1
|
Jamerlan AM, Shim KH, Sharma N, An SSA. Multimer Detection System: A Universal Assay System for Differentiating Protein Oligomers from Monomers. Int J Mol Sci 2025; 26:1199. [PMID: 39940966 PMCID: PMC11818661 DOI: 10.3390/ijms26031199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Depositions of protein aggregates are typical pathological hallmarks of various neurodegenerative diseases (NDs). For example, amyloid-beta (Aβ) and tau aggregates are present in the brain and plasma of patients with Alzheimer's disease (AD); α-synuclein in Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA); mutant huntingtin protein (Htt) in Huntington's disease (HD); and DNA-binding protein 43 kD (TDP-43) in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and limbic-predominant age-related TDP-43 encephalopathy (LATE). The same misfolded proteins can be present in multiple diseases in the form of mixed proteinopathies. Since there is no cure for all these diseases, understanding the mechanisms of protein aggregation becomes imperative in modern medicine, especially for developing diagnostics and therapeutics. A Multimer Detection System (MDS) was designed to distinguish and quantify the multimeric/oligomeric forms from the monomeric form of aggregated proteins. As the unique epitope of the monomer is already occupied by capturing or detecting antibodies, the aggregated proteins with multiple epitopes would be accessible to both capturing and detecting antibodies simultaneously, and signals will be generated from the oligomers rather than the monomers. Hence, MDS could present a simple solution for measuring various conformations of aggregated proteins with high sensitivity and specificity, which may help to explore diagnostic and treatment strategies for developing anti-aggregation therapeutics.
Collapse
Affiliation(s)
| | | | - Niti Sharma
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si 13120, Republic of Korea; (A.M.J.); (K.H.S.)
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si 13120, Republic of Korea; (A.M.J.); (K.H.S.)
| |
Collapse
|
2
|
Ciaglia T, Miranda MR, Di Micco S, Vietri M, Smaldone G, Musella S, Di Sarno V, Auriemma G, Sardo C, Moltedo O, Pepe G, Bifulco G, Ostacolo C, Campiglia P, Manfra M, Vestuto V, Bertamino A. Neuroprotective Potential of Indole-Based Compounds: A Biochemical Study on Antioxidant Properties and Amyloid Disaggregation in Neuroblastoma Cells. Antioxidants (Basel) 2024; 13:1585. [PMID: 39765912 PMCID: PMC11673510 DOI: 10.3390/antiox13121585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/15/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Based on the established neuroprotective properties of indole-based compounds and their significant potential as multi-targeted therapeutic agents, a series of synthetic indole-phenolic compounds was evaluated as multifunctional neuroprotectors. Each compound demonstrated metal-chelating properties, particularly in sequestering copper ions, with quantitative analysis revealing approximately 40% chelating activity across all the compounds. In cellular models, these hybrid compounds exhibited strong antioxidant and cytoprotective effects, countering reactive oxygen species (ROS) generated by the Aβ(25-35) peptide and its oxidative byproduct, hydrogen peroxide, as demonstrated by quantitative analysis showing on average a 25% increase in cell viability and a reduction in ROS levels to basal states. Further analysis using thioflavin T fluorescence assays, circular dichroism, and computational studies indicated that the synthesized derivatives effectively promoted the self-disaggregation of the Aβ(25-35) fragment. Taken together, these findings suggest a unique profile of neuroprotective actions for indole-phenolic derivatives, combining chelating, antioxidant, and anti-aggregation properties, which position them as promising compounds for the development of multifunctional agents in Alzheimer's disease therapy. The methods used provide reliable in vitro data, although further in vivo validation and assessment of blood-brain barrier penetration are needed to confirm therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Simone Di Micco
- European Biomedical Research Institute of Salerno (EBRIS), Via Salvatore de Renzi 50, 84125 Salerno, Italy;
| | - Mariapia Vietri
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Gerardina Smaldone
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Simona Musella
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Giulia Auriemma
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Carla Sardo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Ornella Moltedo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Michele Manfra
- Department of Health Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| |
Collapse
|
3
|
Kozina A, Herbert-Alonso G, Díaz A, Flores G, Guevara J. Effect of the aggregation state of amyloid-beta (25-35) on the brain oxidative stress in vivo. PLoS One 2024; 19:e0310258. [PMID: 39471144 PMCID: PMC11521274 DOI: 10.1371/journal.pone.0310258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/27/2024] [Indexed: 11/01/2024] Open
Abstract
Aggregation pathway of amyloid-β (25-35) in water affects the oxidative stress in the brain observed after administration of aggregated peptide in animals in vivo. Our studies on peptide aggregation ex situ prior to injection suggest that from the onset of peptide incubation in aqueous media, all samples exhibit the formation of fibril-like aggregates, characterized by a significant amount of β-sheets. This induces significant oxidative stress in vivo as observed for up to 60 min of peptide aggregation time. As the aggregation advances, the fibril-like aggregates become longer and intertwined, while the amount of β-sheets does not change significantly. An injection of such large, thick, and entangled aggregates in the animal brain results in a drastic increase in oxidative stress. This may be related to the number of activated microglia that initiate a sequence of inflammatory responses in the presence of large, highly interconnected fibrils.
Collapse
Affiliation(s)
- Anna Kozina
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Jorge Guevara
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
4
|
Zhang T, Wu J, Wang Y, Zhang H, Zhan X. Alleviating neuronal inflammation induced by Aβ 42 in SH-SY5Y through interaction with polysialic acid-oligomannuronate conjugate. Int J Biol Macromol 2024; 276:133862. [PMID: 39013512 DOI: 10.1016/j.ijbiomac.2024.133862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
Amyloid beta (Aβ) aggregation is one of the distinctive pathological hallmarks of Alzheimer's disease (AD). Therefore, the development of effective inhibitors against Aβ aggregate formation offers great promise for the treatment of AD. In this study, we designed a novel negatively charged functionalized conjugate aimed at inhibiting Aβ42 aggregation and attenuating neurotoxicity by grafting polysialic acid with mannuronate oligosaccharide, a biocompatible glycan extracted from seaweeds, designated as polysialic acid-mannan conjugate (PSA-MOS). ThT, biological microscopy, TEM and CD confirmed the inhibition of Aβ42 aggregation by PSA-MOS, as well as its ability to inhibit the conformational transition of Aβ42 to β-sheet. CCK-8 assay demonstrated that PSA-MOS was not cytotoxic to SH-SY5Y (p < 0.05) and promoted cell proliferation. In the Aβ42-induced SH-SY5Y injury models, PSA-MOS dose-dependently ameliorated cytotoxicity (p < 0.0001) and significantly reduced the levels of inflammatory factors of IL-1β (p < 0.0001), IL-6 (p < 0.0001) and TNF-α (p < 0.05). MD simulations demonstrated that PSA-MOS effectively impeded the α-helix to β-sheet transition of the Aβ42 monomer via electrostatic interactions with its CTR and NTR regions. These findings demonstrate the therapeutic potential of PSA-MOS as promising glycoconjugate for the treatment of AD.
Collapse
Affiliation(s)
- Tiantian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Yuying Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongtao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Saremi S, Khajeh K. Amyloid fibril cytotoxicity and associated disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:265-290. [PMID: 38811083 DOI: 10.1016/bs.pmbts.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Misfolded proteins assemble into fibril structures that are called amyloids. Unlike usually folded proteins, misfolded fibrils are insoluble and deposit extracellularly or intracellularly. Misfolded proteins interrupt the function and structure of cells and cause amyloid disease. There is increasing evidence that the most pernicious species are oligomers. Misfolded proteins disrupt cell function and cause cytotoxicity by calcium imbalance, mitochondrial dysfunction, and intracellular reactive oxygen species. Despite profound impacts on health, social, and economic factors, amyloid diseases remain untreatable. To develop new therapeutics and to understand the pathological manifestations of amyloidosis, research into the origin and pathology of amyloidosis is urgently needed. This chapter describes the basic concept of amyloid disease and the function of atypical amyloid deposits in them.
Collapse
Affiliation(s)
- Sabereh Saremi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Banerjee S, Naik T, Ghosh A. Intermediate Antiparallel Fibrils in Aβ40 Dutch Mutant Aggregation: Insights from Nanoscale Infrared Spectroscopy. J Phys Chem B 2023; 127:5799-5807. [PMID: 37363988 PMCID: PMC10691422 DOI: 10.1021/acs.jpcb.3c01869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Cerebral amyloid angiopathy (CAA), which involves amyloid deposition in blood vessels leading to fatal cerebral hemorrhage and recurring strokes, is present in the majority Alzheimer's disease (AD) cases. Familial mutations in the amyloid β peptide are correlated to higher risks of CAA and are mostly comprised of mutations at residues 22 and 23. While the structure of the wild-type Aβ peptide has been investigated in great detail, less is known about the structure of mutants involved in CAA and evolutions thereof. This is particularly true for mutations at residue 22, for which detailed molecular structures, as typically determined from Nuclear Magnetic Resonance (NMR) spectroscopy or electron microscopy, do not exist. In this report, we have used nanoscale infrared (IR) spectroscopy augmented with atomic force microscopy (AFM-IR) to investigate structural evolution of the Aβ Dutch mutant (E22Q) at the single aggregate level. We show that in the oligomeric stage, the structural ensemble is distinctly bimodal, with the two subtypes differing with respect to population of parallel β sheets. Fibrils on the other hand are structurally homogeneous, with early-stage fibrils distinctly antiparallel in character, which develop parallel β sheets upon maturation. Furthermore, the antiparallel structure is found to be a persistent feature across different stages of aggregation.
