and integration of the viral genome into host chromatin. Conventional anti-retroviral therapies primarily target HIV-1 enzymes. Insights of capsid structure have resulted in a first-in-class, long-acting capsid-targeting inhibitor, GS-6207 (Lenacapavir). This inhibitor binds at the interface between capsid protein subunits, a site known to bind host factors, interferes with capsid nuclear import, HIV particle assembly, and ordered assembly. Our review will highlight capsid structure, the host factors that interact with capsid, and high-throughput screening techniques, specifically genomic and proteomic approaches, that have been and can be used to identify host factors that interact with capsid. Better structural and mechanistic insights into the capsid-host factor interactions will significantly inform the understanding of HIV-1 pathogenesis and the development of capsid-centric antiretroviral therapeutics.
Collapse
Affiliation(s)
- Shentian Zhuang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA;
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Bruce E. Torbett
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA;
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA
| |
Collapse
|
43
|
Renner N, Mallery DL, Faysal KMR, Peng W, Jacques DA, Böcking T, James LC. A lysine ring in HIV capsid pores coordinates IP6 to drive mature capsid assembly. PLoS Pathog 2021; 17:e1009164. [PMID: 33524070 PMCID: PMC7850482 DOI: 10.1371/journal.ppat.1009164] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
The HIV capsid self-assembles a protective conical shell that simultaneously prevents host sensing whilst permitting the import of nucleotides to drive DNA synthesis. This is accomplished through the construction of dynamic, highly charged pores at the centre of each capsid multimer. The clustering of charges required for dNTP import is strongly destabilising and it is proposed that HIV uses the metabolite IP6 to coordinate the pore during assembly. Here we have investigated the role of inositol phosphates in coordinating a ring of positively charged lysine residues (K25) that forms at the base of the capsid pore. We show that whilst IP5, which can functionally replace IP6, engages an arginine ring (R18) at the top of the pore, the lysine ring simultaneously binds a second IP5 molecule. Dose dependent removal of K25 from the pore severely inhibits HIV infection and concomitantly prevents DNA synthesis. Cryo-tomography reveals that K25A virions have a severe assembly defect that inhibits the formation of mature capsid cones. Monitoring both the kinetics and morphology of capsids assembled in vitro reveals that while mutation K25A can still form tubes, the ability of IP6 to drive assembly of capsid cones has been lost. Finally, in single molecule TIRF microscopy experiments, capsid lattices in permeabilised K25 mutant virions are rapidly lost and cannot be stabilised by IP6. These results suggest that the coordination of IP6 by a second charged ring in mature hexamers drives the assembly of conical capsids capable of reverse transcription and infection.
Collapse
Affiliation(s)
- Nadine Renner
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - K. M. Rifat Faysal
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Australia
| | - Wang Peng
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Australia
| | - David A. Jacques
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Australia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Australia
| | - Leo C. James
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
44
|
Abstract
From cellular deposition of the HIV-1 capsid to integration of the viral genome, the capsid constitutes a primary target of a variety of host proteins that work to either promote or inhibit HIV-1 infection. Successful progression of HIV-1 infection depends on interactions between the capsid and host factors involved in stability, cellular transport, nuclear import, and genome integration. The virus must also guard its reverse-transcribing genome inside the capsid from host restriction factors that bind the capsid and suppress infection. Understanding the structure and dynamics of the capsid protein (CA) component and the assembled capsid sheds light on the molecular underpinnings of overall capsid stability, architecture, and flexibility that govern HIV-1 capsid–host interactions. The vast majority of these interactions are mediated through recognition of higher order interfaces only present in the assembled capsid lattice. Patterns formed at these interfaces serve as signposts for capsid-binders. Here we provide a graphical summary of the intricate interactions between host factors and the HIV-1 capsid while highlighting recent research. Insights into how host proteins interact with the capsid is crucial for understanding the HIV-1 replication cycle and developing antiviral therapeutics to prevent viral genome integration.
Collapse
|