1
|
Su WC, Xia Y. Virus targeting as a dominant driver of interfacial evolution in the structurally resolved human-virus protein-protein interaction network. Cell Syst 2025; 16:101202. [PMID: 40023148 DOI: 10.1016/j.cels.2025.101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/28/2024] [Accepted: 02/04/2025] [Indexed: 03/04/2025]
Abstract
Regions on a host protein that interact with virus proteins (exogenous interfaces) frequently overlap with those that interact with other host proteins (endogenous interfaces), resulting in competition between hosts and viruses for these shared interfaces (mimic-targeted interfaces). Yet, the evolutionary consequences of this competitive relationship on the host are not well understood. Here, we integrate experimentally determined structures and homology-based templates of protein complexes with protein-protein interaction networks to construct a high-resolution human-virus structural interaction network. We perform site-specific evolutionary rate analyses on this structural interaction network and find that exogenous-specific interfaces evolve faster than endogenous-specific interfaces. Mimic-targeted interfaces evolve as fast as exogenous-specific interfaces, despite being targeted by both human and virus proteins. Our findings suggest that virus targeting plays a dominant role in host interfacial evolution within the context of domain-domain interactions and that mimic-targeted interfaces on human proteins are the key battleground for a mammalian-specific host-virus evolutionary arms race.
Collapse
Affiliation(s)
- Wan-Chun Su
- Graduate Program in Quantitative Life Sciences, McGill University, Montréal, QC, Canada
| | - Yu Xia
- Graduate Program in Quantitative Life Sciences, McGill University, Montréal, QC, Canada; Department of Bioengineering, McGill University, Montréal, QC, Canada.
| |
Collapse
|
2
|
Liu S, Schlagowski S, Großkopf AK, Khizanishvili N, Yang X, Wong SW, Guzmán EM, Backovic M, Scribano S, Cordsmeier A, Ensser A, Hahn AS. Kaposi's sarcoma-associated herpesvirus (KSHV) gB dictates a low-pH endocytotic entry pathway as revealed by a dual-fluorescent virus system and a rhesus monkey rhadinovirus expressing KSHV gB. PLoS Pathog 2025; 21:e1012846. [PMID: 39820197 PMCID: PMC11801733 DOI: 10.1371/journal.ppat.1012846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 02/06/2025] [Accepted: 12/18/2024] [Indexed: 01/19/2025] Open
Abstract
Interaction with host cell receptors initiates internalization of Kaposi's sarcoma-associated herpesvirus (KSHV) particles. Fusion of viral and host cell membranes, which is followed by release of the viral capsid into the cytoplasm, is executed by the core fusion machinery composed of glycoproteins H (gH), L (gL), and B (gB), that is common to all herpesviruses. KSHV infection has been shown to be sensitive to inhibitors of vacuolar acidification, suggestive of low pH as a fusion trigger. To analyze KSHV entry at the single particle level we developed dual-fluorescent recombinant KSHV strains that incorporate fluorescent protein-tagged glycoproteins and capsid proteins. In addition, we generated a hybrid rhesus monkey rhadinovirus (RRV) that expresses KSHV gB in place of RRV gB to analyze gB-dependent differences in infection pathways. We demonstrated lytic reactivation and infectivity of dual-fluorescent KSHV. Confocal microscopy was used to quantify co-localization of fluorescently-tagged glycoproteins and capsid proteins. Using the ratio of dual-positive KSHV particles to single-positive capsids as an indicator of fusion events we established KSHV fusion kinetics upon infection of different target cells with marked differences in the "time-to-fusion" between cell types. Inhibition of vesicle acidification prevented KSHV particle-cell fusion, implicating low vesicle pH as a requirement. These findings were corroborated by comparison of RRV-YFP wildtype reporter virus and RRV-YFP encoding KSHV gB in place of RRV gB. While RRV wt infection of receptor-overexpressing cells was unaffected by inhibition of vesicle acidification, RRV-YFP expressing KSHV gB was sensitive to Bafilomycin A1, an inhibitor of vacuolar acidification. Single- and dual-fluorescent KSHV strains eliminate the need for virus-specific antibodies and enable the tracking of single viral particles during entry and fusion. Together with a hybrid RRV expressing KSHV gB and classical fusion assays, these novel tools identify low vesicle pH as an endocytotic trigger for KSHV membrane fusion.