Collapse
Affiliation(s)
- Siddhartha Banerjee
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Tanmayee Naik
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
7
|
Roy D, Maity NC, Kumar S, Maity A, Ratha BN, Biswas R, Maiti NC, Mandal AK, Bhunia A. Modulatory role of copper on hIAPP aggregation and toxicity in presence of insulin. Int J Biol Macromol 2023; 241:124470. [PMID: 37088193 DOI: 10.1016/j.ijbiomac.2023.124470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/24/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
Aggregation of the human islets amyloid polypeptide, or hIAPP, is linked to β-cell death in type II diabetes mellitus (T2DM). Different pancreatic β-cell environmental variables such as pH, insulin and metal ions play a key role in controlling the hIAPP aggregation. Since insulin and hIAPP are co-secreted, it is known from numerous studies that insulin suppresses hIAPP fibrillation by preventing the initial dimerization process. On the other hand, zinc and copper each have an inhibitory impact on hIAPP fibrillation, but copper promotes the production of toxic oligomers. Interestingly, the insulin oligomeric equilibrium is controlled by the concentration of zinc ions when the effect of insulin and zinc has been tested together. Lower zinc concentrations cause the equilibrium to shift towards the monomer and dimer states of insulin, which bind to monomeric hIAPP and stop it from developing into a fibril. On the other hand, the combined effects of copper and insulin have not yet been done. In this study, we have demonstrated how the presence of copper affects hIAPP aggregation and the toxicity of the resultant conformers with or without insulin. For this purpose, we have used a set of biophysical techniques, including NMR, fluorescence, CD etc., in combination with AFM and cell cytotoxicity assay. In the presence and/or absence of insulin, copper induces hIAPP to form structurally distinct stable toxic oligomers, deterring the fibrillation process. More specifically, the oligomers generated in the presence of insulin have slightly higher toxicity than those formed in the absence of insulin. This research will increase our understanding of the combined modulatory effect of two β-cell environmental factors on hIAPP aggregation.
Collapse
Affiliation(s)
- Dipanwita Roy
- Department of Biophysics, Bose Institute, Unified Academic Campus, Salt Lake, Sctor V, Kolkata 700091, India
| | - Narayan Chandra Maity
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Sector-III, Salt Lake, Kolkata 700106, India
| | - Sourav Kumar
- Department of Biophysics, Bose Institute, Unified Academic Campus, Salt Lake, Sctor V, Kolkata 700091, India
| | - Anupam Maity
- Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Bhisma N Ratha
- Department of Biophysics, Bose Institute, Unified Academic Campus, Salt Lake, Sctor V, Kolkata 700091, India
| | - Ranjit Biswas
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Sector-III, Salt Lake, Kolkata 700106, India
| | - Nakul Chandra Maiti
- Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Atin Kumar Mandal
- Division of Molecular Medicine, Bose Institute, Unified Academic Campus, Salt Lake, Sctor V, Kolkata, 700091, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Unified Academic Campus, Salt Lake, Sctor V, Kolkata 700091, India.
| |
Collapse
|
8
|
Banerjee S, Naik T, Ghosh A. Intermediate antiparallel fibrils in Aβ40 Dutch mutant aggregation: nanoscale insights from AFM-IR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533667. [PMID: 36993390 PMCID: PMC10055286 DOI: 10.1101/2023.03.21.533667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cerebral Amyloid Angiopathy (CAA), which involves amyloid deposition in blood vessels leading to fatal cerebral hemorrhage and recurring strokes, is present in the majority Alzheimer's disease cases. Familial mutations in the amyloid β peptide is correlated to higher risks of CAA, and are mostly comprised of mutations at residues 22 and 23. While the structure of the wild type Aβ peptide has been investigated in great detail, less is known about the structure of mutants involved in CAA and evolutions thereof. This is particularly true for mutations at residue 22, for which detailed molecular structures, as typically determined from Nuclear Magnetic Resonance (NMR) spectroscopy or electron microscopy, do not exist. In this report, we have used nanoscale infrared (IR) spectroscopy augmented with Atomic Force Microscopy (AFM-IR) to investigate structural evolution of the Aβ Dutch mutant (E22Q) at the single aggregate level. We show that that in the oligomeric stage, the structural ensemble is distinctly bimodal, with the two subtypes differing with respect to population of parallel β-sheets. Fibrils on the other hand are structurally homogeneous, with early-stage fibrils distinctly anti parallel in character, which develop parallel β-sheets upon maturation. Furthermore, the antiparallel structure is found to be a persistent feature across different stages of aggregation.
Collapse
|
9
|
Zaidi FK, Bhat R. Two polyphenols with diverse mechanisms towards amyloidosis: differential modulation of the fibrillation pathway of human lysozyme by curcumin and EGCG. J Biomol Struct Dyn 2022; 40:4593-4611. [DOI: 10.1080/07391102.2020.1860824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Fatima Kamal Zaidi
- Biophysical Chemistry Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rajiv Bhat
- Biophysical Chemistry Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
10
|
Scalone E, Broggini L, Visentin C, Erba D, Bačić Toplek F, Peqini K, Pellegrino S, Ricagno S, Paissoni C, Camilloni C. Multi-eGO: An in silico lens to look into protein aggregation kinetics at atomic resolution. Proc Natl Acad Sci U S A 2022; 119:e2203181119. [PMID: 35737839 PMCID: PMC9245614 DOI: 10.1073/pnas.2203181119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/17/2022] [Indexed: 12/25/2022] Open
Abstract
Protein aggregation into amyloid fibrils is the archetype of aberrant biomolecular self-assembly processes, with more than 50 associated diseases that are mostly uncurable. Understanding aggregation mechanisms is thus of fundamental importance and goes in parallel with the structural characterization of the transient oligomers formed during the process. Oligomers have been proven elusive to high-resolution structural techniques, while the large sizes and long time scales, typical of aggregation processes, have limited the use of computational methods to date. To surmount these limitations, we here present multi-eGO, an atomistic, hybrid structure-based model which, leveraging the knowledge of monomers conformational dynamics and of fibril structures, efficiently captures the essential structural and kinetics aspects of protein aggregation. Multi-eGO molecular dynamics simulations can describe the aggregation kinetics of thousands of monomers. The concentration dependence of the simulated kinetics, as well as the structural features of the resulting fibrils, are in qualitative agreement with in vitro experiments carried out on an amyloidogenic peptide from Transthyretin, a protein responsible for one of the most common cardiac amyloidoses. Multi-eGO simulations allow the formation of primary nuclei in a sea of transient lower-order oligomers to be observed over time and at atomic resolution, following their growth and the subsequent secondary nucleation events, until the maturation of multiple fibrils is achieved. Multi-eGO, combined with the many experimental techniques deployed to study protein aggregation, can provide the structural basis needed to advance the design of molecules targeting amyloidogenic diseases.
Collapse
Affiliation(s)
- Emanuele Scalone
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Luca Broggini
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
| | - Cristina Visentin
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
| | - Davide Erba
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Fran Bačić Toplek
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Kaliroi Peqini
- Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica, Università degli Studi di Milano, 20133 Milano, Italy
| | - Sara Pellegrino
- Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica, Università degli Studi di Milano, 20133 Milano, Italy
| | - Stefano Ricagno
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
| | - Cristina Paissoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
11
|
Hassan MN, Nabi F, Khan AN, Hussain M, Siddiqui WA, Uversky VN, Khan RH. The amyloid state of proteins: A boon or bane? Int J Biol Macromol 2022; 200:593-617. [PMID: 35074333 DOI: 10.1016/j.ijbiomac.2022.01.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/05/2022]
Abstract
Proteins and their aggregation is significant field of research due to their association with various conformational maladies including well-known neurodegenerative diseases like Alzheimer's (AD), Parkinson's (PD), and Huntington's (HD) diseases. Amyloids despite being given negative role for decades are also believed to play a functional role in bacteria to humans. In this review, we discuss both facets of amyloid. We have shed light on AD, which is one of the most common age-related neurodegenerative disease caused by accumulation of Aβ fibrils as extracellular senile plagues. We also discuss PD caused by the aggregation and deposition of α-synuclein in form of Lewy bodies and neurites. Other amyloid-associated diseases such as HD and amyotrophic lateral sclerosis (ALS) are also discussed. We have also reviewed functional amyloids that have various biological roles in both prokaryotes and eukaryotes that includes formation of biofilm and cell attachment in bacteria to hormone storage in humans, We discuss in detail the role of Curli fibrils' in biofilm formation, chaplins in cell attachment to peptide hormones, and Pre-Melansomal Protein (PMEL) roles. The disease-related and functional amyloids are compared with regard to their structural integrity, variation in regulation, and speed of forming aggregates and elucidate how amyloids have turned from foe to friend.
Collapse
Affiliation(s)
- Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Asra Nasir Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Murtaza Hussain
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Waseem A Siddiqui
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Vladimir N Uversky
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, 10 Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy 11 of Sciences", Pushchino, Moscow Region 142290, Russia; Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College 13 of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
12
|
Spatharas PM, Nasi GI, Tsiolaki PL, Theodoropoulou MK, Papandreou NC, Hoenger A, Trougakos IP, Iconomidou VA. Clusterin in Alzheimer's disease: An amyloidogenic inhibitor of amyloid formation? Biochim Biophys Acta Mol Basis Dis 2022; 1868:166384. [DOI: 10.1016/j.bbadis.2022.166384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/20/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022]
|
13
|
Jiang L, Sun Q, Li L, Lu F, Liu F. Molecular Insights into the Inhibitory Effect of GV971 Components Derived from Marine Acidic Oligosaccharides against the Conformational Transition of Aβ42 Monomers. ACS Chem Neurosci 2021; 12:3772-3784. [PMID: 34565139 DOI: 10.1021/acschemneuro.1c00555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
GV971 derived from marine acidic oligosaccharides has been used to cure Alzheimer's disease (AD). However, the molecular mechanism of its inhibition of the conformational transition of amyloid β-proteins (Aβ) is still unclear. Herein, molecular dynamics simulations were used to explore the molecular mechanism of the main GV971 components including DiM, TetraM, HexaM, and OctaM to inhibit the conformational conversion of the Aβ42 monomer. It is found that the GV971 components inhibit the conformational transition from α-helix to β-sheet and the hydrophobic collapse of the Aβ42 monomer. In addition, the binding energy analysis implies that both electrostatic and van der Waals interactions are beneficial to the binding of GV971 components to the Aβ42 monomer. Among them, electrostatic interactions occupy the dominant position. Moreover, the GV971 components mainly interact directly with the charged residues D1, R5, K16, and K28 by forming salt bridges and hydrogen bonds, which specifically bind to the N-terminal region of Aβ42.
Collapse
Affiliation(s)
- Luying Jiang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Quancheng Sun
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Li Li
- College of Marine and Environmental Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| |
Collapse
|
14
|
Diociaiuti M, Bonanni R, Cariati I, Frank C, D’Arcangelo G. Amyloid Prefibrillar Oligomers: The Surprising Commonalities in Their Structure and Activity. Int J Mol Sci 2021; 22:ijms22126435. [PMID: 34208561 PMCID: PMC8235680 DOI: 10.3390/ijms22126435] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
It has been proposed that a “common core” of pathologic pathways exists for the large family of amyloid-associated neurodegenerations, including Alzheimer’s, Parkinson’s, type II diabetes and Creutzfeldt–Jacob’s Disease. Aggregates of the involved proteins, independently from their primary sequence, induced neuron membrane permeabilization able to trigger an abnormal Ca2+ influx leading to synaptotoxicity, resulting in reduced expression of synaptic proteins and impaired synaptic transmission. Emerging evidence is now focusing on low-molecular-weight prefibrillar oligomers (PFOs), which mimic bacterial pore-forming toxins that form well-ordered oligomeric membrane-spanning pores. At the same time, the neuron membrane composition and its chemical microenvironment seem to play a pivotal role. In fact, the brain of AD patients contains increased fractions of anionic lipids able to favor cationic influx. However, up to now the existence of a specific “common structure” of the toxic aggregate, and a “common mechanism” by which it induces neuronal damage, synaptotoxicity and impaired synaptic transmission, is still an open hypothesis. In this review, we gathered information concerning this hypothesis, focusing on the proteins linked to several amyloid diseases. We noted commonalities in their structure and membrane activity, and their ability to induce Ca2+ influx, neurotoxicity, synaptotoxicity and impaired synaptic transmission.
Collapse
Affiliation(s)
- Marco Diociaiuti
- Centro Nazionale Malattie Rare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
- Correspondence:
| | - Roberto Bonanni
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (G.D.)
| | - Ida Cariati
- PhD in Medical-Surgical Biotechnologies and Translational Medicine, Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Claudio Frank
- UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (G.D.)
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
15
|
Schweitzer-Stenner R, Alvarez NJ. Short Peptides as Tunable, Switchable, and Strong Gelators. J Phys Chem B 2021; 125:6760-6775. [PMID: 34133176 DOI: 10.1021/acs.jpcb.1c01447] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This Perspective outlines our current understanding of molecular gels composed of short and ultrashort peptides over the past 20 years. We discuss in detail the state of the art regarding self-assembly mechanisms, structure, thermal stability, and kinetics of fibril and/or network formation. Emphasis is put on the importance of the combined use of spectroscopy and rheology for characterizing and validating self-assembly models. While a range of peptide chemistries are reviewed, we focus our discussion on a unique new class of ultrashort peptide gelators, denoted GxG peptides (x: guest residue), which are capable of forming self-assembled fibril networks. The storage moduli of GxG gels are tunable up to 100 kPa depending on concentration, pH, and/or cosolvent. The sheet structures of the fibrils differ from canonical β-sheets. When appropriate, each section highlights opportunities for additional research and technologies that would further our understanding.
Collapse
|
16
|
Medina L, González-Lizárraga F, Dominguez-Meijide A, Ploper D, Parrales V, Sequeira S, Cima-Omori MS, Zweckstetter M, Del Bel E, Michel PP, Outeiro TF, Raisman-Vozari R, Chehín R, Socias SB. Doxycycline Interferes With Tau Aggregation and Reduces Its Neuronal Toxicity. Front Aging Neurosci 2021; 13:635760. [PMID: 33828477 PMCID: PMC8020845 DOI: 10.3389/fnagi.2021.635760] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/22/2021] [Indexed: 01/15/2023] Open
Abstract
Tauopathies are neurodegenerative disorders with increasing incidence and still without cure. The extensive time required for development and approval of novel therapeutics highlights the need for testing and repurposing known safe molecules. Since doxycycline impacts α-synuclein aggregation and toxicity, herein we tested its effect on tau. We found that doxycycline reduces amyloid aggregation of the 2N4R and K18 isoforms of tau protein in a dose-dependent manner. Furthermore, in a cell free system doxycycline also prevents tau seeding and in cell culture reduces toxicity of tau aggregates. Overall, our results expand the spectrum of action of doxycycline against aggregation-prone proteins, opening novel perspectives for its repurposing as a disease-modifying drug for tauopathies.
Collapse
Affiliation(s)
- Luciana Medina
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (UNT-CONICET-SIPROSA), Tucumán, Argentina
| | - Florencia González-Lizárraga
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (UNT-CONICET-SIPROSA), Tucumán, Argentina
| | - Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany.,Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Diego Ploper
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (UNT-CONICET-SIPROSA), Tucumán, Argentina
| | - Valeria Parrales
- Sorbonne Université, Paris Brain Institute -ICM, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Assistance Publique - Hôpitaux de Paris (APHP), Hôpital de la Pitié Salpêtrière, Paris, France
| | - Sabrina Sequeira
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (UNT-CONICET-SIPROSA), Tucumán, Argentina
| | - Maria-Sol Cima-Omori
- German Center for Neurodegenerative Diseases Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany.,Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Elaine Del Bel
- Physiology- Dental School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Patrick P Michel
- Sorbonne Université, Paris Brain Institute -ICM, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Assistance Publique - Hôpitaux de Paris (APHP), Hôpital de la Pitié Salpêtrière, Paris, France
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany.,Max Planck Institute for Experimental Medicine, Goettingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rita Raisman-Vozari
- Sorbonne Université, Paris Brain Institute -ICM, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Assistance Publique - Hôpitaux de Paris (APHP), Hôpital de la Pitié Salpêtrière, Paris, France
| | - Rosana Chehín
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (UNT-CONICET-SIPROSA), Tucumán, Argentina
| | - Sergio B Socias
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (UNT-CONICET-SIPROSA), Tucumán, Argentina
| |
Collapse
|
17
|
Wu M, Dorosh L, Schmitt-Ulms G, Wille H, Stepanova M. Aggregation of Aβ40/42 chains in the presence of cyclic neuropeptides investigated by molecular dynamics simulations. PLoS Comput Biol 2021; 17:e1008771. [PMID: 33711010 PMCID: PMC7990313 DOI: 10.1371/journal.pcbi.1008771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/24/2021] [Accepted: 02/04/2021] [Indexed: 11/18/2022] Open
Abstract
Alzheimer’s disease is associated with the formation of toxic aggregates of amyloid beta (Aβ) peptides. Despite tremendous efforts, our understanding of the molecular mechanisms of aggregation, as well as cofactors that might influence it, remains incomplete. The small cyclic neuropeptide somatostatin-14 (SST14) was recently found to be the most selectively enriched protein in human frontal lobe extracts that binds Aβ42 aggregates. Furthermore, SST14’s presence was also found to promote the formation of toxic Aβ42 oligomers in vitro. In order to elucidate how SST14 influences the onset of Aβ oligomerization, we performed all-atom molecular dynamics simulations of model mixtures of Aβ42 or Aβ40 peptides with SST14 molecules and analyzed the structure and dynamics of early-stage aggregates. For comparison we also analyzed the aggregation of Aβ42 in the presence of arginine vasopressin (AVP), a different cyclic neuropeptide. We observed the formation of self-assembled aggregates containing the Aβ chains and small cyclic peptides in all mixtures of Aβ42–SST14, Aβ42–AVP, and Aβ40–SST14. The Aβ42–SST14 mixtures were found to develop compact, dynamically stable, but small aggregates with the highest exposure of hydrophobic residues to the solvent. Differences in the morphology and dynamics of aggregates that comprise SST14 or AVP appear to reflect distinct (1) regions of the Aβ chains they interact with; (2) propensities to engage in hydrogen bonds with Aβ peptides; and (3) solvent exposures of hydrophilic and hydrophobic groups. The presence of SST14 was found to impede aggregation in the Aβ42–SST14 system despite a high hydrophobicity, producing a stronger “sticky surface” effect in the aggregates at the onset of Aβ42–SST14 oligomerization. Improper folding of proteins causes disorders known as protein misfolding diseases. Under normal conditions most proteins adopt particular folds, which allow them functioning properly. However, for reasons that are not yet fully understood, proteins may misfold and aggregate, forming deposits known as amyloid fibrils, which accumulate in the brain or other tissues. This process affects functioning of the nervous system, gradually causing loss of cognitive abilities. Alzheimer’s disease is one of the most common diseases from this group. A better understanding of the aggregation of peptides implicated in Alzheimer’s disease, known as amyloid beta (Aβ) peptides, may facilitate the development of treatments that ameliorate or prevent the disease. We use detailed molecular dynamics simulations to investigate the influence of somatostatin-14 (SST14), a cyclic neuropeptide that might be involved in the amyloidogenic aggregation of Aβ, on molecular processes occurring at the onset of Aβ aggregation. Results of these simulations explain how the presence of SST14 might alter pathways of aggregation of Aβ, shedding light upon the possible role of extrinsic factors in the aggregation at a molecular level.
Collapse
Affiliation(s)
- Min Wu
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Lyudmyla Dorosh
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Gerold Schmitt-Ulms
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Canada
- Centre for Prions and Protein Folding Diseases, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Maria Stepanova
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
- * E-mail:
| |
Collapse
|
18
|
Vadukul DM, Maina M, Franklin H, Nardecchia A, Serpell LC, Marshall KE. Internalisation and toxicity of amyloid-β 1-42 are influenced by its conformation and assembly state rather than size. FEBS Lett 2020; 594:3490-3503. [PMID: 32871611 DOI: 10.1002/1873-3468.13919] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/30/2020] [Accepted: 08/19/2020] [Indexed: 01/18/2023]
Abstract
Amyloid fibrils found in plaques in Alzheimer's disease (AD) brains are composed of amyloid-β peptides. Oligomeric amyloid-β 1-42 (Aβ42) is thought to play a critical role in neurodegeneration in AD. Here, we determine how size and conformation affect neurotoxicity and internalisation of Aβ42 assemblies using biophysical methods, immunoblotting, toxicity assays and live-cell imaging. We report significant cytotoxicity of Aβ42 oligomers and their internalisation into neurons. In contrast, Aβ42 fibrils show reduced internalisation and no toxicity. Sonicating Aβ42 fibrils generates species similar in size to oligomers but remains nontoxic. The results suggest that Aβ42 oligomers have unique properties that underlie their neurotoxic potential. Furthermore, we show that incubating cells with Aβ42 oligomers for 24 h is sufficient to trigger irreversible neurotoxicity.