Collapse
Affiliation(s)
- Shanchuan Liu
- Junior Research Group Herpesviruses, Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sarah Schlagowski
- Junior Research Group Herpesviruses, Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Anna K. Großkopf
- Junior Research Group Herpesviruses, Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Natalia Khizanishvili
- Junior Research Group Herpesviruses, Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Xiaoliang Yang
- Junior Research Group Herpesviruses, Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Scott W. Wong
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States of America
| | - Elina M. Guzmán
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, Paris, France
| | - Marija Backovic
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, Paris, France
| | - Stefano Scribano
- Junior Research Group Herpesviruses, Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Arne Cordsmeier
- Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Armin Ensser
- Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander S. Hahn
- Junior Research Group Herpesviruses, Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
3
|
Moayedi J, Hashempour A, Musavi Z, Ghasabi F, Khodadad N, Davarpanah MA, Hasanshahi A. Assessment of human Herpes Virus-8 infection in Iranian cirrhotic patients on the waiting list for liver transplantation: A cross-sectional analysis. New Microbes New Infect 2024; 62:101496. [PMID: 39429733 PMCID: PMC11490846 DOI: 10.1016/j.nmni.2024.101496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/07/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Background Human Herpes Virus 8 (HHV-8) is involved in autoimmunity. However, its association with advanced liver disease has not been fully explained. Herein, the prevalence of HHV-8 viremia was assessed in Iranian liver transplant candidates with a confirmed diagnosis of cirrhosis. Methods This cross-sectional study was conducted on 230 patients with cryptogenic cirrhosis, virus-related cirrhosis, and autoimmune hepatitis, as well as 140 healthy blood donors from April 2022 to September 2023. The HHV-8 IgG antibody concentration and viral load were evaluated via ELISA and RT‒PCR, respectively. Results Anti-HHV-8 IgG antibodies were detected in 25 cirrhotic patients (10.8 %) and four healthy individuals (2.6 %) (p = 0.022). The majority of the seropositive patients had cryptogenic cirrhosis (20.4 %), followed by autoimmune hepatitis (13.1 %) and virus-related cirrhosis (4.7 %). The seropositivity of HHV-8 IgG antibody was significantly different among the etiologies of liver cirrhosis (p = 0.011). However, HHV-8 genomic DNA was not detected in the sera of the patients or healthy blood donors. Conclusion The role of HHV-8 infection in the development of posttransplant diseases, together with the higher seroprevalence of HHV-8 antibodies in cirrhotic patients than in healthy individuals, highlights the importance of both primary and latent infections in liver transplantation. Therefore, serological and molecular screening of HHV-8 is highly suggested for liver transplant candidates and organ donors. The possibility of antibody-mediated epitope mimicry in cryptogenic and autoimmune groups with moderate HHV-8 antibody positivity and negative viral loads may account for the development of advanced liver diseases.
Collapse
Affiliation(s)
- Javad Moayedi
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ava Hashempour
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Musavi
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Ghasabi
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nastaran Khodadad
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Ali Davarpanah
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Hasanshahi
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Büttiker P, Boukherissa A, Weissenberger S, Ptacek R, Anders M, Raboch J, Stefano GB. Cognitive Impact of Neurotropic Pathogens: Investigating Molecular Mimicry through Computational Methods. Cell Mol Neurobiol 2024; 44:72. [PMID: 39467848 PMCID: PMC11519248 DOI: 10.1007/s10571-024-01509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Neurotropic pathogens, notably, herpesviruses, have been associated with significant neuropsychiatric effects. As a group, these pathogens can exploit molecular mimicry mechanisms to manipulate the host central nervous system to their advantage. Here, we present a systematic computational approach that may ultimately be used to unravel protein-protein interactions and molecular mimicry processes that have not yet been solved experimentally. Toward this end, we validate this approach by replicating a set of pre-existing experimental findings that document the structural and functional similarities shared by the human cytomegalovirus-encoded UL144 glycoprotein and human tumor necrosis factor receptor superfamily member 14 (TNFRSF14). We began with a thorough exploration of the Homo sapiens protein database using the Basic Local Alignment Search Tool (BLASTx) to identify proteins sharing sequence homology with UL144. Subsequently, we used AlphaFold2 to predict the independent three-dimensional structures of UL144 and TNFRSF14. This was followed by a comprehensive structural comparison facilitated by Distance-Matrix Alignment and Foldseek. Finally, we used AlphaFold-multimer and PPIscreenML to elucidate potential protein complexes and confirm the predicted binding activities of both UL144 and TNFRSF14. We then used our in silico approach to replicate the experimental finding that revealed TNFRSF14 binding to both B- and T-lymphocyte attenuator (BTLA) and glycoprotein domain and UL144 binding to BTLA alone. This computational framework offers promise in identifying structural similarities and interactions between pathogen-encoded proteins and their host counterparts. This information will provide valuable insights into the cognitive mechanisms underlying the neuropsychiatric effects of viral infections.