Collapse
Affiliation(s)
- Devkee M Vadukul
- Dementia Research group, Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, E Sussex, UK.,CEMO-Alzheimer Dementia group, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Mahmoud Maina
- Dementia Research group, Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, E Sussex, UK.,College of Medical Sciences, Yobe State University, Nigeria
| | - Hannah Franklin
- Dementia Research group, Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, E Sussex, UK
| | - Astrid Nardecchia
- Dementia Research group, Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, E Sussex, UK
| | - Louise C Serpell
- Dementia Research group, Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, E Sussex, UK
| | - Karen E Marshall
- Dementia Research group, Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, E Sussex, UK
| |
Collapse
|
19
|
de Oliveira MAS, Hilt S, Chang CW, Lee C, Voss JC, Chan JW. Surface-enhanced Raman scattering sensing platform for detecting amyloid-β peptide interaction with an aggregation inhibitor. APPLIED OPTICS 2020; 59:7490-7495. [PMID: 32902446 DOI: 10.1364/ao.399307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Soluble, small amyloid-β oligomers (AβO) are recognized as significant contributors to the pathology of Alzheimer's disease (AD). Although drugs for treating AD symptoms have been approved, no therapy targeting amyloid-β (Aβ) capable of modifying the course of the disease is available. In an effort to develop a label-free method for screening new anti-AD therapeutic agents, we show the use of a surface-enhanced Raman scattering (SERS) active substrate for detecting the interactions between Aβ peptides and spin-labeled fluorine (SLF), a peptide aggregation inhibitor. Changes in the peak positions and intensity ratios of two spectral peaks near 1600cm-1 and 2900cm-1 can be used to monitor the molecular interactions between SLF and Aβ. This study demonstrates the potential of SERS spectroscopy for rapidly screening and identifying new anti-Aβ therapeutic agents.
Collapse
|
20
|
Österlund N, Lundqvist M, Ilag LL, Gräslund A, Emanuelsson C. Amyloid-β oligomers are captured by the DNAJB6 chaperone: Direct detection of interactions that can prevent primary nucleation. J Biol Chem 2020; 295:8135-8144. [PMID: 32350108 PMCID: PMC7294096 DOI: 10.1074/jbc.ra120.013459] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/23/2020] [Indexed: 12/16/2022] Open
Abstract
A human molecular chaperone protein, DnaJ heat shock protein family (Hsp40) member B6 (DNAJB6), efficiently inhibits amyloid aggregation. This inhibition depends on a unique motif with conserved serine and threonine (S/T) residues that have a high capacity for hydrogen bonding. Global analysis of kinetics data has previously shown that DNAJB6 especially inhibits the primary nucleation pathways. These observations indicated that DNAJB6 achieves this remarkably effective and sub-stoichiometric inhibition by interacting not with the monomeric unfolded conformations of the amyloid-β symbol (Aβ) peptide but with aggregated species. However, these pre-nucleation oligomeric aggregates are transient and difficult to study experimentally. Here, we employed a native MS-based approach to directly detect oligomeric forms of Aβ formed in solution. We found that WT DNAJB6 considerably reduces the signals from the various forms of Aβ (1–40) oligomers, whereas a mutational DNAJB6 variant in which the S/T residues have been substituted with alanines does not. We also detected signals that appeared to represent DNAJB6 dimers and trimers to which varying amounts of Aβ are bound. These data provide direct experimental evidence that it is the oligomeric forms of Aβ that are captured by DNAJB6 in a manner which depends on the S/T residues. We conclude that, in agreement with the previously observed decrease in primary nucleation rate, strong binding of Aβ oligomers to DNAJB6 inhibits the formation of amyloid nuclei.
Collapse
Affiliation(s)
- Nicklas Österlund
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Martin Lundqvist
- Department of Biochemistry and Structural Biology, Lund University, Sweden
| | - Leopold L Ilag
- Department of Materials and Environmental Chemistry, Stockholm University, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | | |
Collapse
|
21
|
Adhikari R, Yang M, Saikia N, Dutta C, Alharbi WFA, Shan Z, Pandey R, Tiwari A. Acetylation of Aβ42 at Lysine 16 Disrupts Amyloid Formation. ACS Chem Neurosci 2020; 11:1178-1191. [PMID: 32207962 PMCID: PMC7605495 DOI: 10.1021/acschemneuro.0c00069] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The residue lysine 28 (K28) is known to form an important salt bridge that stabilizes the Aβ amyloid structure, and acetylation of lysine 28 (K28Ac) slows the Aβ42 fibrillization rate but does not affect fibril morphology. On the other hand, acetylation of lysine 16 (K16Ac) residue greatly diminishes the fibrillization property of Aβ42 peptide and also affects its toxicity. This is due to the fact that lysine 16 acetylated amyloid beta peptide forms amorphous aggregates instead of amyloid fibrils. This is likely a result of increased hydrophobicity of the K16-A21 region due to K16 acetylation, as confirmed by molecular dynamic simulation studies. The calculated results show that the hydrophobic patches of aggregates from acetylated peptides were different when compared to wild-type (WT) peptide. K16Ac and double acetylated (KKAc) peptide aggregates show significantly higher cytotoxicity compared to the WT or K28Ac peptide aggregates alone. However, the heterogeneous mixture of WT and acetylated Aβ42 peptide aggregates exhibited higher free radical formation as well as cytotoxicity, suggesting dynamic interactions between different species could be a critical contributor to Aβ pathology.
Collapse
Affiliation(s)
- Rashmi Adhikari
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Mu Yang
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Nabanita Saikia
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Colina Dutta
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Wafa F A Alharbi
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ravindra Pandey
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ashutosh Tiwari
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
22
|
Abstract
Ageing is a major risk factor for the development of many diseases, prominently including neurodegenerative disorders such as Alzheimer disease and Parkinson disease. A hallmark of many age-related diseases is the dysfunction in protein homeostasis (proteostasis), leading to the accumulation of protein aggregates. In healthy cells, a complex proteostasis network, comprising molecular chaperones and proteolytic machineries and their regulators, operates to ensure the maintenance of proteostasis. These factors coordinate protein synthesis with polypeptide folding, the conservation of protein conformation and protein degradation. However, sustaining proteome balance is a challenging task in the face of various external and endogenous stresses that accumulate during ageing. These stresses lead to the decline of proteostasis network capacity and proteome integrity. The resulting accumulation of misfolded and aggregated proteins affects, in particular, postmitotic cell types such as neurons, manifesting in disease. Recent analyses of proteome-wide changes that occur during ageing inform strategies to improve proteostasis. The possibilities of pharmacological augmentation of the capacity of proteostasis networks hold great promise for delaying the onset of age-related pathologies associated with proteome deterioration and for extending healthspan.
Collapse
|
23
|
Wille H, Dorosh L, Amidian S, Schmitt-Ulms G, Stepanova M. Combining molecular dynamics simulations and experimental analyses in protein misfolding. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 118:33-110. [PMID: 31928730 DOI: 10.1016/bs.apcsb.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The fold of a protein determines its function and its misfolding can result in loss-of-function defects. In addition, for certain proteins their misfolding can lead to gain-of-function toxicities resulting in protein misfolding diseases such as Alzheimer's, Parkinson's, or the prion diseases. In all of these diseases one or more proteins misfold and aggregate into disease-specific assemblies, often in the form of fibrillar amyloid deposits. Most, if not all, protein misfolding diseases share a fundamental molecular mechanism that governs the misfolding and subsequent aggregation. A wide variety of experimental methods have contributed to our knowledge about misfolded protein aggregates, some of which are briefly described in this review. The misfolding mechanism itself is difficult to investigate, as the necessary timescale and resolution of the misfolding events often lie outside of the observable parameter space. Molecular dynamics simulations fill this gap by virtue of their intrinsic, molecular perspective and the step-by-step iterative process that forms the basis of the simulations. This review focuses on molecular dynamics simulations and how they combine with experimental analyses to provide detailed insights into protein misfolding and the ensuing diseases.
Collapse
Affiliation(s)
- Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Canada; Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Lyudmyla Dorosh
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Sara Amidian
- Department of Biochemistry, University of Alberta, Edmonton, Canada; Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Gerold Schmitt-Ulms
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Maria Stepanova
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
24
|
Mohanty S. Aggregation and coacervation with Monte Carlo simulations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:505-520. [DOI: 10.1016/bs.pmbts.2019.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Morel B, Conejero-Lara F. Early mechanisms of amyloid fibril nucleation in model and disease-related proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140264. [PMID: 31437584 DOI: 10.1016/j.bbapap.2019.140264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/18/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
Abstract
Protein amyloid aggregation is a hallmark in neuropathologies and other diseases of tremendous impact such as Alzheimer's or Parkinson's diseases. During the last decade, it has become increasingly evident that neuronal death is mainly induced by proteinaceous oligomers rather than the mature amyloid fibrils. Therefore, the earliest molecular events occurring during the amyloid aggregation cascade represent a growing interest of study. Important breakthroughs have been achieved using experimental data from different proteins, used as models, as well as systems related to diseases. Here, we summarize the structural properties of amyloid oligomeric and fibrillar aggregates and review the recent advances on how biophysical techniques can be combined with quantitative kinetic analysis and theoretical models to study the detailed mechanism of oligomer formation and nucleation of fibrils. These insights into the mechanism of early oligomerization and amyloid nucleation are of relevant interest in drug discovery and in the design of preventive strategies against neurodegenerative diseases.
Collapse
Affiliation(s)
- Bertrand Morel
- Departamento de Química Física e Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain.
| | - Francisco Conejero-Lara
- Departamento de Química Física e Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
26
|
Trumbore CN. Shear-Induced Amyloid Formation in the Brain: III. The Roles of Shear Energy and Seeding in a Proposed Shear Model. J Alzheimers Dis 2019; 65:47-70. [PMID: 30040710 PMCID: PMC6087447 DOI: 10.3233/jad-171003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
If cerebrospinal and interstitial fluids move through very narrow brain flow channels, these restrictive surroundings generate varying levels of fluid shear and different shear rates, and dissolved amyloid monomers absorb different shear energies. It is proposed that dissolved amyloid-β protein (Aβ) and other amyloid monomers undergo shear-induced conformational changes that ultimately lead to amyloid monomer aggregation even at very low brain flow and shear rates. Soluble Aβ oligomers taken from diseased brains initiate in vivo amyloid formation in non-diseased brains. The brain environment is apparently responsible for this result. A mechanism involving extensional shear is proposed for the formation of a seed Aβ monomer molecule that ultimately promotes templated conformational change of other Aβ molecules. Under non-quiescent, non-equilibrium conditions, gentle extensional shear within the brain parenchyma, and perhaps even during laboratory preparation of Aβ samples, may be sufficient to cause subtle conformational changes in these monomers. These result from brain processes that significantly lower the high activation energy predicted for the quiescent Aβ dimerization process. It is further suggested that changes in brain location and changes brought about by aging expose Aβ molecules to different shear rates, total shear, and types of shear, resulting in different conformational changes in these molecules. The consequences of such changes caused by variable shear energy are proposed to underlie formation of amyloid strains causing different amyloid diseases. Amyloid researchers are urged to undertake studies with amyloids, anti-amyloid drugs, and antibodies while all of these are under shear conditions similar to those in the brain.
Collapse
Affiliation(s)
- Conrad N Trumbore
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| |
Collapse
|
27
|
Human islet amyloid polypeptide (hIAPP) aggregation in type 2 diabetes: Correlation between intrinsic physicochemical properties of hIAPP aggregates and their cytotoxicity. Int J Biol Macromol 2019; 136:57-65. [PMID: 31195047 DOI: 10.1016/j.ijbiomac.2019.06.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/09/2019] [Accepted: 06/09/2019] [Indexed: 02/07/2023]
Abstract
A large number of pathological diseases are known now to be associated with the misfolding and the aberrant oligomerization and deposition of peptides and proteins into various aggregates. One of these peptides is islet amyloid polypeptide (IAPP), which is responsible for amyloid formation in type 2 diabetes. The mechanism of IAPP amyloid formation in vivo and in vitro is not well understood and the factors behind the peptide aggregates toxicity are not fully defined. Therefore, the precise nature of toxic agents still remains to be elucidated. In this context, first we used a complementary biophysical approach to undertake a systematic study of the hIAPP aggregation process with focus on the lag phase, followed by the study of their degrees of toxicity when added to the extracellular medium of pancreatic cells. The structural properties of hIAPP aggregates are characterized by evaluating their size with DLS, their surface hydrophobicity with ANS, and the interactions between monomers through the intrinsic fluorescence of aromatic residues or by the quenching of these residues mainly the tyrosine in position 37. Our results indicate that despite the method used to study hIAPP aggregation, the obtained curve is easily well fitted in a sigmoidal curve but with some differences. In fact, the analysis of the kinetic parameters gives different information about the hIAPP aggregation process such as lag time and growth rate. Moreover, a high surface hydrophobicity and small size of the aggregates, mainly for the species formed during the lag time, shows strong correlation with the cytotoxicity. These findings provide new insights into the structural changes during hIAPP aggregation and are consistent with a model in which the exposure of hydrophobic surfaces and the small size of aggregates formed during the early stage of the process are crucial for their cytotoxicity.
Collapse
|
28
|
Sang JC, Lee JE, Dear AJ, De S, Meisl G, Thackray AM, Bujdoso R, Knowles TPJ, Klenerman D. Direct observation of prion protein oligomer formation reveals an aggregation mechanism with multiple conformationally distinct species. Chem Sci 2019; 10:4588-4597. [PMID: 31123569 PMCID: PMC6492631 DOI: 10.1039/c8sc05627g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
The aggregation of the prion protein (PrP) plays a key role in the development of prion diseases. In the past decade, a similar process has been associated with other proteins, such as Aβ, tau, and α-synuclein, which participate in other neurodegenerative diseases. It is increasingly recognized that the small oligomeric species of aggregates can play an important role in the development of prion diseases. However, determining the nature of the oligomers formed during the aggregation process has been experimentally difficult due to the lack of suitable methods capable of the detection and characterization of the low level of oligomers that may form. To address this problem, we have utilized single-aggregate methods to study the early events associated with aggregation of recombinant murine PrP in vitro to approach the bona fide process in vivo. PrP aggregation resulted in the formation of thioflavin T (ThT)-inactive and ThT-active species of oligomers. The ThT-active oligomers undergo conversion from a Proteinase K (PK)-sensitive to PK-resistant conformer, from which mature fibrils can eventually emerge. Overall, our results show that single-aggregate methods can provide structural and mechanistic insights into PrP aggregation, identify the potential species that mediates cytotoxicity, and reveal that a range of distinct oligomeric species with different properties is formed during prion protein aggregation.
Collapse
Affiliation(s)
- Jason C Sang
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Ji-Eun Lee
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Alexander J Dear
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Suman De
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Georg Meisl
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Alana M Thackray
- Department of Veterinary Medicine , University of Cambridge , Madingley Road , Cambridge , CB3 0ES , UK
| | - Raymond Bujdoso
- Department of Veterinary Medicine , University of Cambridge , Madingley Road , Cambridge , CB3 0ES , UK
| | - Tuomas P J Knowles
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - David Klenerman
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| |
Collapse
|
29
|
Hirota N, Edskes H, Hall D. Unified theoretical description of the kinetics of protein aggregation. Biophys Rev 2019; 11:191-208. [PMID: 30888575 DOI: 10.1007/s12551-019-00506-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
Solution conditions chosen for the production of amyloid can also promote formation of significant extents of amorphous protein aggregate. In one interpretation, the amyloid and amorphous aggregation pathways are considered to be in competition with each other. An alternative conceptualization involves considering amorphous aggregation as an obligatory intermediate process of the amyloid formation pathway. Here, we review recently developed macroscopic-level theories of protein aggregation that unify these two competing models into a single paradigm. Key features of the unified model included (1) a description of the amorphous aggregate as a second liquid phase with the degree of liquid-like character determined by the mobility of the monomer within it, and (2) heterogeneous growth pathways based on nucleation, growth, and fragmentation of amyloid occurring within different phases and at their interfacial boundary. Limiting-case behaviors of the protein aggregation reaction, either singly involving amyloid or amorphous aggregate production, and mixed-case behaviors, involving competitive and/or facilitated growth of amorphous and amyloid species, are presented and reviewed in context. This review principally describes an approach developed by Hirota and Hall 2019 (Hirota, N. and Hall, D. 2019. Protein Aggregation Kinetics: A Unified Theoretical Description. Chapter 7 of 'Protein Solubility and Amorphous Aggregation: From Academic Research to Applications in Drug Discovery and Bioindustry' edited by Y. Kuroda and F. Arisaka. CMC Publishers). Sections of that work are translated from the original Japanese and republished here with the full permission of CMC Publishing Corporation.
Collapse
Affiliation(s)
- Nami Hirota
- Do International Trading House, Koshienguchi-1-chome, Nishinomiya, Hyogo, 6113, Japan
| | - Herman Edskes
- Laboratory of Biochemistry and Genetics, NIDDK, NIH, Bld 8, Bethesda, MD, 20892-0830, USA
| | - Damien Hall
- Institute for Protein Research, Osaka University, 3-1- Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
30
|
Nishikawa N, Sakae Y, Gouda T, Tsujimura Y, Okamoto Y. Structural Analysis of a Trimer of β 2-Microgloblin Fragment by Molecular Dynamics Simulations. Biophys J 2019; 116:781-790. [PMID: 30771855 DOI: 10.1016/j.bpj.2018.11.3143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 06/08/2018] [Accepted: 11/06/2018] [Indexed: 01/22/2023] Open
Abstract
A peptide β2-m21-31, which is a fragment from residue 21 to residue 31 of β2-microgloblin, is experimentally known to self-assemble and form amyloid fibrils. In order to understand the mechanism of amyloid fibril formations, we applied the replica-exchange molecular dynamics method to the system consisting of three fragments of β2-m21-31. From the analyses on the temperature dependence, we found that there is a clear phase transition temperature in which the peptides aggregate with each other. Moreover, we found by the free energy analyses that there are two major stable states: One of them is like amyloid fibrils and the other is amorphous aggregates.
Collapse
Affiliation(s)
- Naohiro Nishikawa
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan; Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Aichi, Japan
| | - Yoshitake Sakae
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Takuya Gouda
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Yuichiro Tsujimura
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Yuko Okamoto
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan; Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan; Center for Computational Science, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan; Information Technology Center, Nagoya University, Nagoya, Aichi, Japan; JST-CREST, Nagoya, Aichi, Japan.
| |
Collapse
|
31
|
Qiao Q, Wei G, Yao D, Song Z. Formation of α-helical and β-sheet structures in membrane-bound human IAPP monomer and the resulting membrane deformation. Phys Chem Chem Phys 2019; 21:20239-20251. [DOI: 10.1039/c9cp03151k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Upon adsorption on membrane, human IAPP monomer takes conformational changes from coils to α-helices and β-sheets. The helices inserted and β on surface cause different types of membrane deformation, implying two distinct aggregation mechanisms.