Collapse
Affiliation(s)
- Pascal Büttiker
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Amira Boukherissa
- Institute for Integrative Biology of the Cell (I2BC), UMR91918, CNRS, CEA, Paris-Saclay University, Gif-Sur-Yvette, France
- Ecology Systematics Evolution (ESE), CNRS, AgroParisTech, Paris-Saclay University, Orsay, France
| | - Simon Weissenberger
- Department of Psychology, University of New York in Prague, Prague, Czech Republic
| | - Radek Ptacek
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martin Anders
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiri Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - George B Stefano
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| |
Collapse
|
5
|
Shi Y, Wu Z, Zeng P, Song J, Guo J, Yang X, Zhou J, Liu J, Hou L. Seneca valley virus 3C protease blocks EphA2-Mediated mTOR activation to facilitate viral replication. Microb Pathog 2024; 191:106673. [PMID: 38705218 DOI: 10.1016/j.micpath.2024.106673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
The Seneca Valley virus (SVV) is a recently discovered porcine pathogen that causes vesicular diseases and poses a significant threat to the pig industry worldwide. Erythropoietin-producing hepatoma receptor A2 (EphA2) is involved in the activation of the AKT/mTOR signaling pathway, which is involved in autophagy. However, the regulatory relationship between SVV and EphA2 remains unclear. In this study, we demonstrated that EphA2 is proteolysed in SVV-infected BHK-21 and PK-15 cells. Overexpression of EphA2 significantly inhibited SVV replication, as evidenced by decreased viral protein expression, viral titers, and viral load, suggesting an antiviral function of EphA2. Subsequently, viral proteins involved in the proteolysis of EphA2 were screened, and the SVV 3C protease (3Cpro) was found to be responsible for this cleavage, depending on its protease activity. However, the protease activity sites of 3Cpro did not affect the interactions between 3Cpro and EphA2. We further determined that EphA2 overexpression inhibited autophagy by activating the mTOR pathway and suppressing SVV replication. Taken together, these results indicate that SVV 3Cpro targets EphA2 for cleavage to impair its EphA2-mediated antiviral activity and emphasize the potential of the molecular interactions involved in developing antiviral strategies against SVV infection.
Collapse
Affiliation(s)
- Yongyan Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhi Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Penghui Zeng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoyu Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| |
Collapse
|
6
|
Abouelkheir M, Roy T, Krzyscik MA, Özdemir E, Hristova K. Investigations of membrane protein interactions in cells using fluorescence microscopy. Curr Opin Struct Biol 2024; 86:102816. [PMID: 38648680 PMCID: PMC11141325 DOI: 10.1016/j.sbi.2024.102816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
The interactions between proteins in membranes govern many cellular functions. Our ability to probe for such interactions has greatly evolved in recent years due to the introduction of new fluorescence techniques. As a result, we currently have a choice of methods that can be used to assess the spatial distribution of a membrane protein, its association state, and the thermodynamic stability of the oligomers in the native milieu. These biophysical measurements have revealed new insights into important biological processes in cellular membranes.
Collapse
Affiliation(s)
- Mahmoud Abouelkheir
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore MD 21218, USA; Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore MD 21218, USA
| | - Tanaya Roy
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore MD 21218, USA
| | - Mateusz A Krzyscik
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore MD 21218, USA
| | - Ece Özdemir
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore MD 21218, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore MD 21218, USA; Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore MD 21218, USA.