Collapse
Affiliation(s)
- Qin Qiao
- Digital Medical Research Center
- School of Basic Medical Sciences
- Fudan University
- Shanghai 200032
- China
| | - Guanghong Wei
- Department of Physics
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Science (Ministry of Education)
- Fudan University
- Shanghai 200438
| | - Demin Yao
- Digital Medical Research Center
- School of Basic Medical Sciences
- Fudan University
- Shanghai 200032
- China
| | - Zhijian Song
- Digital Medical Research Center
- School of Basic Medical Sciences
- Fudan University
- Shanghai 200032
- China
| |
Collapse
|
32
|
Mechanism of aggregation and membrane interactions of mammalian prion protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018. [DOI: 10.1016/j.bbamem.2018.02.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Morris C, Cupples S, Kent TW, Elbassal EA, Wojcikiewicz EP, Yi P, Du D. N-Terminal Charged Residues of Amyloid-β Peptide Modulate Amyloidogenesis and Interaction with Lipid Membrane. Chemistry 2018; 24:9494-9498. [PMID: 29738067 PMCID: PMC6035087 DOI: 10.1002/chem.201801805] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/07/2018] [Indexed: 11/08/2022]
Abstract
Interactions of amyloid-β (Aβ) peptides and cellular membranes are proposed to be closely related with Aβ neurotoxicity in Alzheimer's disease. In this study, we systematically investigated the effect of the N-terminal hydrophilic region of Aβ40 on its amyloidogenesis and interaction with supported phospholipid bilayer. Our results show that modulation of the charge properties of the dynamic N-terminal region dramatically influences the aggregation properties of Aβ. Furthermore, our results demonstrate that the N-terminal charged residues play a crucial role in driving the early adsorption and latter remobilization of the peptide on membrane bilayer, and mediating the rigidity and viscoelasticity properties of the bound Aβ40 at the membrane interface. The results provide new mechanistic insight into the early Aβ-membrane interactions and binding, which may be critical for elucidating membrane-mediated Aβ amyloidogenesis in a physiological environment and unravelling the origin of Aβ neurotoxicity.
Collapse
Affiliation(s)
- Clifford Morris
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Shirin Cupples
- Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, Boca Raton, FL, 33431, USA
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Thomas W Kent
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Esmail A Elbassal
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Ewa P Wojcikiewicz
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Peng Yi
- Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Deguo Du
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, 33431, USA
| |
Collapse
|
34
|
Kim S, Lee HJ, Nam E, Jeong D, Cho J, Lim MH, You Y. Tailoring Hydrophobic Interactions between Probes and Amyloid-β Peptides for Fluorescent Monitoring of Amyloid-β Aggregation. ACS OMEGA 2018; 3:5141-5154. [PMID: 31458729 PMCID: PMC6641720 DOI: 10.1021/acsomega.8b00286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/23/2018] [Indexed: 05/30/2023]
Abstract
Despite their unique advantages, the full potential of molecular probes for fluorescent monitoring of amyloid-β (Aβ) aggregates has not been fully exploited. This limited utility stems from the lack of knowledge about the hydrophobic interactions between the molecules of Aβ probes, as well as those between the probe and the Aβ aggregate. Herein, we report the first mechanistic study, which firmly establishes a structure-signaling relationship of fluorescent Aβ probes. We synthesized a series of five fluorescent Aβ probes based on an archetypal donor-acceptor-donor scaffold (denoted as SN1-SN5). The arylamino donor moieties were systematically varied to identify molecular factors that could influence the interactions between molecules of each probe and that could influence their fluorescence outcomes in conditions mimicking the biological milieu. Our probes displayed different responses to aggregates of Aβ, Aβ40 and Aβ42, two major isoforms found in Alzheimer's disease: SN2, having pyrrolidine donors, showed noticeable ratiometric fluorescence responses (Δν = 797 cm-1) to the Aβ40 and Aβ42 samples that contained oligomeric species, whereas SN4, having N-methylpiperazine donors, produced significant fluorescence turn-on signaling in response to Aβ aggregates, including oligomers, protofibrils, and fibrils (with turn-on ratios of 14 and 10 for Aβ42 and Aβ40, respectively). Mechanistic investigations were carried out by performing field-emission scanning electron microscopy, X-ray crystallography, UV-vis absorption spectroscopy, and steady-state and transient photoluminescence spectroscopy experiments. The studies revealed that the SN probes underwent preassembly prior to interacting with the Aβ species and that the preassembled structures depended profoundly on the subtle differences between the amino moieties of the different probes. Importantly, the studies demonstrated that the mode of fluorescence signaling (i.e., ratiometric response versus turn-on response) was primarily governed by stacking geometries within the probe preassemblies. Specifically, ratiometric fluorescence responses were observed for probes capable of forming J-assembly, whereas fluorescence turn-on responses were obtained for probes incapable of forming J-aggregates. This finding provides an important guideline to follow in future efforts at developing fluorescent probes for Aβ aggregation. We also conclude, on the basis of our study, that the rational design of such fluorescent probes should consider interactions between the probe molecules, as well as those between Aβ peptides and the probe molecule.
Collapse
Affiliation(s)
- Sonam Kim
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eunju Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Donghyun Jeong
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jaeheung Cho
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
35
|
Upadhyay A, Mishra A. Amyloids of multiple species: are they helpful in survival? Biol Rev Camb Philos Soc 2018; 93:1363-1386. [DOI: 10.1111/brv.12399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| |
Collapse
|
36
|
Pujols J, Peña-Díaz S, Ventura S. AGGRESCAN3D: Toward the Prediction of the Aggregation Propensities of Protein Structures. Methods Mol Biol 2018; 1762:427-443. [PMID: 29594784 DOI: 10.1007/978-1-4939-7756-7_21] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein aggregation is responsible for the onset and spread of many human diseases, ranging from neurodegenerative disorders to cancer and diabetes. Moreover, it is one of the major bottlenecks for the production of protein-based therapeutics such as antibodies or enzymes. AGGRESCAN3D (A3D) is a web server aimed to identify and evaluate structural aggregation prone regions, overcoming the limitations of sequence-based algorithms in the prediction of the aggregation propensity of globular proteins. A3D allows the redesign of protein solubility by predicting in silico the impact of mutations and protein conformational fluctuations on the aggregation of native polypeptides.
Collapse
Affiliation(s)
- Jordi Pujols
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
37
|
Kamal Zaidi F, Bhat R. Resveratrol Interferes with an Early Step in the Fibrillization Pathway of Human Lysozyme and Modulates it towards Less-Toxic, Off-Pathway Aggregates. Chembiochem 2017; 19:159-170. [DOI: 10.1002/cbic.201700207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/31/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Fatima Kamal Zaidi
- School of Biotechnology; Jawaharlal Nehru University; New Mehrauli road New Delhi 110067 India
| | - Rajiv Bhat
- School of Biotechnology; Jawaharlal Nehru University; New Mehrauli road New Delhi 110067 India
| |
Collapse
|
38
|
Hilt S, Rojalin T, Viitala T, Koivuniemi A, Bunker A, Hogiu SW, Kálai T, Hideg K, Yliperttula M, Voss JC. Oligomerization Alters Binding Affinity Between Amyloid Beta and a Modulator of Peptide Aggregation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:23974-23987. [PMID: 30214656 PMCID: PMC6130836 DOI: 10.1021/acs.jpcc.7b06164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The soluble oligomeric form of the amyloid beta (Aβ) peptide is the major causative agent in the molecular pathogenesis of Alzheimer's disease (AD). We have previously developed a pyrroline-nitroxyl fluorene compound (SLF) that blocks the toxicity of Aβ. Here we introduce the multi-parametric surface plasmon resonance (MP-SPR) approach to quantify SLF binding and effect on the self-association of the peptide via a label-free, real-time approach. Kinetic analysis of SLF binding to Aβ and measurements of layer thickness alterations inform on the mechanism underlying the ability of SLF to inhibit Aβ toxicity and its progression towards larger oligomeric assemblies. Depending on the oligomeric state of Aβ, distinct binding affinities for SLF are revealed. The Aβ monomer and dimer uniquely possess sub-nanomolar affinity for SLF via a non-specific mode of binding. SLF binding is weaker in oligomeric Aβ, which displays an affinity for SLF on the order of 100 μM. To complement these experiments we carried out molecular docking and molecular dynamics simulations to explore how SLF interacts with the Aβ peptide. The MP-SPR results together with in silico modeling provide affinity data for the SLF-Aβ interaction and allow us to develop a new general method for examining protein aggregation.
Collapse
Affiliation(s)
- Silvia Hilt
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Tatu Rojalin
- Department of Pathology and Laboratory Medicine, and Center for Biophotonics, University of California Davis, USA
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - Tapani Viitala
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - Artturi Koivuniemi
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - Alex Bunker
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - Sebastian Wachsmann Hogiu
- Department of Pathology and Laboratory Medicine, and Center for Biophotonics, University of California Davis, USA
- Intellectual Ventures/Global Good, Bellevue, WA, USA
| | - Tamás Kálai
- Institute of Organic and Medicinal Chemistry, University of Pécs, H 7624 Pécs, Szigeti st. 12. Pécs, Hungary
| | - Kálmán Hideg
- Institute of Organic and Medicinal Chemistry, University of Pécs, H 7624 Pécs, Szigeti st. 12. Pécs, Hungary
| | - Marjo Yliperttula
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
- Department of Pharmaceutical Sciences, University of Padova, Italy
| | - John C. Voss
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
39
|
Cao Y, Jiang X, Han W. Self-Assembly Pathways of β-Sheet-Rich Amyloid-β(1-40) Dimers: Markov State Model Analysis on Millisecond Hybrid-Resolution Simulations. J Chem Theory Comput 2017; 13:5731-5744. [PMID: 29019683 DOI: 10.1021/acs.jctc.7b00803] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Early oligomerization during amyloid-β (Aβ) aggregation is essential for Aβ neurotoxicity. Understanding how unstructured Aβs assemble into oligomers, especially those rich in β-sheets, is essential but remains challenging as the assembly process is too transient for experimental characterization and too slow for molecular dynamics simulations. So far, atomic simulations are limited only to studies of either oligomer structures or assembly pathways for short Aβ segments. To overcome the computational challenge, we combine in this study a hybrid-resolution model and adaptive sampling techniques to perform over 2.7 ms of simulations of formation of full-length Aβ40 dimers that are the earliest toxic oligomeric species. The Markov state model is further employed to characterize the transition pathways and associated kinetics. Our results show that for two major forms of β-sheet-rich structures reported experimentally, the corresponding assembly mechanisms are markedly different. Hairpin-containing structures are formed by direct binding of soluble Aβ in β-hairpin-like conformations. Formation of parallel, in-register structures resembling fibrils occurs ∼100-fold more slowly and involves a rapid encounter of Aβ in arbitrary conformations followed by a slow structural conversion. The structural conversion proceeds via diverse pathways but always requires transient unfolding of encounter complexes. We find that the transition kinetics could be affected differently by intra-/intermolecular interactions involving individual residues in a conformation-dependent manner. In particular, the interactions involving Aβ's N-terminal part promote the assembly into hairpin-containing structures but delay the formation of fibril-like structures, thus explaining puzzling observations reported previously regarding the roles of this region in the early assembly process.