| |
Collapse
|
7
|
Vincenzi M, Mercurio FA, Leone M. EPHA2 Receptor as a Possible Therapeutic Target in Viral Infections. Curr Med Chem 2024; 31:5670-5701. [PMID: 37828671 DOI: 10.2174/0109298673256638231003111234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/02/2023] [Accepted: 08/24/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND The receptor tyrosine kinase EphA2 plays a role in many diseases, like cancer, cataracts, and osteoporosis. Interestingly, it has also been linked to viral infections. OBJECTIVE Herein, current literature has been reviewed to clarify EphA2 functions in viral infections and explore its potential role as a target in antiviral drug discovery strategies. METHODS Research and review articles along with preprints connecting EphA2 to different viruses have been searched through PubMed and the web. Structures of complexes between EphA2 domains and viral proteins have been retrieved from the PDB database. RESULTS EphA2 assumes a key role in Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein Barr virus (EBV) infections by directly binding, through its ligand binding domain, viral glycoproteins. For human cytomegalovirus (HCMV), the role of EphA2 in maintaining virus latency state, through cooperation with specific viral proteins, has also been speculated. In certain cells, with high EphA2 expression levels, following ligand stimulation, receptor activation might contribute to severe symptoms accompanying a few viral infections, including lung injuries often related to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). CONCLUSION Since EphA2 works as a host receptor for certain viruses, it might be worth more deeply investigating known compounds targeting its extracellular ligand binding domain as antiviral therapeutics. Due to EphA2's function in inflammation, its possible correlation with SARS-CoV-2 cannot be excluded, but more experimental studies are needed in this case to undoubtedly attribute the role of this receptor in viral infections.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council of Italy (CNR-IBB), Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council of Italy (CNR-IBB), Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council of Italy (CNR-IBB), Naples, Italy
| |
Collapse
|
8
|
Dauguet M, Lebbé C, Vignes S. Lymphedema and Kaposi sarcoma: A narrative review. JOURNAL DE MEDECINE VASCULAIRE 2023; 48:181-187. [PMID: 38035924 DOI: 10.1016/j.jdmv.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/20/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Kaposi sarcoma (KS), due to HHV-8 infection is classified in 4 subtypes: epidemic, endemic, HIV-related and iatrogenic essentially after organ transplant. Lymphedema is a complication of KS. We reviewed the interactions between HHV-8 infection and lymphedema according an analysis of the literature. MAIN BODY HHV-8 can infect different types of cells, among them a privileged tropism for lymphatic endothelial cells. It induces multi-centric endothelial proliferation leading to the occlusion of lymphatic vascular lumen. Lymphatic obstruction progressively lead to the blockage of lymphatic drainage, lymph stasis and lymphedema. Lymphedema mostly involved the lower limb affected by KS. It can then develop simultaneously or after the appearance of KS lesions but also be the first sign of KS, a long time before KS skin lesion onset. Lymphedema diagnosis is clinical and lymphoscintigraphy can confirm it if necessary. Lymphedema may be associated with active lesions of KS or non-evolutive, with only cicatricial lesions. KS should be treated according to the KS subtype, aggressive form, with local or systemic treatments associating with causal treatment, such as HIV infection or reducing immuno-suppressive drugs in transplant patients. In most of the cases, KS treatment may slightly reduce (or not) lymphedema volume which remains a chronic disease. Lymphedema management should be associated in order to reduce the volume and then stabilizing it. Low-stretch bandage, elastic garments and skin care are the cornerstone of treatment. CONCLUSION Lymphedema is a frequent complication of KS, and may reveal KS or occurs throughout its course. Association of KS and lymphedema must be known because lymphedema is a chronic disease affecting the quality of life. Beyond the treatment of KS, its management must be specific including a long follow-up to optimize the patient's observance required to maintain the best lymphedema control.
Collapse
Affiliation(s)
- M Dauguet
- Department of Lymphology, Referral Center for Primary Lymphedema, Cognacq-Jay Hospital, 15, rue Eugène-Millon, 75015 Paris, France
| | - C Lebbé
- Université Paris Cité, AP-HP Dermato-Oncology, Cancer Institute AP-HP Nord Paris Cité, INSERM U976, Saint-Louis Hospital, Paris, France
| | - S Vignes
- Department of Lymphology, Referral Center for Primary Lymphedema, Cognacq-Jay Hospital, 15, rue Eugène-Millon, 75015 Paris, France.
| |
Collapse
|
9
|
Chehelgerdi M, Chehelgerdi M, Allela OQB, Pecho RDC, Jayasankar N, Rao DP, Thamaraikani T, Vasanthan M, Viktor P, Lakshmaiya N, Saadh MJ, Amajd A, Abo-Zaid MA, Castillo-Acobo RY, Ismail AH, Amin AH, Akhavan-Sigari R. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol Cancer 2023; 22:169. [PMID: 37814270 PMCID: PMC10561438 DOI: 10.1186/s12943-023-01865-0] [Citation(s) in RCA: 269] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023] Open
Abstract
The use of nanotechnology has the potential to revolutionize the detection and treatment of cancer. Developments in protein engineering and materials science have led to the emergence of new nanoscale targeting techniques, which offer renewed hope for cancer patients. While several nanocarriers for medicinal purposes have been approved for human trials, only a few have been authorized for clinical use in targeting cancer cells. In this review, we analyze some of the authorized formulations and discuss the challenges of translating findings from the lab to the clinic. This study highlights the various nanocarriers and compounds that can be used for selective tumor targeting and the inherent difficulties in cancer therapy. Nanotechnology provides a promising platform for improving cancer detection and treatment in the future, but further research is needed to overcome the current limitations in clinical translation.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Institute, Research and Development Center for Biotechnology, Shahrekord, Chaharmahal and Bakhtiari, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Chaharmahal and Bakhtiari, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Institute, Research and Development Center for Biotechnology, Shahrekord, Chaharmahal and Bakhtiari, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Chaharmahal and Bakhtiari, Iran
| | | | | | - Narayanan Jayasankar
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College Of Pharmacy, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Devendra Pratap Rao
- Department of Chemistry, Coordination Chemistry Laboratory, Dayanand Anglo-Vedic (PG) College, Kanpur-208001, U.P, India
| | - Tamilanban Thamaraikani
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College Of Pharmacy, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Manimaran Vasanthan
- Department of Pharmaceutics, SRM Institute of Science and Technology, SRM College Of Pharmacy, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Patrik Viktor
- Keleti Károly Faculty of Business and Management, Óbuda University, Tavaszmező U. 15-17, 1084, Budapest, Hungary
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Ayesha Amajd
- Faculty of Organization and Management, Silesian University of Technology, 44-100, Gliwice, Poland
- Department of Mechanical Engineering, CEMMPRE, University of Coimbra, Polo II, 3030-788, Coimbra, Portugal
| | - Mabrouk A Abo-Zaid
- Department of Biology, College of Science, Jazan University, 82817, Jazan, Saudi Arabia
| | | | - Ahmed H Ismail
- Department of Biology, College of Science, Jazan University, 82817, Jazan, Saudi Arabia
| | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
Lipofectamine 2000™ at transfection dose promotes EphA2 transcription in an HDAC4-dependent manner to reduce its cytotoxicity. Heliyon 2022; 8:e12118. [PMID: 36544821 PMCID: PMC9761724 DOI: 10.1016/j.heliyon.2022.e12118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/03/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
The cationic liposome is well-known as an efficient nucleic acid delivery tool; however, the stress responses induced by liposome per se have been rarely revealed. In this study, we found that Lipofectamine™ 2000 (lipo2000), a commonly used commercial cationic liposome transfection, could upregulate EphA2 mRNA expression in multiple cells at transfection dose. Furthermore, lipo2000 treatment could increase the level of EphA2 hnRNA (heterogeneous nuclear RNA). Lipo2000-induced EphA2 upregulation could be depleted upon global transcription inhibition, proving that lipo2000 upregulates EphA2 expression via activating its transcription. Moreover, HDAC4 depletion, a known EphA2 trans-acting regulatory factor, could eliminate the lipo2000-induced EphA2 upregulation, demonstrating that lipo2000 promotes EphA2 transcription in an HDAC4 dependent manner. Functionally, EphA2 knockdown did not affect GFP expression level and the interfering efficacy of siGAPDH, suggesting that EphA2 is unrelated to the nucleic acid delivery capacity of lipo2000. Nevertheless, EphA2 depletion significantly activated autophagy and apoptosis, increasing the cytotoxic effects of lipo2000, which could be rescued by EphA2 restoration, indicating that EphA2 is essential to overcome liposome-related cytotoxicity. Finally, we found that lipo2000 could activate EphA2 transcription in an HDAC4-dependent manner. EphA2 is not associated with the transfection efficiency of lipo2000, but it is vital to reduce lipo2000 cytotoxicity, suggesting that when conducting liposome-mediated gene function studies, especially for EphA2, the stress response of liposomes should be considered to obtain objective results.
Collapse
|
11
|
Wass AB, Krishna BA, Herring LE, Gilbert TSK, Nukui M, Groves IJ, Dooley AL, Kulp KH, Matthews SM, Rotroff DM, Graves LM, O’Connor CM. Cytomegalovirus US28 regulates cellular EphA2 to maintain viral latency. SCIENCE ADVANCES 2022; 8:eadd1168. [PMID: 36288299 PMCID: PMC9604534 DOI: 10.1126/sciadv.add1168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Cytomegalovirus (CMV) reactivation from latency following immune dysregulation remains a serious risk for patients, often causing substantial morbidity and mortality. Here, we demonstrate the CMV-encoded G protein-coupled receptor, US28, in coordination with cellular Ephrin receptor A2, attenuates mitogen-activated protein kinase signaling, thereby limiting viral replication in latently infected primary monocytes. Furthermore, treatment of latently infected primary monocytes with dasatinib, a Food and Drug Association-approved kinase inhibitor used to treat a subset of leukemias, results in CMV reactivation. These ex vivo data correlate with our retrospective analyses of the Explorys electronic health record database, where we find dasatinib treatment is associated with a significant risk of CMV-associated disease (odds ratio 1.58, P = 0.0004). Collectively, our findings elucidate a signaling pathway that plays a central role in the balance between CMV latency and reactivation and identifies a common therapeutic cancer treatment that elevates the risk of CMV-associated disease.