Collapse
Affiliation(s)
- Yang Cao
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School , Shenzhen, 518055, China
| | - Xuehan Jiang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School , Shenzhen, 518055, China
| | - Wei Han
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School , Shenzhen, 518055, China
| |
Collapse
|
40
|
Patel S, Sasidhar YU, Chary KVR. Mechanism of Initiation, Association, and Formation of Amyloid Fibrils Modeled with the N-Terminal Peptide Fragment, IKYLEFIS, of Myoglobin G-Helix. J Phys Chem B 2017; 121:7536-7549. [PMID: 28707888 DOI: 10.1021/acs.jpcb.7b02205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Some peptides and proteins undergo self-aggregation under certain conditions, leading to amyloid fibrils formation, which is related to many disease conditions. It is important to understand such amyloid fibrils formation to provide mechanistic detail that governs the process. A predominantly α-helical myoglobin has been reported recently to readily form amyloid fibrils at a higher temperature, similar to its G-helix segment. Here, we have investigated the mechanism of amyloid fibrils formation by performing multiple long molecular dynamics simulations (27 μs) on the N-terminal segment of the G-helix of myoglobin. These simulations resulted in the formation of a single-layered tetrameric β-sheet with mixed parallel and antiparallel β-strands and this is the most common event irrespective of many different starting structures. Formation of the single-layered tetrameric β-sheet takes place following three distinctive pathways. The process of fibril initiation is dependent on temperature. Further, this study provides mechanistic insights into the formation of multilayered fibrilar structure, which could be applicable to a wider variety of peptides or proteins to understand the amyloidogenesis.
Collapse
Affiliation(s)
- Sunita Patel
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences , Hyderabad 500075, India.,UM-DAE Centre for Excellence in Basic Sciences , Mumbai University Campus, Mumbai 400098, India
| | - Yellamraju U Sasidhar
- Department of Chemistry, Indian Institute of Technology Bombay , Mumbai 400076, India
| | - Kandala V R Chary
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences , Hyderabad 500075, India.,Tata Institute of Fundamental Research , Mumbai 400005, India
| |
Collapse
|
41
|
Govindarajalu G, Selvam M, Palchamy E, Baluchamy S. N-terminal truncations of human bHLH transcription factor Twist1 leads to the formation of aggresomes. Mol Cell Biochem 2017; 439:75-85. [PMID: 28779345 DOI: 10.1007/s11010-017-3137-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/01/2017] [Indexed: 01/25/2023]
Abstract
In the cell, misfolded proteins are processed by molecular chaperone-mediated refolding or through ubiquitin-mediated proteosome system. Dysregulation of these mechanisms facilitates the aggregation of misfolded proteins and forms aggresomes in the juxta nuclear position of the cell which are removed by lysosome-mediated autophagy pathway in the subsequent cell division. Accumulation of misfolded proteins in the cell is hallmark of several neurological disorders and other diseases including cancer. However, the exact mechanism of aggresome formation and clearance is not thoroughly understood. Reports have shown that several proteins including p300, p53, TAU, α-synuclein, SOD, etc. contain intrinsically disordered region (IDR) which has the tendency to form aggresome. To study the nature of aggresome formation and stability of the aggresome, we have chosen Twist1 as a model protein since it has IDR regions. Twist1 is a bHLH transcription factor which plays a major role in epithelial mesenchymal transition (EMT) and shown to interact with HAT domain of p300 and p53. In the present study, we generated several deletion mutants of human Twist1 with different fluorescent tags and delineated the regions responsible for aggresome formation. The Twist1 protein contains two NLS motifs at the N-terminal region. We showed that the deletions of regions spanning the amino acids 30-46 (Twist1Δ30-46) which lacks the first NLS motif form larger and intense aggregates while the deletion of residues from 47 to 100 (Twist1Δ47-100) which lacks the second NLS motif generates smaller and less intense aggregates in the juxta nuclear position. This suggests that both the NLS motifs are needed for the proper nuclear localization of Twist1. The aggresome formation of the Twist1 deletion mutants was confirmed by counterstaining with known aggresome markers: Vimentin, HDAC6, and gamma tubulin and further validated by MG-132 treatment. In addition, it was found that the aggresomes generated by the Twist1Δ30-46 construct are more stable than the aggresome produced by the Twist1Δ47-100 construct as well as the wild-type Twist1 protein. Taken together, our data provide an important understanding on the role of IDR regions on the formation and stability of aggresomes.
Collapse
Affiliation(s)
- Gokulapriya Govindarajalu
- Department of Biotechnology, Pondicherry Central University, R. V. Nagar, Kalapet, Pondicherry, 605014, India
| | - Murugan Selvam
- Department of Biotechnology, Pondicherry Central University, R. V. Nagar, Kalapet, Pondicherry, 605014, India
| | - Elango Palchamy
- Translational Gerontology Branch, National Institute ON Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Sudhakar Baluchamy
- Department of Biotechnology, Pondicherry Central University, R. V. Nagar, Kalapet, Pondicherry, 605014, India.
| |
Collapse
|
42
|
Das P, Chacko AR, Belfort G. Alzheimer's Protective Cross-Interaction between Wild-Type and A2T Variants Alters Aβ 42 Dimer Structure. ACS Chem Neurosci 2017; 8:606-618. [PMID: 28292185 DOI: 10.1021/acschemneuro.6b00357] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Whole genome sequencing has recently revealed the protective effect of a single A2T mutation in heterozygous carriers against Alzheimer's disease (AD) and age-related cognitive decline. The impact of the protective cross-interaction between the wild-type (WT) and A2T variants on the dimer structure is therefore of high interest, as the Aβ dimers are the smallest known neurotoxic species. Toward this goal, extensive atomistic replica exchange molecular dynamics simulations of the solvated WT homo- and A2T hetero- Aβ1-42 dimers have been performed, resulting into a total of 51 μs of sampling for each system. Weakening of a set of transient, intrachain contacts formed between the central and C-terminal hydrophobic residues is observed in the heterodimeric system. The majority of the heterodimers with reduced interaction between central and C-terminal regions lack any significant secondary structure and display a weak interchain interface. Interestingly, the A2T N-terminus, particularly residue F4, is frequently engaged in tertiary and quaternary interactions with central and C-terminal hydrophobic residues in those distinct structures, leading to hydrophobic burial. This atypical involvement of the N-terminus within A2T heterodimer revealed in our simulations implies possible interference on Aβ42 aggregation and toxic oligomer formation, which is consistent with experiments. In conclusion, the present study provides detailed structural insights onto A2T Aβ42 heterodimer, which might provide molecular insights onto the AD protective effect of the A2T mutation in the heterozygous state.
Collapse
Affiliation(s)
- Payel Das
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Anita R. Chacko
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Georges Belfort
- Howard
P. Isermann Department of Chemical and Biological Engineering, and
Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, United States
| |
Collapse
|
43
|
Prokopovich DV, Whittaker JW, Muthee MM, Ahmed A, Larini L. Impact of Phosphorylation and Pseudophosphorylation on the Early Stages of Aggregation of the Microtubule-Associated Protein Tau. J Phys Chem B 2017; 121:2095-2103. [PMID: 28218850 DOI: 10.1021/acs.jpcb.7b00194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The microtubule-associated protein tau regulates the stability of microtubules within neurons in the central nervous system. In turn, microtubules are responsible for the remodeling of the cytoskeleton that ultimately leads to the formation or pruning of new connections among neurons. As a consequence, dysfunction of tau is associated with many forms of dementia as well as Alzheimer's disease. In the brain, tau activity is regulated by its phosphorylation state. Phosphorylation is a post-translational modification of proteins that adds a phosphate group to the side chain of an amino acid. Phosphorylation at key locations in the tau sequence leads to a higher or lower affinity for microtubules. In Alzheimer's disease, tau is present in an abnormal phosphorylation state. However, studying the effect of phosphorylation experimentally has been extremely challenging as there is no viable way of exactly selecting the location and the number of phosphorylated sites. For this reason, researchers have turned to pseudophosphorylation. In this technique, actual phosphorylation is mimicked by mutating the selected amino acid into glutamate or aspartate. Whether this methodology is equivalent to actual phosphorylation is still open to debate. In this study, we will show that phosphorylation and pseudophosphorylation are not exactly equivalent. Although for larger aggregates the two techniques lead to similar structures, the kinetics of the process may be altered. In addition, very little is known about the impact that this may have on the early stages of aggregation, such as nucleation and conformational rearrangement. In this study, we show that the two methods may produce a similar ensemble of conformations, even though the kinetic and chemical details that lead to it are quite different.
Collapse
Affiliation(s)
- Dmitriy V Prokopovich
- Department of Physics and ‡Center for Computational and Integrative Biology, Rutgers University-Camden , Camden, New Jersey 08102, United States
| | - John W Whittaker
- Department of Physics and ‡Center for Computational and Integrative Biology, Rutgers University-Camden , Camden, New Jersey 08102, United States
| | - Micaiah M Muthee
- Department of Physics and ‡Center for Computational and Integrative Biology, Rutgers University-Camden , Camden, New Jersey 08102, United States
| | - Azka Ahmed
- Department of Physics and ‡Center for Computational and Integrative Biology, Rutgers University-Camden , Camden, New Jersey 08102, United States
| | - Luca Larini
- Department of Physics and ‡Center for Computational and Integrative Biology, Rutgers University-Camden , Camden, New Jersey 08102, United States
| |
Collapse
|
44
|
Two-Step Amyloid Aggregation: Sequential Lag Phase Intermediates. Sci Rep 2017; 7:40065. [PMID: 28067252 PMCID: PMC5220338 DOI: 10.1038/srep40065] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/30/2016] [Indexed: 12/25/2022] Open
Abstract
The self-assembly of proteins into fibrillar structures called amyloid fibrils underlies the onset and symptoms of neurodegenerative diseases, such as Alzheimer's and Parkinson's. However, the molecular basis and mechanism of amyloid aggregation are not completely understood. For many amyloidogenic proteins, certain oligomeric intermediates that form in the early aggregation phase appear to be the principal cause of cellular toxicity. Recent computational studies have suggested the importance of nonspecific interactions for the initiation of the oligomerization process prior to the structural conversion steps and template seeding, particularly at low protein concentrations. Here, using advanced single-molecule fluorescence spectroscopy and imaging of a model SH3 domain, we obtained direct evidence that nonspecific aggregates are required in a two-step nucleation mechanism of amyloid aggregation. We identified three different oligomeric types according to their sizes and compactness and performed a full mechanistic study that revealed a mandatory rate-limiting conformational conversion step. We also identified the most cytotoxic species, which may be possible targets for inhibiting and preventing amyloid aggregation.
Collapse
|
45
|
Singh J, Srivastava A, Sharma P, Pradhan P, Kundu B. DNA intercalators as amyloid assembly modulators: mechanistic insights. RSC Adv 2017. [DOI: 10.1039/c6ra26313e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
DNA intercalators modulate amyloid assembly of proteins through specific hetero-aromatic interactions diverting them to form amorphous aggregates.
Collapse
Affiliation(s)
- Jasdeep Singh
- Kusuma School of Biological Sciences
- Indian Institute of Technology Delhi
- New Delhi
- India
| | - Ankit Srivastava
- Kusuma School of Biological Sciences
- Indian Institute of Technology Delhi
- New Delhi
- India
| | - Pankaj Sharma
- Kusuma School of Biological Sciences
- Indian Institute of Technology Delhi
- New Delhi
- India
| | - Prashant Pradhan
- Kusuma School of Biological Sciences
- Indian Institute of Technology Delhi
- New Delhi
- India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences
- Indian Institute of Technology Delhi
- New Delhi
- India
| |
Collapse
|
46
|
Nguyen PH, Sterpone F, Pouplana R, Derreumaux P, Campanera JM. Dimerization Mechanism of Alzheimer Aβ 40 Peptides: The High Content of Intrapeptide-Stabilized Conformations in A2V and A2T Heterozygous Dimers Retards Amyloid Fibril Formation. J Phys Chem B 2016; 120:12111-12126. [PMID: 27933940 DOI: 10.1021/acs.jpcb.6b10722] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Amyloid beta (Aβ) oligomerization is associated with the origin and progression of Alzheimer's disease (AD). While the A2V mutation enhances aggregation kinetics and toxicity, mixtures of wild-type (WT) and A2V, and also WT and A2T, peptides retard fibril formation and protect against AD. In this study, we simulate the equilibrium ensemble of WT:A2T Aβ40 dimer by means of extensive atomistic replica exchange molecular dynamics and compare our results with previous equivalent simulations of A2V:A2V, WT:WT, and WT:A2V Aβ40 dimers for a total time scale of nearly 0.1 ms. Qualitative comparison of the resulting thermodynamic properties, such as the relative binding free energies, with the reported experimental kinetic and thermodynamic data affords us important insight into the conversion from slow-pathway to fast-pathway dimer conformations. The crucial reaction coordinate or driving force of such transformation turns out to be related to hydrophobic interpeptide interactions. Analysis of the equilibrium ensembles shows that the fast-pathway conformations contain interpeptide out-of-register antiparallel β-sheet structures at short interpeptide distances. In contrast, the slow-pathway conformations are formed by the association of peptides at large interpeptide distances and high intrapeptide compactness, such as conformations containing intramolecular three-stranded β-sheets which sharply distinguish fast (A2V:A2V and WT:WT) and slow (WT:A2T and WT:A2V) amyloid-forming sequences. Also, this analysis leads us to predict that a molecule stabilizing the intramolecular three-stranded β-sheet or inhibiting the formation of an interpeptide β-sheet spanning residues 17-20 and 31-37 would further reduce fibril formation and probably the cytotoxicity of Aβ species.
Collapse
Affiliation(s)
- Phuong H Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité , 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité , 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Ramon Pouplana
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona , 08028 Barcelona, Catalonia, Spain
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité , 13 Rue Pierre et Marie Curie, 75005 Paris, France.,IUF (Institut Universitaire de France) , 103 Boulevard Michel, 75005 Paris, France
| | - Josep M Campanera
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona , 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
47
|
Ranganathan S, Maji SK, Padinhateeri R. Defining a Physical Basis for Diversity in Protein Self-Assemblies Using a Minimal Model. J Am Chem Soc 2016; 138:13911-13922. [DOI: 10.1021/jacs.6b06433] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Srivastav Ranganathan
- Department of Biosciences
and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Samir K. Maji
- Department of Biosciences
and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ranjith Padinhateeri
- Department of Biosciences
and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
48
|
Malishev R, Nandi S, Kolusheva S, Shaham-Niv S, Gazit E, Jelinek R. Bacoside-A, an anti-amyloid natural substance, inhibits membrane disruption by the amyloidogenic determinant of prion protein through accelerating fibril formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2208-2214. [DOI: 10.1016/j.bbamem.2016.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 12/29/2022]
|
49
|
Yu Z, Huang P, Yu Y, Zheng Z, Huang Z, Guo C, Lin D. Unique Properties of the Rabbit Prion Protein Oligomer. PLoS One 2016; 11:e0160874. [PMID: 27529173 PMCID: PMC4987043 DOI: 10.1371/journal.pone.0160874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 07/26/2016] [Indexed: 11/26/2022] Open
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of fatal neurodegenerative disorders infecting both humans and animals. Recent works have demonstrated that the soluble prion protein oligomer (PrPO), the intermediate of the conformational transformation from the host-derived cellular form (PrPC) to the disease-associated Scrapie form (PrPSc), exerts the major neurotoxicity in vitro and in vivo. Rabbits show strong resistance to TSEs, the underlying mechanism is unclear to date. It is expected that the relative TSEs-resistance of rabbits is closely associated with the unique properties of rabbit prion protein oligomer which remain to be addressed in detail. In the present work, we prepared rabbit prion protein oligomer (recRaPrPO) and human prion protein oligomer (recHuPrPO) under varied conditions, analyzed the effects of pH, NaCl concentration and incubation temperature on the oligomerization, and compared the properties of recRaPrPO and recHuPrPO. We found that several factors facilitated the formation of prion protein oligomers, including low pH, high NaCl concentration, high incubation temperature and low conformational stability of monomeric prion protein. RecRaPrPO was formed more slowly than recHuPrPO at physiological-like conditions (< 57°C, < 150 mM NaCl). Furthermore, recRaPrPO possessed higher susceptibility to proteinase K and lower cytotoxicity in vitro than recHuPrPO. These unique properties of recRaPrPO might substantially contribute to the TSEs-resistance of rabbits. Our work sheds light on the oligomerization of prion proteins and is of benefit to mechanistic understanding of TSEs-resistance of rabbits.
Collapse
Affiliation(s)
- Ziyao Yu
- The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Pei Huang
- The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuanhui Yu
- The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhen Zheng
- The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zicheng Huang
- The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chenyun Guo
- The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Donghai Lin
- The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- * E-mail:
| |
Collapse
|
50
|
Farrell S, DiGuiseppi D, Alvarez N, Schweitzer-Stenner R. The interplay of aggregation, fibrillization and gelation of an unexpected low molecular weight gelator: glycylalanylglycine in ethanol/water. SOFT MATTER 2016; 12:6096-6110. [PMID: 27363780 DOI: 10.1039/c6sm00879h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hydrogels formed by polypeptides could be much-favored tools for drug delivery because their main ingredients are generally biodegradable. However, the gelation of peptides in aqueous solution generally requires a minimal length of the peptide as well as distinct sequences of hydrophilic and hydrophobic residues. The aggregation of short peptides like tripeptides, which are relatively cheap and offer a high degree of biodegradability, are generally thought to require a high hydrophobicity of their residues. We found that contrary to this expectation cationic glycylalanylglycine in 55 mol% ethanol/45 mol% water forms a gel below a melting temperature of ca. 36 °C. A pure hydrogel state can be obtained after allowing the ethanol component to evaporate. The gel phase consists of crystalline fibrils of several 100 μm, which form a sample-spanning network. Rheological data reveal a soft elastic solid gel. We investigated the kinetics of the various processes that lead to the final gel state of the ternary mixture by a unique combination of UV circular dichroism, infrared, vibrational circular dichroism (VCD) and rheological measurements. A mathematical analysis of our data show that gelation is preceded by the formation of peptide β-sheet like tapes or ribbons, which give rise to a significant enhancement of the amide I' VCD signal, and the subsequent formation of rather thick and long fibrils. The VCD signals indicate that the tapes exhibit a right-handed helicity at temperatures above 16 °C and a left-handed helicity below. The tapes'/ribbons' helicity change occurs at a temperature where the UVCD data reflect a relatively long nucleation process. The kinetics of gel formation probed by the storage and loss moduli are composed of a fast process that follows tape/ribbon/fibril formation and is clearly identifiable in a movie that shows the gelation process and a slow process that causes an additional gel stabilization. The rheological data indicate that left-handed fibrils observed at low temperatures form a more solid-like structure than their right-handed counterparts formed at higher temperatures. Taken together our data reveal GAG as an unexpected gelator, the formation of which is underlied by a set of distinguishable kinetic processes.
Collapse
Affiliation(s)
- Stefanie Farrell
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA.
| | - David DiGuiseppi
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA.
| | - Nicolas Alvarez
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, USA
| | | |
Collapse
|