Collapse
Affiliation(s)
- Amanda B. Wass
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Benjamin A. Krishna
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Laura E. Herring
- UNC Proteomics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas S. K. Gilbert
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Masatoshi Nukui
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ian J. Groves
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Abigail L. Dooley
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Katherine H. Kulp
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Stephen M. Matthews
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel M. Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Endocrinology and Metabolism Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lee M. Graves
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christine M. O’Connor
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
12
|
Gomez-Soler M, Gehring MP, Lechtenberg BC, Zapata-Mercado E, Ruelos A, Matsumoto MW, Hristova K, Pasquale EB. Ligands with different dimeric configurations potently activate the EphA2 receptor and reveal its potential for biased signaling. iScience 2022; 25:103870. [PMID: 35243233 PMCID: PMC8858996 DOI: 10.1016/j.isci.2022.103870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/13/2021] [Accepted: 02/01/2022] [Indexed: 12/03/2022] Open
Abstract
The EphA2 receptor tyrosine kinase activates signaling pathways with different, and sometimes opposite, effects in cancer and other pathologies. Thus, highly specific and potent biased ligands that differentially control EphA2 signaling responses could be therapeutically valuable. Here, we use EphA2-specific monomeric peptides to engineer dimeric ligands with three different geometric configurations to combine a potential ability to differentially modulate EphA2 signaling responses with the high potency and prolonged receptor residence time characteristic of dimeric ligands. The different dimeric peptides readily induce EphA2 clustering, autophosphorylation and signaling, the best with sub-nanomolar potency. Yet, there are differences in two EphA2 signaling responses induced by peptides with different configurations, which exhibit distinct potency and efficacy. The peptides bias signaling when compared with the ephrinA1-Fc ligand and do so via different mechanisms. These findings provide insights into Eph receptor signaling, and proof-of-principle that different Eph signaling responses can be distinctly modulated.
Collapse
Affiliation(s)
- Maricel Gomez-Soler
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Marina P. Gehring
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Bernhard C. Lechtenberg
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville Victoria 3052, Australia and Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Elmer Zapata-Mercado
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alyssa Ruelos
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Mike W. Matsumoto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Elena B. Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
13
|
Antibodies Targeting KSHV gH/gL Reveal Distinct Neutralization Mechanisms. Viruses 2022; 14:v14030541. [PMID: 35336948 PMCID: PMC8953146 DOI: 10.3390/v14030541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023] Open
Abstract
Kaposi’s sarcoma herpesvirus (KSHV) is associated with a significant disease burden, in particular in Sub-Sahara Africa. A KSHV vaccine would be highly desirable, but the mechanisms underlying neutralizing antibody responses against KSHV remain largely unexplored. The complex made of glycoproteins H and L (gH/gL) activates gB for the fusion of viral and cellular membranes in all herpesviruses. KSHV gH/gL also interacts with cellular Eph family receptors. To identify optimal antigens for vaccination and to elucidate neutralization mechanisms, we primed mice with recombinantly expressed, soluble gH/gL (gHecto/gL) that was either wildtype (WT), lacking defined glycosylation sites or bearing modified glycosylation, followed by boosts with WT gHecto/gL. We also immunized with a gL-gHecto fusion protein or a gHecto-ferritin/gL nanoparticle. Immune sera neutralized KSHV and inhibited EphA2 receptor binding. None of the regimens was superior to immunization with WT gHecto/gL with regard to neutralizing activity and EphA2 blocking activity, the gL-gHecto fusion protein was equally effective, and the ferritin construct was inferior. gH/gL-targeting sera inhibited gB-mediated membrane fusion and inhibited infection also independently from receptor binding and gL, as demonstrated by neutralization of a novel KSHV mutant that does not or only marginally incorporate gL into the gH/gL complex and infects through an Eph-independent route.
Collapse
|